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Abstract: The holographic entropy cone (HEC) characterizes the entanglement structure

of quantum states which admit geometric bulk duals in holography. Due to its intrinsic

complexity, to date it has only been possible to completely characterize the HEC for at

most n = 5 numbers of parties. For larger n, our knowledge of the HEC falls short of

incomplete: almost nothing is known about its extremal elements. Here, we introduce a

symmetrization procedure that projects the HEC onto a natural lower dimensional subspace.

Upon symmetrization, we are able to conjecture precise properties that its extremal structure

exhibits for general n. Further, by applying this symmetrization to the quantum entropy

cone, we are able to quantify the typicality of symmetrized holographic entropies, which we

find to be exponentially rare quantum entropies in the number of parties.
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1 Introduction

From the microscopic degrees of freedom of gravity to the macroscopic emergence of spacetime

itself, the holographic principle has provided deep insight into many aspects of quantum

gravity [1, 2]. Realizations thereof like AdS/CFT [3, 4] may be used to define a bulk theory of

quantum gravity non-perturbatively in terms of a lower-dimensional boundary field theory – a

hologram. Elucidating quantum gravity then amounts to decoding the holographic dictionary

between bulk and boundary physics. A remarkably powerful entry in this dictionary concerns

the correspondence between boundary entanglement and bulk geometry, and is often captured

by the slogan that spacetime emerges from entanglement [5].

At the heart of this idea lies the Ryu-Takayanagi (RT) formula [6] (see [7–9] for gen-

eralizations thereof), which geometrizes the von Neumann entropy of boundary regions into

areas of certain surfaces in the bulk. By RT, the emergence of a classical spacetime from

entanglement relies on strong constraints on the entanglement structure of boundary states:

only so-called holographic states with certain patterns of quantum entanglement admit such

geometrizations. When formulated as inequalities for the von Neumann entropy, these con-

straints define a polytope in the space of entropies of all subsystems one can form involving

n parties. In [10], this object was proven to be a rational polyhedral cone for any given n

and coined the holographic entropy cone (HEC). The work of [10] also pioneered a graph-

theoretic reformulation of RT entropies, later formalized by [11], that made the HEC amenable

to systematic study. In particular, [10] proved that the HEC could be equivalently defined

as the space of entropies that can be realized by the weights of minimum cuts on weighted

graphs. Despite this breakthrough, deciphering the general structure of the HECn for general

n remains a formidable challenge: its complete description is only known for up to n = 5 par-

ties [12], and despite the systematic computational algorithms of [11] for arbitrary n, results

for n ≥ 6 are only partial and highly incomplete [10, 13].

The remarkably complicated structure the HECn exhibits as n increases suggests that an

explicit description of all its rich details, if attainable at all, would probably not be very illumi-

nating. Hence, rather than trying to explicitly describe the HEC in full glory, some attempts

at studying it have focused on trying to understand its basic structural properties [14–18]. In

pursuing the latter strategy, the present work identifies an interesting projection of the HEC

which is able to wash out its uninteresting fine details while preserving non-trivial features of

the extremal structure of the HECn at arbitrary n. Since this projection is inspired by the

underlying symmetries of the HEC, we will be referring to it as a symmetrization. Similar ap-

proaches have been extremely successful in the context of Bell nonlocality, where a projection

of the local polytope onto the subspace invariant under permutation of the particles allowed

to find Bell inequalities valid for arbitrary n [19, 20]. Importantly, our symmetrization of the

HEC seems to take a simple enough form that we are able to propose a general solution to it,

and thereby conjecture non-trivial properties that all extreme rays and facets of the HECn

must satisfy for all n.

We begin in section 2 with a brief review of basic quantum and holographic inequalities

– 2 –



that will be appear throughout, and a self-contained introduction to the graph models of

holographic entanglement of [10]. Having laid out our notation, in Section 3 we then carefully

explain the symmetrization operations that are central to our explorations. Section 4 presents

our explicit results and conjectures for the general form of the HEC upon symmetrizations.

By looking at analogous general-n results for arbitrary quantum states in Section 5, we are

then able to quantify the typicality of holographic entropies upon symmetrization in Section

6: with respect to the uniform volume measure of entropy space, the latter are exponentially

rare in the number of parties. We conclude in Section 7 with a summary of results and a

discussion of open questions.

2 Basics

2.1 Inequalities

Let us collect here some basic inequalities which will be useful for later reference. The simplest

universal quantum inequality involves 2 parties and is known as subadditivity (SA). Proven

by [21], for arbitrary disjoint subsystems I and J , SA reads

SI + SJ ≥ SI∪J . (2.1)

This inequality holds trivially in holography. At 3 parties, there appears another well-known

universal quantum inequality: strong subadditivity (SSA). Proven by [22], SSA for arbitrary

overlapping subsystems I and J reads1

SI + SJ ≥ SI∩J + SI∪J . (2.2)

The proof of this inequality in holography is non-trivial and was established by [23, 24]. The

first genuinely holographic inequality (i.e., valid in holography, but not in quantum theory)

appears for 3 parties and is known as the monogamy of mutual information (MMI). Proven

by [24, 25], MMI for arbitrary disjoint subsystems I, J , and K reads

SI∪J + SI∪K + SJ∪K ≥ SI + SJ + SK + SI∪J∪K . (2.3)

2.2 Graphs

For any positive integer k, introduce the notation [k] ≡ {1, . . . , k}. Let G = (V,E) be an

undirected graph with finite vertex set V and edge set E. We make G into a weighted graph by

assigning a nonnegative weight we to every edge e ∈ E. Select some vertex subset ∂V ⊆ V and

call them boundary vertices. One then defines a coloring as a surjective map b : ∂V → [n+1].

The elements i ∈ [n+ 1] are called parties, and the non-empty subsets I ⊆ [n+ 1] are called

subsystems. Altogether, this structure defines a graph model of holographic entanglement.

Any subset W ⊆ V characterizes a cut of G, defined by a set of cut edges C(W ) ⊆ E as

C(W ) =
{

(v, v′) ∈ E : v ∈W, v′ ∈ V rW
}
, (2.4)

1To clarify, this is a 3-party inequality because it involves 3 disjoint subsystems: I r J , J r I, and I ∩ J .
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The cut weight is defined as the total weight of its edges ‖C(W )‖ =
∑

e∈C(W )we. A set

W ⊆ V is a cut for a subsystem I if it contains precisely the boundary vertices colored by

I, i.e., if W ∩ ∂V = b−1(I). Any cut W for I with minimum cut weight ‖C(W )‖ defines a

min-cut for I. The min-cut weight for a subsystem I defines its entropy SI via

SI = min
{
‖C(W )‖ : W ∩ ∂V = b−1(I)

}
. (2.5)

In the context of holography, the above can indeed be understood as computing the von

Neumann entropy of a subsystem I of some pure holographic state on [n + 1] [10]. Such a

pure state can be used to encode an arbitrary n-party, mixed holographic state on [n]. Due to

its quantum mechanical role, the special party n+ 1 is thus referred to as the purifier. Notice

in particular that (2.5) indeed reproduces the desired purification property that SI = SI{ for

complementary subsystems I and I{ = [n+ 1] r I. For this reason, the entropy vector of the

full graph model is defined excluding the purifier by

S = {SI : ∅ 6= I ⊆ [n]}, (2.6)

where the conventional choice of ordering is by cardinality first, and then lexicographically.

The set of all entropy vectors S ∈ R2n−1 obtained this way defines the holographic entropy

cone (HEC) for n parties, or HECn. In Appendix A, we give an example of how to compute

the entropy vector from a weighted graph, and in Appendix B we present the extreme rays

of the HECn for n ≤ 5.

More generally, the definition of an entropy vector in (2.6) applies to any n-partite quan-

tum system, with SI denoting the von Neumann entropy of a subsystem I ⊆ [n]. If instead

of holographic states one considers completely arbitrary quantum states, the resulting set of

all n-party entropy vectors defines the quantum entropy cone (QEC) for n parties, or QECn

[26]. Both the HEC and the QEC are convex cones,2 and the former is additionally known to

be polyhedral [10]. Consistent with the fact that holographic states define a special class of

quantum states, the HEC is a subcone of the QEC [27]. In the following, we will be interested

in studying the HEC and how it relates to the QEC.

3 Symmetrizations

Both entropy cones of interest in this paper are clearly symmetric under permutations of the

colors [n]. To see a larger symmetry, recall that subsystems I ⊆ [n+ 1] obey SI = SI{ . Hence

these entropy cones are symmetric not only under permutations of [n], but also under the

extended symmetric group Symn+1 of permutations of [n+ 1] involving the purifier n+ 1.

We would like to simplify the structure of our entropy cones by defining a symmetrization,

i.e., an operation P on their elements that is invariant under the action of Symn+1. More

explicitly, if x and y are two elements of an entropy cone in the same symmetry orbit, then they

2To be precise, it is actually only the topological closure of the latter which is a convex cone [26]. This

technicality will not be important for us.
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should have the same symmetrized form P (x) = P (y). By asking that this symmetrization

be a linear map, we will be guaranteed that the symmetrization of a full convex cone remain

so. The symmetrized versions of the HEC and QEC will respectively be referred to as SHEC

and SQEC.

For an entropy vector S ∈ R2n−1, our symmetrization will be some linear map P : S 7→ S̃.

To build it, first note that by the Symn symmetry of permutations of [n], P can only depend

on the cardinality |I| of the coordinate I ⊆ [n]. Additionally, by the full action of Symn+1

on [n + 1] with the identification SI{ = SI , one has that coordinates of cardinalities |I| and

|I{| = n + 1 − |I| are also related. Altogether, this means that P should just depend on at

most dn/2e different variables, associated to the distinct possible cardinalities of subsets of

[n+ 1] with complements identified. The codomain of P is thus Rdn/2e and one can label the

symmetric variables S̃k of the symmetrized vector S̃ ∈ Rdn/2e by cardinalities 1 ≤ k ≤ dn/2e.
A natural way of defining P thus employs subsets of [n + 1] of fixed cardinality k from 1 to

dn/2e,
Qn(k) = {I ⊆ [n+ 1] : |I| = k}. (3.1)

Then the symmetric variables can be obtained by just summing over coordinates in Qn(k),

S̃k =
1

|Qn(k)|
∑

I∈Qn(k)

SI , |Qn(k)| =
(
n+ 1

k

)
, (3.2)

where we have introduced a natural normalization factor accounting for the number of terms

in the sum. In other words, we can just think of S̃k as the average of all entropies over

k-partite subsystems of [n+ 1]. For instance, for n = 3, the symmetric variables in (3.2) are

S̃1 =
1

4
(S1 + S2 + S3 + S4) =

1

4
(S1 + S2 + S3 + S123),

S̃2 =
1

6
(S12 + S13 + S14 + S23 + S24 + S34) =

1

3
(S12 + S13 + S23),

(3.3)

where in the last equalities we used SI{ = SI . Crucially, notice that these sets Qn(k) auto-

matically take care of coordinates I ⊆ [n] of cardinality |I| = n + 1 − k, since I{ ∈ Qn(k).

Hence the operation P : R2n−1 → Rdn/2e defined this way is a valid linear symmetrization

invariant under Symn+1. For any number of parties n, the SHEC and SQEC will thus be

convex cones defined by the sets of all symmetrized entropy vectors S̃ ∈ Rdn/2e obtained from

symmetrizations of their parent entropy vectors S ∈ R2n−1 of the HEC and QEC, respectively.

In the case of the HEC, the symmetrization of entropy vectors that we just described

can also be easily arrived at from a symmetrization of graph models themselves. Indeed,

since weighted graphs are ultimately the object which defines the HEC, one may consider

performing a symmetrization already at this level. Given a graph model G for n parties,

consider all possible (n+1)! graphsGσ (some of which may be equal) obtained by permutations

σ ∈ Symn+1 of the colors [n+1]. If S and Sσ are respectively the entropy vectors from G and

Gσ, one obviously has SI = Sσσ(I), where σ(I) = {σ(i) : i ∈ I}, or, equivalently, SσI = Sσ−1(I).

Suppose one now combines two permuted graphs in a disjoint manner or glued together by
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identifying all vertices of the same color in both. Either way, it is straightforward to see that

the resulting graph Gσ ⊕Gσ′ yields Sσ + Sσ
′

as its entropy vector. With a suggestive choice

of notation, let’s then define a permutation-averaged graph G̃ by

G̃ =
1

(n+ 1)!

⊕
σ∈Symn+1

Gσ, (3.4)

where the multiplication shall be understood as rescaling the weights of the graphs. The

computation of the entropy of I in this graph G̃ gives

1

(n+ 1)!

∑
σ∈Symn+1

SσI =
k!(n+ 1− k)!

(n+ 1)!

∑
J∈Qn(k)

SJ = S̃k, k = min{|I|, n+ 1− |I|}, (3.5)

which recovers precisely the symmetric variables in (3.2). In other words, the entropies of

G̃ only depend on the cardinality of the subsystem I and are given by the entries of the

symmetric entropy vector S̃ of the original graph G. In this sense, we see that given a graph

G, the operations of symmetrization and computation of entropies commute.

Having dealt with entropy vectors, we would now like to have an analogous operation that

we can directly apply to the dual vectors q which define entropy inequalities via the scalar

product qS ≥ 0. To do so, consider constructing valid inequalities that we can write down

using only the symmetric variables in (3.2). This can be accomplished by, given an inequality

qS ≥ 0, adding up all inequalities in its symmetry orbit so as to form a new inequality q′S ≥ 0

which will be valid by convexity. The coefficients of the new vector q′ can be easily computed

to be

q′I = k!(n+ 1− k)!
∑

J∈Qn(k)

qJ , k = min{|I|, n+ 1− |I|}, (3.6)

where the combinatorial factor accounts for the permutations in Symn+1 which fix each J .

As expected, q′I has the right dependence on cardinality only and we can now write q′S ≥ 0

using just S̃k variables. Declaring q′
I{

= q′I for convenience, one finds

q′S =
∑

∅6=I⊆[n]

q′ISI =

dn/2e∑
k=1

∑
I∈Qk(n)

q′ISI = (n+ 1)!

dn/2e∑
k=1

q̃kS̃k, (3.7)

where in the last equality we have identified the desired symmetric coefficients of our sym-

metrized inequality q̃S̃ ≥ 0 to be

q̃k =
∑

J∈Qn(k)

qJ . (3.8)

One can understand this operation as a right inverse of the one in (3.2). Formally, (3.8)

defines the dual isometry P ∗ which makes the symmetrization P into a co-isometry, with

PP ∗ the identity on Rdn/2e and P ∗P a projection in R2n−1. More explicitly, let M and M∗

respectively be the rectangular matrices implementing the linear maps (3.2) and (3.8) by
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Figure 1. General star graphs realizing the extreme rays of the SHEC. Black edges have unit weight,

while the blue “purification” edge has positive integer weight. This is w = 1, 3, . . . , n for n odd, and

w = 2, 4, . . . , n for n even. Dashed red lines represent the two possible min-cuts for subsystem AB.

An analogous binary choice of including or excluding the central vertex exists for every subsystem.

S̃ = MS and q̃ = qM∗. Then one easily verifies that M∗ is the canonical Moore–Penrose

right inverse of M , given by MT (MMT )−1. For instance, for n = 3 these matrices are

M =

[
1
4

1
4

1
4 0 0 0 1

4

0 0 0 1
3

1
3

1
3 0

]
, M∗ =

[
1 1 1 0 0 0 1

0 0 0 1 1 1 0

]T
, (3.9)

and one clearly has MM∗ = 12. The associated projection of vectors S ∈ R2n−1 onto the

symmetric subspace within R2n−1 is then given by M∗M , which is idempotent as it should

be. For the n = 3 example above, this projection matrix reads

M∗M =



1
4

1
4

1
4 0 0 0 1

4
1
4

1
4

1
4 0 0 0 1

4
1
4

1
4

1
4 0 0 0 1

4

0 0 0 1
3

1
3

1
3 0

0 0 0 1
3

1
3

1
3 0

0 0 0 1
3

1
3

1
3 0

1
4

1
4

1
4 0 0 0 1

4


. (3.10)

4 The Symmetrized HEC

Full descriptions of the HEC in terms of extreme rays and facets are known for n ≤ 5 [10–

12]. From this data, it is straightforward to compute the SHEC for n ≤ 5 by applying (3.2)

to extreme rays and (3.8) to facets (see Appendix B). One can then easily check that the

resulting descriptions of the SHEC are indeed dual to each other.
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At this point, one already notices that the extreme rays of the SHEC for all n ≤ 5 can

be generated by a very simple family of graphs.3 In particular, they can all be captured by

star graphs with n+ 1 edges, one for each boundary vertex, where the weight of all but one

of them can be set to unity. The remaining edge, which by symmetry and without loss of

generality can be picked to be the one associated to the purifier n + 1, then carries some

other integer weight w ≥ 1, as in Fig. 1. We observe that this family of star graphs turns out

to yield precisely all extreme rays at each n when the weight w is chosen to be of the same

parity as n and obey 1 ≤ w ≤ n. These observations lead to the following conjecture:

Conjecture 1 (SHEC extreme rays). The extreme rays of the SHECn can be generated by

star graphs with n weight-1 edges and another edge of positive weight w = n, n− 2, . . . .

As a sanity check, notice that this proposal is consistent with the dimensionality of the

SHEC, since the number of conjectured extreme rays dn/2e precisely matches it. In turn, this

suggests that the SHEC may be a simplicial cone for all n. To be more explicit, and building

upon Conjecture 1, we now work out a closed-form expression for all conjectured extreme

rays of the SHECn. Firstly, from the star graph in Fig. 1, every entropy SI is by definition

given by

SI = min{|I|, n− |I|+ w} . (4.1)

Since SI only depends on the subsystem cardinality k = |I|, using momentarily the nota-

tion SI = Sk, it is then straightforward to apply (3.2) and obtain the coordinates of the

symmetrized entropy vectors as

S̃k =

(
n+ 1

k

)−1((n
k

)
Sk +

(
n

n+ 1− k

)
Sn+1−k

)
=

1

n+ 1
((n+ 1− k) min{k, n− k + w}+ kmin{n+ 1− k,w + k − 1}) .

(4.2)

The particular set of star graphs we are interested in for each n can be conveniently parame-

terized by setting w = n− 2(l− 1) for l = 1, 2, . . . , dn/2e. This way, l labels each of the dl/2e
conjectured extreme rays, whose entropies in (4.2) can be further simplified to

S̃
(l)
k =

2k

n+ 1
(n+ 1−max{k, l}). (4.3)

We can now use this result in order to obtain explicit results for the complete set of extreme

rays of the SHEC for any number of parties n according to Conjecture 1.

The dn/2e entropy vectors of dimension dn/2e we obtain for each n this way can be

arranged as columns of a square matrix. For instance, for n = 10 (and with entropy vectors

3Intuitively, by “generated” here we mean that these graphs yield entropy vectors whose symmetrizations

through (3.2) match the extreme rays of the SHEC.
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conveniently renormalized by a factor of (n+ 1)/2), this matrix can be written as

MSHEC
10 =


10 9 8 7 6

18 18 16 14 12

24 24 24 21 18

28 28 28 28 24

30 30 30 30 30

 . (4.4)

One can easily check that these matrices are non-singular for every n, thereby demonstrating

that the conjectured SHEC indeed is a simplicial cone of full dimension in Rdn/2e. As such,

its dual facet description can be immediately obtained from the rows of the inverse of the

matrices of extreme rays just described. For the n = 10 example above, this leads to

(MSHEC
10 )−1 =


1 −1

2 0 0 0

−1 1 −1
3 0 0

0 −1
2

2
3 −

1
4 0

0 0 −1
3

1
2 −

1
5

0 0 0 −1
4

7
30

 , (4.5)

where from e.g. the first row one reads off the inequality

2S̃1 − S̃2 ≥ 0 . (4.6)

This expression can be easily checked to come from a symmetrization of SA in (2.1) for

singletons, and turns out to define a facet of the conjectured SHEC for all n. For each n,

there also appears a new, n-dependent inequality involving symmetrized subsystems of just

two different cardinalities (cf. the last row in (4.5)):

−

(
1− 1⌊

n+1
2

⌋)−1

S̃dn/2e−1 +

(
1 +

1⌈
n+1

2

⌉) S̃dn/2e ≥ 0 . (4.7)

The n = 3 and n = 4 inequalities can just be obtained from MMI symmetrized under the

corresponding Symn. However, for higher n, (4.7) will only follow from genuinely new higher-

party inequalities. Finally, the remaining set of inequalities completing the list of dn/2e facets

are captured by

− l(l + 1)S̃l−1 + 2(l − 1)(l + 1)S̃l − (l − 1)lS̃l+1 ≥ 0 for l = 2, . . . , dn/2e − 1 . (4.8)

This last family can in fact be extended to l = dn/2e in order to also reproduce (4.7) by

declaring that S̃dn/2e+1 = S̃bn/2c. In particular, (4.7) can be understood as just a finite-n

modification of (4.8) for large subsystems of half the size of the n-partite system. This can

be exemplified by MMI, which as a 3-party inequality gives (4.7) when symmetrized under

Symn for n ∈ {3, 4}, but for n ≥ 5, it yields the l = 2 form of (4.8). To summarize, we have

the following result:
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Corollary 1 (SHEC facets). If Conjecture 1 holds, the facets of the SHECn are defined by

the set of inequalities given by (4.6), (4.7), and (4.8).

Because all extreme rays in Conjecture 1 are realizable by star graphs, it follows that

the conjectured SHEC is contained in the true SHEC. Whether or not Conjecture 1 is true

thus depends on whether the conjectured facets of the SHEC are actually obtainable from

symmetrizations of valid HEC inequalities. In other words, proving our conjecture requires

finding and proving valid HEC inequalities for arbitrary n, which is a hard problem. Our

explicit knowledge of the HECn for small n allows us to perform some checks on the conjec-

tured SHEC. We will be able to provide a complete proof of our conjecture for up to n = 6,

but only a partial one for larger n.

As already mentioned, the conjectured SHEC facet (4.6) arises from singleton SA. Since

this is a valid inequality of the HEC for all n, it follows that (4.6) is a valid facet of the SHEC

for all n. Since (4.7) can be understood as a special case of (4.8), let us turn to the latter

straightaway (see footnotes below). For l = 2, this yields

− 3S̃1 + 3S̃2 − S̃3 ≥ 0 . (4.9)

It is a simple exercise to show that this follows from the MMI inequality in (2.3) for singletons

when symmetrized for n ≥ 5.4 Again, since MMI is a well-known HEC inequality which holds

for all n, it follows that (4.9) is a valid facet of the SHEC for all n. Further, (4.8) for l = 3

gives

− 6S̃2 + 8S̃3 − 3S̃4 ≥ 0 . (4.10)

This inequality can be seen to arise from any one of the last three 5-party inequalities in

Appendix B when symmetrized for n ≥ 7.5

These results suffice to prove validity of our proposal for the extremal elements of the

SHECn for up to n = 6. Unfortunately, our incomplete knowledge of the HECn for larger n

is insufficient to do so for n ≥ 7, for which a different approach that bypasses full knowledge

of the HEC will be needed.

5 The Symmetrized QEC

The QEC is poorly understood and only known exactly for up to n = 3. At this number of

parties, its facets belong to the two orbits associated to the following inequalities:

S1 + S2 ≥ S12 ,

S12 + S23 ≥ S2 + S123 .
(5.1)

4For n = 3 and n = 4, as shown in Appendix B, (4.9) respectively collapses down to −4S̃1 + 3S̃2 ≥ 0 and

−3S̃1 + 2S̃2 ≥ 0, which take the form of (4.7) (see comment below (4.8)).
5As was the case for MMI in the footnote above, if symmetrized for n = 5 or n = 6, these instead give rise

to the special case of (4.7) corresponding to (4.8) applied to l = dn/2e. For n = 5, as shown in Appendix B,

these symmetrize down to −9S̃2 + 8S̃3 ≥ 0, while for n = 6 they give −6S̃2 + 5S̃3 ≥ 0.
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The first one can be recognized as the SA inequality in (2.1), while the last one corresponds

to SSA as in (2.2). Going to higher n, different instances of the same type of inequality

associated to inequivalent choices of subsystems can define algebraically independent orbits

of inequalities. This way, one can apply SA and SSA to all possible subsystems in order to

construct a rich polyhedral cone bounded by multiple orbits of these two types of inequal-

ities. Because both are universal quantum inequalities, the resulting cone defines an outer

approximation to the QEC. A neat study of precisely which of these orbits of SA and SSA

constitute facets of the resulting cone, and which are redundant, was performed by Nicholas

Pippenger in [26].

Additionally, for arbitrary number of parties n, Pippenger studied the cone that results

under Symn symmetrizations. More specifically, rather than symmetrizing over all I ⊆
[n + 1] for each |I| = k ≤ dn/2e, Pippenger considered symmetrizations only over I ⊆ [n]

for each |I| = k ≤ n, thus not including the purification symmetry. Even for this milder

Symn symmetrizations, he was able to prove that every extreme ray of the resulting cone is

realizable by some quantum state.6 This way, he established that the cone of SA and SSA

instances collapses down to precisely match the QEC under respective Symn symmetrizations.

As we did for the HEC, here we will instead consider Symn+1 symmetrizations, i.e., we

further symmetrize over the purifier. This symmetrization of the QEC defines the SQEC,

which by [26] will of course continue to match the cone of SA and SSA instances accordingly

symmetrized under Symn+1. In other words, using the results of [26], we will be able to

present complete descriptions of the SQEC for all n.

Like the SHEC, the SQEC turns out to be simplicial. For each n, the facets of the SQEC

are given by the following set of dn/2e inequalities:

− S̃l−1 + 2S̃l − S̃l+1 ≥ 0 for 1 ≤ l ≤ dn/2e , (5.2)

where we have declared S̃0 = 0 and S̃dn/2e+1 = S̃dn/2e. For l = 1, (5.2) yields (4.6), which

recall comes from the SA facet that the QEC shares with the HEC. The rest come from

symmetrizations of SSA inequalities as in (2.2) for subsystems I, J ⊆ [n] obeying |I ∩ J | =

2, 3, . . . , dn/2e.
One can easily see that the SQEC is a simplicial cone. Writing out its facet-defining

vectors as rows in a matrix, the extreme rays of the SQEC can thus be obtained as the

column vectors of the inverse matrix. For instance, for n = 10, the matrix of row inequalities

reads

MSQEC
10 =


2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1

 , (5.3)

6There is a minor typo associated to Theorem 5.5 of [26]: in equation (5.20) therein, the condition n−a+1 ≤
b ≤ n should instead read n− a ≤ b ≤ n.
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Figure 2. The SQEC and SHEC for n = 4, 5.

and its inverse of column extreme rays yields

(MSQEC
10 )−1 =


1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

 . (5.4)

For general n, letting l = 1, 2, . . . , dn/2e enumerate each of the resulting vectors, the kth

component of the lth extreme ray can be easily seen to be given by

S̃
(l)
k = min{k, l} . (5.5)

In Figure 2, we illustrate the SQEC and SHEC full-dimensionally for n = 4, 5. In Figure 3,

we illustrate the SQEC and SHEC via codimension-1 radial cross-sections for n = 5, 6, 7, 8.

A question naturally arising is now how these two cones relate to each other. In particular,

we will be interested in comparing their “size”, and the scaling with n.

6 Volumes of Symmetrized Entropy Cones

The volume of a pointed polyhedral cone is infinite. However, if the cone lies within a small

solid angle inside the positive orthant, then a useful notion of how large it is can be obtained

as the volume of the polytope it forms up to some choice of cross-section. When this cone
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S
˜
3

S
˜
2S

˜
1

n = 5

S
˜
3

S
˜
2S

˜
1

n = 6

Figure 3. Cross-sections of the SQEC and SHEC through the hyperplane defined by
∑dn/2e

k=1 S̃k = 1

for n = 5, 6, 7, 8. The cross-section of the positive orthant is not shown because it is too large. Instead,

for orientation we show arrows pointing in the direction in which the intersections with the canonical

basis vectors occur – these would define the extreme points of the positive orthant in the cross-section.

is simplicial, as is the case for both the SQEC and the SHEC, this polytope is a simplex

whose vertices are the origin and the intersection of its extreme rays with the cross-section.

The volume of such a simplex can be easily computed using the determinant of the matrix

of extreme rays M̂ suitably normalized to match the vertices on the cross-section. Since

the determinant actually computes the volume of the parallelotope formed by the vectors

involved, one has to divide it by a combinatorial factor of d! to obtain the volume of the

corresponding d-dimensional simplex. Denoting a general matrix of normalized extreme rays

of a d-dimensional simplicial cone by M̂ , we will thus define its volume by

vol
(

cone {M̂}
)
≡ 1

d!
|det M̂ | . (6.1)

When considering the SQEC and the SHEC, our starting point will be a matrix M of
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unnormalized, integral extreme rays. A natural choice of cross-section is the hyperplane

defined by
∑dn/2e

k=1 S̃k = 1, as in Fig. 3. The vertices on the cross-section can then be easily

obtained by normalizing the extreme rays of the desired cone linearly to unity, i.e., using the

taxicab norm. Explicit numerical results for small n are given in Appendix D. More generally,

we are interested in the scaling of volumes as n→∞. Our strategy for obtaining this will be

as follows:

1. Derive a simple general expression for the determinant of M .

2. Derive an expression for the product Π(M) of the norms of all extreme rays in M .

3. Obtain the desired (normalized) determinant as |det M̂ | = |detM |
Π(M) .

For the SQECn, the extreme rays are given component-wise by (5.5), which we will take

to define our unnormalized matrix of extreme rays MSQEC
n . The determinant of the matrix

formed by these vectors is always unity for all n, i.e., detMSQEC
n = 1, which takes care of

Step 1. Letting dn = dn/2e for convenience, the normalization factor Π(MSQEC
n ) resulting

from Step 2 can also be obtained exactly and reads

Π(MSQEC
n ) =

(2dn)!

2dn
. (6.2)

We can thus conclude that the volume of the SQEC for n parties is exactly given by

vol(SQECn) =
1

dn!

2dn

(2dn)!
, (6.3)

Since we will be ultimately interested only in the large-n scaling of this volume, we may

consider keeping track of just the leading order behavior of (6.3) as n → ∞. Undergoing

numerically coarser approximations at large n, and taking n to be even (such that dn = n/2),

one obtains

vol(SQECn) ∼ 1

(n/2)!

e
13
10
n

n
1
2

+n
∼ e

11
5
n

n1+ 3
2
n
. (6.4)

Although slightly more complicated, the same approach can be applied to the SHEC.

We will use (4.3) with an (n + 1)/2 prefactor for the unnormalized extreme rays in MSHEC
n .

Remarkably, the determinants of the resulting matrix are easily computable and read

detMSHEC
n =

⌈
n+ 1

2

⌉
!×

{
1 if n is even,
n+1

2 if n is odd.
(6.5)

The exact result for Π(MSHEC
n ) can be written

Π(MSHEC
n ) =

(
−1

6

)dn 3∏
k=1

(1− xk)dn , (6.6)
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where the subscripted brackets denote the Pochhammer symbol (a)k = Γ(a+k)
Γ(a) , and xk stands

for the kth root of the following 3rd-order polynomial:

3∏
k=1

(x− xk) = x3 − x− dn(dn + 1)(3n− 2(dn − 1)). (6.7)

Albeit exact, (6.6) still relies on an implicit expression for the xk roots. We could of course

use the general formulae for the roots of a 3rd-order polynomial, but this would not be very

illuminating. Instead, we will take advantage of large-n approximations in order to get a more

explicit result for this. A key observation is to notice that the roots of (6.7) scale linearly

with n. Hence, to simplify this polynomial non-trivially at large n, we will first have to

factor out this uninteresting n-dependence. We can do so by letting x = dnx̂ and introducing

renormalized roots xk = dnx̂k. Plugging these into (6.7), at leading order in n we obtain

3∏
k=1

(x̂− x̂k) ≈ x̂3 − 4 . (6.8)

The renormalized roots no longer depend on n and are simply the cubic roots of 4. In terms

of these, we can re-express (6.6) as

Π(MSHEC
n ) ≈

(
−1

6

)dn 3∏
k=1

(1− x̂kdn)dn , (6.9)

and expand the Pochhammer symbols at large n. For each root, this expansion yields

(1− dnx̂k)dn ≈
(

1− 1

x̂k

) 1
2

+(1−x̂k)dn (
− x̂kdn

e

)dn
. (6.10)

Taking the profuct over all roots in (6.9) and making some numerical approximations, we

arrive at

Π(MSHEC
n ) ≈

√
3

2

(
3

5

)dn
d3dn
n ∼ e−

13
10
nn

3
2
n. (6.11)

Having completed Step 2, we finally obtain our desired expression for the volume of the SHEC

at large n:

vol(SHECn) ∼ 1

(n/2)!

e
9
2
n

n−1+n
∼ e

13
10
n

n−
1
2

+ 3
2
n
. (6.12)

We are finally ready to compare the asymptotic volumes of the SQEC and the SHEC.

Using the expressions from (6.4) and (6.12), we obtain

vol(SHECn)

vol(SQECn)
∼ n

3
2 e−

9
10
n. (6.13)

We thus conclude that, in terms of volumes in entropy space, the SHECn constitutes an

exponentially small fraction of the SQECn. This is particularly interesting considering that
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holographic states are in fact expected to be typical when randomly sampling some Hilbert

space of quantum states with respect to an invariant measure on it.7 We can also compare

the volumes of these two cones to the volume of the unit simplex that the positive orthant

defines. Using n/2 as the dimensionality at large n, the volume of this object is simply given

by 1/(n/2)!. Comparing this to (6.3), we see that the SQECn itself also occupies a very small

fraction of the positive orthant which decreases faster than exponential as n increases.

7 Conclusion and Outlook

We motivated and presented a projection of the HEC via a natural symmetrization which

results in a much simpler (but still non-trivial) entropy cone: the SHEC. By inspecting its

extremal elements, we were able to conjecture a full characterization of this cone for an

arbitrary number of parties n in terms of both full sets of extreme rays and facet inequalities.

Our proof of this proposal for the SHEC for small n ≤ 6 was based on the known complete

descriptions of the HEC for n ≤ 5. In the future, however, since the SHEC is by construction

a coarser and much simpler version of the HEC, one would hope to make progress in proving

the general form of the SHEC without necessarily knowing such a description for the HEC.

Indeed, already at the conjectural level, here we have provided a plausible general form of the

SHEC for arbitrary n, while such an achievement for the HEC seems unattainable as of now.

For instance, the partial description of the HEC6 known to date [13] already exhibits an

unprecedented level of complexity compared to n ≤ 5. While the HEC5 consists of just 8

distinct orbits of facets and 19 orbits of extreme rays, the current description of the HEC6

already involves at least 182 orbits of facets and at least 4122 orbits of extreme rays [13].8

According to Conjecture 1 and Corollary 1, all this extremely rich structure that arises for

n ≥ 6 turns out to be symmetrized away at the level of the SHEC, which nonetheless still

preserves some non-trivial properties of the HEC in the form of dn/2e facets and extreme

rays at each n.

Symmetrizations provide an organizing principle for the complicated structure of the

HEC. The usefulness of this organization is already evidenced by n = 5 e.g. at the level of

facets, where we observe that 1) not all facets of the HEC remain facets of the SHEC, 2) those

which remain facets do so in non-trivial families of multiple facets, and 3) it takes genuinely

new facets of the HEC at each n to generate higher-n facets of the SHEC. Observation 1) is

consistent with our expectations for the SHEC: for larger n there arise combinatorially large

numbers of new orbits of facets for the HEC, but the simplicial SHEC should only involve

dn/2e as per our conjecture. Observation 2) implies that there are distinguished families of

facets of the HEC which remain “extremal” upon symmetrization. Observation 3) textitasizes

the fact that the SHEC retains non-trivial information about the HEC for all n, thus stressing

its usefulness as a prerequisite to understand the HEC. To elaborate further on this, let us

7We thank Bartek Czech for comments on this point.
8Data to date suggests that, in fact, these numbers are still highly underestimating the complexity of a

complete description of the HEC6.
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textitasize that none of the 182 facet orbits that we currently known of the HEC6 happens

to prove the form of the SHEC for n = 7 – namely, none of them symmetrizes down to the

l = 4 inequality coming from (4.8). This suggests that genuinely n = 7 information about

the HEC may be needed to characterize the SHEC7, and similarly for any larger n. It is also

interesting to note that even though the l = 3 inequality coming from (4.8) can be realized

by HEC5 inequalities, there also appear new HEC6 inequalities falling into the same family.

For instance,

−S12 − S13 − S14−S25 − S26 − S35 + S123 + S124 + S125 + S126

+S134 + S135 + S235 + S256 − S1234 − S1235 − S1256 ≥ 0 ,
(7.1)

is a genuinely HEC6 inequality (i.e., not obtainable as a lift from lower-n inequalities), whose

symmetrization for n ≥ 7 matches precisely (4.10) as well.

More generally, the symmetrizations studied here have proven to be useful in distilling

non-trivial structure at arbitrary n for both the quantum and holographic entropy cones.

Other interesting classes of quantum states and constructs have been studied in the past,

which suffer from the same rapidly increasing complexity as n increases. It would be inter-

esting to explore if, upon symmetrizations, one can gain some further knowledge about the

general-n structure of the cone of stabilizer states [28], the cone of linear rank inequalities

[29], the cone of hypergraph entropies [30–32], the cone of topological links [33], or even the

HEC under quantum corrections from bulk matter fields [34].
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A Example of a graph model of holographic entanglement

We explain here how to compute the entropy vector associated to a graph model. Consider

the graph shown in Fig. 4 as a concrete example. This model consists of 6 boundary vertices,

which correspond to n = 5 parties labelled from A to E, and to the purifier labelled by O.

The unlabelled vertex at its center is the only bulk vertex, and it is radially connected to

each party through a weight-1 edge, except for the one to the purifier which has weight 3.

The entropy SI of each subsystem I ⊆ {A,B,C,D,E} is given by the total weight of

the minimum cut that separates it from all other boundary vertices, including the purifier.

To find the entropy SI we thus look at all possible cuts for I and compute their weight.

Since there is only one bulk vertex, there will only be two such candidate cuts for each

subsystem, corresponding to including or excluding the bulk vertex. These two possible

cuts are illustrated in Fig. 4 by red lines for subsystem A, and by green lines for subsystem

ABCDE. For A, one observes that excluding the bulk vertex (dashed, weight 1) has lower

cost than including it (solid, weight 7). Hence the min-cut for A is given by the boundary

vertex alone and yields SA = 1, and similarly for all other 1-party entropies. For 2- and

3-party entropies, it continues to be preferable to exclude the bulk vertex from the cut, and

the entropies one obtains are respectively 2 and 3. At 4 parties it turns out that both cuts

have minimum weight, and the entropies take value 4. The situation changes for the 5-party

subsystem ABCDE, for which the inclusion of the bulk vertex in the cut in fact reduces the

cost (dashed, weight 3) against its exclusion (solid, weight 5), giving SABCDE = 3. All in all,

we observe that the graph in Fig. 4 realizes an entropy vector corresponding to the extreme

ray on the 5th row of the table for n = 5 in Appendix B.

O

A
B

C

D
E

11

1

1 1

3

Figure 4. Example of a graph for n = 5 parties. Boundary vertices are labeled by {A, . . . , E}, and

O denotes the purifier. Cuts for subsystems A and ABCDE are represented by red and green lines,

respectively, with min-cuts dashed.
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B Extremal structure of the SHEC for n ≤ 5

The HEC has been completely characterized for n ≤ 5 [10–12], while for larger n only partial

results are known due to its rapidly increasing complexity [13]. We list here all the extreme

rays and facets of the HEC for n ≤ 5, and compute their symetrization according to the

prescription presented in Section 3.

Extreme Rays

In the tables below, the column “extremal?” refers to whether the symmetrized ray is extremal

for the associated SHEC, while the column “w” indicates the weight of the purification edge

in the star graph realizing the corresponding ray (see Fig. 1).

n = 2

# HEC SHEC extremal? w

1 (11; 0) (1) yes any

n = 3

# HEC SHEC extremal? w

1 (110; 011; 0) (3 4) yes 3

2 (111; 222; 1) (1 2) yes 1

n = 4

# HEC SHEC extremal? w

1 (1100; 011110; 0011; 0) (2 3) yes 4

2 (1110; 221211; 1222; 1) (1 2) yes 2

3 (1111; 222222; 3333; 2) (1 2) yes 2
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n = 5

# HEC SHEC extremal? w

1 (11000; 0111111000; 0001111110; 00011; 0) (5 8 9) yes

2 (11110; 2221221211; 1121221222; 01111; 0) (5 10 12)

3 (11112; 2223223233; 3323223222; 21111; 0) (5 10 12)

4 (11111; 2222222222; 3333333333; 22222; 1) (1 2 3) yes

5 (11111; 2222222222; 3333333333; 44444; 3) (4 8 9) yes

6 (11112; 2223223233; 3343443444; 43333; 2) (10 20 27)

7 (11122; 2233233334; 3444454455; 55444; 3) (25 50 63)

8 (11111; 2222222222; 3333333331; 22222; 1) (5 10 14)

9 (11112; 2223223233; 3343443442; 43333; 2) (20 40 51)

10 (11111; 2222222222; 2333332332; 22222; 1) (10 20 27)

11 (11222; 2333333444; 4445535354; 44433; 2) (25 50 63)

12 (11111; 2222222222; 3323323232; 22222; 1) (5 10 13)

13 (11111; 2222222222; 3233333232; 22222; 1) (10 20 27)

14 (22223; 4445445455; 6476776575; 65555; 3) (7 14 18)

15 (33333; 6666666666; 7759779999; 66666; 3) (5 10 13)

16 (11111; 2222222222; 3322332233; 22222; 1) (5 10 13)

17 (22223; 4445445455; 4656756777; 65555; 3) (7 14 18)

18 (33333; 6666666666; 5979977997; 66666; 3) (5 10 13)

19 (33333; 6666666666; 7957979997; 66666; 3) (5 10 13)
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Facets

Below, the table entry “facet?” refers to whether the symmetrized inequality is extremal for

the associated SHEC.

n = 2

# HEC SHEC facet?

1 SA + SB − SAB ≥ 0 S̃1 ≥ 0 yes

n = 3

# HEC SHEC facet?

1 SA + SB − SAB ≥ 0 2S̃1 − S̃2 ≥ 0 yes

2 SAB + SAC + SBC − SA − SB − SC − SABC ≥ 0 −4S̃1 + 3S̃2 ≥ 0 yes

n = 4

# HEC SHEC facet?

1 SA + SB − SAB ≥ 0 2S̃1 − S̃2 ≥ 0 yes

2 SAB + SAC + SBC − SA − SB − SC − SABC ≥ 0 −3S̃1 + 2S̃2 ≥ 0 yes

n = 5

# HEC SHEC facet?

1 SA + SB − SAB ≥ 0 2S̃1 − S̃2 ≥ 0 yes

2 SAB + SAC + SBC − SA − SB − SC − SABC ≥ 0 −3S̃1 + 3S̃2 − S̃3 ≥ 0 yes

3 SAB + SACD + SBCD − SA − SB − SCD − SABCD ≥ 0 −2S̃1 − S̃2 + 2S̃3 ≥ 0

4
SAD+SBC+SABE+SACE+SADE+SBDE+SCDE−SA−
SB−SC−SD−SAE−SDE−SBCE−SABDE−SACDE ≥ 0

−2S̃1 − S̃2 + 2S̃3 ≥ 0

5
SABC + SBCD + SCDE + SADE + SABE − SAB − SBC −

SCD − SDE − SAE − SABCDE ≥ 0
−S̃1 − 5S̃2 + 5S̃3 ≥ 0

6

2SABC + SABD + SABE + SACD + SADE + SBCE +

SBDE − SAB − SAC − SAD − SBC − SBE − SDE −
SABCD − SABCE − SABDE ≥ 0

−9S̃2 + 8S̃3 ≥ 0 yes

7

SABC + SABD + SABE + SACD + SACE + SADE +

SBCE + SBDE + SCDE − SAB − SAC − SAD − SBE −
SCE − SDE − SBCD − SABCE − SABDE − SACDE ≥ 0

−9S̃2 + 8S̃3 ≥ 0 yes

8

3SABC + 3SABD + 3SACE + SABE + SACD + SADE +

SBCD + SBCE + SBDE + SCDE − SAD − SAE − SBC −
SDE − SABDE − SACDE − 2SAB − 2SAC − 2SBD −

2SCE − 2SABCD − 2SABCE ≥ 0

−9S̃2 + 8S̃3 ≥ 0 yes
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C Extremal structure of the SQEC for n ≤ 5

The extreme rays of the SQEC are very simple and given by (5.5). In contrast, the extreme

rays of its parent cone defined by all possible instances of SA and SSA turn out to be extremely

complicated (e.g. there are millions of them for n = 5). Hence we have decided to not include

this data. Instead, we list here explicitly only the facets of the cone involving instances of SA

and SSA and their symmetrizations, indicating which of the latter yield facets of the SQEC.

n = 2

# SA+SSA SQEC facet?

1 SA + SB − SAB ≥ 0 S̃1 ≥ 0 yes

n = 3

# SA+SSA SQEC facet?

1 SA + SB − SAB ≥ 0 2S̃1 − S̃2 ≥ 0 yes

2 SA − SB + SAB ≥ 0 S̃2 ≥ 0

3 SAC + SBC + SC − SABC ≥ 0 −S̃1 + S̃2 ≥ 0 yes

n = 4

# SA+SSA SQEC facet?

1 SA + SB − SAB ≥ 0 2S̃1 − S̃2 ≥ 0 yes

2 SA − SB + SAB ≥ 0 S̃2 ≥ 0

3 SA + SBC − SABC ≥ 0 S̃1 ≥ 0

4 −SA + SBC + SABC ≥ 0 −S̃1 + 2S̃2 ≥ 0

5 SAC + SBC − SC − SABC ≥ 0 −S̃1 + S̃2 ≥ 0 yes

n = 5

# SA+SSA SQEC facet?

1 SA + SB − SAB ≥ 0 2S̃1 − S̃2 ≥ 0 yes

2 SA − SB + SAB ≥ 0 S̃2 ≥ 0

3 SA + SBC − SABC ≥ 0 S̃1 + S̃2 − S̃3 ≥ 0

4 SA − SBC + SABC ≥ 0 S̃1 − S̃2 + S̃3 ≥ 0

5 −SA + SBC + SABC ≥ 0 −S̃1 + S̃2 + S̃3 ≥ 0

6 −SC + SBC + SAC − SABC ≥ 0 −S̃1 + 2S̃2 − S̃3 ≥ 0 yes

7 −SA − SB + SAC + SBC ≥ 0 −S̃1 + S̃2 ≥ 0

8 −SD + SCD + SABD − SABCD ≥ 0 −S̃1 + S̃3 ≥ 0

9 −SCD + SBCD + SACD − SABCD ≥ 0 −S̃2 + S̃3 ≥ 0 yes
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D Exact Volumes for Small n

From the extreme rays of the SHEC and SQEC we can compute the volume of these cones

as explained in Section 6. For small number of parties n, this volume can be easily computed

exactly. In Fig. 5, and in the following table, we show the exact relative volume between the

two cones for n ≤ 10. Note that the SHEC becomes exponentially small compared to the

SQEC as n increases, see (6.13).
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Figure 5. Exact ratio between the volumes of the SHECn and SQECn for 2 ≤ n ≤ 10.

n 2 3 4 5 6 7 8 9 10

(vol SHECn)−1 1 21 30 2772 4536 1127000 1982400 1036103250 1906410000

(vol SQECn)−1 1 12 12 540 540 60480 60480 13608000 13608000

SHECn/SQECn 1 .571 .4 .195 .119 .0537 .0305 .0131 .00714
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