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The runaway collapse phase of a small dark matter cluster inside a white dwarf star encompasses
a reversible stage, where heat can be transferred back and forth between nuclear and dark matter.
Induced nuclear burning phases are stable and early carbon depletion undermines previous claims
of type Ia supernova ignition. Instead, mini black holes are formed at the center of the star that
either evaporate or accrete stellar material until a macroscopic sub-Chandrasekhar-mass black hole is
formed. In the latter case, a 0.1 to 1 second lasting electromagnetic transient signal can be detected
upon ejection of the white dwarf’s potential magnetic field. Binary systems that transmute to black
holes and subsequently merge emit gravitational waves. Advanced LIGO should detect one such sub-
Chandrasekhar binary black hole inspiral per year, while future Einstein telescope-like facilities will
detect thousands per year. The effective spin parameter distribution is peaked at 0.2 and permits to
disentangle from primordial sub-Chandrasekhar black holes. Such signatures are compatible with
current direct detection constraints, as well as with neutron star constraints in the case of bosonic
dark matter, even though they remain in conflict with the fermionic case for part of the parameter
space.

I. INTRODUCTION

Dark matter (DM) collapse under self-gravity has first
been studied by Goldman and Nussinov [1] in the context
of neutron stars (NSs). The authors show that a critical
number Nsg of particles has to accumulate for collapse
under self-gravity to initiate. This criterion was thence
popularized as the “collapse criterion” and applied to
explore DM phenomenology in NSs [2–5], white dwarf
(WD) stars [2, 6–9], and main sequence stars [10, 11].
Yet, little attention has been devoted to the dynamics of
collapse inside the star itself.

The process is intrinsically iterative: scattering be-
tween DM and stellar matter (SM) particles reduces the
total energy of DM particles, while gravitational self-
attraction and the resulting orbital hardening increases
the DM kinetic energy. The runaway nature of the pro-
cess lasts as long as heat imparted to the scattered SM
particles is efficiently evacuated to the rest of the star.
The process is also reversible, as long as scatterings are
elastic. If SM particles became more energetic, on aver-
age, than DM particles, the process would reverse and
the DM cluster expand.

The question of heat evacuation in the baryonic com-
ponent has been addressed for NSs [1], but so far, to our
knowledge, never in the context of non-degenerate stars
(including WD stars, which are electron-degenerate, but
not nucleon-degenerate).
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Here, we seek an answer by deriving a system of first-
order differential equations that permit to follow DM and
nuclear macroscopic properties along the elastic collapse
phase. We are particularly interested in previously inves-
tigated astrophysical phenomenology, including claims of
type Ia supernova (SN Ia) ignition [6–9] and collapse to
a black hole (BH) [2, 9].

The present-day understanding is that ‘normal’ SNe
Ia originate either from deflagrations with transition to
detonation in Chandrasekhar-mass (∼ 1.4 M�) WDs
[12, 13], or from pure detonations in sub-Chandrasekhar-
mass WDs [14–18]. While the former channel unlikely
produces all events [19], the latter is still lacking a con-
vincing ignition mechanism [20], see, however, Ref. [21].
Additionally, pure deflagrations can reproduce certain
types of ‘peculiar’ SNe Ia [22–25], and their ignition from
DM collapse has been studied from thermonuclear igni-
tion [6–9], pycnonuclear ignition [26], and Hawking radi-
ation ignition [7, 9]. It has also been questioned if the
observed correlation between SN Ia magnitudes and host
galaxy masses has its origin in the local DM environment
[27].

The formation of a mini BH inside a WD can lead to
the implosion of the latter. In principle, this can generate
BHs of mass 0.3–1.4 M�, which may interact with other
BHs, NSs, or WDs, and generate detectable gravitational
waves (GWs) [5]. While generally, the observation of a
BH with mass < 1.4 M� is considered a smoking gun of
exotic new physics [28], BHs in this mass range could be
attributed to either DM collapse inside a NS [4], to a pri-
mordial BH from the QCD phase transition (produced
with 0.7 M� and taking into account accretion of gas
[29–32]), to the capture of a primordial BH with asteroid
mass by a NS and subsequent transmutation to a macro-
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scopic BH ([33], even though constraints on these primor-
dial BHs [34, 35] were largely overestimated [36, 37]), or
to BH formation through atomic DM [38]. As we shall
see, given that WDs account for the final evolutionary
state of 97% of main sequence stars [39], GWs from the
coalescence of binary BHs from transmuted binary WDs
should already be observed with the advanced Laser In-
terferometer Gravitational-Wave Observatory (aLIGO)
[40, 41]. In addition, the effective inspiral spin parameter
distribution is inherited from the progenitor WD angular
momentum distribution and permits to disentangle this
sub-Chandrasekhar BH formation channel from others.

The present work investigates collapse of non self-
annihilating DM, such as, for example, asymmetric DM
[1, 2, 42–44]. Asymmetric DM is motivated as it can
explain the matter-antimatter asymmetry in the Uni-
verse (see, e.g., Ref. [43], for a review). For the
sake of generality, we also include a Yukawa-type non-
gravitational attractive self-interaction with potential
V (r) = α exp(−µr)/r, where µ is the mediator mass and
α a coupling constant.

We use natural units, c = kB = ~ = 1, while keep-
ing G explicit. Stellar quantities are indexed with an
asterisk (*), while DM quantities are left without. The
infinity symbol (∞) indicates stellar core quantities far
from the DM cluster. We use the term stellar matter
(SM) to designate initially ions, but later, as collapse
proceeds and locally heats the center of the star, these
are crushed to nucleons and then to partons (quarks and
gluons). Therefore, we stick to the generic term SM par-
ticles keeping its meaning in mind.

The present Letter is organized as follows. In Sec. II
we derive the general set of ‘elastic’ collapse equations.
In Sec. III we explore phenomenology in WD stars. We
present our conclusions in Sec. IV.

II. GENERAL EQUATIONS

A. DM capture and accumulation

Let N(t) be the number of particles of a DM cluster at
the center of a star with age t. The number of captured
particles during an interval dt is dt Γcap, where Γcap is
the capture rate [45]1

Γcap =

√
54πR2

∗ v
2
esc ρgal

mvgal

×
∞∑
j=1

pj(τ)
[
1 + δ − (γj + δ)e−(γj−1)/δ

]
, (1)

1 Eq. (1) is identical to eqs. (18) and (22) of Ref. [45], maybe
slightly easier to handle in a numerical code. See also [46] for
useful approximations and [47] for some improvements.

where vesc ≡ (2 G M∗/R∗)
1/2 is the escape velocity of

the star, R∗ and M∗ are radius and mass of the star,
respectively, δ ≡ 2 v2

gal/3 v
2
esc, γj ≡ (1 − β+/2)−j , β± ≡

4mm∗/(m ±m∗)2, m and m∗ are DM and SM particle
masses, ρgal and vgal are the galactic DM density and
velocity dispersion, respectively, and

pj(τ) = 2

∫ 1

0

ye−yτ (yτ)j dy

j!
(2)

is a Poisson weighting that gives the probability of j scat-
ters for the optical depth τ ≡ 3σ∗/2 σsat, where y is a
kinematical quantity, σ∗ is the DM-SM scattering cross-
section and σsat = R2

∗/N∗ is the saturation cross-section,
where N∗ = M∗/m∗ is the total number of SM particles.
Once captured, DM particles settle at the center of the
star, where they thermalize after a timescale (see App. B
for a derivation)

tth =
3m

ρ∗σ∗ v∗

[3
√

2π

16

v∗
vgal

+
1

2
+ ln

( m
m∗

)]
, (3)

where ρ∗ is the central density of the star and v∗ the
mean velocity of SM particles. The number of captured
and thermalized particles during an interval dt is dN .
Since dtΓcap must be equal to (dt+ dtth)(dN/dt), where
dtth ≡ tth(t+dt)− tth(t) is the increase of thermalization
time during dt, the number increase rate of DM particles
is

dN

dt
= Γcap

(
1 +

dtth
dt

)−1

, (t ≥ tth,0) (4)

where tth,0 is the initial thermalization time, dN/dt =
0 for t < tth,0, and tth,0 is the larger solution of t =
tth[T∗∞(t)]. The time derivative of the thermalization
time is

dtth
dt

= − 3m

2ρ∗σ∗ v∗T∗∞

[1

2
+ ln

( m
m∗

)] dT∗∞
dt

, (5)

where T∗∞ is the stellar core background temperature
and dT∗∞/dt its time derivative. If the stellar core tem-
perature is constant, we have dN/dt = Γcap and, inte-
grating, N(t) = Γcap t.

B. Self-attraction and collapse

The mean potential energy per DM particle at the cen-
ter of a star at r = 0 is (see, e.g., Ref. [4] and App. A)

U = − 4πGρ∗mR2

5
− 3GNm2

5R

− 3αNe−µR0

2µ2R3

(
3 + 3µR0 + µ2R0

2
)
, (6)

where R is the radius of the DM cluster and R0 =
R(4π/3N)1/3 is the mean inter-particle distance. The
terms on the right hand side of eq. (6) account for
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contributions coming from (1) gravitational attraction
due to the density of the star, (2) gravitational self-
attraction, and potentially (3) non-gravitational self-
attraction2. It is easy to verify that the accumulation
timescale (dN/dt)−1 is much longer than the orbital
timescale of DM particles (R3/GM)1/2, where M = Nm
is the total thermalized DM mass, hence the DM cluster
energy repartition is given by the virial theorem, with
the mean kinetic energy per particle K = −U/2, and the
mean total energy per particle is E = K + U = U/2 =
−K.

Despite the sporadic nature of individual scatterings,
the average per particle energies can be treated as differ-
ential functions, and we can write, for example, E as a
total differential of N and R,

dE =
∂E

∂N
dN +

∂E

∂R
dR , (7)

where from equation (6) and using the virial theorem,

∂E

∂R
= − 4πGρ∗mR

5
+

3GNm2

10R2
+

3αN

4R4µ2
f(µR0) , (8)

∂E

∂N
= − 3Gm2

10R
− α

4R3µ2
f(µR0) , (9)

where we have defined f(y) ≡ e−y(9 + 9y + 4y2 + y3).
As long as ∂E/∂R > 0, DM particles stay in thermal
equilibrium with the star (K = K∗) and settle roughly
inside the ‘thermal radius’ [1]3

Rth =
( 15T∗∞

4πGρ∗m

)1/2
. (10)

The actual radius during the adiabatic phase decreases
slightly over time and has to be computed numerically in
the general case, but in the absence of non-gravitational
self-attraction (i.e. α = 0), it is the larger positive solu-
tion of the cubic equation (6)

R

Rth
=

[
−η

2
+
(η2

2
− 1

27

)1/2
]1/3

+
1

3

[
−η

2
+
(η2

2
− 1

27

)1/2
]−1/3

, (11)

where η ≡ N/Nsg, and where Nsg ≡ 4πρ∗Rth
3/3m is

the critical number for self-gravitation of Ref. [1]. From
eq. (11), it is evident that the exact collapse criterion
for the case of vanishing non-gravitation attraction is
N/Nsg ≥ 2/(3

√
3) ≈ 0.3849, which is slightly lower than

2 For simplicity, we have assumed a constant distribution of
DM particles inside R (a step function), the differences with
a Maxwell-Boltzmann distribution are minor (see App. A). In
Ref. [4], the numerical factor in term (1) is 8π instead of 4π.

3 Note that the numerical factor on the right hand side of eq. (10)
is 9/8π in Ref. [1], 15/8π in Ref. [4], while it is 9/4π in Ref. [6].

the criterion N/Nsg ≥ 1 of Ref. [1]. In the general case,
the runaway collapse criterion is

∂E

∂R
≤ 0 . (12)

When this condition is satisfied, not only the DM cluster
but also the SM enclosed by the DM cluster drop out of
local thermodynamic equilibrium.

C. From kinematics to dynamics

Assuming elastic scatterings with non-degenerate SM,
the mean variation of the total DM energy per DM-SM
scatter is

∆E =
1

(2π)2

∫ 2π

0

∫ 2π

0

∆E(θ, θ∗)dθdθ∗ (13)

where the integrals are taken over the incidental angles θ
and θ∗ with respect to the line of centers and where (see
App. C 1 for a derivation)

∆E(θ, θ∗) = 2
[
Ep2
∗ cos2θ∗ − E∗ p2 cos2θ

+ (E−E∗)pp∗ cos θ cos θ∗

]
×
[
(E + E∗)2 − (p cos θ + p∗ cos θ∗)

2
]−1

(14)

is the energy gain of DM particles colliding with nuclei
for given initial total relativistic energies E = K + m
and E∗ = K∗ + m∗ (including rest mass but not po-
tential energy), and momenta p = (E2 −m2)1/2 and
p∗ = (E∗2−m∗2)1/2. In the non-relativistic limit, equation
(13) reduces to

∆E = −β+

2

(
K−K∗

)
(15)

where β+ ≡ 4mm∗/(m+m∗)
2. Eq. (15) reduces to the

usual formula ∆E = β+K/2 [e.g. 48], valid whenever the
temperature of the star can be neglected, e.g. during
capture and the initial phase of thermalization. Note
that in stars with degenerate nuclear matter (e.g. NSs),
considerations are fundamentally different, because post-
collision energy states < EF are Fermi blocked for nuclear
particles [1].

The mean timescale between DM-SM scatters is

∆t =
1

n∗σ∗ vrel
, (16)

where n∗ = ρ∗/m∗ is the number density of SM, as seen
by a non-relativistic observer, and vrel is the mean rela-
tive velocity. For the present purpose, DM particles can
be considered as non-relativistic. The mean relative ve-
locity in eq. (16) can be shown to be (see, e.g., Ref. [49],
and App. D)

vrel =
2[(1 + ζ)2K3(ξ)− (ζ2 − 1)K1(ξ)]

ξK2(x)K2(x∗)
, (17)
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where ξ ≡ x + x∗ and ζ ≡ (x2 +x2
∗)/2xx∗ are auxiliary

variables and x ≡ m/T and x∗ ≡ m∗/T∗ are the standard
thermal variables, Ki(x) is the modified (or hyperbolic)
Bessel function of the second kind (not to confuse with
the kinetic energy that we denote K as well). In the
non-relativistic limit, vrel = [8(mT∗+m∗T )/πmm∗]

1/2.
Assembling the pieces, we obtain the time variation of

the total DM mean per particle energy from the ratio of
eqs. (13) and (16)

dE

dt
=

∆E

∆t
. (18)

On the other hand, dividing eq. (7) by dt, we obtain the
time derivative of the collapse scale (for ∂E/∂R 6= 0)

dR

dt
=
(∂E
∂R

)−1(dE
dt
− ∂E

∂N

dN

dt

)
, (19)

where the terms on the right hand side are given by
eqs. (8), (18), (9) and (4), respectively.

D. Heat diffusion

Starting from the diffusion equation of stellar specific
thermal energy e∗ = K∗/m∗ (Fick’s second law)

∂e∗
∂t
−D∇2e∗ = [heat sources] , (20)

where D = κ/cp ρ∗ is the thermal diffusivity, where κ
is the thermal conductivity and cp is the specific heat
capacity at constant pressure. On the right hand side
of eq. (20) we have heat release from DM-SM scattering
and, potentially, nuclear reactions’ heat release. DM-
SM scatterings liberate N times the energy rate −dE/dt,
given by eq. (18), per stellar mass 4πρ∗R

3/3.
Using the finite difference approximation, the Lapla-

cian at r = 0 can be written as ∇2e∗|r=0 ' −6 (e∗−
e∗∞)/R2 [50, p.149].4 With this approximation, we ob-
tain a closed form for the time derivative at r = 0 of the
stellar specific energy

∂e∗
∂t

= −6D(e∗−e∗∞)

R2
− 3N

4πρ∗R3

dE

dt
+
∑
i

q̇i , (21)

where the terms on the right hand side account for con-
tributions from (1) diffusion cooling, (2) DM scattering
heating remembering that dE/dt < 0 during runaway
collapse, and (3) nuclear reactions’ heating, where q̇i is
the specific energy generation rate due to nuclear reac-
tions of species i.

4 To convince oneself, one can naturally assume that the specific
energy profile is e∗ ∝ exp(−r2/2R2) for a Gaussian source, then
the Laplacian at r = 0 is ∇2e∗|r=0 = −e∗/R2.

The system is closed with the specification of an ade-
quate equation of state f(ρ∗, T∗, P∗, e∗) = 0. Thus, equa-
tions (4), (19), and (21) constitute a closed set of first or-
der differential equations, that determine the evolution of
DM collapse in the elastic regime, i.e. the cluster particle
number N(t) and its radius R(t), as well as the evolution
of specific energy of non-degenerate SM at finite heat
diffusion e∗(t).

In this analysis, we have neglected the effect of pressure
increase due to heating of stellar matter. This assump-
tion is valid for WD stars where pressure is dominated by
electron degeneracy, but might not be valid in main se-
quence stars, and density modifications can be computed
with the help of TOV equation (see, e.g., Ref. [10] for a
study of DM collapse in main sequence stars).

We note that it is also possible to determine the nuclear
specific energy at each integration step using Fick’s first
law (see, e.g., Ref. [51]), however, with the cost of solv-
ing, at each integration step, a non-linear find root pro-
cedure which can be quite time consuming, specially in
the relativistic regime where find root coefficients (∆E)
are numerical integrals.

E. Final stages

1. Fireball evolution

The reversible collapse process presented so far is valid
as long as scatterings are predominantly elastic. Once the
post-collision energy of stellar particles exceeds 200 MeV
(Hagedorn limit, TH ∼ 1.7 × 1012K), baryonic particle
creation is favored over further heating of stellar matter,
and a region of quark-gluon plasma (QGP), also called
fireball, is created [52].

We expect that collapse then enters an irreversible (‘in-
elastic’) stage that quickly leads to the formation of a BH.
This assumption is justified unless partons (quarks and
gluons) become degenerate and their Fermi sea filled up
to mean DM kinetic energy. Since at fireball formation,
DM particles are already extremely energetic, we argue
that this situation does not occur, though care should
be taken. A thorough investigation of the fireball regime
exceeds by far the scope of the present article and should
be treated in a dedicated study.

We caution again that DM collapse might follow very
different rules in the centers of NSs where matter is ex-
pected to be in a degenerate QGP state from the begin-
ning (see, e.g., [53]).

2. BH evolution

A BH is formed when R/N < 2Gm and N > NCh,
where NCh ' (MPl/m)d is the Chandrasekhar number
where d = 2 for bosons [54] and d = 3 for fermions [2],

respectively, and where MPl = 1/
√
G is the Planck

mass [55]. For all considered DM models (see Sec. III)
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and assuming no substructure (see, e.g., Ref. [38] for a
counter example), we find that the DM cluster does not
become degenerate.

The BH’s initial mass is M = Nm (neglecting the tiny
amount of stellar matter engulfed in the process), and its
temporal evolution is given by

dM

dt
=

4πρ∗G
2M2

c3∗
− 1

15360πG2M2
+m

dN

dt
, (22)

where the terms on the right hand side account for con-
tributions from (1) Bondi accretion, where c∗ is the local
sound speed of the star, (2) Hawking radiation, and (3)
DM capture and thermalization, where dN/dt is given
by equation (4). If the second term dominates, the BH
evaporates (M → 0) and a new DM collapse cycle begins.
Otherwise, the star is swallowed by the BH (M →M∗).

We anticipate here noting that in WD stars, for m &
1011GeV, the mean free path between ions, (ρ∗/m∗)

−1/3,
exceeds the BH’s sound horizon, 2GNm/c2s, and Bondi
accretion in eq. (22) is no longer valid. In this regime,
accretion is either nearly-collisionless or quantum (see,
e.g., Ref. [56], and references therein). However, we have
checked that these effects have little impact on the im-
plosion/evaporation limit in Fig. 2.

III. PHENOMENOLOGY WITH WD STARS

A. Input physics

1. Nuclear structure

We assume WDs composed of equal parts of carbon
and oxygen, with mean mass number A = 14. The cross-
section between DM and SM particles, σ∗, depends on the
scattering momentum transfer, ∆p, and the de Broglie
wavelength of nuclei, ∆r = A1/3rn, where rn = 1.25 fm is
mean separation between nucleons (protons or neutrons)
in the nucleus. If ∆p∆r ≥ 1/2, scattering is coherently
enhanced, σA ' A2[3j1(y)/y]2exp(−y2/3) σn, where σn
is the DM-nucleon cross-section, y ≡ 2 ∆p∆r and j1 is
the Bessel function of the first kind [57, 58]. Otherwise,
σA = Aσn. We neglect additional form factors (see, e.g,
Ref. [9], for a very detailed discussion).

2. Nuclear reactions

At the time of collapse, WDs have cooled down and
crystallization has started from the center [59]. We model
the background core temperature by a simple fitting for-
mula T∗∞ ' min[108, 3 × 106 (t/Gyr)−1] K (see, for ex-
ample, [60]). The radial temperature profile of the heated
WD material drops quickly to the background core tem-
perature T∗∞ on a scale of the characteristic radius R,
such that elemental diffusion is negligible between the

heated region and the outside.5 Therefore, the concen-
tration Xi of species i drops with time according to

dXi

dt
= −ρ∗

λi
M̄i

, (23)

where λi and M̄i are reaction rate and mean molar mass
of species i, respectively.

In the present analysis, we limit our investigation to
the 12C(γ, α)12C reaction, since it is the most interesting
for SN Ia phenomenology. We use the reaction rate of
Ref. [61], and assume initially XC = 0.5. The specific
nuclear energy generation rate can be written as [61]

q̇i = fi ρ∗
NAQ̄i

2

X2
i

M̄2
i

λi , (24)

where NA is Avogadro’s constant, Q̄i is the mean
energy liberated per reaction, and fi is a factor
accounting for electron screening. For carbon fu-
sion, Q̄C ' 3 MeV, M̄C = 12 g mol−1 and fC '
exp[3.5(ρ∗/109g cm−3)1/3(T∗/109K)−1] [14].

3. Heat diffusion

WDs have thermal diffusion dominated by rela-
tivistic electrons when ρ∗ & 106 g cm3 [62]. We
use an interpolation of the results of [63]6 for
the thermal conductivity, finding that κ ' 2.4 ×
1017 erg cm−1s−1K−1(ρ∗/108g cm−3)1/2(T∗/107K)1/2,
strictly valid for T∗ ∈ [103, 109] K and ρ∗ ∈
[10−6, 109] g cm−3. In the absence of predic-
tions for higher temperatures, we extrapolate
their results, finding, reassuringly, agreement with
κQGP ' 1020 erg cm−1s−1K−1 [e.g. 64] at the Hagedorn
temperature. The equation of state of ideal gas ions is
simply e∗ = 3T∗/2m∗ while the specific heat capacity at
constant pressure is cp = 5/2A [62].

4. Numerical integration

We integrate the system (N , R, e∗ and XC) according
to the previously derived equations (4), (19), (21) and
(23) using a 4th order Runge-Kutta method with adap-
tive time step. Initial conditions are (0, Rth, e∗∞, 0.5).
We investigate three WD masses: 0.6, 1.0 and 1.4 solar
masses.

In Fig. 1, we illustrate the time evolution of the col-
lapse scale for some selected DM models highlighting the
previously debated collapse phases. In Fig. 2 we show

5 It is easy to show that the temperature profile drops with ∝ 1/r
outside the region where heat is released. Also, if the star is at
a temperature ∼ 107, nuclei are stuck in a crystal lattice.

6 http://www.ioffe.ru/astro/conduct/

http://www.ioffe.ru/astro/conduct/
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FIG. 1. Radius R of the collapsing DM sphere versus age t of the host star, a 1 M� WD, for various DM masses log10(m/GeV)
as indicated by numbers and DM-nucleon cross section σn = 10−40 cm2. Lines represent adiabatic contraction (cyan), runaway
elastic (green) and inelastic (pink) collapse, and BH evolution (black dashed). Carbon depletion and the critical temperature
4.3×109K are shown as red diamond and red plus sign, respectively. The destiny of the system is either WD implosion (purple
disk) or BH evaporation (yellow star). In the latter case, the process is cyclic (omitted for clarity).

the parameter regions where collapse leads to runaway
(black), WD implosion (purple) and Hawking evapora-
tion (orange) in less in less than 0.1 Gyr (dotted), 1.0 Gyr
(dashed) and 10 Gyr (full) for a 1.4 M� WD (top panel)
and a 1.0 M�. Evidently, the most stringent constraints
can be obtained with heavy and old WDs.

B. Observational signatures

1. Thermonuclear SN Ia ignition?

According to Ref. [66], thermonuclear runaway fusion
(deflagration) can proceed if a mass of carbon

mC '
4

3
πR3ρ∗XC ∈ [10−5, 1015] g (25)

is heated to the critical temperature( T∗
4.3× 109 K

)70/3

&
( ρ∗

108 g cm−3

)1/2(mC

1 g

)−1

, (26)

where in the first equality of eq. (25) we have assumed
that the whole region enclosing the DM cluster is heated
to temperature T∗. Checking the runaway criteria of
eqs. (25) and (26) at each integration step, we find that
for all investigated WD masses and DM models (includ-
ing a Yukawa type self-interacting), stable nuclear burn-
ing exhausts the combustible before runaway criteria can
be met. The explanation resides in the reversible na-
ture of DM collapse based on elastic scatterings, mathe-
matically best appreciable in eq. (15): if K∗ > K, then
∆E > 0, and DM particles gain energy. In practice, from
our numerical simulations, we find that once nuclei be-
come almost as hot as DM particles, the collapse process
slows down or interrupts momentarily until exothermic
nuclear reactions are over.
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FIG. 2. Top panel: Parameter regions where DM collapse
leads to a mini BH (black) inside a WD with M∗ = 1.4 M�,
α = 0, µ = 0, and either evaporates (orange) or causes the
star to implode (purple) in less than 0.1 Gyr (dotted), 1.0 Gyr
(dashed) and 10 Gyr (full). Including a self-interaction with
amplitude α = 10−3 and range µ = 1 MeV, does not change
these parameter regions. The region above the gray dot-
dashed line is excluded from XENON1T spin-independent 2σ
bound on DM-nucleon scattering [65]. Bottom panel: Same
as top panel but for M∗ = 1.0 M�. The small ‘x’s correspond
to the evolutionary paths traced in Fig. 1.

2. Pycnonuclear SN Ia ignition?

Pycnonuclear (density driven) carbon reactions start if
the nuclear density exceeds ρ∗ & 3× 109 g cm−3. Solving
the TOV equation with the addition of a top hat DM
density profile and assuming zero temperature equation
of state, we find that sizable density increase never occurs
before thermonuclear reactions. However, after the pas-
sage of the thermonuclear flame, the central region of the
WD is carbon depleted, while the outer shells of the core
are crystallized and elemental diffusion suppressed. Since
density increase at later stages encloses a smaller region
than the carbon depleted one, pycnonuclear ignition re-
mains illusive. This is a conservative estimate, since as-
suming the hot equation of state, additional ideal gas
pressure counters the gravitational pull, and it is ques-
tionable if density is increased at all.

Name mass cooling age reference
WD 0346 0.77M� 11.0 Gyr [67]
WD 1832+089 1.33M� 330 Myr [68]
SDSS J2322+2528 1.13M� 4.58 Gyr [69–71]

TABLE I. Solar neighborhood WDs that constrain asymmet-
ric DM models, see Fig. 3 (only the two most constraining are
shown).

FIG. 3. Constraints on asymmetric DM. The gray shaded re-
gions are excluded from non-detections with the XENON1T
experiment (dot-dashed contour; [65]), from the existence of
various old WDs in the solar neighborhood (dashed contour,
see Table I for details). The diagonal (antidiagonal) hatched
region is excluded from the existence of pulsar PSR J0437-
4715 in case of bosonic (fermionic) DM [5]. The purple shaded
region is marginally excluded from the non-detection of binary
BHs by aLIGO, originating from DM collapse-induced implo-
sion of binary WDs with component masses as indicated by
numbers and ∼ 10 Gyr merger delay times; future facilities
like the Einstein telescope (ET) can confirm these constraints,
see Table II. The parameter region above the white full line
is excluded due to the non-observation of specific electromag-
netic (EM) bursts following the implosion of magnetic WDs
(see Sec. III B 4 for details). Mean Galactic DM parameters
(ρgal ∼ 0.4 GeV/cm3 and vgal ∼ 200 km/s) have been as-
sumed.

3. Constraints from existing WDs

With current telescopes, WDs can only be observed di-
rectly in the neighborhood of the Sun. These experience
a DM density ρgal,0 ' 0.4 GeV/cm−3 and a velocity dis-
persion vgal,0 ' 200 km s−1. The best constraints come
from heavy and old observed WDs (see table I).

Interpolating the previously obtained results, we show
in Fig. 3 the DM models that are excluded simply because
these WDs did not implode to a BH. As can be seen,
these constraints are competitive with current direct de-
tection experiments in the mass range 109 − 1012 GeV
where they roughly exclude DM models with DM-nucleon
cross-section σn & 10−40 cm2.

SDSS J2322+25328 is the most constraining. Heavier
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and, at the same time, older have not been found so far,
but are expected to exist, especially in the thick disc
and stellar halo components of the Galaxy which were
formed before approximately 11 Gyr. It is possible that
these have imploded under the pull of DM in the green
parameter region (fig. 3).

4. Electromagnetic bursts

The recent 20 pc volume-limited survey has revealed
a high incidence (22%) of magnetic WDs [72]. Most
(85%) of these concern single WDs, and the field strength
distribution is logarithmically uniform in the range ∼
4 × 104G–109G [72]. Besides, no evidence for a correla-
tion between field strength and WD mass, neither any
sign for field strength decay with time have been found
[72].

According to the no-hair theorem, which prevents mag-
netic field lines from puncturing the event horizon, the
newly formed BH must expel its magnetic field [73], lib-
erating the energy contained in the magnetosphere, at
least [e.g. 74]

EB ∼
B2

8π

4π

3
R3
∗

' 6× 1044 erg
( B

108G

)2( R∗
4× 108cm

)3

, (27)

where B is the surface magnetic dipole field strength of
the WD and R∗ its radius (in eq. 27, the radius of a 1.2-
M� WD is shown). The relevant timescale of the final
stage of implosion is the free-fall time [74, 75]

∆tff ∼
( R3

∗
8GM∗

)1/2

' 225 ms
( M∗

1.2 M�

)−1/2( R∗
4× 108 cm

)3/2

, (28)

and we assume that this sets the duration of the energy
emission. Magneto-hydrodynamics simulations of non-
rotating magnetic NSs show that about 5% of the avail-
able energy is emitted in the main burst [73]. We assume
that a similar fraction is emitted in the case of WDs,
leading to a luminosity of

LB ∼ η
EB
∆tff

' 1.3× 1044 erg s−1
( η

0.05

)( B

108G

)2

×
( M∗

1.2 M�

)1/2( R∗
4× 108cm

)3/2

, (29)

where η is an efficiency factor.
According to eq. (27), the most energetic bursts dis-

rupt in WDs with the strongest magnetic fields. Assum-
ing 1010 WDs in the Galaxy [76], we estimate that 6×106

single WDs have masses heavier than 1.2 M� and mag-
netic dipole fields stronger than 108 G [72, 77]. Adopting
the Galactic stellar structure model of Ref. [78], the frac-
tion of WDs exposed to a DM density larger than the

local DM density and taking into account only thick disc
and stellar halo WDs (which are 10 Gyr old) is 52%. As-
suming that the initial star burst lasted ∼ 1 Gyr [79], and
considering that the number density of MW-like galax-
ies is 10−2Mpc−3, we find a volumetric burst rate of
1.3× 10−4 Mpc−3 yr−3.

The details of how this energy is converted into ra-
diation is uncertain (see, for example, Refs. [74, 80] for
options ranging from gamma-ray to radio bursts). For
instance, the bulk of fast radio bursts (FRBs) emit a lu-
minosity in the range 1041–1044 erg s−1 [e.g. 81] and their
volumetric rate is 10−4 Mpc yr−3 [82]. Thus, the rate of
the most energetic (> 108G) bursts from WD implosions
alone equals the total rate of all known FRBs taken to-
gether. Clearly, these WD implosions should have been
noticed. When it comes to durations, typical FRBs last
1–10 ms with none longer than 100 ms detected so far,
and non-repeating are typically shorter than repeating
[83]. According to eq. (28), WD implosions expedite
longer (50–1000 ms) lasting bursts, roughly 2 orders of
magnitude longer. If their emission occurs in radio wave
lengths, then the non-detection of long FRBs stringently
constrains asymmetric DM models (see Fig. 3).

Gamma ray bursts (GRBs) have much wider spread
durations ranging from 10 ms to several hours. The par-
ticular class of short (< 2 s) GRBs accounts for 30%
of the total rate, and is associated with regions of lit-
tle or no star formation, such as large elliptical galaxies
and the central regions of galaxy clusters [84]. This rules
out a link to massive stars, but makes them eligible for
emission from the transmutation of old magnetic WDs.
The commonly accepted mechanism of short GRBs is the
merger of two NS [85] or the merger of a NS with a BH,
which is consistent with minutes to hours lasting after-
glows, caused by fragments of tidally disrupted material
remaining in orbit while inspiraling into the BH over a
longer period of time. On the other hand, these after-
glows are difficult to explain with WD implosions.

In sum, neither FRBs nor GRBs match with the ex-
pected properties of DM collapse induced WD implo-
sions. We note that the field energy estimation in eq. 27
is an absolute lower bound, because in ideal magneto-
hydrodynamics, the field is “frozen-in” with the fluid
and increases linearly with density (while eq. (27) as-
sumes constant field strength); analytical and numeri-
cal calculations in Newtonian gravity and General Rel-
ativity show that internal magnetic field strengths of
up to 1012−16 G are possible (see [86] and references
therein). However, these simple energy arguments should
be tested in magneto-hydrodynamics simulations of im-
ploding WDs.

5. Detection of GWs from sub-Chandrasekhar BHs

The GW signature of binary WD mergers is very dif-
ferent from that of binary BH mergers with the same
mass. Typically, the secondary (lighter and larger) is
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M1 M2 aLIGO aLIGO-DS ET
[M�] [M�] [yr−1] [yr−1] [yr−1]
[1.0, 1.2] [1.0, 1.2] 0.6 16 3 025
[1.2, 1.4] [1.0, 1.2] 0.3 7 1 323
[1.2, 1.4] [1.2, 1.4] 0.1 3 579
[1.0, 1.4] [1.0, 1.4] 1.2 33 6 250

TABLE II. GW detection rates per year (columns 3 to 5) from
transmuted binary BH mergers with component masses com-
prised in the specified bins (columns 1 and 2). The last line
is the total rate. These rates assume the following detector
ranges for O(1) M� binary BH mergers: 110 Mpc for aLIGO
[40], 330 Mpc for aLIGO at design sensitivity (DS; [41]), and
1.9 Gpc for ET [88].

spaguetified by tidal forces of the primary (heavier and
more compact) prior to coalescence. The orbital mo-
tion is expected to be observed at sub-Hz frequencies by
future space-born laser interferometric detectors of grav-
itational waves [87], while super-Hz emission of binary
BH mergers is already detectable by aLIGO [40].

In Table II, we compare the detection rates per year of
current and future GW detectors for different combina-
tions of component masses. In order to obtain strong con-
straints (Figure 3), both components must be heavy and
have long (∼ 10 Gyr) formation-to-merger delays to al-
low for DM accumulation and subsequent transmutation
of both WDs to BHs. Since heavier WDs are also rarer
we consider two mass bins, [1.0, 1.2] M� and [1.2, 1.4] M�
(Table II).

We estimate the rates as follows. The total number of
WDs in a MW-like galaxy is 1010 [76], and the Galactic
merger rate per WD is 10−11yr−1 [89]. Assuming the
100 pc volume-limited mass function in the SDSS foot-
print [77], the fraction of WDs with mass greater than
1.0 M� is 4.4%; since both binary companions must sat-
isfy this, we have a fraction (0.044)2. Since 30–50% of
high-mass WDs have a merger history [90], we have to
multiply by an additional factor of ∼ (1− 0.4)2 (neglect-
ing systems of higher multiplicity than 2). Results an
expected binary WD merger rate of 7 × 10−5 yr−1 for
component masses in [1.0, 1.4] M� per MW-like galaxy.

This rough estimate is consistent with detailed binary
population synthesis calculations of Ref. [91], who com-
pute the rate of binary mergers with primary mass be-
tween 0.85 and 1.05M� and a mass ratio 0.9 ≤M2/M1 ≤
1.0 to be 2–11% of the type Ia supernova rate (see supple-
mentary information of [91]). For the type Ia supernova
rate from the LOSS survey, (5.4±0.1)×10−3 [92], the re-
sulting double WD merger rate is (3.5±2.4)×10−4 yr−1,
while our crude estimate for this mass range yields
7 × 10−4 yr−1. The remaining discrepancy of a factor
of 2 could be due to the adopted mass function; if we
assume the binary population synthesis mass function of
Ref. [90], we find a rate 3× 10−4 yr−1.

Adopting the Galactic stellar structure model of
Ref. [78], we estimate the fraction of WDs exposed to
a DM density larger than the local DM density and tak-

ing only into account thick disc and stellar halo WDs
(which are 10 Gyr old), to 52%. Since the main chan-
nel for high-mass double degenerates is a single com-
mon envelope phase, we estimate that 60% of these have
long formation-to-merger delay times (∼ 10 Gyr, see Ap-
pendix E for details). Taking into these cuts, and con-
sidering that the number density of MW-like galaxies is
10−2Mpc−3, we finally find the detection rates specified
in Table II. The non-observation of sub-Chandrasekhar
binary BH mergers over a period of time δt would bound
their rate to ≤ 2.3/δt at 90% confidence level.

The constraints on DM models from capture in binary
systems are slightly more stringent than those from sin-
gle WDs, due to enhanced DM capture rates in binary
systems [93]. A maximum enhancement factor of ∼ 4.3
has been found for orbital periods of 8 h [93], attributed
to the energy loss by DM particles resulting from their
gravitational scattering off moving companions. Binary
WDs that merge in a Hubble time due to gravitational ra-
diation have initial orbital periods of at most 13.5 h [94].
Based on the results in table 1 of Ref. [93], and since the
binary spends most of its evolution at large orbital peri-
ods, we estimate that the integrated amplification factor
is ∼3–4. This means 3–4 times earlier collapse and the
parameter region of constraints from binary systems is
correspondingly larger than it would from single stellar
systems (see Figure 3).

6. Disentangling transmuted from primordial BH inspirals

As the two BHs merge, the morphology of the resulting
gravitational waveform depends on the phenomenological
effective inspiral spin parameter [95]

χeff ≡
M1χ1 cos θ1 +M2χ2 cos θ2

M1 +M2
, (30)

where θ1 and θ2 are the misalignment angles between
the component spins and the orbital angular momentum,
M1 and M2 are the component masses, and χ1 and χ2

are the dimensionless component spins, defined by χ ≡
J/M2 and limited to values ∈ [0, 1], where J = 2πI/P
is the angular momentum, I the moment of inertia and
P the rotation period. Since the angular momentum J
is conserved during WD transmutation to a BH, we can
estimate χ from typical values of the progenitor WD star.

The primary mechanism for producing tight binary
systems is a common-envelope evolution [96, 97], where
each component results from single stellar evolution. The
rotation periods of typical low mass WDs originating
from single stellar evolution are of the order of 1 d, as
inferred from rotational broadening of spectral lines [98]
and asteroseismology [99, 100]. For high mass WDs, the
rotation periods tend to be much shorter [100], consistent
with the tendency for faster rotating stellar progenitors
to produce heavier cores [101]. Lacking number statistics
for heavy WDs, we assume here a representative value for
the rotation period of 1 h (roughly extrapolating data in
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the right panel of fig. 8 of Ref. [100]), yielding dimension-
less spin values

χ ' 0.2
( P

1 h

)−1( M∗
1 M�

)−2

, (31)

where we have assumed conservatively the moment of
inertia of non-rotating WDs, I = 1050g cm2, which has
little dependence on mass [102].

Binary WDs formed via ‘isolated’ evolution (the dom-
inant formation channel) have spin vectors which are
likely to be closely aligned with the orbital angular mo-
mentum, hence θ1 ' θ2 ' 0. We assume χ1 ' χ2

and M1 ' M2 for simplicity. Then, eq. (30) reduces to
χeff ' χ. Using eq. (31), we find a representative value
χeff ' 0.2, a value that is already measurable with cur-
rent 90% credible intervals, ' 0.15, for the default model
[e.g. 103].

In particular, transmuted binary BH inspirals can be
disentangled from primordial binary BH binary inspirals.
In standard cosmology, the QCD phase transition is ex-
pected during a radiation-dominated cosmological epoch
and hence these primordial BHs are expected to have
very low intrinsic spin magnitude, roughly distributed
as a Gaussian peaked at χeff = 0 and with variance
σχeff

' 0.35 [31]. We note that while current sensitivity
is sufficient to discriminate between these peak values, a
certain number of events must be observed to overcome
the intrinsic dispersion of χeff to disentangle between the
different solar mass BH production channels. This fur-
ther motivates upcoming GW detectors like the Einstein
telescope.

IV. SUMMARY AND DISCUSSION

Runaway collapse of a DM cluster at the center of a
star at finite temperature is governed by a system of
differential equations. We have derived these equations
for the relatively simple situation where nuclei are non-
degenerate, pressure feedback is small, and DM-nuclear
collisions are elastic. Nevertheless, these ‘elastic’ collapse
equations, i.e. eq. (4), eq. (19) and eq. (21), are valid for
most of the collapse evolution in WD stars (see Fig. 1).
In the presence of nuclear reactions, the system can be
coupled with a set of equations governing elemental con-
centrations, i.e. eq. (23).

Local heating of nuclear matter from scattering with
DM is controlled by finite heat diffusion. When carbon
reactions dominate the heat release, further collapse is
interrupted until reactions are over. Consequently, when
the critical temperature for thermonuclear runaway is
reached, carbon is already depleted (Fig. 1). Thus, in
crystallized WDs where elemental diffusion is suppressed,

type Ia supernova ignition from DM collapse remains il-
lusive. Subsequent ignition mechanisms, i.e. when the
DM cluster has collapsed to a smaller radius, face a situ-
ation where heat release occurs in a region much smaller
than the previously carbon depleted.

Instead, a mini BH is formed at the center of the star,
and the stellar matter is accreted leaving behind a macro-
scopic BH. In case of total accretion of the star onto the
mini BH, several observational signals are detectable with
current technology. First, the mere existence of old and
heavy WDs in the solar neighborhood imposes weak but
solid constraints on asymmetric DM (see Fig. 3). Second,
the non-detection of 50–1000 ms lasting electromagnetic
bursts from the ejection of the WD magnetic field upon
transmutation to a BH places stringent constraints (see
Fig. 3); these restrictions are uncertain as the exact de-
tails of the burst are model dependent (with possibilities
ranging from FRBs to GRBs).

Third, the most stringent and solid constraints result
from the non-detection of GW signals from binary BH
coalescences with sub-Chandrasekhar component mass.
We find that aLIGO should detect ∼ 1 event per year
(∼ 30 per year at design sensitivity), while future gravita-
tional wave facilities like the Einstein telescope [88] would
detect ∼ 6 000 per year. Their exclusion limits are com-
petitive with current direct detection experiments [65]
and pulsar constraints [5] in case of bosonic DM; in case
of fermionic DM, pulsar constraints are currently more
stringent for part of the parameter space (see Fig. 3).

GWs emitted by transmuted BH mergers can be disen-
tangled from those of primordial BHs with the same mass
due to different effective inspiral spin parameter distribu-
tions. We have predicted a peak value of χeff ' 0.2 for
transmuted origin, while for primordial origin χeff ' 0
is expected. We note that our prediction depends on
the relatively uncertain rotation periods of solar mass
WDs that originate from single stellar evolution. Ongo-
ing space-based short-cadence photometric missions like
TESS and CHEOPS will greatly improve asteroseismic
studies [104].
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De Gerónimo, M. M. Miller Bertolami, M. L. Novarino,
R. D. Rohrmann, F. C. Wachlin, and E. Garćıa-Berro,
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D. Ramı́rez Garćıa, L. Rauch, S. Reichard, C. Reuter,
B. Riedel, A. Rizzo, A. Rocchetti, N. Rupp, J. M. F.
Dos Santos, G. Sartorelli, M. Scheibelhut, S. Schindler,
J. Schreiner, D. Schulte, M. Schumann, L. Scotto Lav-
ina, M. Selvi, P. Shagin, E. Shockley, M. Silva, H. Sim-
gen, D. Thers, F. Toschi, G. Trinchero, C. Tunnell,
N. Upole, M. Vargas, O. Wack, H. Wang, Z. Wang,
Y. Wei, C. Weinheimer, C. Wittweg, J. Wulf, J. Ye,
Y. Zhang, T. Zhu, and Xenon Collaboration, Phys.
Rev. Lett. 121, 111302 (2018), arXiv:1805.12562 [astro-
ph.CO].

[66] F. X. Timmes and S. E. Woosley, Astrophys. J. 396,
649 (1992).

[67] M. Kilic, J. R. Thorstensen, P. M. Kowalski, and J. An-
drews, Mon. Not. R. Astron. Sco. 423, L132 (2012),
arXiv:1204.2570 [astro-ph.GA].

[68] M. S. Pshirkov, A. V. Dodin, A. A. Belinski, S. G.
Zheltoukhov, A. A. Fedoteva, O. V. Voziakova, S. A.
Potanin, S. I. Blinnikov, and K. A. Postnov, arXiv e-
prints , arXiv:2007.06514 (2020).

[69] S. O. Kepler, I. Pelisoli, D. Koester, G. Ourique, A. D.
Romero, N. Reindl, S. J. Kleinman, D. J. Eisenstein,

A. D. M. Valois, and L. A. Amaral, Mon. Not. R. As-
tron. Sco. 455, 3413 (2016), arXiv:1510.08409 [astro-
ph.SR].

[70] Gaia Collaboration, VizieR Online Data Catalog , I/345
(2018).

[71] M. E. Camisassa, L. G. Althaus, A. H. Córsico, F. C.
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Appendix A: Potential energy

Consider a system composed of N particles with mass
m arranged in a spherically symmetric mass distribution
ρ(r). The total potential energy due to its own gravity is

U = −4πG

∫ ∞
r=0

M(r)ρ(r)rdr , (A1)

where M(r) is the integrated mass (mass inside r) is

M(r) = 4π

∫ r

r′=0

ρ(r′)r′2 dr′ . (A2)

For a top hat distribution (ρ(r) = ρ for r ≤ R and ρ(r) =
0 for r > R), we have

U = −3GM2

5R
. (A3)

For a Maxwell-Boltzmann mass distribution, with

ρ(r) = ρ0 exp
(
− r2

2R2

)
=

√
2

π

M

4πR3
exp

(
− r2

2R2

)
,

(A4)

the total potential energy due to its own gravity is

U = − GM2

2
√
πR

. (A5)

Now consider the gravitational potential of the system
due to an external mass distribution ρ∗(r),

U∗ = −4πG

∫ ∞
r=0

M∗(r)ρ(r)rdr , (A6)

where M∗(r) is given by equation (A2) with stars added
to M and ρ. If the external mass density is constant
ρ∗(r) = ρ∗ (which is a good approximation for the cen-
ter of a star), and the system has a top-hat distribution
(unrealistic), we have

U∗ = −4πGρ∗MR2

5
. (A7)

If the system has a Maxwell-Boltzmann density distribu-
tion (and ρ∗(r) still constant), we have

U∗ = −4πGρ∗MR2 . (A8)

The mean potential energy per particle of a system
composed by N particles with mass m and a top-hat
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mass distribution ρ in an external constant distribution
ρ∗ is (dividing by N and replacing M = Nm)

1

N

(
U + U∗

)
= −3GNm2

5R
− 4πGρ∗mR

2

5
. (A9)

The mean potential energy per particle of a Maxwell-
Boltzmann mass distribution in an external constant dis-
tribution ρ∗ is

1

N

(
U + U∗

)
= −GNm

2

2
√
πR
− 4πGρ∗mR

2 . (A10)

In the main article we use the letter U for the total mean
potential energy per particle.

Appendix B: Thermalization timescale

In this Section, we derive the formula (3). A derivation
of part of the formula has been given previously by [2].
The total thermalization time can be divided into three
stages (1) orbital decrease crossing the star twice every
orbital period, (2) orbital decrease completely inside the
star with v > v∗, and (3) orbital decrease completely
inside the WD with v < v∗.

1. First stage

During the first stage, the DM particle has a chance
to loose kinetic energy twice each orbital period P =
2 π
√
a3/(GM), where a is the semi-major axis and M

the mass of the star, such that the timescale between
collisions is

〈∆t〉 =
1

2
P
σsat

σχA
= π

( a3

GM

)1/2 σsat

σχA
(B1)

where σsat = R2 m/M is the saturation cross-section.
The total energy of the DM particle with semi-major
axis a is

E = −GMm

a
. (B2)

Assuming radial orbits and constant density star, the po-
tential energy at a radial position r inside the star is

U = − GMm

R

(3

2
− r2

2R2

)
, (r < R) (B3)

where R is the radius of the star. The (instantaneous)
kinetic energy is

K = E − U =
GMm

R

(3

2
− r2

2R2
− R

a

)
, (r < R)

(B4)

Averaging over radial positions, the mean kinetic energy
is

〈K〉 =
1

R

∫ R

0

Kdr =
GMm

R

(4

3
− R

a

)
. (B5)

The mean variation per scatter is (assuming the non-
relativistic limit, eq. (15), and neglecting K∗)

〈∆E〉 = −β+

2

GMm

R

(4

3
− R

a

)
(B6)

and, treating scattering as a continuous process, combin-
ing eq. (B1) and eq. (B6), we have

dE

dt
=
〈∆E〉
〈∆t〉

(B7)

and, from (B2) we have

da

dE
=
GMm

E2
=

a2

GMm
(B8)

Assembling these equations

da

dt
=

da

dE

dE

dt
= −A1√

a

(
B1 a− 1

)
(B9)

where

A1 =
β+

√
GM σA

2πσsat
, (B10)

B1 =
4

3R
(B11)

Integrating, we have

t1 =

∫
dt =

1

A1

∫ R

a0

√
ada

(B1 a− 1)
(B12)

Using aB1 = cosh2 x, we obtain

t1 =
2

A1B
3/2
1

{√
B1 a0 −

√
B1R+

1

2
ln
[R (B1 a0 − 1)

a0 (B1R− 1)

]}
(B13)

neglecting the logarithm which is ln 2, and assumingm�
m∗, we have β+ ' 4m∗/m, and

t1 '
3πRσsatm

4σAm∗

( a0

GM

)1/2

(B14)

Assuming a0 = Rv2
e/v

2
gal, and using σsat = πR2m∗/M '

3m∗/(4Rρ∗), we have

t1 '
9
√

2πm

16ρ∗σA vgal
(B15)

2. Second stage

For orbits totally inside the star (a < R), and assuming
constant density, the total energy for a DM particle with
semi-major axis a is

E = − GMm

R

(3

2
− a2

2R2

)
(a ≤ R) . (B16)
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The (instantaneous) potential energy at a radial position
r ≤ a is

U = − GMm

R

(3

2
− r2

2R2

)
, (r ≤ a) (B17)

and the (instantaneous) kinetic energy at a radial posi-
tion r ≤ a is

K = E − U =
GMm

2R3

(
a2 − r2) . (r ≤ a) (B18)

Averaging over radial positions, the mean kinetic energy
is

〈K〉 =
1

a

∫ a

0

Kdr =
GMma2

3R3
(B19)

As long as v ≥ v∗, DM-nuclear encounters are dominated
by DM movements, thus the mean scattering timescale
is

〈∆t〉 = (n∗σA v)−1 (B20)

where v =
√

2〈K〉/m. From equation (B16) we have

da

dE
=

R3

GMma
(B21)

and using treating scattering again as a continuous pro-
cess

da

dt
=

da

dE

dE

dt
= −A2

(
B2 a

2 − 1
)

(B22)

with

A2 =

√
2R3

3GM

n∗σAβ+ 〈K∗〉
4m

, (B23)

B2 =
GMm

3R3 〈K∗〉
(B24)

Integrating, we have

t2 =

∫
dt = − 1

A2

∫ R2

R

da

B2 a2 − 1
(B25)

where R2 is given by v = v∗, or
√

2〈K〉/m =√
2〈K∗〉/m∗. Using equation (B19) with a = R2 and

solving for R2, we have

R2 =
(9kBT∗∞R

3

2GMm∗

)1/2
(B26)

If we pose x =
√
B2 a, then x ∈

√
m/m∗[1, R/R2] is

larger than 1 and we have∫
dx

1− x2
=

1

2
ln
∣∣∣1 + x

1− x

∣∣∣ = arcothx , (x > 1) (B27)

and

t2 =

∫
dt =

1

A2

√
B2

[
arcothx

]√B2R2

√
B2R

(B28)

We have

t2 =
1

2A2

√
B2

ln
[ (
√
B2R2 + 1)(

√
B2R− 1)

(
√
B2R2 − 1)(

√
B2R+ 1)

]
(B29)

Using ln(1 + x) ' x− x2 and ln(1− x) ' −x− x2 where
x ' 0,

t2 =
( 18m

n2
∗σ

2
Aβ

2
+ 〈K∗〉

)1/2[
2

√
m∗
m
− 2

√
3R 〈K∗〉
GMm

]
(B30)

or, assuming m∗ � m,

t2 '
3m

2ρ∗σA v∗

(
1−
√

3
v∗
ve

)
(B31)

where ve =
√

2GM/R.

3. Third stage

During this stage, scatterings are dominated by ion
movements. Therefore, the mean scattering timescale is

〈∆t〉 = (n∗σA v∗)
−1 , (B32)

And we have

t3 =

∫
dt =

1

A3

∫ Rth

R2

ada

1−B3 a2
(B33)

Les bornes sont
√
B3Rth = 1 and

√
B3 R2 =

√
m/m∗

and the time is parametrially infinite

t3 =
1

A3B3

∫ √m/m∗
1

xdx

x2 − 1
=

1

A3B3

[
ln(x2 − 1)

]√m/m∗
1

(B34)

However, we can consider that the DM particle is ther-
malized when it reaches the thermal energy of stellar par-
ticles within 〈δ∆E〉, where δE is the root mean square
energy transfer,

〈δ∆E〉 =
√
〈∆E2〉 − 〈∆E〉2 =

β+

4
√

2

√
K2 +K2

∗ (B35)

Then we integrate t3 to the radius R3, defined by K =
K∗ + δ∆K, solving for K, we find

K = K∗

[
1 +

√
1− (1− β+/16

√
2)2
(

1− β2
+/16

√
2
)−1/2]
(B36)

Pour β+ � 1,

K ' K∗
(

1 + 25/4m∗
m

)
(B37)
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Then we have

R2
3 =

3R3〈K∗〉
GMm

(
1 + 25/4m∗

m

)
(B38)

and √
B3R3 ' 1 + 21/4m∗

m
(B39)

and the integral is finite

t3 =
1

A3B3

[
ln
( m
m∗
− 1
)
− ln

(
1 + 21/4m∗

m
− 1
)]

' 2

A3B3
ln
( m
m∗

)
(B40)

Finally

t3 =
3m

n∗σA v∗m∗
ln

m

m∗
(B41)

Finally, summing up, the total thermalization
timescale is

tth = t1 + t2 + t3 =
3m

ρ∗σA v∗

[3
√

2π

16

v∗
vgal

+
1

2
+ ln

( m
m∗

)]
(B42)

Appendix C: Scattering energy transfer

1. Classical regime

Consider scattering of two rigid body spheres with
mass m and m∗ and initial scalar velocities v and v∗ re-
spectively. A general scattering event occurs in a plane.
In full generality, we can choose a coordinate system such
that the line of centers coincides with the x axis (in other
words, the contact angle is zero). Momentum conserva-
tion along the line of centers and kinetic energy conser-
vation imply

mv cos θ +m∗ v∗ cos θ∗ = mv′x +m∗ v
′
∗x , (C1)

mv2 +m∗ v
2
∗ = mv′2 +m∗ v

′2
∗ (C2)

where θ and θ∗ are the pre-collision movement angles
(with respect to the x axis) of m and m∗, respectively,
and primes indicate post-collision quantities. Momentum
perpendicular to the line of centers is conserved for each
mass, so we obtain immediately,

v′y = v sin θ , (C3)

v′∗y = v∗ sin θ∗ , (C4)

With four unknowns (v′x, v
′
y, v

′
∗x, v

′
∗y) and four equa-

tions, the system has a unique non-trivial solution,

v′x =
m−m∗
m+m∗

v cos θ +
2m∗

m+m∗
v∗ cos θ∗ , (C5)

Using (m −m∗)2/(m + m∗)
2 = 1 − 4mm∗/(m + m∗)

2

and defining β+ ≡ 4 mm∗/(m + m∗)
2, we can express

the total post-shock velocity squared as

v′2 = v2 + β+

[m∗
m

v∗
2 cos2θ∗ − v2 cos2θ

+
m−m∗
m

vv∗ cos θ cos θ∗

]
. (C6)

In terms of energy (for E = K)

∆E = E′ − E = β+

[
E∗ cos2θ∗ − E cos2θ

+ (m−m∗)
√
EE∗/mm∗ cos θ cos θ∗

]
(C7)

Since all pre-collision movement angles are equally likely,
the average energy transfer is

〈∆K〉 =
1

(2π)2

∫ 2π

0

∫ 2π

0

∆Edθdθ∗ =
β+

2

(
K∗ −K

)
(C8)

In the main text, we omit the brackets and average addi-
tionally over velocity distribution. Note that, whenever
both species are at thermal equilibrium, (C8) implies that
the energy transfer is zero.

2. Relativistic regime

In the relativistic case, we have momentum conserva-
tion along the line of centers

p cos θ + p∗ cos θ∗ = p′x + p′∗x (C9)

and energy conservation

E + E∗ = E′ + E′∗ (C10)

Momentum conservation perpendicular to the line of cen-
ters for each mass

p′y = p sin θ , (C11)

p′∗y = p∗ sin θ∗ (C12)

First, we eliminate p′∗. On the one hand, we isolate the
x and y components using equations (C9) and (C12) and
writing the sum of squares

p′2∗ = p′2∗x + p′2∗y = p2 cos2 θ + 2pp∗ cos θ cos θ∗ + p2
∗ + p′2x

− 2(p cos θ + p∗ cos θ∗)p
′
x (C13)

On the other hand, from equation (C10) we have

p′2∗ = E′2∗ −m2
∗ = (E + E∗ − E′)2 −m2

∗

E2 + p2
∗ + E′2 + 2EE∗ − 2(E + E∗)E

′ (C14)

Equating (C13) and (C14) and using equation (C11) in
the form p′2x = p′2 − p′2y = p′2 − p2 sin2 θ, we obtain after
some algebra[

(E + E∗)
2 − C2

]
E′2 − 2B (E + E∗)E

′

+
[
B2 + C2 (m2 + p2 sin2 θ)

]
= 0 (C15)
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where we have defined

B ≡ m2 + EE∗ + p2 sin2 θ − pp∗ cos θ cos θ∗ , (C16)

C ≡ p cos θ + p∗ cos θ∗ . (C17)

Solving for E′, we have

(
E′
)
± =

B (E + E∗)± C
√
|∆|

(E + E∗)2 − C2
(C18)

where the discriminant is

∆ = B2 − (m2 + p2 sin2 θ)[(E + E∗)
2 − C2] (C19)

The difference is

(
∆E

)
± = E′ − E =

B (E + E∗)− E [(E + E∗)
2 − C2]± C

√
|∆|

(E + E∗)2 − C2

(C20)

It can be shown, after long algebra, that

C
√
|∆| = B (E + E∗)− E [(E + E∗)

2 − C2] (C21)

Therefore, the non-trivial solution is the plus solution.
After some simplification, we obtain

∆E =
2[Ep2

∗ cos2θ∗ + (E−E∗)pp∗ cos θ cos θ∗ − E∗ p2 cos2θ]

(E + E∗)2 − (p cos θ + p∗ cos θ∗)2

(C22)

It is easy to verify that for m� p and m∗ � p∗, equation
(C22) reduces to the non-relativistic equation (C7).

Appendix D: Collision rate

Here we assume that the cross section does not vary
with the relative velocity. The characteristic collision
time is

∆t =
1

n∗σ 〈vrel〉
(D1)

where vrel is the relative velocity between colliding par-
ticles [105]

vrel =

√
(v − v∗)2 − (v × v∗)2

1− v · v∗
=

√
(p · p∗)2 −m2m∗2

p · p∗
(D2)

and the mean 〈. . .〉 is taken over the Jüttlich distribution
(relativistic generalization of Maxwell distribution)

fJ(p) = (4πm2T K2(x))−1 exp[−
√
p2 +m2/T ] (D3)

The mean can be shown to be (see, for ex., [49])

〈vrel〉 =
2[(1 + ζ)2K3(ξ)− (ζ2 − 1)K1(ξ)]

ξK2(x)K2(x∗)
(D4)

where ξ = x + x∗, ζ = (x2 + x2
∗)/2 x x∗ are auxiliary

variables and x = m c2/kB T and x∗ = m∗ c
2/kB T∗

are standard thermal variables, Ki(x) is the modified (or
hyperbolic) Bessel function of the second kind (not to
confuse with the kinetic energy that we denoteK as well).

For n an integer, the modified Bessel functions of the
first and second kind are

In(x) = Kn(x) = lim
α→n

π

2

I−α(x)− Iα(x)

sinαπ
(D5)

where α is a non-integer.

The following asymptotic formula for large arguments
is useful

Kν(x) =
( π

2x

)1/2

e−x
[
1 +

1−4ν2

8x
+

9−40ν2+16ν4

128x2

+O(x−3)
]

(D6)

For numerical purposes, it is useful to rewrite the follow-
ing form

〈vrel〉 =
(8xx∗
πξ

)1/2(1+ζ)2 K̃3(ξ)− (ζ2−1)K̃1(ξ)

ξ K̃2(x)K̃2(x∗)
(D7)

where we have defined

K̃i(y) = Ki(y)

√
2y

π
ey (D8)

The advantage is that this has a simple expansion in the
non-relativistic limit, y → ∞ (which we use as soon as
y > 100)

K̃i(y) = 1 +
4 i2−1

8y
+

16 i4−40 i2+9

128y2
+O(y−3) (D9)

Another useful limit is when ζ � 1 (typically ζ > 1012,
or machine precision), corresponding to either x� x∗ or
x� x∗. Then we have

lim
ζ→∞

〈vrel〉 '
(8xx∗
πξ

)1/2 2ζK̃3(ξ) + ζ2 ∆K̃31(ξ)

ξ K̃2(x)K̃2(x∗)
(D10)

where

∆K̃ij(y) =
4(i2−j2)

8y
+

16(i4−j4)− 40(i2−j2)

128y2
+O(y−3)

(D11)

Note that in eq. (D1) assumes DM particles remain non-
relativistic. Comparing equations (D7) and (D9), it is
easy to verify that for both x → ∞ and x∗ → ∞, the
well-known non-relativistic expression is recovered

〈vrel〉 =
[8(x+ x∗)

πxx∗

]1/2
(D12)
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Appendix E: Details on the merger delay

Using the binary population synthesis code StarTrack,
Ref. [91] computes the rate of double degenerate merg-
ers with primary mass between 0.85 and 1.05 M� and
secondary with mass ratio 0.9 < M2/M1 < 1.0. These
systems count on contributions from three distinct evo-
lutionary channels:

(a) Prompt (< 0.1 Gyr) delay times originate from
6.0–7.5 M� zero-age main sequence masses (rare) and
close initial orbits (a0 < 200 R�)7, undergo two common
envelopes, and comprise 25% of the channels (a) and (b)
together.

(b) Intermediate (1–3 Gyr) delay times originate from
4.8–5.8 M� zero-age main sequence masses and wider
initial separations (a0 ∼ 80–1000 R�), undergo only one
common envelope, and comprise 75% of channels (a) and
(b) together.

(c) Very long (∼ 10 Gyr) delay times consist of binaries
with zero-age main sequence component masses in the
range 3.8–4.5 M� and large spread in initial separations
a0 ∼ 100–2000 R�. These experience only one common
envelope (when the primary has already evolved into a
WD), and the mass-loosing star is a bloated late-AGB
star. The orbital separation upon ejection of the common
envelope is a ∼ 3 R� implying a multi-Gyr delay time.

For our purpose only in channel (c) is of interest but
its incidence has not been specified by Ref. [91]. Assum-
ing a Salpeter [106] initial mass function, N(M) dM ∝
M−2.35dM , and logarithmically uniform initial period
distribution [e.g. 107], We find that the respective frac-
tions of the channels (a), (b), and (c) are 10%, 30%,
and 60%. We assume that these respective fractions per-
sist the same when considering slightly higher component
masses.

7 This must be an error. In order to obtain (b)/(a) = 3 as stated
by the author, we must have a0 ∼ 60–200R� instead of a0 <

200R�.
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