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Future searches for a gravitational-wave background using Earth-based gravitational-wave de-
tectors might be impacted by correlated noise sources. A well known example are the Schumann
resonances, which are extensively studied in the context of searches for a gravitational-wave back-
ground. Earlier work has shown that a technique termed “gravitational-wave geodesy” can be used
to generically differentiate observations of a gravitational-wave background from signals due to cor-
related terrestrial effects, requiring true observations to be consistent with the known geometry of
our detector network. The key result of this test is a Bayes factor between the hypotheses that
a candidate signal is astrophysical or terrestrial in origin. Here, we further formalize the geodesy
test, mapping distributions of false-alarm and false-acceptance probabilities to quantify the degree
with which a given Bayes factor will boost or diminish our confidence in an apparent detection
of the gravitational-wave background. To define the false alarm probability of a given Bayes fac-
tor, we must have knowledge of our null hypothesis: the space of all possible correlated terrestrial
signals. Since we do not have this knowledge we instead construct a generic space of smooth func-
tions in the frequency domain using Gaussian processes, which we tailor to be conservative. This
enables us to use draws from our Gaussian processes as a proxy for all possible non-astrophysical
signals. During O2 observing run, the LIGO and Virgo collaborations observed an SNR = 1.25
excess in their search for an isotropic gravitational-wave background. To demonstrate the utility of
gravitational-wave geodesy, we apply the method to the observed cross-correlated data.

I. INTRODUCTION

Since the first detection of gravitational waves (GW) in
2015 [1], the Advanced LIGO [2], Advanced Virgo [3] and
KAGRA [4] collaborations (LVK collaborations) have an-
nounced many more binary mergers [5–8]. These include
binary black hole mergers, binary neutron star mergers,
as well as neutron star-black hole mergers. In total, 90
observations were reported by the LVK in GWTC-1 [5],
GWTC-2 [6], GWTC-3 [6] and some lower significant
events in GWTC-2.1 [9].

Gravitational waves from the mergers of most bi-
nary systems at cosmological distances are too weak to
be individually detected. However, the superposition
of these signals forms a gravitational-wave background
(GWB) [10–15]. The LVK collaboration has conducted
searches for both an isotropic [16] and anisotropic [17]
gravitational-wave background, but no such signal has
yet been detected by the Advanced detectors. Predic-
tions based on the merger rate and mass distribution of
compact binaries indicate the GWB from the superposi-
tion of these events might be detected by LIGO, Virgo
and KAGRA during forthcoming observing runs [16, 18].
Apart from the GWB from unresolved binary mergers
many other astrophysical and cosmological signals could

contribute to a GWB [19].
As the GWB is too weak to be observed in a sin-

gle detector, we rely instead on the cross-correlation of
strain data from multiple detectors [19, 20]. If we as-
sume the noise present at different detector sites is uncor-
related, any excess correlation between the strain mea-
sured in two detectors must be due to an astrophysi-
cal gravitational-wave signal. It is not, however, the
case that gravitational-wave detectors measure strictly
independent noise realizations. While many sources
of terrestrial noise are indeed local, there are known
sources that are correlated on global scales, introduc-
ing non-astrophysical correlations in the LIGO-Hanford,
LIGO-Livingston, Virgo, and KAGRA interferometers,
despite their separation by several thousand kilometers.
Some known examples of such noise sources are Schu-
mann resonances [21, 22] and the synchronization of
on-site electronics to Global Positioning System (GPS)
time [23]. Schumann resonances are electromagnetic ex-
citations in the cavity formed by the Earths-surface and
the ionosphere, sourced by lightning strikes across the
globe [21, 22]. They are expected to couple magnetically
to the interferometers and induce a correlated signal of
terrestrial origin [24, 25].

The existence of known sources of correlated noise raise
an important question: If we detect evidence for a corre-
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lated signal between two (or more) GW interferometers,
how can we be confident that this source is of astrophys-
ical origin rather than terrestrial? Until now, several
methods have been or are being developed to help differ-
entiate between a correlated signal due to gravitational
waves or due to terrestrial sources. For Schumann res-
onances, in particular, methods have been investigated
to directly measure and remove their effect by applying
Wiener filtering [24–27] and more recently to incorporate
Schumann resonances and a GW signal in one consistent
Bayesian parameter estimation framework [28].

A complementary method, gravitational-wave geodesy
(GW-Geodesy), was previously proposed [29]. In GW-
Geodesy, the geometry of an interferometer network (the
relative distances and orientations of component detec-
tors) is reversed-engineered from an observed GWB. This
forms the basis for a consistency check that a true astro-
physical signal must pass. A true GW signal must yield
results consistent with the known geometry or our base-
line, while the same is not the case for other sources. In
the first implementation of the GW-Geodesy framework,
it was shown that the method can successfully differenti-
ate an isotropic GWB coming from unresolved binary
mergers from correlated terrestrial noise due to Schu-
mann resonances or the synchronization of electronics to
GPS-time [29].

The output of the GW-Geodesy test is a Bayes factor
between two hypotheses: (i) that a tentative detection
yields consistency with our known baseline geometry and
is therefore astrophysical, or (ii) that the signal prefers
an unphysical geometry and is hence non-astrophysical in
origin. This Bayes factor acts as a secondary test statis-
tic, independent of and complementary to the signal-
to-noise (SNR) with which we observe a given signal.
Namely, this Bayes factor - which will be defined in Sec.
II, Eq. 7 - makes a statement on how well the data fits
the model, that is the true geometry combined with a
GW signal, whereas the SNR - which will be defined in
Sec. IV, Eq. 12 - is a measure of the data’s deviation
from uncorrelated Gaussian noise. One might compare
the Bayes factor we construct here with the χ2 statistic
in searches for compact binary coalescences [30], which
measures how well a template fits a signal, or a Bayesian
coherence ratio [31], which quantifies the self-consistency
of a signal observed with multiple detectors. Like our
geodesy Bayes factor, these statistics capture additional
information beyond the overall amplitude of a signal, and
are critical in determining the astrophysical significance
of an apparent detection..

While these Bayes factors can be qualitatively inter-
preted, until now we have not been able to assign a
precise statistical significance to a given Bayes factor.
Ideally, we could assign any given Bayes factor a false
alarm probability (FAP) and a false dismissal probabil-
ity (FDP). The FAP indicates how often one might ac-
cidentally confirm a terrestrial signal based on this test,
whereas the FDP indicates how often we accidentally dis-
miss a real signal. In this work, we quantity these FAP

and FDPs, allowing us to answer the crucial question:
How likely is an observed correlated signal with a given
SNR and geodesy Bayes factor to be of astrophysical ori-
gin, rather than a yet-unidentified source of terrestrial
correlation? In this fashion, we can utilize GW-Geodesy
not only as a tool with which to reject terrestrial sig-
nals, but also as one to bolster our confidence in a real
gravitational-wave background detection.

To be able to construct FAPs and FDPs, we first
need a proxy for unknown correlated terrestrial signals,
which have the possibility of contaminating the isotropic
stochastic search. This is, by definition, challenging:
we cannot know the nature of unknown contaminants.
We therefore instead utilize Gaussian processes to repre-
sent random and a priori unknown contaminants, defin-
ing FAPs and FDPs over the space of continuous cross-
correlation functions that LVK detectors might measure.

In Sec. II, we will cover some mathematical concepts
of stochastic searches and the GW-Geodesy framework
which are crucial elements in this work. In Sec. III, we
introduce Gaussian processes, and we optimize the model
parameters to create a very conservative scenario. In
Sec. IV, we will demonstrate how the Gaussian processes
can be used within the framework of GW-Geodesy and
why it can become a powerful tool to help in validating
future observations of an isotropic stochastic background.
As part of this demonstration we apply our framework in
Sec. IV C to the SNR = 1.25 excess observed for a 2/3-
power law by the LIGO and Virgo collaborations during
their second observing run (O2). In Sec. V, we discuss the
tool together with an outlook on possible future additions
or improvements.

II. GRAVITATIONAL-WAVE GEODESY

We often characterize the GWB in terms of its energy-
density spectrum Ω(f) – Eq. 1 – expressed as the energy
density dρGW of GWs per logarithmic frequency inter-
val d ln(f). Ω(f) is made dimensionless by dividing by
the Universe’s critical energy density ρc = 3H2

0 c
2/(8πG),

where H0 is the Hubble constant, c the speed of light, and
G is Newton’s constant [20, 32]:

Ω(f) =
1

ρc

dρGW
d ln(f)

(1)

To measure the energy density of the GWB, one com-
putes the cross-correlation spectrum Ĉ(f) between two
gravitational-wave observatories. If s̃I(f) is the mea-
sured (Fourier domain) strain of observatory I and ∆T

the duration of the analyzed data, one can express Ĉ(f)
as

Ĉ(f) =
1

∆T

20π2

3H2
0

f3Re[s̃∗1(f)s̃2(f)]. (2)

The normalisation of Ĉ(f) is chosen such that its expec-
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tation value is given by [32]

〈Ĉ(f)〉 = γ(f)Ω(f). (3)

γ(f) is the normalized overlap reduction function, which
encodes the imprint of the detectors’ baseline geometry
(location and relative orientations) on the observed cor-
relations. For two laser interferometers, the normalized
overlap reduction is given by [33]

γ(f) =
5

8π

∑
A

∫
Sky

FA1 (n̂)FA2 (n̂)e2πif∆x·n̂/cdn̂. (4)

FAI (n̂) is the antenna response of detector I to GWs with
polarization A. ∆x represents the separation vector be-
tween the two detectors, whereas n̂ indicates the sky di-
rection. One sums over all tensor polarizations (“plus”
and “cross”) and integrates over all sky-directions. By
virtue of the leading factor 5

8π , co-located and co-aligned
detectors will have γ(f) = 1 for all frequencies.

If we assume that we are in the weak signal limit (which
is a valid assumption since the GWB has yet to be ob-
served), the co-variance of Ĉ(f) at two different frequen-

cies f and f ′ is given by 〈Ĉ(f)Ĉ(f ′)〉 = δ(f − f ′)σ2(f)
where σ2(f) is given by [20, 32]

σ2(f) =
1

∆T

(
10π2

3H2
0

)2

f6P1(f)P2(f). (5)

and PI(f) is the noise power spectral density of detector
I.

Traditionally, searches for a GWB assume a power-law
of the form:

Ω(f) = Ωref

(
f

fref

)α
. (6)

A power-law index α = 0 is expected from several cos-
mological sources of a GWB, while α = 2/3 is ex-
pected from individually unresolved binary coalescence
events. A GWB with α = 3 could be produced by super-
novae [19, 34].

Given the detection of a gravitational-wave back-
ground, we could seek to infer Ωref and α. Addition-
ally, however, the dependence of our measured cross-
correlation spectrum Ĉ(f) on the overlap reduction func-
tion means that the GWB could be used to infer the ge-
ometry of our detector network itself. This fact forms
the basis of GW geodesy: a true GWB should yield
an inferred geometry consistent with the true geome-
try of our detector network. An isotropic astrophysi-
cal/cosmological GWB must be consistent with the ex-
pected functional form of our baseline’s overlap reduc-
tion function. Correlated terrestrial noise sources, on
the other hand, do not necessarily need to follow the be-
haviour of the overlap reduction function. Thus, there
is no reason why non-GW correlated noise sources would
prefer the true geometry over any random geometry [29].

We formalize this test by defining the following two
hypotheses:

• Hypothesis Hγ : The measured cross-correlation
is consistent with the true baseline geometry and
overlap reduction function.

• Hypothesis HFree: The measured cross-correlation
spectrum is consistent with an unphysical baseline
geometry. Under this hypothesis, we treat our de-
tector positions and orientations as free variables to
be inferred from the data, allowing them to range
(unphysically) across the surface of the Earth.

To compare the hypotheses Hγ and HFree, one can
construct a Bayes factor B between these hypotheses to
establish which model is favored by the cross-correlated
data Ĉ,

B =
p(Ĉ|Hγ)

p(Ĉ|HFree)
, (7)

where p(Ĉ|Hγ) and p(Ĉ|HFree) are the probabilities of
finding the observed cross-correlation – as defined in Eq.
2 – given hypothesis Hγ and HFree, respectively. Because
HFree is a more complex model, it will be penalized by
the Bayesian “Occam’s factor”. Therefore, an isotropic
astrophysical signal will be consistent with both Hγ and
HFree, but will favor Hγ since it is the simpler hypoth-
esis. Non-GW correlated noise sources have a priori no
preference for Hγ and therefore will be better fit by the
additional degrees of freedom provided by non-physical
geometries, leading to favouring the HFree hypothesis.

III. GAUSSIAN PROCESSES

If, in the future, we compute a geodesy Bayes factor
B associated with a candidate gravitational-wave back-
ground, we do not yet know exactly how we should quan-
titatively interpret this result. In order to fully under-
stand the statistical significance of a particular Bayes
factor, we need to know how often it arises simply by
chance. This poses a dilemma, however. To quantify a
false-alarm probability, we would need to know all pos-
sible terrestrial signals, which we do not. So instead, we
can ask a similar question: how often do particular Bayes
factors arise from the generic space of smooth functions
in the frequency domain? This latter question can be
answered using Gaussian processes.

Gaussian processes are very flexible and are frequently
used for model fitting or model predictions based on a
data set [35]. In this work, we use the Gaussian pro-
cesses to produce a distribution of functions with a given
mean and variance. We consider each draw from this
distribution to be a possible realisation of a correlated
terrestrial signal.

The two main inputs of the Gaussian process are a co-
variance matrix, often called the kernel, and the mean.
In this work, we use the Gaussian processes to generate
possible realizations of 〈Ĉ(f)〉. The probability density
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function for the draws is given in Eq. 8. This is the prob-
ability to draw a certain cross-correlation spectrum C(f),
from the function space governed by the co-variance ma-
trix Σ [35]

p(C(f)|µ,Σ) =
1

(2π)n/2|Σ|1/2
·

exp

(
−1

2
(C(f)− µ)TΣ−1(C(f)− µ)

)
(8)

In Eq. 8, n is the dimension of the co-variance matrix Σ.
We generate distributions of cross-correlation spectra

with zero mean and consider one of the most com-
monly used co-variance matrices, the so called squared
exponential (SE). In this case, the covariance between
cross-correlation values measured at frequencies fi and
fj is given by [35]:

ΣSE,ij(σ, l) = σ2exp

(
− (fi − fj)2

2l2

)
. (9)

σ2 is the variance at a single frequency, and while this
parameter can be used to scale the signal strength with
respect to observations, it will have no impact on the
spectral shape of the draws from the distribution. l is
the characteristic length-scale over which our C(f) mea-
surements are correlated.

In order to utilize Eqs. 8 and 9, we still need to choose
a length-scale parameter l. We will tune this parameter
by deliberately targeting the most conservative scenario,
in which the Gaussian process yields cross-correlation
spectra that look – on average – most like a proper astro-
physical/cosmological signal. In doing so, we will always
obtain conservative estimates of the false-alarm proba-
bility for a given geodesy Bayes factor.

To select the most conservative value of the length-
scale parameter, we will maximize the probability for
our target astrophysical signal itself to be drawn from
the Gaussian process. The cross-correlation spectrum we
expect from a gravitational-wave background is C(f) =

γHL · Ωref

(
f
fref

)α
:= Cα(f), with α = 0, 2/3 or 3, where

we approximate the mean to be zero. These are the
power-laws typically looked for by the LIGO, Virgo and
KAGRA collaborations [16]. Note that we have chosen
the Hanford-Livingston (HL) baseline as our observing
baseline. This baseline is the most sensitive for observ-
ing an isotropic GWB, due to their better sensitivity
compared to Virgo but more importantly because their
overlap reduction function is considerably larger. The
log-likelihood of this signal under our Gaussian process
is

ln(L) = ln p(Cα(f)|µ = 0,Σ)

=− 1

2
ln(|Σ|)− 1

2
Cα(f)

T
Σ−1Cα(f) + constants.

(10)
As we will later freely adjust the overall amplitude of

our Gaussian process draws in order to vary their SNRs,

we will optimize only the length parameter l, fixing the
overall covariance to σ2 = 1. Accordingly, for consistency
we normalize our target astrophysical signal via

C̃α(f) =
Cα(f)√

Var Cα(f)
, (11)

choosing the l that maximizes ln p(C̃α(f)|µ = 0,Σ).
In practice, the inversion of Σ is unstable, with a deter-

minant that is nearly zero. To increase stability, we add
a diagonal term to the co-variance matrix: Σ→ Σ + ε I,
with I the identity matrix and ε a small dimensionless
constant, here chosen to be 10−3. This diagonal term
can be interpreted as a noisy observation of our function
Cα(f).

We optimize the kernel parameter l using the formal-
ism described above, in the following parameter range:
l ∈ [10−4 Hz, 104 Hz]. The optimal length-scale param-
eter to mimic a power-law with slope α = 0, 2/3 and
3 are respectively: l = 47.65 Hz, 33.18 Hz and 29.20 Hz,
determined using a 0.01Hz frequency resolution for l.

In Fig. 1, we show several random draws from the
Gaussian process described by the SE-kernel, optimized
to most closely match an α = 2/3 astrophysical signal, as
well as the signals we expect to observe from unresolved
binary mergers and terrestrial Schumann resonances.
Here we have chosen α = 2/3 since this gravitational-
wave background is the signal expected to be first ob-
servable by advanced LIGO and advanced Virgo.

The Schumann resonance spectrum used here is identi-
cal to the spectrum used in the first description of GW-
Geodesy [29]. This spectrum is obtained by replacing
the strain data s1 and s2 in Eq. 2 by data from magne-
tometers measuring the Schumann resonances in a mag-
netically quiet location, the Hylaty station in Poland
as reported in [27]. We furthermore assume that the
transfer function linking environmental magnetic fields
to gravitational-wave interferometers is a power-law that
declines as ∝ f−2 in frequency [29]. An important as-
sumption about our correlated magnetic spectrum is that
it is positive since the frequently dependant sign of the
cross-power between the two LIGO sites is unknown.
More detailed studies in the future could investigate the
effect when relaxing this assumption. Two models have
been developed modeling a Schumann resonance; first a
simple analytical model [36] and secondly a more complex
taking the anisotropic character of lighting strikes sourc-
ing the Schumann resonances into account [37]. These
analytical models give a mathematical framework to in-
vestigate the departure of the assumption of a fully posi-
tive magnetic cross-spectrum as function of the magnetic
phase angle between the two sites [36] or the global light-
ning density map [37].

This figure illustrates the SE-kernel with optimized
parameters is able to produce cross-correlation curves
which are, on average, functionally similar to the true-
signal curve. As discussed above, this is deliberately con-
servative, maximizing the false-alarm probabilities with
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FIG. 1. The expected cross-correlation for an astrophysi-
cal background from unresolved binary systems (blue/bold),
Schumann resonances (orange) and 20 random draw from the
SE kernel (gray). The kernel-parameter used for the Gaus-
sian process instantiations is the optimal value for mimicking
an 2/3-power-law signal, as described in the text. The in-
jected signal strength yields a SNR = 3 after a 3-year long
observation at LIGO’s design sensitivity.

which our Gaussian process will randomly yield cross-
correlation functions with favorable geodesy Bayes fac-
tors. As already was stated in the initial implementa-
tion of the GW-Geodesy framework, having similar zero-
crossings might play a crucial role in mimicking a signal
[29]. Everywhere in this analysis we investigate the GW-
Geodesy framework in the frequency range of 10–250 Hz
with a frequency resolution of 0.24 Hz. The lower limit
is based on the lowest frequency that can be observed
by current ground-based interferometers. Because of the
combined effects of the overlap reduction function and
the reduced sensitivity at higher frequencies, there is a
negligible gain when going to higher frequencies com-
pared to the computational costs. For example, when
looking for an isotropic power-law signal using the HL-
baseline with a power-law slope of α =0, 2/3 and 3, 99%
of the sensitivity during the latest O3 run was respec-
tively contained below 76.1 Hz, 90.2 Hz and 282.8 Hz [16].

In the rest of this paper, when we mention a Gaussian
process signal, we are referring to a Gaussian process
with a SE kernel and a length-scale parameter optimized
for the relevant power-law slope α. Also, when mention-
ing “unknown correlated noise sources,” we refer to this
Gaussian process signal, which in this study serves as
a conservative proxy for these unknown correlated noise
sources.

IV. FALSE ALARM PROBABILITIES AND
DETECTION CONFIDENCE

A. Simulations

Using our Gaussian process machinery, we will explore
the false alarm probabilities and statistical significance

associated with geodesy Bayes factors. We will make use
of three different sources of cross-correlation: a power-law
signal with slope α, magnetic Schumann resonances and
a proxy for unknown terrestrial cross-correlation mimick-
ing an α-power-law signal using Gaussian processes. As
a proof of concept we will start by investigating Bayes
factors given by signals with SNR=3 after three years of
observation at LIGO’s design sensitivity [38]. This spe-
cific signal-to-nose-ratio is chosen as this is the fiducial
value when one might first claim evidence for a detected
GWB.

The signal-to-noise ratio of our model signal Cα(f) is
given by

SNRα =

∫
f
Ĉ(f)Cα(f)× σ2

α/σ
2

σα
,

with

σ2
α =

(∫
f

Cα
2(f)

σ2

)−1

.

(12)

In what follows we will drop the subscript α and refer
to the signal to noise ratio SNRα just as SNR. One can
compute the expected SNR or the observed SNR. In the
former case Ĉ(f) is the injected signal, whereas in the lat-
ter case Gaussian-distributed noise consistent with Eq. 5
has been added to each frequency bin of Ĉ(f).
When performing an injection for a certain power-law
with slope α = 0, 2/3, 3, the signal is injected with an ex-
pected SNRα of the desired strength. Note that in case of
the Schumann signal as well as the Gaussian process sig-
nal, sometimes a power-law with a different slope might
be recovered with a higher SNR: SNRα̃ > SNRα, where
α̃ 6= α.

Note that the SNR defined in Eq. 12 can be posi-
tive (if the data well-match our signal model – that is
the true HL overlap reduction function with a power-
law GW signal –) or negative (if data anticorrelate with
our signal model). As we are concerned primarily with
signals we might mistake as astrophysical, we will only
investigate those that yield positive SNRs as observed
by the HL baseline. Therefore, if the SNR of a Gaussian
process draw is negative at the target α (0, 2/3 or 3),
it is rejected and a new signal is simulated. This hap-
pens, on average, 50% of the time. The rejection of this
signal is chosen to match a realistic experimental condi-
tion. In case of a detection, one would like to apply this
tool mainly to a positive SNR detection, whereas a nega-
tive SNR detection would immediately be categorized as
unphysical.

For our three signal classes, we simulate and analyze
5000 simulated cross-correlation spectra. In the case of
the astrophysical power law and Schumann resonances,
this involves generating 5000 distinct Gaussian noise re-
alizations that are added to the fixed underlying mod-
els. Under our Gaussian process, meanwhile, each trial
involves a random draw from our Gaussian process (re-
stricted to positive SNR) and a randomly generated noise
spectrum. For every injection, we use PyMultiNest to
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FIG. 2. Probability density of lnB for an astrophysical
α = 2/3 power-law signal, random draws from a Gaussian pro-
cess using our optimized (most conservative) SE-kernel and a
Schumann signal. The lowest bin contains all lnB ≤ −6. For
each signal type 5000 injections were performed with an in-
jection strength of SNR=3, when recovered with an α = 2/3
signal model.

compute Bayesian evidences [39], using 2000 live-points.
PyMultiNest is a python interface for MultiNest [40, 41],
which is an implementation of the nested sampling algo-
rithm [42, 43].

The model corresponding to our hypothesis Hγ has
two free parameters, the reference amplitude Ωref of the
signal at fref = 25Hz and the power-law slope α. We
use a log uniform prior for the reference amplitude be-
tween 10−12 and 10−6. For α we use a Gaussian prior
with a standard deviation of 3.5. Our alternative hy-
pothesis HFree has three additional free parameters, the
distance between the two interferometers ∆x and the ro-
tation angles of your interferometers φ1 and φ2 [29]. We
use uniform priors on φ1 and φ2 (0,2π). Furthermore we
use a uniform prior on cosθ, where ∆x = 2REarthsinθ/2.
This corresponds to a prior on the distance between the
detectors: p(∆x)∝ ∆x. These priors are chosen to be
consistent with earlier work [29].

Figure 2 represents the log-Bayes distribution for the
different signal models, assuming a SNR=3 and α = 2/3.
The lower bin in the histograms also includes all sim-
ulations with a recovered log-Bayes factor smaller than
-6. The smallest log-Bayes factor for an injection with
a Schumann signal is approximately -23, whereas this is
approximately −6 × 107 in case of the Gaussian process
signal.

First, we notice the overlap of the histograms of the
Gaussian process and the power-law signals is signifi-
cantly larger than the overlap between the Schumann
signal and the power-law signal. This shows the selec-
tion of the Gaussian process parameters in section III
is successful and indeed yields a conservative condition,
where the Gaussian process is able to mimic the power-
law signal. However, it also shows what possibly is one
of the weaknesses of current implementation of the tool:
our Gaussian process might be overly conservative as it

is able to very well mimic the α = 2/3-power-law, and
therefore to a large extent yielding similar log-Bayes fac-
tors.

On the other hand, whereas power-law signals yield
a handful of mildly negative log-Bayes values, the Gaus-
sian processes give an extended tail towards negative log-
Bayes factors, which will further grow as we increase the
SNR of our injections. This illustrates the intrinsic ran-
dom nature of the Gaussian process. Despite the process
being able to produce signals mimicking the power-law
signal, at the same time, other types of signals are pro-
duced which are not properly described by a power-law.

Assuming the Gaussian process is a (very) conserva-
tive, estimate of a terrestrial contamination for isotropic
GWB searches, we can construct an upper bound on
the false alarm probability (FAP) and detection prob-
ability associated with our Geodesy Bayes factors. The
FAP is the probability with which our terrestrial signal
(for which the Gaussian process is our proxy) gives a
Geodesy Bayes factor as high or higher than the Bayes
factor we recover from our actual data. The detection
probability gives the probability to detect the signal at a
certain FAP/log-Bayes factors. The detection probabil-
ity and False Dismissal Probability (FDP) are linked to
each other by: FDP = 1 − det.prob.; where the FDP is
a figure of merit of the probability to wrongly reject the
signal model.

For future observations, we would like to have an as
small as possible FAP (unlikely to be a false signal) and
a large detection probability (likely to be true signal).
Generally, before analysing the data, one chooses a FAP
considered to be the largest allowed value, for example
5% or 1%. Given a signal injected with a SNR=3 the
log-Bayes factors and detection probability are shown in
Table I for a FAP of 5% and 1%. We also show the results
when looking for a power-law signal with slope α = 0 or 3.
We see, for example, that given an apparent detection of
the gravitational-wave background with SNR = 3 under
an α = 2/3 model, there is no more than a 5% chance
that a log-Bayes factor lnB = 2.94 would arise by chance
from a non-astrophysical signal.

We notice that for a given FAP, the detection probabil-
ity becomes higher for power-law signals with a steeper
slope (larger α). However all reported detection prob-
abilities are very small. This is linked to our Gaussian
process being (overly) conservative and is very good in
mimicking the GW power-law signals. This was already
clear from Figure 2 for α = 2/3.

Table II shows the same for an injected signal with
SNR=5 when looking for a power-law with slope α =
0, 2/3 or 3. The detection probability for a flat and
2/3-power-law remains very small. Note that for a
flat power-law the detection probability even decreases
slightly when going from SNR=3 to SNR=5. For an
α = 3 power-law there is on the other hand a drastic in-
crease in detection probability when going from SNR=3
to SNR=5.

Table III, for comparison, shows log-Bayes factors and
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α = 0 α = 2/3 α = 3

FAP lnB det. prob. lnB det. prob. lnB det. prob.

5.0% 2.95 6.92% 2.94 10.56% 3.42 15.44%

1.0% 3.68 0.76% 3.72 1.78% 4.04 8.10%

TABLE I. The log-Bayes factor and detection probabilities
matching a FAP of 1% and 5% comparing a α-power-law GW
signal and a Gaussian process signal. For each signal type
5000 injections were performed with an injection strength of
SNR=3.

α = 0 α = 2/3 α = 3

FAP lnB det. prob. lnB det. prob. lnB det. prob.

5.0% 3.54 6.78% 3.67 15.54% 3.91 67.08%

1.0% 4.12 0.62% 4.30 1.80% 4.71 41.40%

TABLE II. The log-Bayes factor and detection probabilities
matching a FAP of 1% and 5% comparing a α-power-law GW
signal and a Gaussian process signal. For each signal type
5000 injections were performed with an injection strength of
SNR=5.

detection probabilities when one compares the power-
law signals with a Schumann signal. For a fixed FAP
of 1%, the detection probability is >99% meaning the
GW-Geodesy tool is very effective in differentiating a
Schumann signal from a power-law signal at a SNR of
3.

As searches for the gravitational-wave background ac-
cumulate SNR slowly over the course of months to years,
the above scenario in which a candidate signal has mod-
erate SNR = 3 represents a realistic situation in which we
will first need to use the Geodesy test. It is instructive,
however, to more broadly investigate how the distribu-
tions of log-Bayes factors evolve as a function of SNR.
To do this, we simulate signals with strengths logarith-
mically spaced between SNR=0.1 and SNR=100. Here
we will only be looking at the α = 2/3 case, injecting
astrophysical α = 2/3 power laws and drawing random
“terrestrial” signals from our Gaussian process optimized
to this same power-law form.

As mentioned above, the free parameters are the ref-
erence signal strength Ωref at 25 Hz and the power-law
slope α in case of our hypothesis Hγ . For the hypothesis
HFree, the set of five free parameters consist of Ωref , α,
∆x, φ1 and φ2. Note that for our astrophysical signal,

α = 0 α = 2/3 α = 3

lnB FAP det. prob.

-0.82 5.0% 99.72% 99.64% 99.60%

-0.55 1.0% 99.44% 99.28% 99.28%

TABLE III. The log-Bayes factor and detection probabilities
matching a FAP of 1% and 5% comparing a α-power-law GW
signal and a Schumann signal. For each signal type 5000 in-
jections were performed with an injection strength of SNR=3.

even though we inject α=2/3 our best fit α may well dif-
fer due to different noise instantiations, whereas for the
Gaussian process realizations alpha will adjust to best fit
the random signal with a power law.

In Figure 3, the median of the α-posterior is shown
with respect to the SNR at which this signal would be
observed by the HL-baseline. Note that both α and SNR
are calculated from the posterior consistent with the HL-
baseline. Although this might be disfavoured with re-
spect to the posteriors from the Random-Baseline, we are
interested on how the HL-Baseline would observe such a
signal.

For extremely small SNR (< 1), α is closely centered
around 0 for both the true power-law GW signal as well
as the simulated Gaussian process signal. These signals
are so weak that whatever we observe is dominated by
the Gaussian background of our search. With respect
to itself this Gaussian background has by definition no
power-law slope and therefore matches α = 0.

When our signal has a strength of order SNR 1, the
retrieved values of α are still centered around zero, but
the variance increases. The posterior-median α spans
a range from large negative to large positive power-law
slopes. There starts to be some excess but given the weak
strength of the signal the randomness of the Gaussian
background can drive the large negative or positive α.

The behaviour for power-law GW signals and the
Gaussian process signals starts to differ from SNR ∼ 10.
In the case of a power-law signal, the variation on α dras-
tically decreases and the center of the retrieved values
shifts from 0 to the real value: 2/3. This kind of be-
haviour is not present in case of the Gaussian process
signal, which remains centered around zero with a large
variation.

This seems to indicate that with large enough SNR, we
can make a clear distinction between a power-law GW
signal and some unknown (terrestrial) correlated noise
sources, simulated by the Gaussian processes.

To further strengthen this statement, Figure 4 shows
the log-Bayes factor between Hγ and HFree as a function
of the observed SNR. Weak signals are on average un-
able to differentiate between Hγ and HFree, leading to
log-Bayes factors ∼0. When the observed SNR reaches
values ∼1, the log-Bayes factor of the power-law 2/3 sig-
nals starts to prefer positive values, with increasing Log-
Bayes for increasing SNR. This is consistent with both
our expectations for a true signal as well as the earlier
results of the GW-Geodesy tool [29].

At the same time, the data from the Gaussian pro-
cess starts to separate into two categories when the SNR
reaches order one. One population of signals starts to
prefer negative log-Bayes factors, preferring HFree over
Hγ . These are the signals that look nothing like a power-
law signal as observed by the HL-baseline. However,
there is also a population of signals that starts to pre-
fer positive log-Bayes factors. These are the signals that
succeeded in mimicking the HL-baseline 2/3 power-law
signal to a (very) good extent. This behaviour is ex-
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FIG. 3. The median of the posterior of the power-law slope
α is represented against the median of the SNR-posterior,
assuming the signal has been observed by the HL-baseline.
Each point in this scatter plot represents one injected signal.
For each signal type 5000 injections were performed with a
logarithmically spaced injection strength between SNR=0.1
and SNR=100.

pected because we purposely chose our Gaussian process
parameters to have this kind of behaviour, which is the
key ingredient in creating conservative estimates for the
FAP. However, as the observed SNR keeps on increasing
the population of signals with positive log-Bayes factors
decreases at the cost of the population with negative log-
Bayes factors. Although at high SNR, the probability for
a Gaussian process to have high log-Bayes factors is very
small it is still non-zero.

Figure 3 and Figure 4 enable us to make statements
on the distinctive character of our tool to differentiate
a power-law GW signal and some unknown (terrestrial)
correlated noise sources, simulated by the Gaussian pro-
cess.

B. Detection probability curve

We construct a detection probability curve – for the
situation α = 2/3 – where we show the behaviour of the
detection probability versus the SNR of the signal for
several fixed false alarm rates. Injections at five different
SNRs were performed: 1.25, 3, 5, 10 and 20. At each
SNR, we performed 5000 injections for both the conser-
vative Gaussian process signal as well as an α = 2/3
power-law signal. The result is shown in Fig. 5.

The results indicate our Gaussian process is very con-
servative. Given a FAP of 1%, the detection probability
at SNR 20 is not even reaching 40%. A detection proba-
bility of 50% and 100% is indicated by the black dashed
curves. Given a FAP of 5%, a detection probability of
50% is reached above SNR=10. Only for a FAP of 25%,
this is reached for a SNR≤5.
As shown in Table II, in case of a power-law with SNR
= 5 and a steeper slope, e.g. α = 3, a detection proba-
bility curve of 41.40% (67.08%) is reached for a FAP of

FIG. 4. The Log-Bayes factor comparing a 2/3-power-law
signal with a Gaussian process is represented against the
median of the SNR-posterior, assuming the signal has been
observed by the HL-baseline. There are 40 events with
lnB < 10−5, which are not shown in this figure. The smallest
lnB = −5.3 × 107. Each point in this scatter plot represents
one injected signal. For each signal type 5000 injections were
performed with a logarithmically spaced injection strength
between SNR=0.1 and SNR=100.

FIG. 5. Detection probability of a 2/3-power-law signal, for
false alarm probabilities of 1% (red), 5%(green), 10%(orange)
and 25% (blue). The black dashed lines indicate a detection
probability of 50% and 100%. Signals were injected at SNR
= 1.25, 3, 5, 10 and 20. For each signal type and SNR 5000
injections were performed.

1% (5%). This seems to indicate that even with our very
conservative Gaussian process signal generation, a GWB
signal with steeper power-law slope is more easily distin-
guishable from correlated terrestrial noise, here modeled
by the Gaussian process.

C. Application to a real life scenario - O2 outlier

When analyzing the results of their second observing
run (O2), the LIGO and Virgo collaborations observed
an excess of SNR 1.25 for a power-law model with
α = 2/3, as well as α = 3 [44]. At the time of the
paper, it was stated the low SNR excess was very
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FIG. 6. Probability density of lnB for an astrophysical
α = 2/3 power-law signal, random draws from a Gaussian pro-
cess using our optimized (most conservative) SE-kernel and
a Schumann signal. The lowest bin contains all lnB ≤ −4.
For each signal type 5000 injections were performed with an
injection strength of SNR=1.25. The choice of α = 2/3 and
SNR=1.25 matches the parameters of observed outlier of the
O2 results for an isotropic GWB[44].

likely due to random fluctuations in the data. This is
confirmed by the lack of detection by the subsequent
O3 results [16]. With the Geodesy tool described in
this paper, we could, at the time of the O2 observation,
have answered a complementary question: given that
we have observed an excess with SNR=1.25 for a
power-law model with α = 2/3, what is the probability
the observed signal is due to a source of correlated noise
instead of gravitational waves. Although the O3 results
have confirmed the excess was just a random fluctuation,
it is instructive to demonstrate how the Geodesy tool
could be used in the future. In our demonstration, we
will only investigate the excess given a power-law with
α = 2/3, although one can easily apply the tool to the
α = 3 case as well.
In what follows we will use the public available cross-
correlation spectrum observed by LIGO during O2 [45]
to compute the logBayes-factor linked to this observa-
tion. To construct the FAP and detection probability,
we performed injections of the conservative Gaussian
process signal, Schumann resonances, as well as a
2/3-power-law signal with an observed injection strength
of SNR=1.25. All injections consist of 5000 samples and
result in the distribution of log-Bayes factors shown in
Fig. 6.

The log-Bayes factor for the observed signal of the O2
run by LIGO and Virgo was computed and found to
be 0.063. Given the distributions from the simulations
shown in Fig. 6, the observed signal is consistent with a
FAP of 39.00% ± 0.02% and a detection probability of
46.80%± 0.02%. The high FAP does not give us enough
confidence to prefer a gravitational-wave signal over a
correlated noise source.
However if one compares a gravitational-wave signal with

a correlated signal coming from Schumann resonances a
FAP of 1.00% ± 0.02% is found, effectively ruling out
Schumann resonances as possible source with high confi-
dence. This is consistent with projections showing there
was no significant magnetic coupling in the analysis for
an isotropic GWB using O2 data[44].

V. CONCLUSION AND OUTLOOK

In this paper, we presented a tool that requires the
observed signal to be consistent with the geometry of
the observing detectors. We use Gaussian processes as
a conservative proxy for the unknown space of all ter-
restrial correlated signals that might impact stochastic
searches. This enables us to make quantitative statistical
statements and false alarm probabilities concerning the
origin of the observed signal. The framework was applied
to a SNR=1.25 excess for a 2/3-power law, observed by
the LIGO and Virgo collaborations during their second
observing run. Based on this analysis there was not
enough evidence to prefer a GWB-signal over terrestrial
correlated noise. However, Schumann resonances were
effectively ruled out as possible source.
In this section we will discuss how this tool can be
used in the future as well as the assumptions used
in the current work and the possibilities for future
improvements.

The primary use for this tool is when in the future
(a hint of) a power-law isotropic GWB is observed.
From analyzing the data three estimated parameters
will be needed as input for the GW-Geodesy tool we are
describing here: the power-law index α, the observed
SNR and the log-Bayes factor between HFree and Hγ
for the observed signal. The observed α will be used
to re-optimize the kernel parameters to get the most
conservative scenario for this specific power-law. The
SNR will dictate the injection strength of our data. This
will lead to a figure equivalent to Fig. 2 in this work and
log-Bayes factors linked to a certain FAP as in Tab. I. If
the observed log-Bayes factor is larger or equal than the
log-Bayes factor linked to the desired FAPdesired (fixed
beforehand) we can state the observed signal is preferred
to come from gravitational waves instead of a source of
correlated noise with a confidence of 1-FAPobservation.

Both in its current and previous form [29], the GW-
Geodesy tool can only be used to validate an isotropic
GWB. Currently it is being investigated how this tool
can be extended to become applicable for an anisotropic
GWB.

In this paper we only demonstrated the tool for the
HL-baseline, since this is currently the most sensitive
detector-pair for an isotropic GWB. It is however very
easy to apply this technique to any preferred detector
pair. At some point the ever increasing detector sensi-
tivities and long observation times will make it possible
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a GWB will be observed by more than one detector pair.
The current tool is able to make statements on all the
baselines separately, but one can imagine extending the
tool to get one overall figure of merit to make statements
for the entire detector network.

It is important to note that the framework demon-
strated in this paper is only tested when there is either
a power-law GW signal present or a globally coherent
noise source. The separation between a true GW signal
and correlated noise becomes less straightforward if they
are both present at the same time with similar strengths.
In case of a known background a technique as proposed
in [28] could be used to search for both sources at the
same time.

When applying this tool to a signal coming from Schu-
mann resonances we assumed the magnetic Schumann
spectrum to have a positive cross-power, since the (fre-
quency) dependent sign is not known for the Hanford-
Livingston baseline. In the future the departure from
this assumption could be investigated by relying on ana-
lytical models describing Schumann resonances and there
global cross-power [36, 37].

One could also think of not only looking for power-law

signals but more complex models. In the earlier imple-
mentation of the GW-Geodesy framework [29] it was
shown that the tool is quite robust against modeling a
broken power-law with a single power-law. This could
mean the framework is mainly sensitive to the zero
crossings of the overlap reduction function.
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