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There is a growing use of neural network classifiers as unbinned, high-dimensional (and variable-
dimensional) reweighting functions. To date, the focus has been on marginal reweighting, where a
subset of features are used for reweighting while all other features are integrated over. There are some
situations, though, where it is preferable to condition on auxiliary features instead of marginalizing
over them. In this paper, we introduce neural conditional reweighting, which extends neural marginal
reweighting to the conditional case. This approach is particularly relevant in high-energy physics
experiments for reweighting detector effects conditioned on particle-level truth information. We
leverage a custom loss function that not only allows us to achieve neural conditional reweighting
through a single training procedure, but also yields sensible interpolation even in the presence of
phase space holes. As a specific example, we apply neural conditional reweighting to the energy
response of high-energy jets, which could be used to improve the modeling of physics objects in
parametrized fast simulation packages.

I. INTRODUCTION

A common task in particle physics is to reweight one set
of events P to match the statistical properties of another
set of events Q. Here, P = {xi}, xi ∈ RN , are drawn
independently and identically distributed from probability
density p(x), and Q is similarly drawn from q(x). The
reweighting function,

w(x) ≈ q(x)
p(x) , (1)

ensures that the expectation value of any weighted ob-
servable computed from P will match the same value
computed from Q on average.1 For example, P could be
events from a control region while Q are events from a
signal region, or P could be from simulation while Q could
be from data, or P and Q could be from two different
simulations with different parameter choices.

In nearly every case of interest in particle physics, p and
q are not known analytically. When x is low-dimensional,
it is common to create histograms to estimate p and q from
the events in P and Q. One can then construct a binned
reweighting function by taking ratios of the bin contents.
This works well when w(x) is slowly varying and x is low-
(and fixed-) dimensional. When these conditions are not
met, the traditional binned approach is not effective.

Neural network classifiers can be used to form unbinned,
high- (and variable-) dimensional reweighting functions,
which can be viewed as an application of simulation-based
inference (see Ref. [2] for a review). In particular, the
optimal classifier for distinguishing events drawn from

∗ bpnachman@lbl.gov
† jthaler@mit.edu
1 In certain cases, it is possible to resample the events to match
the statistical uncertainties as well [1].

P and Q is (any monotonic function of) the likelihood
ratio q(x)/p(x). Therefore, one can approximate w(x)
directly by interpreting the output of a classifier trained
to distinguish the two event samples. This feature of
classifiers is well known [3, 4] and has been widely used
in particle physics for parameter estimation [5–13], do-
main adaptation [14], detector parameterizations [15], and
unfolding [16–19].

To our knowledge, in all applications to date of classifier-
based reweighting, other event features x′ are integrated
over, such that:

w(x) ≈
∫
dx′ q(x, x′)∫
dx′ p(x, x′)

. (2)

This marginalization is often necessary when x′ is not
observable, as is the case when x represents detector-level
quantities and x′ represents particle-level quantities. This
can be an issue, however, if w(x) is applied to another
data set where the probability density of x′ is not the
same as q(x′). For example, suppose that x′ represents
the particle-level jet energy, x is the detector-level jet
energy, p(x) represents the probability density of a fast
simulation, and q(x) is the probability density for a full
simulation. One can train a model to reweight p(x) to
q(x) to match the detector resolution, but if p(x′) 6= q(x′),
then there is a degeneracy between physics and detector
effects. Even if p(x′) = q(x′) (or if one reweights x
and x′ simultaneously), the reweighting function cannot
be applied to another data set with a different energy
distribution. It would therefore be ideal to reweight the
conditional probabilities instead, such that:

w(x) ≈ q(x|x′)
p(x|x′) . (3)

In this paper, we introduce neural conditional reweight-
ing, which is a strategy to extract the conditional prob-
ability ratio in Eq. (3). We first show how to achieve
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FIG. 1. Schematic diagrams contrasting marginal reweighting (top) with conditional reweighting (bottom), in the context
of generation and simulation for collider physics. The goal is to create an event sample that has the particle-level kinematics
of a high-order generator (e.g. Powheg-Box [20–22] or MG5_aMC [23]) with the detector-level reconstruction of a full
detector simulation (based on e.g. Geant 4 [24–26] or Fluka [27, 28]). In marginal reweighting, one reweights events from
a low-order generator (e.g. Pythia [29, 30], Herwig [31, 32], or Sherpa [33, 34]) to match the kinematics of a high-order
generator, marginalizing over the simulator. In conditional reweighting, one reweights events from a fast simulation (e.g. based
on Delphes [35–37]) to match the reconstruction of a full detector simulation, conditioning on the generator.

conditional reweighting by training two independent clas-
sifiers, one for joint reweighting and one for marginal
reweighting. We then develop a custom loss function
specifically for conditional reweighting, which is better
suited to situations with phase space holes. Through a
single training procedure, the resulting neural network
can sensibly interpolate across minimally populated re-
gions of phase space. We demonstrate the efficacy of our
approach using simple Gaussian examples and a more
realistic application in collider physics.
The primary motivating application of neural condi-

tional reweighting is shown in Fig. 1, where the goal is to
improve generation and simulation for collider physics.2
Here, we have three synthetic data sets:

2 To avoid overlap in word usage, we use the word “generator” to
refer to particle-level simulation tools, and “simulator” to refer
to detector-level simulation tools.

• (I): Coarse Generator ⇒ Precise Simulator;

• (II): Coarse Generator ⇒ Coarse Simulator;

• (III): Precise Generator ⇒ Coarse Simulator.

Data sets (I) and (II) use a coarse particle-level generator
while data set (III) uses a precise particle-level generator.
By contrast, data sets (II) and (III) use a coarse detector-
level simulator while data set (I) uses a precise detector-
level simulator. The goal is to create a data set that has
the most precise particle-level generation and the most
precise detector-level simulation, which requires merging
the best features of data sets (III) and (I), respectively.
One way to construct this merged data set is to perform a
marginal reweighting from the coarse particle-level truth
to the precise particle-level truth, shown in the top line
of Fig. 1. Here, we advocate for conditional reweighting,
where we reweight only the detector response from (II)
to (I) and then apply this to data set (III), shown in the
bottom line of Fig. 1.
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FIG. 2. An illustration of how neural conditional reweighting
could be used for search for physics beyond the Standard Model
(BSM). Here, BSM samples are fully simulated (Full Sim.) only
for a small number of model parameter values (usually particles
masses). One can emulate fully simulated samples (dotted
polygon in the top row) by using conditional reweighting
from BSM generator samples (BSM Gen.) combined with fast
simulation (Fast Sim.).

In the limit of infinite statistics and no phase space
holes, both marginal reweighting and conditional reweight-
ing yield the same final distributions. The aim of this
paper is to highlight situations where conditional reweight-
ing could outperform marginal reweighting in practical
situations. In principle, one could bypass data set (II)
entirely and directly conditional reweight (III) to (I), but
we will argue that this is likely never better than marginal
reweighting. Beyond reweighting, once can train surrogate
models for generation and simulation (see Refs. [38, 39]
for reviews), which we do not consider here.
While we have framed our discussion in terms of the

motivating example above, there are many other poten-
tial use cases for conditional reweighting in high-energy
physics. Another illustrative example is for new physics
searches, as shown in Fig. 2. In this case, full simulation
data sets may only be available at benchmark signal pa-
rameter values. By using conditional reweighting, one
can interpolate between these signal benchmarks with the
help of fast simulation. While it is possible to interpo-
late limits at the level of model parameters, interpolation
across regions of rapidly changing kinematic properties
due to phase space constraints can be difficult, and condi-
tional reweighting could be more accurate in this context.
Another potential example is scale factors to correct sim-
ulation to agree better with data. Typically, reweighting
is not conditional on auxiliary features that may differ
between the calibration sample and test sample. There
are cases where scale factors derived with neural networks
are parameterized [14], but these existing methods also
reweight the conditional variable, whereas this would be
avoided with conditional reweighting.

The remainder of this paper is organized as follows. In
Sec. II, we review neural reweighting and generalize the
marginal version to the conditional case. We present a
simple Gaussian example to illustrate the complementary
of conditional and marginal reweighting in Sec. III. In
Sec. IV, we present an application of neural conditional
reweighting in the context of jet energy measurements at

the Large Hadron Collider (LHC). The paper ends with
our conclusions and outlook in Sec. V.

II. THE STATISTICS OF CONDITIONAL
REWEIGHTING

A. Review of Marginal Reweighting

Let f : RN → [0, 1] be a classifier with the goal of
distinguishing events generated by probability densities
p and q. This function can be obtained by minimizing
an appropriate loss functional, such as the binary cross
entropy (BCE):

LBCE[f ] = −
∫
dx
(
p(x) log f(x) + q(x) log(1− f(x))

)
.

(4)

In practice, with finite training data, we would replace∫
dx p(x)⇒

∑
xi∈P

, (5)

but for the remainder of this discussion, we consider the
infinite statistics limit such that we can replace sums over
events by integrals and then use functional optimization
to determine the optimal classifier f .
The function fBCE that optimizes the functional in

Eq. (4) has the following well-known property [3, 4]:

1− fBCE(x)
fBCE(x) = q(x)

p(x) , (6)

such that one learns the per-instance likelihood ratio in
the asymptotic limit. Note that this analysis assumes the
same number of events sampled from q and p; if these are
not the same, then Eq. (6) is multiplied by the relative
frequency of the two random variables (prior ratio). Sim-
ilar formulae apply to other loss functionals, and certain
loss functionals such as the maximum likelihood classifier
(MLC) loss [40, 41] result in classifiers that directly ap-
proximate the likelihood ratio without the transformation
in Eq. (6).

In the case that the feature space consists of observed
features x ∈ RN and hidden (or latent) features x′ ∈ RM ,
but the classifier f is only a function of x, then the learned
function is related to the marginalized likelihood ratio:

1− fBCE(x)
fBCE(x) = q(x)

p(x) ≡
∫
dx′ q(x, x′)∫
dx′ p(x, x′)

. (7)

We call this procedure marginal reweighting. Note that
the same symbols p and q are used to denote the marginal
(e.g. p(x), p(x′)) and joint (e.g. p(x, x′)) probability densi-
ties, and primes are used to separate observed and latent
quantities.
If, instead, we consider a classifier f : RN+M → [0, 1]

that depends on the full (N + M)-dimensional feature
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space, then the optimal learned function is related to the
joint likelihood ratio:

1− fBCE(x, x′)
fBCE(x, x′) = q(x, x′)

p(x, x′) , (8)

and we call this joint reweighting.
A challenge faced by marginal (and to a lesser extent

joint) reweighting is that the weights can become large
and unphysical if q(x) and p(x) do not have overlapping
support. In particular, if there is a region of phase space
where p(x) ' 0, then Eq. (7) becomes singular. When
this happens, conditional reweighting offers an alternative
reweighting strategy.

B. Conditional Reweighting with Two Classifiers

We can easily extend the above formalism to conditional
reweighting by noting the following:

q(x|x′)
p(x|x′) ≡

q(x,x′)
q(x′)

p(x,x′)
p(x′)

= q(x, x′)
p(x, x′)

p(x′)
q(x′) . (9)

The first term is the joint reweighting in Eq. (8). The
second term is the inverse of the marginal reweighting in
Eq. (7), with the roles of x and x′ reversed. Therefore, one
can achieve conditional reweighting with two functions,
each trained as a standard classifier.

A potential challenge with applying Eq. (9) in practice
is that q(x′) might have inadequate support relative to
p(x′) in some regions of phase space, leading to ill-behaved
weights. Note that this is effectively the opposite problem
as faced by marginal reweighting, so it is typically less of
an issue in practice. That said, we can partially mitigate
this issue by leveraging the ability of neural networks to
interpolate.

C. Conditional Reweighting with a Single Classifier

A natural question is whether conditional reweighting
could be learned in one learning step, instead of in two
steps as in the above construction. A somewhat trivial
way to accomplish this is to note that

q(x|x′)
p(x|x′) = lim

y′→x′

q(x, x′) p(y′)
p(x, x′) q(y′) , (10)

where y′ ∈ RM . Therefore, to learn this ratio, we could
train a classifier f(x, x′, y′) to distinguish pairs of events
drawn from p(x, x′) q(y′) versus q(x, x′) p(y′), and then
set x′ = y′. The reason this is somewhat trivial is that,
assuming the BCE loss, the optimal classifier factorizes
into two separate classifiers,

1− fBCE(x, x′, y′)
fBCE(x, x′, y′) = 1− gBCE(x, x′)

gBCE(x, x′)
hBCE(y′)

1− hBCE(y′) ,

(11)

which might as well be optimized separately as in Eq. (9).
A more interesting construction follows from the rela-

tion:

q(x|x′)
p(x|x′) = lim

y′→x′

q(x, y′) p(x′)
p(x, x′) q(y′) , (12)

where the primed arguments in the numerator have been
flipped relative to Eq. (10). Before taking x′ = y′, we can
learn this ratio with a new neural conditional reweighting
(NCR) loss functional:

LNCR[f ] =−
∫
dx dx′ dy dy′ p(x, x′) q(y, y′) (13)

×
(

log f(x, x′, y′) + log(1− f(y, x′, y′))
)
.

Swapping the x and y integral labels in the second term,
it is straightforward to show that the optimal classifier is:

1− fNCR(x, x′, y′)
fNCR(x, x′, y′) =

q(x, y′)
∫
dy p(y, x′)

p(x, x′)
∫
dy q(y, y′)

. (14)

Inserting this into Eq. (12), we find

1− fNCR(x, x′, x′)
fNCR(x, x′, x′) = q(x|x′)

p(x|x′) , (15)

which is our default approach to conditional reweighting.3
The NCR loss in Eq. (13) is similar to the BCE loss in

Eq. (4), but instead of the events sampled from p and q
contributing separately to the two terms, the events con-
tribute to both terms.4 For x, y ∈ RN and x′, y′ ∈ RM ,
the density p(x, x′) q(y, y′) means that a (2N + 2M)-
dimensional data set is sampled from p and q indepen-
dently. In practice, one can approximate Eq. (13) by using
the standard BCE loss with one (N + 2M)-dimensional
data set sampled from p(x, x′) q(y′) with a label of 1 and
a second data set sampled from p(x′) q(y, y′) with a label
of 0.
Because Eq. (15) is obtained from the y′ → x′ limit,

we can partially mitigate the issue from Sec. II B of ill-
behaved weights when there are dead regions of phase
space. This works because neural networks typically yield
sensible and smooth interpolations across the training
domain, so we can use y′ 6= x′ information to predict the
behavior at y′ = x′. As shown in App. A, we find only
modest differences between using one classifer trained
using the NCR loss (Eq. (15)) and two classifers each
trained with the BCE loss (Eq. (11)). We find larger dif-
ferences when comparing conditional reweighting against
marginal reweighting, where the issue of dead phase space
regions is more pronounced.

3 The approach in Eq. (10) corresponds to replacing f(y, x′, y′)
with f(y, y′, x′) in the second term of Eq. (13).

4 This form is similar to the setup in Ref. [41–43] where events
are combined to use deep learning as way to estimate mutual
information. See Ref. [44] for a related construction.
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In the example application shown in Fig. 1, conditional
reweighting is learned from two data sets (I) and (II) that
have the same low-order generator, which means that
p(x′) = q(x′). From the above derivation, though, we
see that this restriction is not necessary, and conditional
reweighting can be learned for any p(x′) and q(x′) with
overlapping support, a fact we leverage in Sec. IV. In
practice, though, it is helpful for p(x′) and q(x′) to be
similar, not only to ensure overlapping support but also to
avoid unnecessarily large weights This is the reason why
we recommend using data set (II) to derive the conditional
reweighting factor in Fig. 1, instead of directly conditional
reweighting (III) to (I).

D. Technical Implementation

In our subsequent case studies, the functions f trained
with the NCR loss will be parameterized with neural
networks. While it is possible to train a generic function
f(x, x′, y′), we can take advantage of the known form of
the optimal solution. Rewriting Eq. (14), the optimal f
takes the form

fNCR(x, x′, y′) = p(x|x′)
p(x|x′) + q(x|y′) . (16)

Interestingly, although f is naively a function of three
variables, the optimal function can be expressed in terms
of two functions of two variables each.

Armed with this insight, we construct our classifiers as

f(x, x′, y′) = ef0(x,x′)

ef0(x,x′) + ef1(x,y′) , (17)

where f0, f1 are each neural networks. The exponential
is used because each term must be non-negative (as a
conditional probability density). In fact, since f0 and f1
are expected to be similar log likelihoods, we can further
simplify the problem by building f0 and f1 from the same
components:

f0(x, x′) = W ′0 max(0,W0 g(x, x′) + b0) + b′0, (18)
f1(x, y′) = W ′1 max(0,W1 g(x, y′) + b1) + b′1 , (19)

where g : RN+M → RL0 is a neural network, Wi ∈
RL0×L1 ,W ′i ∈ RL1×1 are weight matrices, and bi ∈
RL1 , b′i ∈ R are biases. In other words, f0 and f1 are
shallow neural networks with a single hidden layer of size
L1 with the Rectified Linear Unit (ReLU) activation func-
tion that take as input a common deep neural network
that outputs size L0.

All neural networks are implemented using Keras [45]
with the Tensorflow backend [46] and optimized with
Adam [47]. Because we use BCE-like loss functions,
Eq. (6) is needed to convert the classifier output to a
likelihood ratio. The marginal reweighting networks con-
sist of three hidden layers with 50 nodes per layer. The
ReLU activation function is used for the intermediate

layers while a sigmoid activation is used for the last layer.
Each network is trained for 50 epochs with early stop-
ping using a patience of 10 and deploys a batch size of
1000. Conditional reweighting uses the same training
schedule and a similar network architecture: the g func-
tion in Eqs. (18) and (19) has two hidden layers with 50
nodes per layer and the ReLU activation. The shallow fi

networks have L1 = 50.

III. GAUSSIAN EXAMPLES

We now present simple numerical examples that ex-
plore when conditional reweighting may be as good as
or superior to marginal reweighting. Here, each data
set in Fig. 1 is a one-dimensional Gaussian random vari-
able. The “particle-level truth” random variables Ti are
described by means µi and standard deviations σi with:

µ0 ≡ µ(I) = µ(II), σ0 ≡ σ(I) = σ(II), (20)
µ1 ≡ µ(III), σ1 ≡ σ(III). (21)

The corresponding “detector-level reconstructed” random
variables Ri are given by

Ri = Ti + Zi, (22)

where Zi is a Gaussian random variable with mean bi and
standard deviation εi, with:

b0 ≡ b(I), ε0 ≡ ε(I), (23)
b1 ≡ b(II) = b(III), ε1 ≡ ε(II) = ε(III). (24)

The desired target distribution combines the generation
parameters of data set (III) with the simulation parame-
ters of (I):

µtarget = µ1, σtarget = σ1, (25)
btarget = b0, εtarget = ε0. (26)

In each of the examples below, one million events are
used for each data set with a 50% test-train split. In
the collider physics context, one could use more events
from data sets (II) and (III), as they are computationally
cheaper to produce than (I), which involves the full sim-
ulation. None of these parameters were optimized, but
we find that the results are stable to small changes in
the setup. For conditional reweighting, the reweighter
in Eqs. (17), (18), and (19) is trained using data sets (I)
and (II) and then applied to data set (III); alternative
implementations of conditional reweighting are shown in
App. A.

A. Overlapping Support

For our first example, we consider a situation with
no phase space gaps, such that marginal reweighting
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FIG. 3. Comparison of marginal reweighting (top row) and conditional reweighting (bottom row) in a plain Gaussian example.
Histograms of the random variables are show at “particle level” (left column) and “detector level” (right column). Distribution
(I) involves a coarse generator interfaced with a precise simulator. Distribution (II) involves a coarse generator interfaced
with a course simulator. Distribution (III) involves a precise generator interfaced with a coarse simulator. To match the
target distribution (precise generator interfaced with a precise simulator), one can either marginally reweight distribution
(I) or conditionally reweight distribution (III). In this case, marginal reweighting yields better performance than conditional
reweighting.
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FIG. 4. Same as Fig. 3, but for a Gaussian edge example involving extrapolation. Marginal reweighting only yields sensible
results where distributions (I) and (III) have significant phase space overlap. Conditional reweighting, by contrast, is able to
extrapolate outside the naive training domain.

is expected to already perform well. The particle-level
generation parameters are

µ0 = 0.0, µ1 = 0.1, σ0 = 1.0, σ1 = 1.5, (27)

such that the distributions have overlapping support. The
detector-level simulation parameters are

b0 = 0.0, b1 = −0.2, ε0 = 0.5, ε1 = 0.3, (28)

so that the distortions are relatively small.
The results of marginal and conditional reweighting are

shown in the top row and bottom row of Fig. 3, respec-
tively. The left column shows the truth distribution for
Ti while the right column shows the reconstructed distri-
bution for Ri. Both marginal and conditional reweighting
are able to achieve the target distribution. In particu-
lar, the conditionally reweighted (III) and the marginally

reweighted (I) have the same particle-level distributions
as data set (III), but the detector response of data set (I).

Upon careful inspection, one can see that marginal
reweighting is able to match the target distribution
more precisely than conditional reweighting, especially
in the tails of the Gaussians. The exact agreement
with the target varies with different pseudoexperiments
and with different random initializations of the networks.
However, this trend is robust: marginal reweighting is
more precise than conditional reweighting in this con-
text. This is to be expected because the conditional
path in Fig. 1 requires a more complicated setup and
involves a higher-dimensional learning problem compared
to marginal reweighting. Without any phase space gaps,
the marginal reweighting strategy in Eq. (7) is sufficient.
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FIG. 5. Same as Fig. 3, but for a Gaussian hole example involving interpolation. Whereas marginal reweighting cannot
accurately model the phase space gap, conditional reweighting is able to sensibly interpolate.

B. Extrapolation

To understand a context where conditional reweighting
might be able to outperform marginal reweighting, con-
sider the situation where there is a large hierarchy in the
particle-level truth distributions:

p(I)(T )� p(III)(T ). (29)

In this case, the marginal weights in Eq. (7) can become
very large. Conditional reweighting may also fail in this
context, but if the truth distribution in data set (II) is
chosen to be close to the truth in data set (I), then at
least one does not encounter large weights. To the extent
that neural networks can sensibly extrapolate outside of
the training domain, one can then conditionally reweight
the reconstructed data set (III) to the target distribution.
Of course, one has to be do a careful validation in any
situation that involves extrapolation.

To explore the performance of conditional reweighting
for extrapolation, the particle-level generation parameters
for this example are:

µ0 = 0.0, µ1 = 2.0, σ0 = σ1 = 0.5, (30)

such that there is very little overlap in their support, with
the mean of the (III) truth being four standard deviations
away from the mean of the (I) truth. On the other hand,
the detector-level simulation parameters are:

b0 = b1 = 0.0, ε0 = 0.3, ε1 = 0.4, (31)

such that the difference in the smearing behavior is rela-
tively small.

The performance of marginal and conditional reweight-
ing for extrapolation is presented in Fig. 4, with the same
layout as Fig. 3. For T <∼ 1, where p(I)(T ) >∼ p(III)(T ),
marginal reweighting is effective for the particle-level
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truth. For T >∼ 1, though, marginal reweighting fails to
reproduce the target distribution because there are either
few or no events in data set (I) to upweight. These same
trends are present at detector-level in the upper right plot
of Fig. 4.
By contrast, conditional reweighting is able to match

both the truth and reconstructed distributions. Because
detector effects in this case are so similar between data
sets (I) and (II), the conditional reweighting is nearly
constant. For the particle-level truth, the good agreement
is more or less guaranteed by construction, since data
set (III) already has the desired truth distribution. For
the detector-level reconstruction, there is no information
to constrain the conditional reweighting for R >∼ 1, but
the neural network is nevertheless able to smoothly ex-
trapolate from the region of phase space with plenty of
events.

We therefore expect that when the reweighting function
is constant or smoothly continues from its behavior in
regions with high density overlap, conditional reweighting
may be as precise as it is in this example. This example
also motivates explicitly prioritizing smooth extrapolation
as part of the training loss.

C. Interpolation

Neural networks are known to be effective at interpo-
lating, which is in general less fraught than extrapolation.
There are known cases where regions of phase space may
be undercovered by certain generators (e.g. dead zones in
Herwig 7 [48]) or where a reweighting derived from one
process needs to be applied to another with significantly
different phase space distributions. This will be the con-
text that we study for the jet energy response example in
Sec. IV.

To study the interpolation case for the Gaussian exam-
ple, we start with generation parameters

µ0 = 0.0, µ1 = 0.3, σ0 = 1.5, σ1 = 1.8, (32)

and simulation parameters

b0 = 0.0, b1 = 0.2, ε0 = 0.5, ε1 = 0.3, (33)

such that there is good phase space overlap. Then, we
introduce a modification of the model, where

Pr(|T0 − c| < δ) = 0 for c = 1.75, δ = 0.25. (34)

Apart from this modification, the probability density of
T0 is proportional to a Gaussian distribution with the
stated parameters in Eq. (32). This creates a gap in phase
space that necessitates interpolation.

The performance of marginal and conditional reweight-
ing for interpolation is shown in Fig. 5, again with the
same layout as Fig. 3. Similarly to extrapolation, marginal
reweighting at truth level is very effective away from the
gap in phase space. Since p(I)(T ) = 0 in the gap, how-
ever, it is impossible for marginal reweighting to match

the target distribution, for which the probability den-
sity is non-zero. This carries over to detector-level, where
marginal reweighting suffers near R ∼ 1. By contrast, con-
ditional reweighting is effective across the entire domain,
albeit with worse precision than marginal reweighting far
from the phase space gap.

IV. JET ENERGY RESPONSE

We now present a physics case study where we expect
conditional reweighting to be effective: simulation of the
jet energy response at the LHC. To highlight the perfor-
mance of conditional reweighting for interpolation, we will
artificially construct a large phase space gap. Since we do
not have a full target distribution to compare with the
reweighted distributions, we use marginal reweighting on
a sample without the phase space gap as a proxy. Despite
these limitations, we hope this example highlights the
complementarity of marginal and conditional reweighting.

A. Simulated Dijet Data Sets

This study is based on generic dijet production in quan-
tum chromodynamics. As the “coarse” particle-level gen-
erator for data set (I), we use Pythia 6.426 [29] with the
Z2 tune [49]. The “precise” particle-level generator for
data set (III) is Pythia 8.219 [50]. Different from the
study in Sec. III, we also use the “precise” Pythia 8.219
for data set (II), though as described below, we impose
a phase space restriction such that data sets (I) and (II)
have similar phase space coverage. Note that conditional
reweighting does not require data sets (I) and (II) to have
identical generators, though they should be as similar as
possible to avoid unnecessarily large weights.
The fast detector simulation for data sets (II) and

(III) is Delphes 3.4.1 [35–37] using the default CMS
detector card. The full detector response for data set (I)
uses a Geant4-based [24–26] full simulation of the CMS
experiment [51]. More specifically, data set (I) comes
from the CMS Open Data Portal [52–54] and processed
into an MIT Open Data format [55–58]. Data sets (II)
and (III) were generated for this study and are available
at Ref [59].
For each data set, we have access to the parton-level

hard-scattering scale p̂T in Pythia, which is in general
different from the jet-level transverse momentum pT we
are interested in studying. As is typical for the genera-
tion of steeply falling spectra, the full dijet data sets are
constructed as a series of separate samples, each with a
different range of p̂T . To avoid any issues related to the
trigger, we focus on data sets where p̂T > 1 TeV. For this
study, we consider three p̂T ranges:
p̂T ∈ [1, 1.4] TeV, p̂T ∈ [1.4, 1.8] TeV, p̂T > 1.8 TeV.

(35)
Particles (at truth level) or particle flow candidates (at
reconstructed level) are used as inputs to jet clustering,
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FIG. 6. Jet kinematics and reconstruction for the QCD
example. Top: Histograms of particle- and detector-level jet
transverse momenta (pT ). Bottom: Comparing the detector
response for the Geant4 and Delphes event samples. The
generation sample for data set (III) is represented by the
Pythia 8 (P8) histogram while the corresponding simulation
sample is represented by the P8+Delphes histogram. The
samples for data sets (I) and (II) are missing the middle peak
in the top plot.

implemented using FastJet 3.2.1 [60, 61] and the anti-
kt algorithm [62] with radius parameter R = 0.5. The
corresponding jet pT spectra are shown in Fig. 6. When
comparing to experimental data, a relative normalization
would be applied to scale down the higher p̂T slices, but
we have elided those factors in this study to highlight the
behavior of reweighting.

B. Results with Interpolation

To create a phase space gap and demonstrate the ability
of conditional reweighting to interpolate, we remove the
p̂T ∈ [1.4, 1.8] TeV phase space slice from data sets (I) and
(II). This effectively makes them both “coarse” generators,
relative to the “precise” generator for data set (III) that
covers the full phase space. Specifically, our three event

samples are

• (I): Pythia 6 ⇒ Geant4 for p̂T ∈ [1, 1.4] TeV and
p̂T > 1.8 TeV;

• (II): Pythia 8 ⇒ Delphes for p̂T ∈ [1, 1.4] TeV
and p̂T > 1.8 TeV;

• (III): Pythia 8 ⇒ Delphes for p̂T > 1 TeV.

Each pT slice within each sample has 104 jets.5 We do not
have a simulation of Pythia 8 with Geant4, so unlike
the Gaussian case, we cannot display the exact target
distribution. Instead, we use marginal reweighting on a
bigger data set (up to 105 events per pT slice) without
the phase space gap to construct a synthetic target at
detector level.

The results of marginal and conditional reweighting for
the jet energy response are shown in Fig. 7. We use the
identical neural network setup from Sec. III, and we see the
same qualitative features as for the Gaussian interpolation
example in Sec. III C. Conditional reweighting correctly
has no effect at particle level and yields a smooth distribu-
tion at detector level. By contrast, marginal reweighting
suffers near the phase space gap at 1.5 TeV, similarly to
the interpolating Gaussian case. In addition to better
matching the target distribution, conditional reweighting
yields weights that are closer to unity.

While we have artificially removed a p̂T slice for this
interpolation study, there are realistic contexts where this
could happen. For example, legacy data corresponding
to that p̂T slice could be missing or corrupted, or that
slice may have never been simulated (or simulated with
reduced statistics) to save computing power.

V. CONCLUSIONS

In this paper, we extended the technique of neural
network-based reweighting to the conditional case, where
some features x are reweighted conditioned on other fea-
tures x′. In regions of phase space that are well covered
by the input and target probability densities, conditional
reweighting is unlikely to outperform marginal reweight-
ing. In phase space regions where the input probability
density is small compared to the target probability den-
sity, though, conditional reweighting can yield improved
behavior by leveraging the ability of neural networks to
interpolate and extrapolate. This is relevant for construct-
ing simulated data sets for the LHC, where full simulation
may be too computationally costly to cover the full phase
space, while fast simulation can be used to fill in the gaps.

5 The original data sets have many more events, but a relatively
small fraction is used here to ensure that the target is more
accurate than the reweighted test cases and to amplify the impact
of the phase space gap.
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FIG. 7. Comparison of marginal reweighting (top row) and conditional reweighting (bottom row) in a QCD jet example.
Shown are histograms of the true particle-level pT (left column) and reconstructed detector-level pT (right column). Distribution
(I) involves Pythia 6 (with an artificial phase space gap at p̂T ∈ [1.4, 1.8] TeV) interfaced with Geant4. Distribution (II)
involves Pythia 8 (with the same phase space gap) interfaced with Delphes. Distribution (III) involves Pythia 8 interfaced
with Delphes with no phase space gap. To match the target distribution (Pythia 8 with no phase space gap interfaced with
Geant4), one can either marginally reweight distribution (I) or conditionally reweight distribution (III). Like the example in
Fig. 5, marginal reweighting cannot bridge the phase space gap, whereas conditional reweighting yields a sensible interpolation.

An interesting feature of our approach to neural condi-
tional reweighting is that we can derive the reweighting
function in Eq. (12) through a single training procedure,
instead of the naive two-step procedure suggested by
Eq. (9). The key is to train on a higher dimensional phase
space and then take an appropriate limit, which may be
relevant for other machine learning applications. In prac-
tice, different approaches to neural conditional reweight-
ing yield similar performance, as shown in App. A, but
we prefer the single training procedure for its computa-
tional simplicity and conceptual elegance. Though we only
showed one-dimensional examples in this paper, there are
no conceptual barriers to handling multi-dimensional or
variable-dimensional situations, which we plan to explore
in future work.

An implicit assumption of our approach is that the
neural network is well trained. This is required for all
reweighting methods to work, since the relationship in
Eq. (6) is only guaranteed in the asymptotic limit. A full
quantitative comparison of different neural reweighting
methods will need to assess systematic uncertainties, for
example by analyzing the results for multiple trainings,
performing closure tests on known targets, or comparing
the results to low-dimensional binned methods. Eventu-
ally, one might want to use these reweighting uncertainties
to guide the process of full simulation, where one prior-
itizes simulating regions of phase space that cannot be
well modeled by (conditional) reweighting alone.

The main advantage of conditional reweighting is in
cases where the input probability density is too small
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relative to the target. This is a generic challenge, not only
for reweighting methods but for any generative modeling
task where there is insufficient training data. Carefully
constructed combinations of reweightings may be able
to provide a partial solution to this problem, as could
imposing smoothness requirements in the loss function
to regularize how the neural network interpolates and
extrapolates. Further hybrid methods that involve moving
features instead of simply reweighting them (as in optimal
transport problems [63–67]) may further extend the utility
of these methods across high-energy physics and beyond.

CODE AND DATA

The code for this paper can be found at
https://github.com/hep-lbdl/neuralconditional,
which makes use of Jupyter notebooks [68] employing
NumPy [69] for data manipulation and Matplotlib [70]
to produce figures. All of the machine learning was
performed on an Nvidia RTX6000 Graphical Processing
Unit (GPU) and reproducing the entire notebook takes
less than five minutes. The physics data sets are hosted
on Zenodo at Ref. [56–59].
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Appendix A: Alternative Neural Conditional
Reweighting Schemes

In this appendix, we present results for three alterna-
tive neural conditional reweighting schemes to explore
potential variations. The methods we compare are:

• (nominal): The nominal scheme, shown in the body
of this paper, uses a single learned function built
from Eqs. (17), (18), and (19).

• (1f, 2NN): This is a slightly more flexible version of
the nominal setup, which still uses a single function
built from Eq. (17), but f0 and f1 are now two inde-
pendent neural networks with the same architecture
as the marginal reweighting network.

• (1f): This is an even more flexible setup using the
loss in Eq. (13), where we train a single neural

network with three inputs without any constraints
on its functional form.

• (2f): This is the two function setup from Eq. (9)
that uses one joint reweighting and one marginal
reweighting.

The results are shown in Figs. 8 and 9. All approaches
work well, though the nominal approach does a somewhat
better job tracking the target distribution.

https://github.com/hep-lbdl/neuralconditional
http://iaifi.org/
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FIG. 8. Alternative neural conditional reweighting schemes for the dijet example in Fig. 7.
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FIG. 9. Alternative neural conditional reweighting methods for the plain Gaussian example in Fig. 3 (top row), for the
extrapolation Gaussian example in Fig. 4 (middle row), and for the interpolation Gaussian example in Fig. 5 (bottom row).
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