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Finite-volume pionless effective field theory provides an efficient framework for the extrapolation of
nuclear spectra and matrix elements calculated at finite volume in lattice QCD to infinite volume,
and to nuclei with larger atomic number. In this work, it is demonstrated how this framework
may be implemented via a set of correlated Gaussian wavefunctions optimised using differentiable
programming and via solution of a generalised eigenvalue problem. This approach is shown to be
significantly more efficient than a stochastic implementation of the variational method based on the
same form of correlated Gaussian wavefunctions, yielding comparably accurate representations of the
ground-state wavefunctions with an order of magnitude fewer terms. The efficiency of representation
allows such calculations to be extended to larger systems than in previous work. The method
is demonstrated through calculations of the binding energies of nuclei with atomic number A ∈
{2, 3, 4} in finite volume, matched to lattice QCD calculations at quark masses corresponding to
mπ = 806 MeV, and infinite-volume effective field theory calculations of A ∈ {2, 3, 4, 5, 6} systems
based on this matching.

I. INTRODUCTION

A central goal of nuclear physics is to make predictions
for the spectra and properties of nuclear systems based
on the underlying degrees of freedom of the Standard
Model, most pertinently quarks and gluons. Since nuclei
and other relevant systems exhibit dynamics at energy
scales where the interactions between quarks and gluons,
governed in the Standard Model by the theory of Quan-
tum Chromodynamics (QCD), are nonperturbative, this
goal can be addressed directly only by numerical calcula-
tions in the framework of lattice QCD (LQCD). However,
due to computational limitations, LQCD studies of nu-
clei have so far been restricted to systems with atomic
number A ≤ 4, with unphysically large values of the
quark masses. Moreover, to date only proof-of-principle
LQCD calculations of nuclei have been performed [1–16],
in which systematic uncertainties such as those from the
lattice discretisation are estimated but not fully quanti-
fied.

While fully-controlled LQCD calculations of light nu-
clei will likely be achieved in the near future, the com-
putational costs of such studies scale exponentially with
A in current approaches, and as such, the restriction to
small nuclear systems is likely to persist until novel al-
gorithms or other computational breakthroughs render
calculations of larger nuclei tractable. Pionless nuclear
effective field theory (EFT) [17–24] provides a bridge be-
tween tractable LQCD calculations of light nuclei and the
broader scope of low-energy nuclear phenomenology. In
nuclear physics, it is apparent that there is a hierarchy
of interactions, in that two-body interactions are more
important in governing nuclear structure and reactions
than three-body interactions, which are in turn more im-
portant than four-body interactions, and so on. Con-
sequently, LQCD calculations of A ≤ 4 systems can be
used to constrain the most relevant couplings in nuclear

EFT which can subsequently be used to make predic-
tions for larger nuclear systems and for matrix elements
which may not have been directly computed in LQCD.
In addition, since the finite volume in which LQCD cal-
culations are performed produces effects which are long-
distance in nature, they can be captured in nuclear EFT
calculations in appropriately matched finite volumes (fi-
nite volume nuclear EFT (FVEFT)). With the couplings
of the EFT determined by this matching, the EFT pro-
vides a method to extract infinite volume physics from
finite-volume LQCD spectra and matrix elements.

Existing applications of FVEFT to the matching and
extrapolation of LQCD results for nuclear spectra [25]
and matrix elements [26] have used the stochastic varia-
tional method (SVM) [27] with trial wavefunctions com-
posed of shifted correlated Gaussian functions [28]. Be-
cause of the stochastic nature of this approach, a large
number of terms are required to approximate the ground
state of each nuclear system. In this work, a new differ-
entiable programming (DP) approach is introduced that
implements an optimisation of the parameters defining
each Gaussian term that is included in the trial wave-
function, as opposed to the stochastic selection of terms,
resulting in much more efficient representations. Further
improvement through the combination of multiple sets of
optimised trial states can be achieved through solution of
a generalised eigenvalue problem (GEVP). The compact-
ness of the resulting wavefunction representations makes
it feasible to extend previous calculations to systems of
larger A. In this work, FVEFT predictions are made
for the 4He ground state as a function of volume, and
the FVEFT matching of two and three-body interac-
tions enables predictions for the infinite-volume energies
of A ∈ {5, 6} systems.

The following section outlines important aspects of nu-
clear FVEFT and the differential programming method
used to determine optimal wavefunctions in the approach
proposed here. Section III presents results of the op-
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timisation procedure for finite-volume systems with A ∈
{2, 3, 4}, and their matching to LQCD energy determina-
tions. Infinite-volume binding energies are also presented
for A ≤ 6. Section IV provides a summary and outlook
for this approach.

II. METHODOLOGY

A. Hamiltonian for pionless effective field theory

The low-energy interactions of nucleons are described
in pionless EFT (EFTπ/) by the Lagrangian [17–24]
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The first, second, and third lines present the leading-
order single-nucleon kinetic operator expanded in the
non-relativistic (NR) limit, the two-body interaction, and
the three-body interaction, respectively (the latter is pro-
moted to leading order to define a valid power-counting
scheme). N denotes the nucleon field, MN the nucleon
mass, ~σ the vector of Pauli matrices acting in spin space
of a given nucleon, and {C0, C1} and D0 denote the rele-
vant two and three-body low-energy constants (LECs). A
common alternate basis for the two-nucleon interactions
yields related LECs

CT = C0 − 3C1 and CS = C0 + C1. (2)

The corresponding n-particle non-relativistic Hamilto-
nian can be expressed as

H = − 1

2MN

∑
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V3 (rij , rjk) ,

(3)
where the n particles are labelled by indices i, j, k ∈
{1, . . . , n} and the Laplacian for particle i is expressed as
∇2
i . V2 (rij) and V3 (rij , rjk) denote the two and three-

particle potentials, which are regulated using Gaussian
smearing, and are functions of the displacements between
particles, defined for particles i and j as rij = ri − rj ,

where ri = (r
(x)
i , r

(y)
i , r

(z)
i ). In particular,
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and
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∑
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gΛ (rij) gΛ (rjk) , (5)

where
∑

cyc denotes the sum over all cyclic permutations

of {i, j, k}, and the Gaussian regulator in infinite spatial

volume is defined as
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The regulator parameter Λ can be expressed in terms of
a length-scale r0 as Λ =

√
2/r0. Physical quantities are

independent of this cutoff [26].
In a finite cubic spatial volume with side-length L, the

regulator can be constructed to be periodic by summing
gΛ(r) over copies translated by multiples of L in each
spatial direction:

gΛ(r, L) =
Λ3

8π3/2

∏
α∈{x,y,z}

×
∞∑

q(α)=−∞

exp
(
−Λ2(r(α) − Lq(α))2/4

)
. (7)

B. Variational method framework

The variational method provides a systematically-
improvable approach to bounding the ground (and ex-
cited) state energies of quantum systems; given any wave-
function ansatz Ψh (x) for a state h defined over coordi-
nates x, the ground-state energy Eh is bounded as

Eh ≤ E [Ψh] =

∫
Ψh(x)∗HΨh(x) dx∫
Ψh(x)∗Ψh(x) dx

. (8)

A wavefunction ansatz that depends on some number of
free parameters may be varied over those parameters to
determine an optimal bound within that ansatz class.

One approach to the variational method that has been
successfully applied to the study of nuclear systems in
a finite volume within the framework of pionless effec-
tive field theory is the stochastic variational method
(SVM) [27]. In this approach, a wavefunction is gen-
erated constructively through the iterative addition of
stochastically-proposed terms, and a generalised eigen-
value problem is solved to optimise the linear combina-
tion of the proposed terms. In particular, this approach
has been applied in a finite volume in Refs. [25, 26] us-
ing a basis of correlated Gaussian terms. Here, the same
wavefunction ansatz is considered, but is optimised using
an alternative to the stochastic optimisation procedure
that is based on differentiable programming (detailed in
Sec. II C).

The Gaussian wavefunction ansatz used in this work
is based on the approximation that the spatial and spin-
isospin wavefunctions for nuclear states can be factorised,
with spatial wavefunctions constructed as linear combi-
nations of appropriately symmetrised Gaussians.1 As

1 Although the factorisation of the spatial and spin wavefunctions
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also used in Refs. [25, 26], a trial wavefunction of this
form satisfying the periodic boundary conditions of a fi-
nite spatial volume can be expressed for some nucleus h
as

Ψ
(N)
h (x) =

N∑
j=1

cjΨ
sym
L (Aj , Bj ,dj ; x) |χh〉, (9)

where the sum runs over the N terms included in the
trial wavefunction, the cj , j ∈ {1, . . . , N}, are numeri-
cal coefficients, |χh〉 denotes an appropriately normalised
antisymmetric spin-flavour wavefunction for the n-body
state h, x = (r1, . . . , rn) denotes the collected spatial
coordinates of the n nucleons, and the Aj , Bj and dj
denote collected parameters of the jth spatial wavefunc-
tion Ψsym

L included in the sum (whose dependence on h is
suppressed). To obtain an optimal representation of the
wavefunction with a given number of terms, the values
of the parameters cj and those encoded in Aj , Bj and dj
are optimised as described further in Sec. II C.

Explicitly, the symmetrised spatial wavefunction Ψsym
L

is constructed from Gaussian components for each Carte-
sian direction α:

Ψ(α)
∞ (A(α), B(α),d(α); x(α)) = exp

[
−1

2
x(α)TA(α)x(α)

−1

2
(x(α) − d(α))TB(α)(x(α) − d(α))

]
,

(10)

where the αth Cartesian components of the spatial coor-
dinates of each particle are collected in the n-component
vector x(α). The n× n matrices A(α) and B(α) are sym-
metric, containing n(n − 1)/2 real parameters, and di-
agonal, with n real parameters, respectively, and d(α) is
an n-component real-valued vector. This wavefunction
can be made periodic in a cubic volume of finite spatial
extent L by implementing a sum over copies shifted in
each Cartesian direction by integer multiples of L [28]:

Ψ
(α)
L

(
A(α), B(α),d(α); x(α)

)
=∑

b(α)

Ψ(α)
∞ (A(α), B(α),d(α); x(α) − b(α)L), (11)

where b(α) is an n-component vector with components

b
(α)
k ∈ Z. The finite-volume wavefunctions for each

Cartesian direction α can be combined to define the com-
plete three-dimensional finite-volume wavefunction

ΨL (A,B,d; x) =
∏

α∈{x,y,z}

Ψ
(α)
L

(
A(α), B(α),d(α); x(α)

)
,

(12)

is a crude approximation for larger nuclei, the goal of the present
work is to explore the effectiveness of the differentiable program-
ming approach in representing nuclear states in comparison to
the stochastic variational method. As such, the same approxi-
mation is used as in Ref. [26].

where the parameters A(α), B(α), and d(α) for each
Cartesian direction are combined into the quantities A, B
and d. Finally, a finite-volume wavefunction that is also
symmetric under particle exchange can be constructed
by explicitly symmetrising with respect to permutations
of the rows and columns of A(α) and B(α) and of the rows
of d(α), for all Cartesian components α. Denoting the set
of all such permutations as P, a symmetric wavefunction
ansatz can thus be expressed as

Ψsym
L (A,B,d; x) =

∑
P

ΨL (AP , BP ,dP ; x) , (13)

where AP , BP and dP are the permuted forms of the
relevant matrices and vectors.

A particular advantage of this class of trial wavefunc-
tions is that the integrals needed to compute the nor-
malisation and Hamiltonian matrix elements that ap-
pear in the ground-state energy bound of Eq. (8) can
be performed analytically, as detailed in Ref. [26]. As
also discussed in Ref. [26], these Gaussian-based wave-
functions are able to represent finite-volume “scattering
states”, i.e., eigenstates above the two-particle thresh-
old, for N = 2 systems, and the method does not rely on
deeply-bound infinite volume states. The only restric-
tions on its applicability are that states that are inte-
grated out of the pionless EFT, such as those involv-
ing pions, ∆-resonances and particle–anti-particle exci-
tations, are not representable. These restrictions are
similar to those in the Lüscher quantisation condition
approach [29] where the partial-wave expansion of scat-
tering amplitudes must be truncated and the presence of
inelastic thresholds limits applicability.

C. Variational optimisation by differentiable
programming

To achieve effective bounds on the ground-state en-
ergies Eh of various nuclear systems, h, the trial wave-

function Ψ
(N)
h (x) defined in Eq. (9) is optimised using a

differentiable programming approach combined with so-
lution of a GEVP. Differentiable programming is a pro-
gramming paradigm in which the computational flow of
a program can be explicitly differentiated with respect to
its parameters, thereby allowing gradient-descent optimi-
sation of those parameters. The approach is widely used
as a backbone of machine learning tools [30] and has been
applied to variational problems in quantum many-body
physics [31–34] and quantum technology [35–37].

In the current application, the differentiable program-
ming approach is applied to ground-state energy minimi-
sation through a two-stage procedure:

1. Differentiable program (DP) block: optimisation of
N ′-element wavefunctions with fixed LECs:

• Values of the LECs C0, C1, and (for n ≥ 3
body states) D0 are chosen;
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(a) Differentiable programming (DP) block
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(b) Generalised eigenvalue problem (GEVP) block.

Figure 1. Diagrammatic representation of the wavefunction optimisation procedure used in this work. (a) Differentiable
programming block: for fixed LECs and a random initialisation, automatic differentiation (defined in the figure, where η
denotes the self-adaptive learning rate) is used to optimise the parameters of an N ′-term Gaussian wavefunction ansatz. (b)
GEVP block: basis elements obtained from differentiable programming blocks constructed with different initialisations and/or
LECs are combined to form a larger basis; the GEVP as defined in Eq. (14) is solved to determine the optimal energy bound
E0
h, the smallest eigenvalue, for a given set of LECs.

• The free parameters cj , and those encoded in
Aj , Bj and dj , for j ∈ {1, . . . N ′} for a N ′-

term Gaussian wavefunction Ψ
(N ′)
h (x) are ini-

tialised randomly (details of the choice of ini-
tialisation for the numerical study detailed in
Sec. III are provided in Appendix B);

• The gradient of the ground-state energy
bound provided by the trial wavefunction with
respect to the free parameters is computed,
and the minimum is approached via gradient
descent to optimise cj and the parameters in
Aj , Bj and dj (details of the gradient com-
putation and descent method are presented in
Appendices A and B).

2. GEVP block: N -element wavefunction construc-
tion:

• A set of α N ′-element wavefunctions, possi-
bly optimised using different LECs C0, C1, D0,
and different initialisations, but defined for
the same quantum numbers (number of parti-
cles and spin-flavour structure) and finite spa-
tial extent, L, are constructed through α in-

dependent DP blocks;

• For a fixed choice of LECs, the linear com-
bination of the optimised Gaussian wavefunc-
tion components (i.e., the N = αN ′ Gaussians
with each optimised choice of A, B, d) is op-
timised by solving the GEVP

H c = λN c, (14)

for the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN and
eigenvectors c = (c1, . . . , cN )T which contain
the coefficients in Eq. (9). The matrices H and
N have matrix elements

[N]ij ≡
∫

Ψi(x)∗Ψj(x)dx, (15)

[H]ij ≡
∫

Ψi(x)∗〈χh|H|χh〉Ψj(x)dx, (16)

using the compressed notation Ψj(x) ≡
Ψsym
L (Aj , Bj ,dj ; x).

• The lowest eigenvalue, λ1, of the GEVP solved
for a given set of LECs, C0, C1, D0, corre-
sponds to an upper bound E0

h on the ground
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state energy Eh for the given system with
quantum numbers defined by h.

This approach, illustrated graphically in Fig. 1, has
several advantages. First, the use of direct optimisa-
tion as opposed to stochastic selection of Gaussian basis
elements enables wavefunction representations of com-
parable quality to be obtained with far fewer terms,
as demonstrated in numerical experiments detailed in
Sec. III A. Second, this particular (sequential) optimi-
sation approach enables the efficient construction of N -
term wavefunctions by combining the Gaussian basis ele-
ments obtained by optimising systems with fewer terms;
this is computationally efficient since the cost of directly
optimising an N -term wavefunction grows quadratically
with N .2 Simultaneously, by combining wavefunctions
optimised for different choices of LECs, this approach
enables the construction of a combined set of Gaussian
terms that can provide efficient wavefunction representa-
tions across a range of values of the LECs. With such
a basis defined, constraining the LECs to match the
FVEFT to LQCD calculations of nuclear states in the
same finite volume is straightforward; computing the en-
ergy bound as a function of the LECs simply amounts
to repeating the GEVP for choices of the LECs within
a range of interest (involving no additional differentiable
programming optimisation).

III. RESULTS

The differentiable programming approach described in
Sec. II C is applied to the determination of ground-state
energies of A ∈ {2, 3, 4, 5, 6} nuclear systems, via optimi-
sation of spatial nuclear wavefunctions with the relevant
LECs tuned to match the results of LQCD calculations
for A ∈ {2, 3}. As was previously investigated in the
SVM in Refs. [25, 26], the differentiable programming
method can be used to extrapolate existing LQCD re-
sults for light nuclei to infinite volume. However, the
more efficient representation provided by the DP wave-
functions also allows extrapolation of the LQCD results
to systems with larger A.

A. Illustration of differentiable programming
optimisation

This section provides a numerical illustration of the
differentiable programming approach of Sec. II C. The
following examples demonstrate each step of the method,

2 In particular, the cost of optimisation of an n-body state with
N terms scales as O(N2n!n3). While this complete optimisation
would in principle outperform the sequential approach used here
for a fixed number of terms, the sequential approach is superior
for a fixed computational budget, scaling as O(αN ′2n!n3).

while discussion of several more technical aspects of the
approach such as the initialisation of the free parameters,
the schedule of optimisation (‘training’), and the conver-
gence criteria used in the applications in the following
sections, are left to Appendix B.

As discussed in Sec. II C, the differentiable program-
ming optimisation procedure proceeds via DP blocks and
GEVP blocks. The DP block step yields an optimised
N ′-term wavefunction at fixed LECs; Fig. 2 provides an
example of the convergence of this optimisation with N ′.
In particular, the figure illustrates the bound on the bind-
ing energy of the A = 2 deuteron (h = d) system achieved
through a DP block optimisation (i.e., ∆Ed ≡ Ed− 2Ep,
with Ed = EDP

d ) for a fixed choice of the relevant LEC

CS = −132 MeV · fm3, and spatial volume L = 4.5 fm
(these parameters are approximately in the centre of the
ranges that are used in the application of the method
in the following sections). Clearly, an improved bound
on the binding energy is achieved with increasing N ′, al-
though this improvement need not be monotonic since
the optimisation is performed from a new initialisation
for each N ′.3 Different initialisation seeds typically yield
consistent results for N ′ & 4. The figure also shows the
result of the SVM optimisation method from Ref. [26],
demonstrating that the DP optimisation procedure pro-
vides a far more efficient description of the ground state
in terms of the number of parameters that are required;
for most initialisation seeds, the DP wavefunctions with
N ′ & 4 outperform the N ′ = 100 term wavefunction of
Ref. [26].

The second step of optimisation combines α sets of N ′

Gaussian functions determined in independent DP blocks
through a GEVP block to determine the optimal linear
combination of all N = αN ′ Gaussian functions. As α
increases, the bound on the ground-state energy of the
system necessarily improves. Figure 3 shows the binding
energy of the deuteron with CS = −132 MeV · fm3 and
L = 4.5 fm obtained from GEVP-optimised combinations
of α ∈ {1, . . . , 16} sets of N ′ = 4 Gaussian functions. Re-
sults are shown for 25 different initialisations. For α ≥ 8,
all seeds yield values within 0.1% of the minimum en-
ergy achieved with α = 16 groups of Gaussians (with
any seed), and at α = 8, more than half of the seeds
yield results within 0.05% of that minimum.

While Fig. 3 illustrates the results of a GEVP block
combining wavefunctions from several DP blocks opti-
mised at the same set of LECs, a potentially useful al-
ternative is to combine sets of Gaussian functions from
DP blocks optimised at different choices of LECs. This
produces a set of functions that should be better able
to represent the eigenstates of the Hamiltonian across

3 An alternate approach in which an optimised N ′−M term wave-
function is used to build an N ′ term wavefunction by only opti-
mising the parameters associated with the M new Gaussian func-
tions (through DP) and the linear coefficients (through GEVP)
could also be applied, and would be monotonic by construction.
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Figure 2. The bounds on the binding energy of the deuteron
obtained from DP blocks as a function of the number of Gaus-
sian functions, N ′, included in the optimisation. Three dif-
ferent random initialisations are used (corresponding to the
solid blue, dashed orange, and dotted green curves) for fixed
values of the relevant two-body LEC CS = −132 MeV · fm3,
and for L = 4.5 fm. In the upper panel (a), the results are
compared with the SVM results of Ref. [26] evaluated at the
same CS and L, shown as a function of the number of Gaus-
sian functions (solid grey line). The lower panel (b) shows the
DP results with a different scale. As detailed in the text, an
independent optimisation is performed for each value of N ′,
so the behaviour need not be monotonic. The dashed hori-
zontal line in both panels shows the best result obtained with
the SVM method with N ′ = 100.

a range of values of the LECs, allowing energy bounds
to be evaluated as a function of the LECs without ad-
ditional DP optimisations. For α sets of N ′ Gaussian
wavefunctions optimised in DP blocks, the quantity

δα,N
′

h =
∆E

[N ′]
h −∆E

[α×N ′]
h∣∣∆E[α×N ′]

h

∣∣ (17)

can be defined to quantify the relative improvement
of the combined α × N ′-term wavefunction (yielding a

2 4 6 8 10 12 14 16

-21.36

-21.34

-21.32

-21.30

-21.28

-21.26

Figure 3. Bounds on the binding energy of the deuteron at
CS = −132 MeV · fm3 and L = 4.5 fm as a function of the
number of groups of N ′ = 4 Gaussian wavefunctions that are
combined through a GEVP block. Each of the 25 curves shows
bounds obtained using a different random sampling of groups
of 4 Gaussians from a total of 36 groups, each optimised from
a different random initialisation. The dashed grey line shows
the tightest bound on the binding energy achieved by any of
the optimisations.

bound ∆E
[α×N ′]
h on the binding energy) over the N ′ term

wavefunction (yielding the bound ∆E
[N ′]
h ) at a given

LEC value. Fig. 4 shows this quantity for the deuteron
at L = 4.5 fm, where sets of N ′ = 4 Gaussian functions
optimised at four choices of CS are combined in a GEVP
block. By construction, GEVP-optimisation of the su-
perset of 16 Gaussians provides a tighter bound on the
binding energy across all LECs in the relevant range, im-
proving the bound by . 0.1% even at the LEC values
where the individual DP blocks were optimised.

B. Finite-Volume Calculation of Two-body and
Three-body Systems

In order to determine the two and three-body LECs
in the FVEFT Hamiltonian, C0 and C1 (or equivalently,
CS and CT ) and D0, wavefunction optimisations are per-
formed using the approach of Sec. II C for the deuteron,
dineutron, and 3He systems in each of three spatial vol-
umes where LQCD calculations have been performed [4].
In this work, a single EFT cutoff corresponding to r0 =
0.2 fm is used, as Refs. [25, 26] have previously demon-
strated the cutoff-independence of the ground-state en-
ergies.

Fig. 5 shows the binding energy of the deuteron as
a function of the LEC CS for L ∈ {3.4, 4.5, 6.7} fm.
The dependence of the binding energy in each volume
on CS is obtained by solving the GEVP using a 32-
dimensional basis of Gaussians, with α = 8 sets of N ′ = 4
Gaussians, two optimised from different initialisations at
each CS ∈ {−134,−129,−124,−119} MeV · fm3. These
choices of N ′ and α achieve a balance between represen-
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Figure 4. Fractional difference between the binding en-
ergy of the deuteron at L = 4.5 fm computed via
GEVP from α = 4 DP blocks optimised at CS ∈
{−134,−129,−124,−119} MeV · fm3 with N ′ = 4, and the
results of GEVP using each block separately. Each curve cor-
responds to δ4,4

d (Eq. (17)) computed based on the DP block
optimised at the value of CS indicated by the colour-matched
vertical dotted line).

tational flexibility and computational cost and are mo-
tivated by the observations illustrated in Sec. III A. In
particular, taking N ′ > 4 typically does not improve the
bound achieved by a single DP block, and the combi-
nation of α = 8 DP blocks with N ′ = 4 yields results
within a fraction of a percent of the best result obtained
by continuing to increase the number of blocks included;
this difference is negligible in comparison with the un-
certainties of the LQCD results used to match the LECs.
The optimisation procedure and convergence criteria are
detailed in Appendix B. The same optimisations give the
dependence of the dineutron binding energy on the LEC
CT ; CS and CT can thus be obtained by χ2-minimisation
of the difference between the optimised binding energies
and the LQCD results of Ref. [4] for the deuteron and
dineutron, respectively. Fit results are shown in Table I
and are consistent within uncertainties with those ob-
tained in Ref. [26] using the SVM approach to wavefunc-
tion optimisation, matched to the same LQCD results.

Having determined the two-body couplings, the anal-
ogous procedure can be applied to determine the three-
body interaction coefficient, D0. The GEVP is solved
using a 32-dimensional basis of three-body Gaussians
with α = 8 sets of N ′ = 4 Gaussians, two op-
timised from different initialisations at each D0 ∈
{17.8, 18.8, 19.7, 20.6} MeV · fm6, with the optimised
value of C3He = C0 − C1 fixed. The three-body bind-
ing energy is shown as a function of D0 in Fig. 6 and the
value of the coupling determined by χ2-minimisation of
results at all three volumes is presented in Table. I.
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Figure 5. Binding energy of the deuteron as a function of
the two-body LEC CS . Each curve is obtained by solving the
GEVP with various CS values using a 32-dimensional set of
Gaussian wavefunctions optimised for each volume. Each set
is composed of α = 8 sets of N ′ = 4 DP blocks, with two
blocks optimised from different initalisations for each CS ∈
{−134,−129,−124,−119} MeV · fm3. The horizontal bands
show the binding energies determined in each volume in the
LQCD calculations of Ref. [4]. The intersection of each curve
with the horizontal band of the same colour constrains the
allowed values of CS through χ2-minimisation.

Ref. [26] (SVM) This work (DP)
C0 −131(2) −131.0(21)
C1 −2(1) −1.7(8)
CS −133(2) −132.7(27)
CT −126(2) −125.8(20)
D0 17(2) 20.0(24)

TABLE I. LECs in the EFT Lagrangian for a cutoff r0 =
0.2 fm. CS,T,0,1 and D0 are quoted in units of MeV · fm3

and MeV · fm6, respectively. The second column provides a
comparison with the results obtained in Ref. [26] using the
SVM, while the third column presents the results of this work
obtained via the DP approach.

C. Finite-Volume Calculation of 4He

With all of the leading-order couplings in the EFT
Lagrangian determined, the DP approach can be used
to compute the ground-state energies of larger systems.
In particular, an upper bound on the ground-state en-
ergy of 4He is computed; with the LECs fixed, α = 8
N ′ = 4 DP blocks optimised from different initialisations
are combined via a GEVP block in each of the three
spatial volumes in which LQCD calculations have been
performed. After optimisation, the uncertainties in the
two and three-body LECs are propagated into the esti-
mate of the 4He binding energy by solving the GEVP for
each optimised set of Gaussian wavefunctions with the
LECs varied within their uncertainty ranges. Table. II
shows a comparison between the resulting 4He binding
energy and LQCD results for the binding in each finite
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Figure 6. Binding energy of 3He as a function of the three-
body LEC D0, with the relevant two-body coupling fixed
to C3He = C0 − C1 = 129(2) MeV · fm3. The curves are
obtained by solving the GEVP for a 32-dimensional set of
Gaussian wavefuntions optimised for each volume. Each
set is composed of α = 8 N ′ = 4 DP blocks, with two
blocks optimised from different initalisations for each D0 ∈
{16.9, 18.1, 19.4, 20.6} MeV · fm6. The shaded region for each
curve is propagated from the uncertainty in C3He. The hor-
izontal bands show the binding energies determined in each
volume in the LQCD calculations of Ref. [4].

L [fm] LQCD [4] [MeV] This work [MeV]
3.4 115(23) 114(13)
4.5 107(25) 109(15)
6.7 107(24) 108(15)

TABLE II. Finite-volume binding energy for 4He obtained for
three different volumes as described in the text, with LECs
C0, C1 and D0 determined by matching to the two and three-
body finite-volume LQCD results of Ref. [4]. The second col-
umn lists the LQCD results for ∆E4He computed in the same
reference for comparison.

volume. Clearly, the EFT with fixed coefficients produces
estimates of the 4He binding energy that are consistent
with the LQCD calculations. Having verified the con-
sistency, an alternative strategy is to use the full set of
h ∈ {d, nn,3He,4He} binding energies from LQCD to fur-
ther constrain the two and three-body LECs. However,
given the large uncertainties on the LQCD determina-
tions of the 4He energy, χ2-optimisation leads to values
of the two and three-body LECs that are identical to
those determined from the two and three-body systems
alone.

In principle, the DP method can be used to deter-
mine finite-volume energies of still larger nuclei. How-
ever, there are currently no LQCD results to compare to
for larger systems, and the scaling of the approach with
A at finite volume is sufficiently poor that such calcula-
tions are numerically demanding. Instead, it is natural
to consider the infinite-volume binding energies of larger
nuclei, as detailed in the next subsection.
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Figure 7. Binding energies of h ∈ {nn, d, 3He, 4He} states in
different volumes (open circles) and in infinite volume (open
triangles). For each state at each of the volumes indicated by
the open circles, α = 8 sets of N ′ = 4 Gaussian wavefunctions
are generated and optimised from different initialisations at
the best fit values of the LECs C0,1 and D0 (the coloured lines
are linear interpolations to guide the eye). The bands result
from propagation of the uncertainties in the LECs. The gray
squares show the results of the LQCD calculations of Ref. [4].

D. Volume Dependence and Infinite-Volume
Calculation

Having performed the finite-volume matching to de-
termine the LECs of the EFT, the DP approach can be
used to study the volume-dependence of the binding ener-
gies for h ∈ {d, nn,3He,4He}, as well as to determine the
infinite-volume binding energies of these and other nu-
clear states. Fig. 7 shows the volume-dependence of the
binding energies of the four systems, with optimisations
based on α = 8 sets of N ′ = 4 Gaussian wavefunctions
performed for L ∈ {2, 3.4, 4, 4.5, 6.7, 12} fm, and also at
infinite volume. The infinite-volume results are compiled
in Table III.

Since the DP approach is more efficiently able to repre-
sent ground-state wavefunctions than the SVM method,
it is feasible to extend calculations to larger nuclei in in-
finite volume. In particular, calculations have been per-
formed for 5

ΛHe (J = 1/2) and 6
ΛΛHe (J = 0) in which

the spin-flavour structure is such that the simplest con-
figuration has spatial and spin-flavour wavefunctions fac-
torising as in Eq. (9). Note that at the SU(3)f -symmetric
quark masses used in the LQCD calculations of Ref. [4] to
which the FVEFT calculation is matched, the Λ baryon
is degenerate with the proton and neutron, but is not
Pauli-blocked from being at zero orbital angular momen-
tum. For this proof-of-principle study, it is assumed that
the two and three-body interactions between nucleons
and Λ-baryons are the same. Figure 8 and Table III
summarise the results of this work as well as previous
EFT matching calculations from Refs. [25, 26, 38]. The
A = 4 EFT calculations are post-dictions of the infinite-
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System I S J Ref. [4] Ref. [25] Ref. [26] Ref. [38] This work
nn 1 0 0 16(4) 14(2) 12(2) 16(2) 12(2)
d 0 0 1 20(5) 20(2) 20(3) 20(5) 20(3)

3He 1/2 0 1/2 54(11) 58(5) 60(7) 54(11) 60(7)
4He 0 0 0 107(24) 113(10) – 89(36) 108(15)
5He 1/2 0 3/2 – – – 98(39) –
5
ΛHe 0 -1 1/2 – – – – 162(24)
6He 1 0 0 – – – 122(50) –

6
ΛΛHe 0 -2 0 – – – – 215(32)

TABLE III. Infinite-volume binding energies for various nuclear systems obtained in this work, compared with the extrapolations
in Refs. [4] (LQCD), [25] (SVM), and [26] (SVM), as well as the infinite-volume EFT calculations of Ref. [38]. The isospin, I,
strangeness, S, and spin, J , of each state is also listed.
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Figure 8. Comparisons of extrapolated infinite-volume bind-
ing energies obtained in different approaches: LQCD from
Ref. [4], infinite-volume EFT matching from Ref. [38], and
finite-volume EFT matching from Refs. [25, 26] and the cur-
rent work. In each case, the EFT matching is performed to
the same LQCD calculations of h ∈ {nn, d,3He} systems.

volume-extrapolated LQCD results of Ref. [4], while the
A ∈ {5, 6} results are predictions that could be tested by
future LQCD calculations.

IV. SUMMARY AND OUTLOOK

In this work, differentiable programming and a gener-
alised eigenvalue problem have been used to optimise the
ground state wavefunctions of nuclei in FVEFT matched
to LQCD binding energies. Using sets of correlated
Gaussian wavefunctions representing A-nucleon states for
2 ≤ A ≤ 6 in both finite and infinite volumes, it was
shown that this approach provides a considerably more
efficient representation of these states than that obtained
in previous work using the stochastic variational method
and is able to scale to larger system size for fixed com-
putational resources.

Ongoing work to extend this approach by coupling spa-
tial and spin wavefunctions used for the nuclear states
will allow more physical systems to be addressed includ-

ing p-shell nuclei and hypernuclei. Since these approaches
can also provide accurate representations of finite-volume
excited states, a more detailed matching to the low en-
ergy excitation spectra of two-nucleon systems in LQCD,
for example those presented in Ref. [39], will also allow
more precise constraints on the LECs of the nuclear EFT,
including those that occur at next-to- and next-to-next-
to-leading order in the EFT power-counting.

Pionless EFT is particularly powerful at the large
quark masses used in existing LQCD calculations of nu-
clei. However, as the masses used in such calculations
become closer to the physical light-quark masses, exten-
sions of the finite-volume matching approach presented
here to chiral EFTs that include explicit pionic degrees
of freedom will likely be important. Alternative finite-
volume many-body methods such as quantum Monte-
Carlo [40, 41] and nuclear lattice EFT [42, 43] are promis-
ing approaches.
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Appendix A: Integral definitions and automatic differentiation

This section presents explicit analytic formulae for the matrix elements required to compute variational energy
bounds with Gaussian wavefunctions, and provides details of the computation of the derivatives of those matrix
elements as required for the DP optimisation procedure.

The normalisation matrix N (defined in Eq. (15)), with elements labelled by the i-th and the j-th terms of wave-
functions, can be computed as

[N]ij ≡
∫

Ψsym
L (Ai, Bi,di; x)∗Ψsym

L (Aj , Bj ,dj ; x)dx

=
∑
P,P′

∏
α∈{x,y,z}

√
(2π)n

Det[C
(α)
iP;jP′ ]

|b(α)|≤b̃∑
b(α)

exp

[
− 1

2
Ω

(α)
iP;jP′

]
, (A1)

where P and P ′ denote permutations over the n bodies in each wavefunction and Ω
(α)
iP;jP′ and C

(α)
iP;jP′ are quantities

defined in Ref. [26] that depend on the parameters of the wavefunctions. The finite-volume sum is controlled by the

integer cutoff b̃.

The matrix representation of the Hamiltonian H (Eq. (16)) can be broken up into three parts as

H =K + V2 + V3, (A2)

where K, V2, and V3 denote the kinetic energy, the two-body potential, and the three-body potential, respectively.
These are given by

[V2]ij ≡ C
n∑
a<b

∫
Ψsym
L (Ai, Bi,di; x)∗gΛ(xa − xb, L)Ψsym

L (Aj , Bj ,dj ; x)dx

= C
Λ3

8π3/2

∑
P,P′

n∑
a<b

∏
α∈{x,y,z}

√
(2π)n

Det[C
(α)
iP;jP′ ]

√√√√ C̃
(α)
iP;jP′

C̃
(α)
iP;jP′ + 2ρ

|b(α)|≤b̃∑
b(α)

exp

[
− 1

2
Ω

(α)
iP;jP′

]

×
q̃∑

q(α)=−q̃

exp

[
−

ρ C̃
(α)
iP;jP′

C̃
(α)
iP;jP′ + 2ρ

(
[(C

(α)
iP;jP′)

−1 ·Ξ(α)]a − [(C
(α)
iP;jP′)

−1 ·Ξ(α)]b − Lq(α)
)2
]
, (A3)

where C = 1
2n(n− 1)C0 + 2(Sh(Sh + 1)− 3

4n)C1 for an n-body nucleus of spin Sh,

[V3]ij ≡ D0

cyc∑
a6=b 6=c

∫
Ψsym
L (Ai, Bi,di; x)∗gΛ(xa − xb, L)gΛ(xb − xc, L)Ψsym

L (Aj , Bj ,dj ; x)dx

=D0

(
Λ3

8π3/2

)2 ∑
P,P′

cyc∑
a6=b 6=c

∏
α∈{x,y,z}

√
(2π)n

Det[Ĉ
(α)
iP;jP′ ]

exp

[
−1

2

(
d

(α)
iP ·B

(α)
iP · d

(α)
iP + d

(α)
jP′ ·B(α)

jP′ · d(α)
jP′

)]

×
|b(α)|≤b̃∑

b(α)

exp

[
−1

2

(
(Lb(α)) · (A(α)

iP +B
(α)
iP ) · (Lb(α)) + 2d

(α)
iP ·B

(α)
iP · (Lb(α))−Ξ(α) · [Ĉ(α)

iP;jP′ ]
−1 ·Ξ(α)

)]

×
q̃∑

q(α)=−q̃

exp

[
− L2

r2
0

q(α)2 +
q(α)2L2

2r4
0

P[a,b]
v · [Ĉ(α)

iP;jP′ ]
−1 ·P[a,b]

v +
q(α)L

r2
0

Ξ(α) · [Ĉ(α)
iP;jP′ ]

−1 ·P[a,b]
v

]

×
q̃∑

t(α)=−q̃

exp

[
− L2

r2
0

t(α)2 +
t(α)2L2

2r4
0

P[b,c]
v · [Ĉ(α)

iP;jP′ ]
−1 ·P[b,c]

v +
t(α)L

r2
0

Ξ(α) · [Ĉ(α)
iP;jP′ ]

−1 ·P[b,c]
v

]

× exp

[
t(α)q(α)L2

r4
0

P[b,c]
v · [Ĉ(α)

iP;jP′ ]
−1 ·P[a,b]

v )

]
, (A4)
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[K]ij ≡ −
1

2MN

n∑
a=1

∫
Ψsym
L (Ai, Bi,di; x)∗∇2

aΨsym
L (Aj , Bj ,dj ; x)dx

=
1

2MN

∑
P,P′

∑
α∈{x,y,z}

√
(2π)n

Det[C
(α)
iP;jP′ ]

|b(α)|≤b̃∑
b(α)

Θ
(α)
iP;jP′exp

[
− 1

2
Ω

(α)
iP;jP′

]

×
β 6=α∏

β∈{x,y,z}

√
(2π)n

Det[C
(β)
iP;jP′ ]

|b(β)|≤b̃∑
b(β)

exp

[
− 1

2
Ω

(β)
iP;jP′

]
, (A5)

where ~ = 1 is used,
∑cyc
a6=b 6=c indicates a sum over cyclic permutations of particles a, b and c, and the integer cutoff

q̃ governs finite-volume effects in the interaction terms. The (wavefunction-parameter dependent) quantities Ξ
(α)
iP;jP′ ,

C̃
(α)
iP;jP′ , Ĉ

(α)
iP;jP′ and Θ

(α)
iP;jP′ , as well as the projection operators P

[a,b]
v and P

[a,b]
m , are defined in Ref. [26].

The variational function E to be minimised (Eq. (8)) can be represented in terms of these matrices as

E
[
Ψ

(N)
h (θ)

]
=

c · (K + V2 + V3) · c
c · N · c , (A6)

where c = (c1, . . . , cN )T collects the numerical coefficients (ci of Eq. (A6)) parameterising Ψ
(N)
h (θ) as a linear com-

bination of the Gaussian wavefunction terms Ψsym
L (Ai, Bi,di; x), and θ = {{Ai, Bi,di, ci}, i ∈ {1, . . . N}}. Storing

the computational graph for Eq. (A6) and its gradients with respect to the parameters θ requires a large amount of
memory. To reduce the memory usage, the chain rule is applied manually to compute the gradient of E as

∇θE = −c · (K + V2 + V3) · c
(c · N · c)2

∇θ(c · N · c) +
1

c · N · c (∇θ(c ·K · c) +∇θ(c · V2 · c) +∇θ(c · V3 · c)). (A7)

The computation of ∇θ(c · X · c) for X ∈ {N,K,V2,V3} can be further broken up into a sum involving the gradient
of each matrix element

∇θ(c · X · c) =
∑
i,j

(∇θ(cicj)[X]ij + cicj∇θ[X]ij) . (A8)

Due to the permutation symmetry in this system, there are only n!n(n − 1) independent terms in the summation
over permutations P and P ′ in V2 (Eq. (A3)) and n!n(n− 1)(n− 2) terms in V3 (Eq. (A4)). Their gradients can be
written as a sum of gradients on each independent term whose computational graph is discarded after its gradient is
computed.

Appendix B: Numerical implementation details

A key component of the calculations presented here is the evaluation of the matrix elements Nij and Hij that
enter both the DP and GEVP blocks. The numerical accuracy of these matrix elements is controlled by the integer
cutoffs b̃ and q̃ used in the summations in Eqs. (A1)–(A5); for small values of these cutoffs, numerical instabilities
appear with N potentially becoming non-positive-definite. Since the goal of the DP block is simply to produce trial
wavefunctions, the accuracy criteria on matrix elements in the DP block is somewhat milder than in the GEVP block
where a rigorous energy bound is sought. Consequently, b̃ = 15 and q̃ = 6 are used during automatic differentiation
and b̃ = 30 and q̃ = 12 are chosen for the solution of the GEVP. These values avoid numerical stability issues but
allow evaluation of the matrix elements for N ∈ {2, 3}-body systems at finite volume. For the optimisation and the

solution of GEVP of four-body system binding energies b̃ = 8 and q̃ = 3 are chosen due to computational limitations.
The DP process depends on the initialisation of the wavefunction parameters θ. As in Ref. [28], the matrices A and

B are generated from single-particle Gaussian widths da and two-body Gaussian widths dab. The particle displacement
vectors d have components di and the weights of each wavefunction are written as cj = tan ĉj to ensure both positive
and negative values are accessed. The parameters da, dab, di and ĉj are drawn from a normal distribution N(1, 0.01),
which in practice leads to stable results.

In the optimisation step in the DP block, a self-adaptive gradient descent method with a stepping clip is applied.
For each step, the learning rate is increased by 20% if the energy decreases but is decreased by 60% if the energy
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increases. Steps in which the energy increases are rejected. In addition, a maximum allowed step size is implemented
for each parameter. The step in parameter θi ∈ θ is −η∂θiE if its absolute value is smaller than f(η). Otherwise, the
change in θi is −sgn(∂θiE)f(η), where

f(η) =


10−2, η > 0.2

10−3, 0.001 < η ≤ 0.2

10−4, η ≤ 0.001

. (B1)

Since the uncertainties of the LQCD results increase with A, the precision necessary in the variational optimisation
for optimisation uncertainties to be sub-dominant relative to the LQCD uncertainties, or to the uncertainties propa-
gated from the matching of the two and three-body LECs, decreases with A. For two and three-body systems, the
training process is iterated until the relative change of the energy over the last 10 iterations is less than 10−5. Under
this condition, the relative differences between the upper bounds obtained using different seeds and the same set of
LECs are less than 0.5% for all of the results presented in Sections III B–III D. For the four-body system, the relative
changes in the last 10 steps of optimisation are less than 10−4 and the variations between initialisations are less
than 1%. For the infinite volume calculations, the same convergence bounds hold for the two, three, and four-body
systems. For five and six-body systems, the relative changes over the last ten steps are less than 10−3, and the relative
differences between results obtained with different initialisations are less than 2%.
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