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Studying QCD and other gauge theories on quantum hardware requires the preparation of physi-
cally interesting states. The Variational Quantum Eigensolver (VQE) provides a way of performing
vacuum state preparation on quantum hardware. In this work, VQE is applied to pure SU(3) lat-
tice Yang-Mills on a single plaquette and one dimensional plaquette chains. Bayesian optimization
and gradient descent were investigated for performing the classical optimization. Ansatz states for
plaquette chains are constructed in a scalable manner from smaller systems using domain decompo-
sition and a stitching procedure analogous to the Density Matrix Renormalization Group (DMRG).
Small examples are performed on IBM’s superconducting Manila processor.
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I. INTRODUCTION

Quantum chromodynamics (QCD) plays an important role in a number of phenomena ranging from nuclear forces
holding together nuclei to inelastic hadron collisions to the behavior of matter under extreme conditions (such as in
supernovas and the early universe). A number of analytic and numerical tools have been developed to study QCD
since its discovery in the 1970s. One of the most successful approaches to numerical calculations is lattice QCD
[1, 2]. High precision calculations of hadronic spectra [3–5]; electroweak matrix elements [6–14]; properties of high-
temperature, low density systems and some multi-hadron systems [15–18] have been performed using lattice QCD
(for recent reviews see Ref. [19, 20]). However, lattice QCD calculations of some important observables of interest
are limited by sign problems present in the stochastic sampling used. For example, the simulation of QCD at high
densities [21–25], relevant to supernovas and the early universe, or with a θ term suffer from sign problems [26] and are
out of the reach of classical computers at scale. The limitations of classical computers to simulate quantum physics
was recognized by Feynman [27] and Benioff [28] in the 1980s, and they proposed the use of controlled quantum
systems to perform simulations of quantum systems of interest.

The recent rapid improvements in the control of quantum systems in the laboratory have led to the creation
of the first few generations of quantum computers. Many different platforms have been explored including, but
not limited to, superconducting circuits, trapped ions, and photonic systems (for recent reviews see Ref. [29–31]).
These experimental efforts have been accompanied by a corresponding growth in the theoretical understanding of
how to use quantum computers to simulate quantum systems. Algorithms for aspects of quantum simulation such
as state preparation and time evolution have been developed for application in the future regime of error-corrected
quantum computers and for near term applications on noisy intermediate quantum (NISQ) computers. To apply
these algorithms, the basis of the theory being studied must be mapped onto the basis of the quantum computer
being used. The simulation of scalar field theories has been studied in the eigen-basis of the field operator [32, 33],

∗ aciavare@uw.edu
† ivanc3@uw.edu

mailto:aciavare@uw.edu
mailto:ivanc3@uw.edu


2

the basis of the local free-field eigenstates [34–36], the momentum basis [37] and using single particle digitization [38].
Relativistic fermionic field theories have been studied using both the Jordan-Wigner and Bravyi-Kitaev encodings
[39–41]. Non-linear σ models have been studied using fuzzy spheres, qubit regularizations, and clock approximations
[42–45]. Aspects of superstring theory have been mapped onto quantum computers by making use of matrix models
[46]. There have been many approaches made to the quantum simulation of lattice gauge theories [47–101], mostly
by making use of the Kogut-Susskind Hamiltonian [102–106]. These different approaches to mapping theories onto
quantum computers are important to explore, as the optimal choice of basis for a given quantum computer will likely
depend on the details of the hardware.

To use quantum computers to study physical systems of interest, physical states, such as the vacuum of a QFT, need
to be prepared. The Variational Quantum Eigensolver (VQE) is a NISQ algorithm that can be used to variationally
prepare the lowest energy state of a quantum system [107]. The application of VQE to quantum chemistry problems
has been studied in great detail [107–120]. Additionally, use of VQE in the preparation of the vacuum state for various
quantum field theories, including the Abelian Higgs model with a topological θ term [121], has recently been examined.
The VQE algorithm has been previously applied to find the vacuum state of small lattices for the Schwinger model
[47, 48, 122]. It has also been used to prepare hadron states in an SU(2) gauge theory in 1+1 dimensions [95] and to
model the force between mesons in the Schwinger model [50]. VQE requires an ansatz circuit to prepare the system’s
state and a classical optimizer to determine the angles in the ansatz circuit. To scale these calculations to situations
with a useful quantum advantage, it will be necessary to understand how to connect these small lattice calculations
to a calculation on a larger lattice and how the optimization procedure performs as system size is increased.

In this work, the application of VQE to pure SU(3) lattice Yang-Mills gauge theory is studied. This provides
a starting point for understanding the resources required to simulate lattice QCD on a quantum computer. We
performed a VQE calculation of the vacuum state for one and two plaquette systems using superconducting quantum
processors. We also examine how to apply ideas from domain decomposition in lattice QCD calculations on classical
computers to the construction of ansatz states for VQE of large lattices from the vacuum state of smaller lattices.

II. ELECTRIC MULTIPLET BASIS

Quantum simulation of SU(3) Yang-Mills theory on a lattice can be performed with link variables connecting
neighboring sites of the lattice. The Hamiltonian, first discussed by Kogut and Susskind [102], is

Ĥ =
g2

2ad−2

∑
b,links

|Êb|2 +
1

2a4−dg2

∑
plaquettes

(
6− �̂(x)− �̂†(x)

)
, (1)

where g is the coupling constant, a is the lattice spacing and d is the number of spacial dimensions. The plaquette
operator �̂(x) is defined by

�̂(x) = Tr
(
Û(x,x + ai)Û(x + ai,x + ai + aj)Û(x + ai + aj,x + aj)Û(x + aj,x)

)
, (2)

where Û(x,y) is an SU(3) matrix on the link between sites x and y and i and j are unit vectors that define the
orientation of the plaquette. This theory can be described in the electric field basis, where each link’s Hilbert space is
spanned by the state vectors |R,mL,mR〉, where R is an irreducible representation of SU(3), mL labels the component
of the representation on the left side of the link, and mR labels the component of the representation on the right
side of the link. Physical states in this Hilbert space are subject to a constraint from Gauss’s law which requires
the wavefunction of the links meeting at each vertex to form a singlet state. In previous work, it was noted that for
a lattice consisting of a chain of plaquettes, the Gauss’s law constraint can be used to integrate out the irrep state
labels mL and mR on each link [54, 66, 123]. Integrating out mL and mR allows basis states to be described by only
specifying R on each link. Fig. 1 shows an example of a plaquette in a chain with the basis labels necessary to specify
its state. For an SU(3) gauge theory, the representation on each link can be labeled by a pair of non-negative integers
p and q that count the upper and lower tensor indices. These labels can be mapped onto a quantum computer in a
local basis by using two registers of qubits on each link to represent p and q in binary. Alternatively, Gauss’s law can
be solved at each vertex on the lattice and the resulting physical states can be mapped onto the basis of a quantum
computer. This global basis construction is not scalable to large lattices, but can be used to map small lattices onto
near term devices. The number of states in the global basis that need to be considered can be reduced by making
use of symmetries to study different sectors of the theory. For example, SU(3) lattice Yang-Mills theory has a color
parity (CP) symmetry related to the invariance of the theory under reversal of the direction of the links. The global
and CP invariant bases were studied in detail for one and two plaquettes in Ref. [66].
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FIG. 1. An SU(3) plaquette in a 1D chain of plaquettes. The electric multiplet basis states of the links in this figure are
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〉 where each Ci and Ri labels the irrep on the corresponding link.

III. SINGLE PLAQUETTE

A single plaquette is one of the simplest systems that can be considered in lattice gauge theory. In this work,
the single plaquette system will be studied in the electric multiplet basis described in the previous section. In this
formulation, Gauss’s law guarantees that each link in the plaquette will have the same representation. Therefore, the
basis states of the plaquette can be specified by |p, q〉, where p and q are specified earlier. In units where the lattice
spacing equals one, the Hamiltonian for a single plaquette is

Ĥ = 2g2
∑
b

|Êb|2 +
1

2g2

(
6− �̂− �̂†

)
, (3)

where
∑
b |Êb|2 is the Casimir for the chromo-electric field representation, given by∑

b

|Êb|2 |p, q〉 =
p2 + q2 + pq + 3p+ 3q

3
|p, q〉 , (4)

and the plaquette operator �̂ acts on the basis states by

�̂ |p, q〉 = |p+ 1, q〉+ |p− 1, q + 1〉+ |p, q − 1〉 . (5)

While the exponential decay of correlations in gapped quantum systems is known to allow for state preparation
using circuits localized in position space [124], the depth of the circuits needed to prepare the local color-space degrees
of freedom has not been studied in as much detail. Due to Gauss’s law guaranteeing every link in a single plaquette
has the same chromo-electric flux, the single plaquette system can be used to study state preparation of the local
color-space while avoiding the complications of spacial correlations.

(q,p)

(p,q)

(q,p)

(p,q)

FIG. 2. A single SU(3) plaquette. p and q label the chromo-electric flux on each link.
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FIG. 3. This figure shows the dimension of the Krylov subspace required for the overlap of the state prepared by the Lanczos
algorithm, |ψ〉, with the true vacuum, |Vac〉, to satisfy |〈ψ| |Vac〉|2 ≥ 0.999999. The inset panel shows the overlap with the true
vacuum as a function of Krylov dimension for g = 0.5.

A. Vacuum Preparation

1. Initialization

VQE is a hybrid quantum algorithm that can improve the overlap of an initial state with the vacuum state.
The performance of VQE has a strong dependence on the initial state used [107, 108, 110]. In applications of
VQE to electronic structure problems, Hartree-Fock states and unitary coupled cluster states computed on classical
computers have been used as initial starting points for VQE. However, lattice gauge theory does not have comparable
classical calculations in the Hamiltonian formulation available. As an alternative, the Lanczos algorithm can used to
initialize VQE for a single plaquette.1 The Lanczos algorithm works by constructing the Krylov subspace spanned by
{|ψ〉 , Ĥ |ψ〉 , . . . , Ĥn |ψ〉} for some integer n and initial state |ψ〉 and diagonalizing the Hamiltonian in this subspace
[125]. Quantum variations of the Lanczos algorithm have also been proposed for use in the study of state preparation
[126]. The result of applying the Lanczos algorithm to a single plaquette using the electric vacuum as the initial state
is shown in Fig. 3.2 For a fixed coupling, the overlap with the true vacuum is shown to scale asymptotically as a
Gaussian with the Krylov dimension used in the Lanczos algorithm. The dimension of the Krylov subspace needed
to reach a fixed accuracy scales as 1

g . This behavior can be seen to follow from the structure of the single plaquette

vacuum wavefunction. The vacuum wavefunction is asymptotically Gaussian in the chromo-electric field with a width
inversely proportional to g. Each time Ĥ is applied to increase the dimension of the Krylov subspace, the maximum p
and q included in the Krylov subspace is increased by 1. Therefore, the size of the vacuum wavefunction components
added by increasing the Krylov dimension fall off asymptotically as a Gaussian, and the Krylov dimension needed to

reach a desired accuracy ε scales as
log( 1

ε )
g . It should be noted that an exponential convergence with field truncation

has also been observed in the simulation of scalar field theories [36] and U(1) gauge theories [128], and has been
proven to be a rather generic property of theories involving bosonic modes [129].

The Lanczos algorithm provides approximate wavefunction components of the vacuum state that must be mapped
into a quantum circuit to be useful for state preparation. The state prepared by using a d-dimensional Krylov subspace
potentially spans all basis states with p, q < d. Therefore, a state with nontrivial support on d2 basis states must be
prepared, which can be done using a circuit of length O(d2) using standard state preparation procedures [130]. Using
the previous result on the Krylov dimension required to reach an accuracy ε, a quantum circuit of size

S = O

( log
(

1
ε

)
g

)2
 , (6)

1 This application of Krylov subspaces to quantum simulation was developed in collaboration with other members of IQuS during the
spring of 2020.

2 The icons in the corners of the plots in this text were introduced in Ref. [127] and are available at iqus.uw.edu/resources/icons/. The
pink icons indicate the calculations in the figure were performed on a classical computer and the blue icons indicate the calculations in
the figure were performed on a quantum computer.
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can be used to prepare the vacuum of a single plaquette with coupling g on a quantum computer within an accuracy
of ε.

2. Optimization

The VQE algorithm makes use of a classical optimizer to improve the overlap of the ansatz state with the actual
vacuum. In previous work, Bayesian optimizers have been used in the VQE algorithm to prepare the ground state
of the Schwinger model [47] and to prepare hadron states in an SU(2) gauge theory [95] on small lattices. Bayesian
optimization minimizes an objective function by iteratively constructing an interpolator, usually a Gaussian process,
from existing data and optimizing the interpolator. It is ideal for optimizations where the number of available
evaluations of the objective function is limited (typically to a few hundred evaluations), the objective function is
continuous, and the dimensionality of the domain is no more than 20 [131]. On existing hardware that only has a
handful of qubits available, circuits that can prepare a generic ansatz state can be implemented with fewer than 20
parameters. However, as quantum computers grow in qubit count and coherence time, this will no longer be true. To
reach a quantum advantage, it will be important to understand when Bayesian optimization breaks down. To test
the performance of a Bayesian optimizer for lattice gauge theory, VQE was simulated without noise on a classical
computer for a single SU(3) plaquette with a truncation of p, q ≤ 3. This system can be represented using 4 qubits on
a quantum processor. The vacuum state of this system lies in a 10-dimensional CP-invariant subspace which can be
parametrized in spherical coordinates with 9 degrees of freedom. The details of how the Bayesian optimization was
performed are available in Appendix B.

The results of the simulation of VQE with a Bayesian optimizer are shown in Fig. 4. In these calculations,
the Gaussian process used to model the energy function being minimized suffered from multicollinearity. This was
mitigated with Tikohonov regularization, which in this context is equivalent to adding a small constant term λ to
the covariance matrix of the energies [132]. As this figure shows, the convergence of the Bayesian optimizer has a
dependence on the regulator λ. The energy that the Bayesian optimizer converges to cannot be made arbitrarily close
to the vacuum energy because at sufficiently small values of λ, multicollinearity returns and the covariance matrix
cannot be inverted, causing the Bayesian optimizer to fail. The lower panels in Fig. 4 show the dependence of the
Bayesian optimizer’s convergence on the dimension of the Krylov subspace used to initialize the calculation. For
certain initializations, the Bayesian optimizer is not able to improve upon the initial state’s overlap with the actual
vacuum. Even for this modest system size, Bayesian optimization has limitations in how close it can get to the vacuum
state.

Gradient descent is an alternative classical optimizer that can be used in VQE. Gradient descent evaluates the
gradient of the energy, ∇f(x), at the current step’s ansatz parametrization xi, then selects the next step’s ansatz
parametrization xi+1 according to

xi+1 = xi − η∇f(xi) , (7)

where η is a learning rate that controls the convergence of the gradient descent. Convergence to a local minimum
can be guaranteed by the use of backtracking, where η is steadily decreased during the course of the calculation
[133]. Alternatively, the step size can be selected by using Bayesian optimization to perform a line search [134].
In applications to VQE, the gradient can be computed on a quantum processor by making use of parameter shift
formulas which give the gradient without discretization errors due to large shift size [135]. The use of gradient descent
as the classical optimizer in VQE will require the energy of the state to be calculated on the quantum processor a
number of times equal to two times the number of parameters in the circuit ansatz per step in the optimization. For
comparison, Bayesian optimization only requires the energy to be computed once per step. The increase in quantum
resources per step in the optimization may be offset by a faster rate of convergence and ability to converge to the
actual vacuum state. As an optimizer, gradient descent also requires fewer classical resources per step than Bayesian
optimization. This is because with gradient descent, the classical computer only needs to perform subtraction during
gradient descent. Bayesian optimization, on the other hand, requires the computations of determinants and inverses
of a matrix whose dimension is equal to the number of times the energy was previously evaluated.

Fig. 5 compares, for a single plaquette truncated at p, q ≤ 3 and with g = 0.5, the results of using Bayesian
optimization for the classical optimizer to those of using numerically-computed gradient descent. The Bayesian
optimizer shown in this plot was run with λ = 10−12. Both optimizers were initialized with the vacuum obtained
using the Lanczos algorithm with a Krylov dimension of 5. As this plot shows, the Bayesian optimizer converges
above the vacuum energy, while VQE using gradient descent with a sufficiently small η is limited only by the number
of steps performed in the optimization. To understand if VQE can offer a quantum advantage, it is helpful to know
how many steps in the optimizer must be performed to reach a certain level of accuracy. Fig. 6 shows the number
of steps needed for a backtracking gradient descent to converge for a single plaquette with a truncation of p, q ≤ 31.



6

0 10 20 30 40 50
10-6

10-5

10-4

0.001

0.010

0.100

1

R
el
at
iv
e
E
rr
or g = 0.8

λ=0.0036

λ=0.0009

λ=10-6

λ=10-9
λ=10-12

0 10 20 30 40 50
10-6

10-5

10-4

0.001

0.010

0.100

1

g = 0.5

0 10 20 30 40 50

10-7

10-5

0.001

0.100

Step

R
el
at
iv
e
E
rr
or

krylov dim = 4

krylov dim = 5

krylov dim = 6

krylov dim = 7

0 10 20 30 40 50

10-5

10-4

0.001

0.010

0.100

1

Step

FIG. 4. The relative error in the estimation of the vacuum energy obtained by performing a classical simulation of VQE using
Bayesian optimization for a single plaquette with p, q ≤ 3. The left panel is for g = 0.8 and the right panel is for g = 0.5. The
top panel shows the results of Bayesian optimization as a function of the number of iterations of the optimization for different
values of the regulator λ. Each of the calculations in the top panel was initialized with the vacuum states obtained from the
Lanczos algorithm with subspace of Krylov dimension equal to 5. The bottom panel shows the result of Bayesian optimization
using λ = 0.0009 with different maximum Krylov dimensions.
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FIG. 5. The relative error in the estimation of the vacuum energy obtained by performing a classical simulation of VQE for
a single plaquette with p, q ≤ 3. The coupling is g = 0.5 and the initial state was obtained from the Lanczos algorithm using
a Krylov dimension of 5. The left panel shows a comparison of the results obtained by performing VQE using a Bayesian
optimizer to those obtained by performing VQE using a numerical gradient descent for different learning rates η. The right
panel shows the results of 250 iterations of gradient descent with η = 0.1.

This truncation was chosen so that the relative error in the mass gap and the vacuum expectation of the plaquette
operator due to field truncation was ≤ 1% for each coupling studied. The left panel shows that as g is decreased, the
number of steps needed by the gradient descent algorithm to start from the electric vacuum and reach a state |ψ〉
with |〈Vacuum| |ψ〉|2 ≥ 0.999 scales as O(g−4). The number of steps needed to reach this level of accuracy can be
decreased by beginning the optimization at a state closer to the vacuum, such as a state obtained from the Lanczos
algorithm. The right panel in Fig. 6 shows the number of steps needed by a backtracking gradient descent to converge
to |〈Vacuum| |ψ〉|2 ≥ 0.999 for a coupling g = 0.1 as a function of the dimension of the Krylov subspace used in the
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FIG. 6. The left panel shows the number of steps needed for VQE using a backtracking gradient descent to converge to the
true vacuum with an accuracy of 0.999 as a function of coupling for a single plaquette with p, q ≤ 31. The right panel shows
the number of steps needed for a backtracking gradient descent to converge to the true vacuum with an accuracy of 0.999 for
g = 0.1 as a function of the dimension of the Krylov subspace used to obtain the initial state.

Lanczos algorithm to initialize the starting state. From the fit in the right panel, it appears that the number of steps
required for the gradient descent to converge scales asymptotically as a Gaussian as a function of the Krylov dimension
used. This is expected, as the discussion in the previous section showed that the error in the state obtained from
the Lanczos algorithm falls off asymptotically as a Gaussian as a function of the Krylov dimension. By beginning in
a state obtained from the Lanczos algorithm and performing the optimization step using gradient descent, classical
simulations of the VQE algorithm are able to reach the vacuum state of a single plaquette at weak couplings that
are beyond the reach of Bayesian optimization. Based on these results, Bayesian optimization will not be a practical
optimizer for VQE calculations at scale, while gradient based methods have a chance of reaching the vacuum state at
scale.

B. Hardware Implementation

The discussion in the previous section suggests that VQE should be capable of preparing the vacuum state for a single
plaquette. However, existing quantum hardware suffers from the effects of noise and imperfect gate implementations.
This will have an impact on how VQE performs in practice. To understand how near-term hardware will perform
in the simulation of SU(3) lattice Yang-Mills theory, IBM’s Manila superconducting quantum processor was used to
perform a VQE calculation for a single plaquette [136].

The SU(3) lattice Yang-Mills Hamiltonian possesses a CP symmetry that guarantees that the amplitude of a given
representation in the vacuum wavefunction will be the same as the amplitude of the conjugate representation. In
principle, this symmetry can be used to restrict the state preparation circuit used in VQE which will reduce the
number of free parameters. However, in the presence of noise and imperfect gate implementations, attempting to
explicitly enforce the symmetry may prevent the actual state prepared on the quantum processor from respecting the
symmetry. This would be the case if, hypothetically, the rotations in the circuit suffered from a constant offset error
that was not corrected for. To understand if this is an issue on existing hardware, a single plaquette was simulated
in the global basis truncated at a representation of 8. The Hamiltonian is given by Eq. (14) of Ref. [66]. A VQE
state preparation procedure described in Appendix A was used to prepare the vacuum state starting from the electric
vacuum and to optimize the angles using gradient descent. VQE was performed both by enforcing CP symmetry in
the rotation angles in the circuit ansatz and by allowing all three of the angles to vary freely. The results of both
calculations are displayed in Fig. 7. As this figure shows, explicitly enforcing the CP symmetry in the VQE calculation
does not break the symmetry in the vacuum state prepared using VQE on this hardware. The ability to explicitly
enforce CP symmetry in the ansatz circuit will be helpful when performing VQE calculations on larger systems where
the number of free parameters is much greater.

As discussed in Section III A 1, the Lanczos algorithm can be used to obtain an initial ansatz for the VQE algorithm.
At a coupling of g = 1, the vacuum state obtained using a two dimensional Krylov subspace has an overlap with
the true vacuum within experimental errors on the Manila chip [136]. To accurately reproduce physics at a lower
coupling, more electric field representations must be included. This can be done without increasing the qubit count
by performing a calculation in the color parity basis. Using two qubits, the color parity basis allows the 6 and 6̄
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FIG. 7. Variational state preparation of the vacuum state for a single plaquette truncated at 8 with g = 1 run on the Manila

quantum processor. The blue points show the results of gradient descent with CP symmetry enforced in the rotation angles in
the ansatz circuit and the purple points show the result of not explicitly enforcing CP symmetry in the state. The data in this
figure is available in Table II.
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FIG. 8. Variational state preparation of the vacuum state for a single plaquette truncated at 6+ in the color parity basis with
g = 0.8 run on the Manila quantum processor. The blue points show the result of gradient descent beginning at the electric
vacuum and the green points begin at the state obtained using the Lanczos algorithm with a Krylov dimension of two. The
data in this figure is available in Table III.

representations to be included, which is sufficient to accurately describe a plaquette with a coupling of g = 0.8. Fig.
8 shows the results of performing VQE for a single plaquette with g = 0.8 in the color parity basis, beginning both at
the electric vacuum and the vacuum obtained using a Krylov subspace of dimension two. As this figure shows, pre-
conditioning with the vacuum obtained using the Lanczos algorithm allows one to begin closer to the actual vacuum
and to converge to the true vacuum faster. Note that in both Fig. 7 and 8, the energy computed fluctuates at late
steps in the gradient descent instead of converging. This is because the gradient is computed on the Manila chip with
both statistical and systematic errors. As the optimizer approaches the vacuum state, the magnitude of the gradient
vector decreases. Once the size of the gradient vector is comparable to the device errors, it can no longer be reliably
computed and the updates to the circuit parameters are random noise which leads to the displayed fluctuations. This
is a generic feature of having uncertainties in the computation of the gradient and will have to be considered when
devising stopping criterion for VQE calculations of larger systems.
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FIG. 9. A lattice composed of a chain of plaquettes.

IV. MULTIPLE PLAQUETTES

The single plaquette calculations in Section III provide insight into the requirements of state preparation in a
simple system. To perform calculations at scale, these insights need to be combined with features that only occur on
larger lattices, such as Gauss’s law constraints that can’t be solved exactly without sacrificing locality. The Lanczos
algorithm provides a good starting ansatz for VQE on a single plaquette, but it is inefficient on larger lattices. This
can be seen by using the electric vacuum as the initial state for a chain of L plaquettes with periodic boundary
conditions (PBC) as shown in Fig. 9. When a Krylov subspace with dimension d is used, every basis state with d
plaquettes excited to have a loop of electric fields in the 3 representation will occur with equal amplitude. There
are

(
L
d

)
of these states and their superposition requires non-local circuits to capture the non-local correlations in the

state. This leads to the circuit required to prepare the state given by the Lanczos algorithm growing exponentially
in size with the Krylov dimension, and therefore no quantum advantage. An alternative approach is to use a form of
domain decomposition.

In lattice QCD calculations on classical computers, a large amount of time is spent solving discretized versions
of the Dirac equation. These calculations have been accelerated by making use of a domain decomposition [137–
139]. Domain decomposition accelerates the calculation by solving the Dirac equation in separate sub-regions and
then stitching the solutions together. Similar to solving the Dirac equation, directly preparing the vacuum state for a
theory on a large lattice is difficult because the Hilbert space associated with the entire lattice is too large to efficiently
work with. The ideas behind domain decomposition can be applied in a VQE calculation by splitting the lattice into
separate disconnected sub-regions and preparing each sub-region in its vacuum state (note that there will be links
between these regions that will remain unexcited). The vacuum state of each sub-region can be computed classically
or in another VQE calculation. The VQE algorithm can then be used to excite links in-between the sub-regions and
stitch together the sub-regions to form the vacuum state for the entire lattice. SU(3) Yang-Mills is a theory with
spatial correlations that decay exponentially fast with distance, so it is anticipated that the domain decomposition
ansatz should converge exponentially fast to the true vacuum as the domain size is increased.

Conceptually, this approach to vacuum state preparation is similar to the density matrix renormalization group
(DMRG) algorithm on classical computers [140]. In DMRG, the vacuum state of a lattice is prepared, and the
density matrix of a sub-region is diagonalized. The eigenstates of the density matrix with largest weight are then
used as the local basis for a calculation on a larger lattice. In this manner, DMRG constructs the vacuum state for
a large lattice from the vacuum state for smaller regions. This is analogous to beginning the VQE optimization in a
domain-decomposed vacuum, except the calculation on the quantum computer has no need to extract eigenstates of
the density matrix for subregions. Once the desired lattice length is achieved, DMRG optimizes the approximation
to the vacuum state by decomposing the system into left and right blocks and using the eigenstates of the density
matrix of the subregions to generate a new basis for the regions. By growing and shrinking the size of the left and
right blocks, DMRG is able to converge to the true vacuum state. The process of growing and shrinking the blocks
used is analogous to the stitching procedure described in this work to improve the overlap with the true vacuum,
except, once again, the quantum calculation does not require the diagonalization of density matrices.

While this stitching procedure will be explicitly demonstrated for a quasi one dimensional system, it can be per-
formed in higher dimensions as well. For a system with three spatial dimensions, the sub-regions initialized in their
vacuum state will be cubes of some size. Unlike in one dimension, the number of links left unexcited between the
initial subregions will scale as the surface area of the subregions. A sequence of unitary transformations acting on
the individual unexcited links, controlled by their neighboring links on the two cubes they connect, can be optimized
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State 1 State 2

R1

∣∣∣∣∣χ
1,1,1

1,1
1,1,1

〉 ∣∣∣∣∣χ
1,3,1

3, 3̄
1, 3̄,1

〉

R2

∣∣∣∣∣χ
3,1,1

3̄,1
3̄,1,1

〉 ∣∣∣∣∣χ
3,3,1

1, 3̄
3̄, 3̄,1

〉

R3

∣∣∣∣∣χ
3,1,1

3̄,1
3̄,1,1

〉 ∣∣∣∣∣χ
3, 3̄,1

3, 3̄
3̄,3,1

〉

R4

∣∣∣∣∣χ
1,1,3

1, 3̄
1,1, 3̄

〉 ∣∣∣∣∣χ
1,3,3

3̄,1
1, 3̄, 3̄

〉

R5

∣∣∣∣∣χ
1,1,3

1, 3̄
1,1, 3̄

〉 ∣∣∣∣∣χ
1, 3̄,3

3̄,3
1,3, 3̄

〉

R6

∣∣∣∣∣χ
3,3,3

1,1
3̄, 3̄, 3̄

〉 ∣∣∣∣∣χ
3,1,3

3̄,3
3̄,1, 3̄

〉

R7

∣∣∣∣∣χ
3, 3̄, 3̄

3,1
3̄,3,3

〉 ∣∣∣∣∣χ
3,1, 3̄

3̄, 3̄
3̄,1,3

〉

TABLE I. This table enumerates the local Givens rotations required to initialize a domain vacuum on the plaquette chain
truncated at an electric field representation of 3, (up to CP conjugates of the rotations listed here). The basis states are defined
in the same way as the states in Fig. 1. The first column labels the rotation and the other two columns specify the basis states
being rotated. R1 excites a single plaquette loop of electric flux. R2 through R5 stretch the length of a loop of electric flux by
one plaquette. R6 and R7 break a loop of electric flux into two loops. The basis labels used here were introduced in Ref. [66].

using VQE to get closer to the vacuum state of the entire lattice. By limiting the number of links each unitary acts
on in this manner, the number of free parameters in the VQE ansatz circuit can be restricted to grow linearly with
the surface area instead of exponentially as it could if all links were allowed to be acted on simultaneously.

A. Domain Decomposition on Plaquette Chains

A lattice composed of a chain of plaquettes as shown in Fig. 9 with PBC displays many of the complications
inherent to larger lattices while still being tractable to simulate on classical computers. A domain decomposition of
a plaquette chain can be performed by breaking up the lattice into separate sub-chains, preparing each subchain in
its vacuum state and using VQE to optimize circuits that act on the boundaries and space between the domains to
stitch them together.

To be useful as an initial state for VQE, a quantum circuit for the preparation of these domain-decomposed vacuums
must be designed. The circuit to prepare the vacuum state for a domain of length l can be constructed recursively
from the circuit to prepare the vacuum state for a domain of length l − 1 as follows. A single plaquette state can be
constructed by performing an R1 rotation from Table I and its CP conjugate on the qubits that make up the links in
the plaquette. The two plaquette state can be prepared by applying R1 rotations on two neighboring plaquettes and
then applying R3 and R4 rotations on one of the plaquettes. The circuit that prepares the three plaquette vacuum
state can then be constructed by exciting a third plaquette (i.e. apply an R1 rotation), stretching over the previous
two plaquettes (i.e. apply R3 and R4 rotations to the plaquettes that have been excited), and performing a rotation
on the center plaquette to de-excite it (i.e. apply R6 and R7 rotations to the center plaquette). In general, the circuit
to prepare a domain of size l can be constructed from the circuit for a domain of size l− 1 by exciting a neighboring
plaquette, stretching it over the previous domain, and then de-exciting plaquettes in the center. In general, this
approach to constructing circuits for a domain state scales exponentially with the size of the domain.

The initial domain decomposition ansatz can be improved upon by stitching together the different domains. More
specifically, in the circuit that prepares the vacuum ansatz, gates R1 through R7, along with their CP conjugates,
can be applied to the plaquettes in-between the domains and VQE can be used to optimize the rotation angles. This
stitching procedure can also be used to construct the vacuum for a larger domain instead of using the generic state
preparation circuit. After performing the stitching, the overlap with the true vacuum can be increased further by
layering another block of gates on the original domains and optimizing the angles with VQE again. Explicitly, if the
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FIG. 10. The left panel shows the overlap of different domain decompositions with the true vacuum. The right panel shows
the RMS error in the expectation of the different single plaquette operators on the five plaquette lattice with open boundary
conditions. The left-most points show the results for the initial domain decomposition, the middle points show the result after
using VQE to stitch the boundaries of the domains together, and the right points show the results after using VQE to optimize
another layer of circuits on the domains after stitching.

state obtained from the VQE algorithm is S(~θ2)D(~θ1) |0〉, where D(~θ1) prepares the states on the domain and S(~θ2)
stitches the domains together, then the ansatz state

C(~θ1, ~θ2, ~θ3) |0〉 = D(~θ3)S(~θ2)D(~θ1) |0〉 (8)

can be prepared on the quantum processor and the energy can be minimized as a function of ~θ1, ~θ2 and ~θ3 using
the VQE algorithm. Due to the exponentially decaying correlations in SU(3) Yang-Mills, the overlap with the true
vacuum should increase exponentially with the number of additional gate layers stacked on the domains and their
boundaries.

A plaquette chain simulated in the multiplet basis with chromo-electric fields truncated at the 3 representation will
be used to test the performance of the domain decomposition ansatz. Finite and infinite plaquette chains were studied
using an MPS representation of states in the TEBD algorithm as described in Appendix C. Fig. 10 shows the results
of optimizing different domain decomposition ansatzes for a chain of five plaquettes with g = 0.9 and open boundary
conditions. Fig. 11 shows the expectation of the electric energy for the initial single plaquette ansatz and the state
obtained after stitching the boundaries together with VQE. As the size of the initial domains is increased, the overlap
with the actual vacuum increases. However, the improvement eventually saturates due to boundary effects. Due to
the short correlation length at this coupling, even a single layer of stitching is able to achieve a high overlap with the
actual vacuum.

To understand how the domain decomposition VQE ansatz performs for a large lattice, the time evolving block
decimation algorithm was used to prepare the vacuum state and simulate VQE on an infinite plaquette chain as
described in Appendix C. VQE was performed using gradient descent as the classical optimizer. The vacuum expec-
tation of a single plaquette operator was chosen as a test observable to study the convergence to the true vacuum. As
Fig. 12 shows, the vacuum expectation of the plaquette operator converges exponentially fast with the domain size.
A classically simulated version of VQE was used to simulate the stitching of small domains together. For domains
of lengths 1-4 plaquettes, the initial domain vacuum was prepared using a generic state preparation circuit. For the
initial domain of length five, the circuit to prepare the vacuum was constructed by stitching together a vacuum state
preparation circuit for a domain of length three plaquettes and of length one plaquette. The circuit optimized in VQE
consisted of the initial domain vacuum circuit, along with all rotations in Table I with all rotation angles allowed to
vary freely. For each domain size, the optimization of the stitching improved the estimation of the vacuum plaquette
expectation by at least an order of magnitude.
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FIG. 11. The top panel shows the expectation of the electric energy for a five plaquette chain with open boundary conditions
where every other plaquette has been initialized to the single plaquette vacuum. The bottom panel shows the expectation of
the electric energy after the boundaries of the initial domains have been stitched together with VQE.
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FIG. 12. The left panel shows the expectation of a plaquette operator at the center of a domain as a function of domain length
for both the initial ansatz and the state after using VQE to stitch domains together. The dashed blue line shows the vacuum
expectation of a single plaquette operator on an infinite chain of plaquettes with g = 0.9. The right panel shows the error in
the vacuum plaquette expectation as a function of the domain size.

B. Hardware Implementation

As with the single plaquette case, it is instructive to study multiple plaquettes on existing quantum hardware.
Unfortunately, simulating multiple plaquettes in a local basis as described in the previous section is beyond the reach
of existing hardware. However, these techniques can be applied to state preparation in a global basis. IBM’s Manila
quantum processor was used to simulate a two plaquette system truncated at an electric field representation of 3 in the
global CP invariant basis [136]. For this simple system, preparing the single plaquette vacuum is equivalent to using
the vacuum state obtained using the Lanczos algorithm with a Krylov dimension of two. The results of performing
VQE with the error mitigation procedures described in Appendix A are shown in Fig. 13. As this figure shows, the
VQE algorithm is able to converge to the true vacuum energy whether it begins in the electric or single plaquette
vacuum. However, by initializing the state in the single plaquette vacuum, the VQE algorithm is able to converge to
the true vacuum state faster. While the two initial states converge to the same vacuum state, the uncertainties in the
vacuum energy they converge to are quite different. This is due to the circuit ansatz used to initialize the state having
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FIG. 13. Variational state preparation of the vacuum state for a two plaquette system with g = 1 and PBC run on the IBM
Manila quantum processor. The blue points show the results of performing gradient descent beginning at the electric vacuum
and the green points show the results for beginning with the single plaquette vacuum. The data in this figure is available in
Table IV

redundancies in the angle parametrization of the state, leading to the two initial ansatzes converging to different sets
of angles describing the same state. In the absence of noise on the quantum processor, these parametrizations would
be equivalent. However, existing quantum processors are noisy and there are systematic errors with angle dependence
leading to the different error bars shown in Fig. 13.

V. DISCUSSION

Achieving a quantum advantage in the simulation of lattice gauge theories requires the preparation of physically
interesting states, such as the vacuum. In the NISQ era, hybrid algorithms such as VQE will be essential. To make
use of VQE, an appropriate classical optimizer and ansatz circuit must be chosen. In this work, state preparation
on simple SU(3) lattice gauge theories has been performed with an eye towards scalability. In the variational state
preparation of single plaquette systems, we showed that Bayesian optimization suffers from convergence issues as the
coupling g is decreased, while gradient descent methods suffer from no such issue. This suggests that VQE calculations
at scale may need to make use of gradient descent methods in order to converge, despite the increase in computational
overhead required to compute the gradient. Note that gradient based methods may converge to a local minimum
instead of the true vacuum. This has not occurred for the simple systems studied in this work, but may need to be
considered when performing calculations at scale.

Calculations at scale will also require appropriate ansatz circuits to perform VQE. Due to the exponential growth
of the Hilbert space with lattice size, circuits capable of preparing a generic state on the lattice will not be able to go
to scale. In this work, it was demonstrated that in a quasi-1D SU(3) lattice gauge theory, VQE can be used to stitch
together domains in their vacuum state to prepare the vaccum state of a larger lattice. The exponential convergence
with domain size on an infinite lattice suggests that even shallow circuits may be able to achieve a large overlap with
the true vacuum state at scale. The calculations on IBM’s Manila quantum processor showed that circuit ansatzes
that respect a global symmetry will still respect the global symmetry on existing hardware despite the presence of
noise and imperfect gates. This allows global symmetries to be used to construct circuit ansatzes that have fewer free
degrees of freedom which makes them easier to optimize.

While the computations in this work are encouraging, preparing a vacuum state for QCD with VQE will require
significant developments in the application of quantum algorithms to lattice gauge theories. The calculations per-
formed in this work were for a one dimensional string of plaquettes, but QCD is a three-dimensional theory. In a
3D theory, the domains being initialized in their vacuum state will be 3D blocks and the number of circuits required
to stitch them together will scale with the surface area of the domain blocks. Additionally, a QCD calculation that
can be taken to the continuum limit may require more electric field representations to be included, which will in-
crease the number of possible local rotations in the VQE stitching circuit. It is conceivable that it is possible to
reach the continuum limit without increasing the field truncation, but this remains to be investigated. Regardless,
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as the continuum limit is approached, the correlation length of the system will diverge and more layers of circuits
will be required in the VQE stitching to accurately prepare the vacuum state. Matter will also need to be included
at the sites, which will complicate the integrating out of the internal gauge space. In addition to these conceptual
complications, achieving a quantum advantage in the simulation of lattice QCD will require quantum hardware with
more qubits and a lower error rate, in order to enable the simulation of a large lattice in a local basis. While scaling
up quantum hardware is challenging, the rapid improvement in quantum hardware and recent proposals for co-design
[66, 101, 121] of quantum processors suggest that it can be done in a manner that will allow the simulation of lattice
QCD on quantum computers in the near future.
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Appendix A: Hardware Calculations

To perform VQE on a quantum computer, a circuit must be designed to prepare the ansatz state. For the calculations
demonstrated here, only two qubits were used, so the circuit used to construct the state was capable of preparing an
arbitrary 2 qubit state whose wavefunction has only real coefficients. Once the ansatz state has been prepared on
the quantum computer, the energy of the state must also be computed. This can efficiently be done by breaking the
Hamiltonian up into a sum over tractable terms, applying gates that diagonalize each term of the Hamiltonian, and
performing measurements in the computational basis. This approach to computing the energy will require one circuit
per term in the Hamiltonian. Each of the Hamiltonians studied in this work can be written in the form

Ĥ = Ĥ1 + Ĥ2 + Ĥ3

Ĥ1 = h111̂⊗ Ẑ + h12X̂ ⊗ 1̂ + h13X̂ ⊗ Ẑ
Ĥ2 = h21Ẑ ⊗ 1̂ + h221̂⊗ X̂
Ĥ3 = h31X̂ ⊗ X̂ + h32Ŷ ⊗ Ŷ + h33Ẑ ⊗ Ẑ . (A1)

These Hamiltonians can be diagonalized using the circuits shown in Fig. 14. To use gradient descent based methods
in the classical optimization step of VQE, the gradient for the energy of the state as a function of the rotation angles
in the ansatz circuit must be computed on the quantum computer. Due to the periodicity of sin and cos, the gradient
can be computed exactly using a symmetric finite difference formula with a shift of π

4 . Explicitly, components of the
gradient are computed using

∂iE
(
~θ
)

= E
(
~θ +

π

4
î
)
− E

(
~θ − π

4
î
)

, (A2)

where E
(
~θ
)

is the energy as a function of the angles in the ansatz circuit and î is a unit vector pointing in the i-th

direction. Therefore the gradient can be computed on the quantum computer using a number of circuits equal to two
times the number of parameters in the ansatz circuit. The calculation of the energy on a real quantum computer
suffers from systematic errors due to errors in the implementation of the gates on the computer and errors in the
measurement process. The measurement errors can be mitigated by using Qiskit’s measurement filter subroutine,
which removes the leading order measurement errors by optimizing an approximate inverse of the calculated all-to-all
measurement matrix [141]. The dominant gate errors come from the implementation of CNOT gates. The errors
associated with CNOT gates are mitigated using an extrapolation procedure [142, 143]. Each CNOT in the circuit is
replaced with an odd number r of CNOT gates (r = 3, 5, 7) and a linear extrapolation is performed to r = 0.
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FIG. 14. The top circuit is used to compute the expectation of H1, the second circuit is used to compute the expectation of
H2, and the bottom circuit is used to compute the expectation of H3.

Appendix B: Bayesian Optimization

Bayesian optimization is a classical optimizer that can be used in the VQE algorithm. Bayesian optimization uses
the data already collected to create a Gaussian process-based surrogate function that approximates the function, f ,
being optimized. This surrogate function is then used to create an acquisition function, which is then optimized to find
a new trial point for the location of f ’s minimum. f is then evaluated at that new point and the result is incorporated
into the data for the next iteration [144]. The Gaussian process used requires both a mean and covariance matrix for
the function f . The covariance matrix used in this work is constructed from the Gaussian kernel [145], which defines
the covariance between f(x1) and f(x2) to be

K(x1,x2) = e
−Σdi=1

(x1i−x2i)
2

l2
i , (B1)

where d is the number of dimensions of the inputted point and li are hyperparameters specifying the width of the
Gaussian for each component of x. The mean of f is generically unknown, but given the covariance matrix the mean
can be approximated by the best linear unbiased predictor,

µ = (1TC−11)−11TC−1Z (B2)

where 1 is a vector with all entries equal to 1, C is the covariance matrix with matrix elements given by Cij =
K(xi,xj), and Z is a vector with entries given by the value of the function at the evaluated points, Zi = f(xi) [146].

Given the mean and variance of the Gaussian process, the value of f at a point xposterior that has not already been
evaluated follows a Gaussian distribution with a mean and variance given by

µposterior = cTC−1Z− (1− cTC−11)(1TC−11)−11TC−1Z

σ2
posterior = K(xposterior,xposterior)− cTC−1c + (1− cTC−11)2(1TC−11)−1 , (B3)

where c is a vector with entries ci = K(xposterior,xi) [146]. Eq. (B3) expresses the posterior mean and variance
under the assumption that f can be evaluated without error. In order to incorporate errors, the variance of the data
must be added to the diagonal elements of the covariance matrix C and to σ2

posterior [145].
To use a Gaussian process in practice, the hyperparameters of the kernel must be selected. In this work, this was

done by maximizing the likelihood of the data under a multivariate Gaussian model with a mean equal to the best
linear unbiased predictor’s mean and with a covariance equal to C (with the variance of the data added to its diagonal
elements) from Eq. (B2). Another issue with practical implementation that arises is that C often ends up singular as
the Gaussian process is iterated. This issue is known as multicollinearity and it occurs when one of the points used
to construct C can be exactly predicted from the other points leading to zero being an eigenvalue of C. This can
be remedied by using Tikohonov regularization where a fake “data variance” distinct from the real data variance is
added to C but not to σ2

posterior [132].
The probability distribution of f at unevaluated points is used to construct an acquisition function, whose job it

is to balance exploration and exploitation. The acquisition function is optimized to find the minimum of f . In this
work, probability of improvement [144] was used as the acquisition function, ie. the probability that the minimum of
f is smaller than the previously found minimum is maximized. This is equivalent to minimizing

acq(x)PI =
µposterior(x)− fmin

σposterior(x)
(B4)
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where fmin is the previously found minimum of f .

Appendix C: Plaquette Chain Tensor Network

The time evolving block decimation (TEBD) algorithm can be used to simulate the time evolution of an infinite
translationally invariant quantum system by Trotterizing the time evolution operator [147–149]. The vacuum state of
a system can be prepared by performing imaginary time evolution. This algorithm was developed for the simulation
of systems whose Hamiltonian only consists of 2-site nearest-neighbor couplings, so its application to the simulation
of a plaquette chain requires nonstandard modifications. Fig. 15 shows how the links in the plaquette chain can be
blocked together to form a 1D quantum system whose state can be described with MPS.

In this blocking, the electric field operator on a single link becomes a single site operator, the plaquette operator
becomes a three site operator, and the Gauss’s law constraint become a constraint on neighboring sites. The Gauss’s
law constraint can be enforced by adding an energy penalty for violating Gauss’s law.

The TEBD algorithm finds the vacuum by applying a Trotterized version of the imaginary time evolution operator
to a translationally invariant state. For a 2-site Hamiltonian, this is accomplished by storing a unit cell of 2 sites and
performing an SVD after applying each gate to keep the most relevant states. For a 3-site Hamiltonian, such as the
Hamiltonian obtained for the plaquette chain, a unit cell of 3 sites must be stored and two SVD’s must be performed
to obtain the most relevant local states as shown in Fig. 16. The approach used to perform time evolution in TEBD
can also be used to apply arbitrary gates. To represent the ansatz states obtained using domains of l plaquettes, a
unit cell of length l + 1 had to be stored and the state was prepared by applying gates and performing a SVD to
return to MPS form as in the case of time evolution.

FIG. 15. An infinite chain of SU(3) plaquettes can be mapped onto a 1D quantum system whose state can be represented with
MPS by blocking sets of 3 links together as shown.
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FIG. 16. This figure shows the required sequence of SVDs that must be performed to return an MPS tensor network to MPS
form after applying a 3 site gate.

Appendix D: Data from IBM’s Manila Processor

The following tables in this appendix contain the energies that were computed on IBM’s Manila quantum processor.
All error bars were computed from the uncertainty in the linear CNOT extrapolation as described in Appendix A.

Step Number CP Symmetry Enforced CP Symmetry Unenforced

1 2.957± 0.025 2.941± 0.017
2 2.973± 0.028 2.91± 0.04
3 2.93± 0.04 2.931± 0.032
4 2.891± 0.013 2.928± 0.016
5 2.905± 0.028 2.877± 0.017
6 2.88± 0.05 2.830± 0.009
7 2.868± 0.019 2.825± 0.023
8 2.806± 0.025 2.84± 0.04
9 2.826± 0.016 2.847± 0.027
10 2.83± 0.017 2.822± 0.006
11 2.87± 0.04 2.882± 0.025
12 2.824± 0.02 2.823± 0.024
13 2.806± 0.026 2.826± 0.015
14 2.834± 0.007 2.846± 0.021
15 2.808± 0.019 2.833± 0.015
16 2.783± 0.004 2.812± 0.004
17 2.843± 0.007 2.819± 0.006
18 2.808± 0.016 2.801± 0.013

TABLE II. This table lists the data shown in Fig. 7. The left column states the number of times gradient descent was applied,
the center column contains the energies computed for the circuit that had the CP symmetry explicitly enforced, and the right
column contains the energies computed for the circuit without the CP symmetry enforced.
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Step Number Electric Start Krylov Start

1 4.61± 0.06 3.900± 0.030
2 4.44± 0.08 3.917± 0.024
3 4.265± 0.034 3.85± 0.04
4 4.11± 0.04 3.827± 0.020
5 4.040± 0.014 3.826± 0.025
6 3.984± 0.024 3.81± 0.04
7 3.928± 0.007 3.867± 0.030
8 3.855± 0.016 3.814± 0.034
9 3.85± 0.04 3.84± 0.05
10 3.811± 0.030 3.78± 0.04
11 3.837± 0.018 3.79± 0.04
12 3.790± 0.024 3.80± 0.05
13 3.804± 0.025 3.785± 0.032
14 3.789± 0.024 3.790± 0.022
15 3.83± 0.06 3.767± 0.007

TABLE III. This table lists the data shown in Fig. 8. The left column states the number of times gradient descent was applied,
the center column contains the energies computed for the gradient descent that began at the electric vacuum, and the right
column contains the energies computed for the gradient descent that began at the state obtained from the Lanczos algorithm
with a Krylov dimension of 2.

Step Number Electric Start One Plaquette Start

1 2.96± 0.07 2.6648± 0.0013
2 2.85± 0.10 2.631± 0.022
3 2.77± 0.11 2.66± 0.04
4 2.72± 0.10 2.609± 0.012
5 2.69± 0.09 2.651± 0.017
6 2.71± 0.07 2.616± 0.010
7 2.65± 0.07 2.610± 0.015
8 2.63± 0.06 2.625± 0.018
9 2.65± 0.06 2.642± 0.019
10 2.66± 0.04 2.6021± 0.0023
11 2.638± 0.021 2.594± 0.008
12 2.64± 0.05 2.600± 0.017
13 2.624± 0.021 2.639± 0.019
14 2.608± 0.029 2.618± 0.010
15 2.612± 0.019 2.639± 0.005

TABLE IV. This table lists the data shown in Fig. 13. The left column states the number of times gradient descent was
applied. The center column contains the energies computed for the gradient descent that began at the electric vacuum. The
right column contains the energies computed for the gradient descent that began at the single plaquette vacuum.
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