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Boson stars have attracted much attention in recent decades as simple, self-consistent models
of compact objects and also as self-gravitating structures formed in some dark-matter scenarios.
Direct detection of these hypothetical objects through electromagnetic signatures would be unlikely
because their bosonic constituents are not expected to interact significantly with ordinary matter and
radiation. However, binary boson stars might form and coalesce emitting a detectable gravitational
wave signal which might distinguish them from ordinary compact object binaries containing black
holes and neutron stars. We study the merger of two boson stars by numerically evolving the fully
relativistic Einstein-Klein-Gordon equations for a complex scalar field with a solitonic potential that
generates very compact boson stars. Owing to the steep mass-radius diagram, we can study the
dynamics and gravitational radiation from unequal-mass binary boson stars with mass ratios up to
q ≈ 23 without the difficulties encountered when evolving binary black holes with large mass ratios.
Similar to the previously-studied equal-mass case, our numerical evolutions of the merger produce
either a nonspinning boson star or a spinning black hole, depending on the initial masses and on
the binary angular momentum. We do not find any evidence of synchronized scalar clouds forming
around either the remnant spinning black hole or around the remnant boson stars. Interestingly,
in contrast to the equal-mass case, one of the mechanisms to dissipate angular momentum is now
asymmetric, and leads to large kick velocities (up to a few 104 km/s) which could produce wandering
remnant boson stars. We also compare the gravitational wave signals predicted from boson star
binaries with those from black hole binaries, and comment on the detectability of the differences
with ground interferometers.

I. INTRODUCTION

We are well into the era of gravitational wave (GW) as-
tronomy with the rapidly growing catalog of GW events
detected by the LIGO-Virgo collaboration [1, 2].

With the very recent release of the third GW transient
catalog [3], the total number of reported coalescences in-
creased to 90. Some of the more remarkable events de-
tected to date include:

• GW190412 [4], a binary black hole (BBH) with
asymmetric component masses, showing evidence
for higher harmonics in its GW signal;
• GW190425 [5], identified with a binary neutron

star (NS) merger lacking evidence of an electromag-
netic counterpart;
• GW190521 [6], a BBH with a total mass greater

than 150 solar masses, which is the most massive
binary yet detected, in which the posterior distri-
bution of the primary mass is nearly entirely in the
pair-instability supernova mass gap where BHs are
not expected to form from the collapse of massive
stars;
• GW190814 [7], a highly asymmetric system con-

sistent with the merger of a 23 solar mass black
hole (BH) with a 2.6 solar mass compact object,
making the latter either the lightest BH or the
heaviest NS observed in a compact binary;

• GW200105 and GW200115 [8], which are the first
detections consistent with a NS-BH merger.

The planned upgrades by the LIGO-Virgo collaboration
and the addition of the KAGRA detector [9] promise even
more exciting observations in the future.

A primary target of GW observations is the merger
of very compact objects, with BHs and NSs being the
most natural candidates. However, a number of other
hypothetical compact objects have been proposed, called
exotic compact objects (ECOs) [10, 11]. The motivations
for various ECOs arise both in beyond-Standard-Model
theories and in modified-gravity scenarios, and some of
the most popular models include fuzzballs [12], gravas-
tars [13], wormholes [14], anisotropic stars [15], and bo-
son stars (BSs) [16]. Phenomenological studies of ECOs
are required to perform actual searches for their signa-
tures. No evidence for such ECOs has yet been found,
but, because they are expected to be too dim electromag-
netically, it is mostly through GW detections that we can
hope to observe them [11].

In this work we study BSs, which are solutions of
the Einstein equations coupled to a complex scalar field
with a harmonic time dependence describing a macro-
scopic wave-function of a Bose-Einstein condensate (see
Ref. [17–19] for reviews). BSs are particularly promising
as possible astrophysical objects because: (i) a forma-
tion mechanism for BSs has been identified, known as
gravitational cooling [20, 21], whereby BSs can be pro-
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duced from arbitrary scalar field configurations, (ii) their
stability properties resemble those of NSs so that static
BSs below a critical mass are radially stable [18, 22, 23],
and finally (iii) BSs have been invoked in open problems
in cosmological and particle physics, such as the nature
of the dark matter and the possibility of early Universe
remnants. For instance, the idea that dark matter is com-
posed of ultra-light bosonic fields has received significant
attention recently [24–26]. Although leading candidates
for this kind of dark matter are real scalars that are or-
ganized in time-dependent configurations [27], BSs can
serve as a proxy for such configurations [28]. Some of
these scenarios can allow for compact BSs (or similar ob-
jects) to be produced in the early Universe [29–35]

Collisions of BSs have been studied extensively, includ-
ing: head-on and orbital mergers of mini-BSs [36, 37],
head-on mergers of oscillatons [28, 38], orbital collisions
of solitonic BSs [39, 40], and head-on and orbital mergers
of Proca stars [41, 42] as a possible alternative explana-
tion of the GW190521 event [43, 44]. The merger of
ECOs can be studied within various dark matter scenar-
ios as well, as for example: mergers between a NSs and a
star made of axions, one of the most popular dark matter
type candidates [45–47], mergers of dark stars composed
of bosonic fields [48], or mergers of binary NSs contain-
ing a small fraction of dark matter [49] modeled using
fermion-BSs [50].

Motivated by the recent GW detections of very un-
equal mass binary mergers, we study here the coalescence
of unequal mass BS binaries, focusing on their dynamics
and GW radiation. As in our previous works [39, 40, 48],
we adopt the nontopological solitonic BS potential [51]
to construct our asymmetric binaries because: (i) it al-
lows for very compact configurations that reach a max-
imum compactness (see below for its definition) in the
stable branch of approximately C ≈ 0.35 [52, 53], and
(ii) one can construct binaries with a large mass ratio.
Indeed, defining the mass ratio q ≡ m1/m2 such that
m1 > m2, we can produce compact binaries with a mass
ratio ranging1 approximately from 1 to 45. Here, we fo-
cus on binaries within the range q ∈ [2, 23]. We note that
in contrast to the difficulties encountered when evolv-
ing BBH with large mass ratios [55–58], these evolutions
require no change to the choice of coordinates, namely
gamma-driver shift condition, nor an exceptionally high
resolution. The reason for this difference is because the
radii of solitonic BSs even with vastly different masses are
of the same order, whereas the radius of the BH scales
linearly with the mass, and therefore a large mass ratio
in a BH binary necessarily implies a large separation of
length scales.

1 Solitonic BSs in general admit two stable and two unstable
branches [52, 54]. Here we focus on the more massive stable
branch, while the other stable branch corresponds to the weak-
field regime of mini BSs for our choice of the potential parame-
ters [52].

Our mergers of unequal mass solitonic BSs produce
either a non-rotating BS or a spinning BH, as in the
equal-mass cases [40]. In the former cases, all the angular
momentum is emitted to infinity through scalar field and
GW radiation, while in the latter case, after perform-
ing a very long-term simulation, we find no indication
of a scalar cloud synchronized with the rotation of the
remnant BH, as found in Ref. [59]. For one of our sim-
ulations with large angular momentum, a blob of scalar
field is ejected after the merger, producing a significant
kick velocity of the remnant. Note that, this blob ejec-
tion has already been observed in solitonic BS binaries
of equal mass [40]. Additionally, we study the dynamics
and GW radiation of a binary composed of a BS and an
anti-boson (aBS) star, i.e. with the opposite frequency,
allowing some annihilation of the Noether charge during
the merger.

This work is organized as follows: in Sec. II, we review
the evolution equations describing BSs, followed by the
construction of initial data for binary BSs and numerical
implementation. In Sec. III, the coalescence of unequal-
mass BS binaries is studied in detail. The GWs produced
by these systems are explored in Sec. IV, in particular,
analyzing the imprint of higher-order modes in the signal
and the post-merger frequencies of the remnant’s signal.
In Sec. V, we summarize our results. We use geometric
units in which G = 1 and c = 1, unless otherwise stated.

II. SETUP

In this section, we briefly summarize the evolution
equations describing a self-gravitating (complex) scalar
field and the construction of binary BSs in quasicircular
orbits that constitute the initial data. We also outline the
numerical methods and grid setup employed to perform
the simulations. Notice that our setup is very similar to
the one used in Ref. [40] (hereafter Paper I) for studying
equal-mass binary BSs.

A. Einstein-Klein-Gordon equations

Self-gravitating (complex) scalar-fields are described
by the Einstein-Klein-Gordon (EKG) equations

Rab −
1

2
gabR = 8π Tab , (1)

gab∇a∇bΦ =
dV

d|Φ|2 Φ , (2)

where Rab is the Ricci tensor associated with the metric
gab, Φ is a minimally coupled, complex scalar field, and
V
(
|Φ|2

)
is its associated self-interaction potential. The

stress-energy tensor Tab for the complex scalar field is
given by

Tab = ∇aΦ∇bΦ
∗+∇aΦ∗∇bΦ−gab

[
∇cΦ∇cΦ

∗ + V
(
|Φ|2

)]
,
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where Φ∗ is the complex conjugate of Φ. Different
BS models are classified according to their scalar self-
potential V

(
|Φ|2

)
. Here we focus on the solitonic po-

tential [51], which allows for highly compact BSs and is
given by

V
(
|Φ|2

)
= m2

b |Φ|2
[
1− 2|Φ|2

σ2
0

]2
, (3)

where mb and σ0 are two free parameters. In our units
(in which the scalar field is dimensionless), mb has the
dimensions of an inverse length, mb~ is the bare mass
of the scalar field, whereas σ0 is dimensionless. We de-
fine λ ≡ σ0

√
8π and set mbλ = 1 for the rest of the

paper. However, in some occurrences we shall re-insert
the proper factors of mbλ.

In the complex-Φ space the potential has the typical
Mexican-hat shape, with a maximum at Φ = 0 and a
minimum (degenerate vacuum) at |Φ| = σ0/

√
2. When

σ0 � 1 the scalar profile is roughly constant within the
star and steeply vanishes over a lengthscale ∼ 1/mb [52,
60].

Due to the U(1) invariance of the EKG action, BSs
admit a conserved Noether charge current

ja = igab(Φ∗∇bΦ− Φ∇bΦ
∗) . (4)

The spatial integral of the time component of this cur-
rent defines the conserved Noether charge, N , which can
be interpreted as the number of bosonic particles in the
star [18].

B. Binary initial data

The procedure to construct the initial data for a binary
BS is the same as in Paper I, that is, a superposition of
two boosted, isolated, solitonic BSs.

The solution of a single solitonic BS is constructed as
described in Ref. [23], by adopting the usual harmonic
ansatz for the scalar field Φ = φ(r) e−iωt with a real
frequency ω. Assuming stationarity and spherical sym-
metry, the EKG equations reduce to a set of ODEs which
can be solved numerically with a shooting method. In-
tegrating from the center with a given central value of
the scalar field φc and frequency ω, one looks for solu-
tions satisfying regularity and boundary conditions. The
resulting BS equilibrium configurations can be charac-
terized by their mass and radius. However, because
the scalar field only vanishes asymptotically as it decays
exponentially, the definition of its radius is necessarily
somewhat ambiguous. Following previous work, we can
define the effective radius RM as the radius within which
99% of the total mass is contained, i.e. m(RM ) = 0.99M .
Consequently, we define the compactness as C ≡M/RM .
As a reference, the compactness for a Schwarzschild BH
is C = 0.5 and C ≈ 0.1− 0.2 for NSs. In numerical sim-
ulations, it is however more convenient to estimate the
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FIG. 1. Isolated BS solutions. (Top) Compactness as a
function of the central value of the scalar field φc for isolated,
nonrotating BSs with σ0 = 0.05. Circular markers refer to the
equilibrium configurations used in this work to construct ini-
tial data for BS binaries [cf. Table I]. The radius RM is defined
as that containing 99% of the mass of the star. (Bottom)
Profile of the scalar field as a function of the isotropic radius
for the different configurations.

radius of the final remnant through the radius that con-
tains 99% of the Noether charge, RN , so we will use this
definition when required. The radius of the remnant
is calculated with respect to its center of mass.

The maximum mass of static configurations in this
model is

Mmax ≈ 5M�

[
10−12

σ0

]2 [
500 GeV

mb~

]
, (5)

where the scaling with m−1
b is exact, whereas the scaling

with σ−2
0 is approximately valid only in the σ0 � 1 limit.

Thus, depending on (mb, σ0) the model supports self-
gravitating configurations across a wide mass range.

Paper I presented a sequence of isolated BS solutions
characterized by the central value of the scalar field φc
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that we use to construct our unequal mass binaries here.
In the top panel of Fig. 1, the compactness C is shown
as a function of φc. The circular markers denote the five
representative BSs employed in this paper. The bottom
panel of Fig. 1 displays the radial profile of the scalar
field for these isolated solutions, while Table I lists the
key properties of these configurations.

Notice that these solutions can be rewritten in terms
of the following dimensionless quantities [23]

M(mbλ), N(mbλ)2, r(mbλ), ω/(mbλ) , (6)

recalling that λ = σ0
√

8π. In terms of these parameters,
the equations become independent of mb, and hence mb

serves to set the units of the physical solution. Again,
the linear scaling in mb in the above expressions is exact,
whereas that with respect to λ is approximately valid
only in the σ0 � 1 limit. For the chosen value, σ0 =
0.05, this scaling is already a good approximation, and
so smaller values of σ0 can be studied simply by applying
such a rescaling. Here we restrict ourselves to σ0 = 0.05,
which sufficiently fulfills the condition σ0 � 1 and also
allows for very compact, stable configurations.

The initial data for the BS binary follows the proce-
dure described in Ref. [39] and Paper I. Once the isolated
BSs are constructed in spherical coordinates, the solution
is extended to Cartesian coordinates, with the centers of
the stars located at along the y-axis at (0, yjc , 0), so that
the center of mass of the system is located at
the origin.2 A Lorentz transformation is performed to
boost each star along the ±x-directions, and finally the
boosted solutions for both stars are superposed to obtain
our binary initial data. Obviously, this superposition is
only an approximate solution that does not satisfy ex-
actly the constraints at the initial time (see Ref. [63] for
a partial solution in case of equal mass binaries of BSs).
However, our evolution scheme enforces an exponential
decay of this constraint violation dynamically (e.g., see
Fig. 10 in Ref. [39]).

In contrast with Paper I where the positions and initial
velocities of each binary were anti-symmetric (i.e., veloci-
ties with the same magnitude but opposite direction), for
these unequal cases we have set those parameters as fol-
lows: given an initial separation we have calculated the
2nd order post-Newtonian orbital velocity [64] such that
the system would be in quasicircular orbit and the veloc-
ity of the center of mass would be close to zero. Then, we
modify these velocities by adding a tiny amount of lin-
ear drift velocity to account for the finite initial orbital
distance and higher-order relativistic effects, and fix this
drift velocity such that the velocity of the binary cen-
ter of mass is close to zero. The positions and velocities
of each binary system considered in this work, together

2 Here we define the center of mass using the masses of
isolated configurations listed in Table I. Constraint vi-
olation transient will change these masses, see the dis-
cussion of “effective” configurations below.

with other parameters of our simulations, are presented
in Table II.

As mentioned, our binary initial data is only approxi-
mate, but constraint violations quickly propagate off the
grid by our evolution scheme. Hence, it makes sense to
evaluate the global characteristics of the initial data not
at the initial time but instead just after the constraint-
violating transient. We therefore extract numerically
the ADM mass, M0, of the spacetime after the tran-
sient, and, assuming that the mass ratio remains constant
through the transient, we decompose this mass into the
constituent “effective” masses as

M̃1 =

(
q

q + 1

)
M0 , M̃2 =

(
1

q + 1

)
M0 . (7)

Notice that this calculation tacitly assumes that, even af-
ter the constraint violation transient (approximately)
ends, stars are sufficiently separated so that GR nonlin-
earities are sub-leading. During this transient regime,
we note that the masses of the constituent stars increase
which results in a decrease in the number of orbits.

Furthermore, we can construct fitting formulae for the
compactness, C(M), and particle number, N(M), as
functions of BS mass from the equilibrium configurations
of isolated BSs. We obtain

C(M) ≈ 0.0157 + 0.376M − 0.3M2 + 0.136M3

−0.0195M4 , (8)

N(M) ≈ −0.0187 + 0.6221M + 0.3872M2 . (9)

With the above functions, one can calculate the “effec-
tive” Noether charges and compactnesses of the stars in
our binaries as a function of their “effective” masses, re-
spectively. In Table III , we provide this data for all
configurations consider in this work and Paper I. We
also provide the relative differences between the prop-
erties of the isolated initial data and the “effective”
ones. Comparing the total Noether charge in the system,
N0, with the sum of the individually calculated charges,
N(M̃1) + N(M̃2), provides a test of the consistency of
this approach. As explained below in Sec. III B, the “ef-
fective” initial data presented here agrees roughly with
our initial data after the constraint-violating transient.

C. Numerical setup and analysis

The computational code, generated by the Simflowny
platform [65–68], runs under the SAMRAI infrastruc-
ture [69–71], which provides parallelization and the adap-
tive mesh refinement (AMR) required to resolve the dif-
ferent scales in the problem. We use fourth-order spatial,
finite difference operators to discretize the EKG equa-
tions, which are evolved in time using a fourth-order
Runge-Kutta integrator [72].

Our computational domain ranges within [−264, 264]3

and contains 8 levels of refinement. Each level has twice
the resolution of its coarser parent level, achieving a res-
olution of ∆x8 = 0.03125 on the finest grid. We use a



5

C φc/(σ0/
√

2) Mmbλ N(mbλ)2 (RM , RN )mbλ ω/(mbλ) I/M3 ktidal

0.03 1.065 0.0463 0.01653 (1.507, 1.380) 2.129620346 245.3 136494
0.06 1.045 0.1238 0.0605 (2.0334, 1.8288) 1.545745909 84.9 8420
0.12 1.030 0.3650 0.2551 (3.0831, 2.8360) 1.066612350 27.8 332
0.18 1.025 0.7835 0.7193 (4.2572, 3.9960) 0.790449025 12.5 41
0.22 1.025 1.0736 1.1147 (4.9647, 4.7068) 0.685760351 8.34 20

TABLE I. Characteristics of solitonic BS models with σ0 = 0.05. The table shows: • the compactness C, • the central value
of the scalar field φc/(σ0/

√
2), • the ADM mass Mmbλ, • the Noether charge N (mbλ)2, • the radius of the star (the radius

containing 99% of either the mass or of the Noether charge for RM or RN , respectively), and • the angular frequency of the
field in the complex plane, ω/ (mbλ), in dimensionless units. In the last two columns, we give • the normalized, Newtonian,
moment of inertia (where I =

∫
ρ2 dm, where ρ is the distance from the axis of rotation), and • the dimensionless tidal Love

number, ktidal, as computed in Refs. [61, 62]. For a NS with an ordinary equation of state and C ∼ 0.1, ktidal = O(200) while
ktidal = 0 for a BH.

Binaries q ν y
(1)
c y

(2)
c v

(1)
x v

(2)
x M0mbλ J0(mbλ)2 tc tretm remnant Mrmbλ RNmbλ Mrω

0
r

C003 - C022A 23.2 0.039 −9.58 0.42 −0.34 0.02 1.16 0.229 790 811 BS 1.07 4.50 0.218
C003 - C022 23.2 0.039 −9.58 0.42 −0.34 0.02 1.16 0.229 790 808 BS 1.13 4.76 0.228
C006 - C022 8.6 0.093 −8.96 1.04 −0.36 0.05 1.34 0.668 510 539 BS 1.24 5.0 0.239
C012 - C022 2.9 0.189 −8.95 3.05 −0.33 0.136 1.90 2.388 370 402 BH 1.89 3.48 0.467
C012 - C018 2.1 0.21 −8.18 3.81 −0.26 0.135 1.36 1.488 660 684 BS 1.17 4.34 0.250

TABLE II. Properties of unequal binary BS models and of the final remnant. Each case is characterized by: • the compactness

C of the individual BSs in the binary, • the mass-ratio q, • the symmetric mass ratio ν, • the two initial centers y
(i)
c , • the initial

velocities of the boost v
(i)
x , • the ADM mass M0 of the system, and • the orbital ADM angular momentum J0 of the system,

after the constraint-violating transient respectively. The merger and remnant are characterized by: • the coordinate time of
contact of the two stars tc (defined as the time at which the individual Noether charge densities make contact for the first
time), • the merger retarded time (defined as the time when the maximum of the modulus of the Ψ2,2

4 is produced minus the
travel time to the sphere where it is measured), • the type of final remnant, • the remnant mass Mrmbλ, • the remnant radius
RNmbλ (i.e., containing 99% of the Noether charge), and • the main GW frequency Mrω

0
r in the post-merger. When the final

remnant is a BH, the radius is computed from the expression for Kerr BHs, RH = Mr(1 +
√

1− a2), where a = Jr/M
2
r ≈ 0.5

is the dimensionless spin.

Courant factor λc ≡ ∆tl/∆xl = 0.4 on each refinement
level l to ensure the stability of the numerical scheme.

We analyze some relevant global physical quantities
from our simulations, such as the Arnowitt-Deser-
Misner (ADM) and the Komar mass, the ADM angu-
lar momentum, and the Noether charge, computed as
in Ref. [39]. We focus our attention mainly on the grav-
itational radiation represented by the strain h, which is
the quantity directly observable by GW detectors. We
consider first the Newman-Penrose scalar Ψ4, which can
be expanded in terms of spin-weighted s = −2 spherical
harmonics [73, 74] as

rΨ4(t, r, θ, φ) =
∑
l,m

Ψl,m
4 (t, r) −2Yl,m(θ, φ), (10)

where the coefficients Ψl,m
4 are extracted and cal-

culated on spherical surfaces at different extrac-
tion radii. The relation between this scalar and the two
polarizations of the strain is given by Ψ4 = ḧ+ − i ḧ×.
The components of the strain in the time domain can
be calculated by performing the inverse Fourier trans-
form of the strain in the frequency domain, hl,m(t) ≡
F−1[h̃l,m(f)], where a high-pass filter has been applied
in the frequency domain in order to attenuate the sig-

nal with frequencies lower than the initial orbital fre-
quency [39, 75]. The instantaneous angular frequency of
each GW mode can be calculated easily from Ψ4 as

ωl,m
GW = − 1

m
Im

(
Ψ̇l,m

4

Ψl,m
4

)
, f l,mGW =

ωl,m
GW

2π
. (11)

We will refer to ωGW as the one given by the dominant
mode l = m = 2.

The mass, the angular momentum, and Ψ4 are calcu-
lated on spherical surfaces at different extraction radii
between Rext = 100 and Rext = 200, which are located
far away from the sources in the wave zone.

III. DYNAMICS FOR UNEQUAL-MASS BS
BINARIES

We have evolved four unequal mass binary BS cases,
{C003-C022, C006-C022, C012-C022, C012-C018}, cov-
ering mass ratios q ≡ m1/m2 roughly between 2 and 23.
Additionally, we have studied a variation of the most ex-
treme case, C003-C022A, in which the heavier BS has
been transformed into an anti-BS. In what follows, we
describe first qualitatively the dynamics for all the cases
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Binaries M̃1mbλ ∆M1/M̃1 C̃1 ∆C1/C̃1 Ñ1(mbλ)2 ∆N1/Ñ1 M̃2mbλ ∆M2/M̃2 C̃2 ∆C2/C̃2 Ñ2(mbλ)2 ∆N2/Ñ2

C006 - C006 0.13 0.066 0.061 0.0099 0.071 0.14
C012 - C012 0.43 0.15 0.13 0.093 0.32 0.21
C018 - C018 1.0 0.22 0.21 0.14 1.0 0.29
C022 - C022 1.6 0.32 0.28 0.20 1.9 0.42
C003 - C022 0.048 0.034 0.033 0.093 0.012 0.38 1.1 0.035 0.22 0.0028 1.2 0.034
C006 - C022 0.14 0.11 0.063 0.044 0.076 0.20 1.2 0.11 0.23 0.044 1.3 0.13
C012 - C022 0.49 0.25 0.14 0.16 0.38 0.32 1.4 0.24 0.25 0.14 1.6 0.32
C012 - C018 0.44 0.17 0.13 0.10 0.33 0.23 0.92 0.15 0.20 0.10 0.88 0.19

TABLE III. Effective properties of the individual stars within the binary after the constraint violating transient. Tildes represent
“effective“ quantities of the stars in the binary. For the equal mass binaries of Paper I and the unequal mass binaries studied
here: • the mass from Eq. (7), • the compactness C from Eq. (8), • the Noether charge from Eq. (9), • for each of these, their
fractional differences, ∆X/X, with respect to the initial data for the isolated star used in the construction of the binary.

and then analyze the GWs produced by these mergers in
the next section.

A. Binary dynamics in the inspiral

We display some representative snapshots along the
equatorial plane to characterize the dynamics of these bi-
nary evolutions. In particular, the Noether charge densi-
ties in Fig. 2 show the dynamics of the condensed bosons,
whereas the scalar field norm in Fig. 3 shows the dynam-
ics of the scalar field generally.

The binaries in C003-C022A and C003-C022 complete
five full orbits before colliding, C006-C022 and C012-
C018 complete three orbits, and C012-C022 performs just
two. While such a short inspiral limits their use for guid-
ing templates, the inspiral is long enough for constraint
violations resulting from the construction of the initial
data to propagate away.

During the inspiral, the spacetime curvature is domi-
nated mainly by the heavier BS, which moves in a spiral
trajectory very close to the origin (i.e., see the leftmost
column of Fig. 2), while the lighter one induces a per-
turbation orbiting around the most massive object. This
effect is especially pronounced in the four most unequal
mass cases in which the heavier BS accounts for at least
75% of the binary mass. During the inspiral, the scalar
field constituting each star has no significant overlap (see
the first column of Fig. 3), and therefore nonlinear scalar
interactions only play a significant role inside the stars.
Roughly speaking, the BSs behave then like point par-
ticles with moderate deviations produced by the tidal
deformations. As the mass ratio approaches unity, the
binary behaves similarly to the equal-mass cases of Pa-
per 1. In particular, C012-C018 with q = 2.1 resembles
those equal-mass cases.

The aforementioned deviations due to tidal deforma-
tions can be estimated by looking at the quadrupole-

moment tensor Q
(i)
ab of the i-th object induced by the

tidal-field tensor G
(j)
ab produced by the j-th object (i, j =

1, 2) [76, 77],

Q
(i)
ab = λiG

(j)
ab ∼ λi

mj

r3
, (12)

where r is the orbital distance and λi = 2
3m

5
i k

(i)
tidal is the

tidal Love number of the i-th object, with k
(i)
tidal being

its dimensionless counterpart. Hence, the dimensionless

quadrupole moment, Q̄i = |Q(i)
ab |/m3

i , reads

Q̄1 ∼ k(1)tidal

q2

(1 + q)3
M3

0

r3
, (13)

Q̄2 ∼ k(2)tidal

q

(1 + q)3
M3

0

r3
, (14)

where M0 = m1 + m2 is the binary total mass. In
the large mass-ratio limit, q � 1, the tidally-induced
quadrupole moments of the primary and of the secondary
are suppressed by a factor q−1 and q−2, respectively. For

example, for a fixed value of k
(i)
tidal, the tidally-induced

quadrupole moment of the primary for q = 23 is sup-
pressed by a factor 3 relative to q = 1, whereas that
of the secondary is even a factor ∼ 100 smaller. Over-
all, tidal effects on the secondary object are less relevant
than those on the primary.

B. Final fate of the binary merger

If the system is sufficiently massive such that the re-
maining mass after merger exceeds the maximum stable
BS mass (i.e., Mr ≥ Mmax ≈ 1.85/(mbλ)), one expects
the system to collapse to a remnant BH. If instead the
total mass is below this threshold, a remnant BS is ex-
pected. In the latter case, the possibility of forming a ro-
tating BS should be considered. At least two conditions
appear to be required for such formation: (i) because ro-
tating BSs have quantized angular momentum, binaries
need to have angular momentum at the point of contact
at least slightly larger than or equal to the first discrete
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FIG. 2. Dynamics of the Noether charge. Noether charge densities in the equatorial plane (z = 0) at representative times. Each
row represents one of the cases (from top to bottom): {C003-C022A, C003-C022, C006-C022, C012-C022, C012-C018}. The
first column illustrates a time roughly one orbit before the contact time tc (defined as the time at which the individual
Noether charge densities make contact for the first time), the second column occurs at contact time, the third is
roughly an orbit after the contact time (except for the C012-C018 case, in order to visualize the ejected blob), and the fourth
one occurs at the end of our simulations. Note that the final remnant for C012-C022 is a rotating BH which quickly engulfs
the surrounding scalar field (i.e., not visible on this natural scale).
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FIG. 3. Dynamics of the scalar field. Logarithm of the modulus of the scalar field ||Φ|| in the equatorial plane (z = 0), at
representative times. Each row represents the unequal cases considered. Notice that there is only some scalar emission around
the contact time tc (defined as the time at which the individual Noether charge densities make contact for the
first time), suggesting that the final object is an almost stationary BS (except for the simulation on the third row, in which
the remnant is a spinning BH).

level of the rotating star, 3 and (ii) the rotating solution
to which the remnant might settle must be stable.

3 This argument excludes some exotic possibility in which, say,
GWs with some opposite angular momentum are radiated copi-

ously until the remnant achieves the sufficient amount of angular
momentum.
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Once the stars contact each other, one expects scalar
field interactions to produce additional attractive forces
that accelerate the merger (see the discussion of the ef-
fective force with just a massive potential in Appendix B
of [36]). The newly formed, rotating object is initially
largely nonaxisymmetric, and, even by the end of our
simulations, the remnant is a highly perturbed BS (see
the rightmost column of Fig. 2). Some general features
of the dynamics can be found in certain global quantities
(mass, Noether charge, and angular momentum) which
are displayed in Fig. 4.

The mass and the Noether charge are unambiguously
defined global quantities, in contrast to the radius of the
star. In the case of a complex field, the U(1) symmetry,
which ensures the conservation of the Noether charge,
significantly restricts the ways in which the remnants
might relax. Fig. 5 shows the mass-Noether charge phase
space for two representative cases C006-C012 and C012-
C018. Here, we present several estimates of the initial
and final data along with families of isolated BSs, to fa-
cilitate the understanding of the relaxation of the rem-
nant.

The orange squares indicate the simplest estimate of
the initial data, (M1 +M2, N1 +N2), obtained by adding
the properties of the isolated BSs used to construct the
binary. These two squares fall far from our two other es-
timates of the initial data. In particular, the total mass
and Noether charge measured by the numerics after the
transient is shown in black circles. We then construct
the “effective” initial data (red crosses) by decompos-
ing the numerically obtained total mass via Eq. (7) and
computing the charge of each BSs from these individual
masses (with Eq. (9) in Sec. II B).

We further note that, due to the nonlinearity of the
function N(M), some amount of scalar and/or GW emis-
sion is needed during the merger in order for the remnant
to settle into either a static or rotating configuration. If
the remnant is assumed to be a BS that relaxes only by
the emission of GWs, namely no emission of scalar field to
infinity, the evolutionary path of the binary would follow
a horizontal line in the N -M phase space (blue dashed
line on Fig. 5), ultimately settling into the remnant BS
occurring at the intersection with the family of nonrotat-
ing BSs given by Eq. (9) (red dotted line). Our simula-
tions indicate emission of scalar field, in addition to GWs,
a process known as “gravitational cooling” [20, 21]. In-
deed, the path of the numerical evolution (green dots) in-
dicates that the dynamics are driving each system toward
a stationary BS (red-dotted line). Although most of these
BS mergers ended before the remnant fully relaxed to sta-
tionarity, we have established for C003-C022 and C012-
C012 that the point (Mr, Nr) (where Nr ≡ N(tend)) in-
deed lies on the isolated BS curve. However, the near
constancy of the Noether charge in the late postmerger
(Fig. 4) and the close approach of the final simulation
to the isolated BS curve (Fig. 5) both indicate that the
mergers that do not collapse are forming a stable, non-
rotating, solitonic BS.
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FIG. 4. Global quantities. ADM mass (top) , angular mo-
mentum Jz (middle) and Noether charge (bottom) as func-
tions of time. The time has been shifted such that contact
time happens at t = 0 and rescaled with the initial total
mass M0 of each binary. Horizontal dashed lines in the mid-
dle panel indicate the angular momentum of the ground state
rotating BS corresponding to the Noether charge measured
at the contact time. Notice that the angular momentum de-
creases monotonically (although slowly) after merger for all
remnants except for that of C012-C022 which collapses to
a BH. This decrease in angular momentum along with the
fact that these binaries (except C012-C022 which collapses
to a BH) have less angular momentum than any rotating
BS with the same Noether charge support our claim that
all non-collapsed cases settle to a nonrotating BS. The non-
monotonic, brief drops in the mass and angular momentum
plots for the C003-C022A and C012-C018 cases correspond
to the passage of transients across the extraction surface on
which mass and angular momentum are calculated (the re-
tarded time is used). The Noether charge is computed as a
volume integral and therefore less subject to such errors.



10

If the late stage evolution is dominated by GW emis-
sion (since most of the ambient scalar field has already
been radiated), then we would expect the final ob-
ject to be that represented by the black solid diamond,
(Mr, N(Mr)), itself a stationary BS, because the Noether
charge would not be changing.

An important unresolved question is whether a merger
of two BSs can produce a rotating BS. The stability of
rotating, solitonic BSs has been studied recently. First,
rotating BSs without scalar self-interactions were found
to be unstable due to a non-axisymmetric instability [79].
However, a subsequent study showed that this instability
was quenched for the solitonic model of the potential [78]
(see also Ref. [80]) if M > 0.13/(mbλ), for the value σ0 =
0.05 considered here. Without stability, one would not
expect formation of such configurations from a merger.

Rotating BSs have quantized angular momentum, J =
kN for some integer k, and one can calculate the func-
tion N(M) for the k = 1 family of rotating BSs following
Ref. [78] (see also [81]). We display this family of solu-
tions as a green solid curve in the right panel of Fig. 5
(case C012-C018) because this binary has angular mo-
mentum close to this first quantized level. Actually, only
two cases among those studied in this work and Paper I
(i.e., C012-C018 and C012-C012) are close to satisfying
the quantization condition, namely that the angular mo-
mentum is greater than or equal to the Noether charge
at the time of contact. In neither of these two cases do
we find a rotating remnant, and the angular momentum
is primarily reduced through emission of scalar “blobs.”

The case C012-C018 is shown in the right panel of
Fig. 5. We display the Noether charge equal to the bi-
nary’s angular momentum at the time of contact with the
horizontal, yellow dot-dashed line. However, as shown in
the figure, the point of intersection of the dynamical path
of the binary, (M(t), N(t)) shown in green dots, with the
curve indicating the k = 1 family of rotating BSs (solid
green curve) occurs above this yellow line. Because these
rotating solutions have angular momentum equal to their
charge, the evolution lacks sufficient angular momentum
to form the rotating BS indicated by this point of inter-
section.

In an effort to understand the configuration space of
binaries in terms of possible endstates, in particular in-
cluding formation of a rotating remnant or a blob, we pa-
rameterize the quantization condition. We first compute
a Keplerian estimate of the angular momentum either at
the time of first contact Rc = C1/M1 + C2/M2 or when
the binary reaches the innermost stable circular orbit,
RISCO = 6M0, whichever occurs first. We then correct
this estimate by including the relativistic effects of strong
gravity. Due to the pre-contact scalar emission, the to-
tal Noether charge in the binary at the point of contact
will be slightly smaller than the initial one. In addition,
we have observed blob emission in both cases where the
total charge of the binary is slightly higher than Jc. We
incorporate these two effects in our quantization condi-
tion for rotating boson stars, J ≥ N , by introducing two

new parameters {eN , eJ} in the following way

Jc,K(1 + eJ)

N(M1) +N(M2)
> 1 + eN , (15)

where Jc,K is the Keplerian estimate of the angular mo-
mentum at the contact time, eN estimates either the
amount of Noether charge radiated during the merger
(eN > 0) or the difference between the critical angular
momentum and the charge at the point of contact that
allows for blob emission (eN < 0). Finally, eJ accounts
for general relativistic corrections to the Keplerian angu-
lar momentum calculation.

We use the above cases to estimate the value for the
parameters eJ , eN . To estimate eJ , we compute the dif-
ferences between the Keplerian estimate of the angular
momentum at contact time and the numerical value, ob-
taining ∼ 25% in scenarios where we observe blob for-
mation: C012-C012 and C012-C018. In the low-mass
regime, where solitonic BSs are in the weak-field regime,
we expect that eJ → 0. Thus, we linearly interpolate eJ
between 0 and 0.25 for M0/2 ∈ [Mmin,MC012] and take
the constant value eJ = 0.25 up to M0 = Mmax. Due to
the initial data constraint violation, we cannot estimate
reliably how much of the Noether charge is emitted before
contact. For the sake of argument, we take eN = 0.01
in this case, delineating a subset of the parameter space
where the strict form of the quantization condition is
satisfied and where rotating remnants may form. In ad-
dition, we require that the remnant has surpassed the
threshold mass estimate from Ref. [78].

In the two cases where the blobs are observed, one finds
eN = {−0.05,−0.02} for C012-C018 and C012-C012,
respectively. Thus, taking eN = −0.05 would encom-
pass both scenarios where blobs are found and indicate
the part of the parameter space where one can expect
blobs generically and even possibly rotating remnants
(more restrictive condition). We sketch the configura-
tion space for these mergers in Fig. 6 in two ways: the left
panel plots the mass ratio versus the total mass, (q,M),
whereas the right panel shows the space spanned by in-
dividual masses (M1mbλ,M2mbλ). Solutions exist only
for binaries constructed with stable BSs, Mi < Mmax,
with regions outside this indicated in white. For bina-
ries with M1 + M2 < Mmax, the formation of a rotat-
ing BS appears possible for the binaries that do not col-
lapse to a BH and possess angular momentum satisfying
Eq. (15), although we have not observed such formation
(red hashed region).4 The set where we expect blob emis-
sion based on the results of C012-C018 and C012-C012

4 Because the maximal mass of rotating BSs is larger than
that for non-rotating BSs, a priori, even binaries with
total mass slightly higher than the maximum mass for
static stars, Mmax, could allow for the formation of a ro-
tating remnant. Note, however, that the effective mass
of C012-C022 is slightly larger than the static maxi-
mum mass Mmax and the configuration collapses to BH.
Whether this also happens for q → 1 is an open question.
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FIG. 5. Mass-Noether charge phase space. Evolution of the total mass and charge of the system for two representative cases:
C006-C012 (left) and C012-C018 (right) which ejects a blob of scalar field after merger. The orange square for each case
represents the value of (M1 + M2, N1 + N2) obtained from the individual stars as listed in Table I. The black, open circles
are the masses and charges, (M0, N0), obtained from the numerical evolution just after the transient. The red crosses are

the “effective” values (M̃1 + M̃2, N(M̃1) + N(M̃2)), as explained in Sec. II B. The fact that the red crosses and black circles
are close to each other supports the validity of this approach. The green dots trace the numerical evolution by showing the
extracted quantities (M(t), N(t)). The values characterizing the final state, (Mr, Nr), of the simulation are represented by a
green triangle. The black diamond is the point, (Mr, N(Mr)), with the same mass as the green triangle but with the charge
obtained from the fit Eq. (9). If one assumes that the remnant is a BS that relaxes only via emission of gravitational waves, one
obtains a horizontal phase space trajectory (blue dashed line) through the initial data (namely the black circle here). The family
of nonrotating BSs given by Eq. (9) are plotted with a (red dotted curve). Only the case on the right has angular momentum
comparable to the first rotating solution, and so for this case we also show the family of k = 1 rotating BS configurations for
our same potential from Ref. [78] with a solid green curve. Because J = kN for such rotating BSs, we also show the value of
N corresponding to the angular momentum of the binary at contact time with a horizontal, yellow dot-dashed line.

cases (blue region) has a red hashed region as its subset.
Note that lacking an understanding of the physics of the
blob formation, the blue region should serve only for il-
lustrative purposes. Both of these regions are determined
approximately and require more simulations in order to
understand their precise extent.

One expects qualitatively similar behavior near M0 ≈
Mmax in the small λ regime (λ � 1). In contrast, when
M0 → Mmin BSs behave as thick-walled Q-balls (where
“Q-balls” [82] refers to the flatspace limit of solitonic
BSs) [52], we can study the quantization condition (15) in
detail in this regime. We consider an equal-mass (q = 1)
binary with N ≈ λM in which the objects collide at
Rc (for q = 1 this happens when C < 0.17). Taking
eJ ≈ eN ≈ 0 (in mb = λ−1 units) and setting the angu-
lar velocity to the Keplerian estimate, it can be shown
with some algebra that Eq. (15) becomes

C <
M2

4λ2
. (16)

Thus, for sufficiently small λ (approximately an order of
magnitude smaller than the value in this work λ = 0.25),
the quantization condition will be satisfied. This sim-
ple expression does not change parametrically when a
more precise description of the Q-balls is used [52]. Al-

though rotating Q-ball solutions have been constructed
[81], the non-axisymmetric instability (NAI) probably
prevents one from dynamically forming, based on the re-
sults of Ref. [78]. Whether in those cases blobs form or
the non-axisymmetric instability would kick in is an open
question.

To conclude, we cannot rule out the formation of a ro-
tating BS with the solitonic potential although none has
been formed. In any case, our parameter space analy-
sis indicates that the initial conditions would need sig-
nificant tuning, which may require more accurate initial
data. Even in those cases where the formation of rotating
BS might be feasible, as suggested in Paper I, the orga-
nization of the bosonic field into a rotating star from the
very nonlinear merger may be too difficult, particularly
because the rotating BS necessarily has a toroidal energy
density 5 .

5 Rotating Proca stars instead have a spheroidal energy density
and yet none of these have been formed from a merger either [43].
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FIG. 6. Scenario classification. The parameter space of solutions represented in two different ways: (left) mass ratio versus
total mass, and (right) individual mass of one star versus the other. The outcomes of our simulations are consistent with
Mmax being the simple delineator for the BS/BH nature of the remnant. The blue region encloses configurations that satisfy
the angular momentum requirement of Eq. (15) (informed by our evolutions that produce blobs), and thus we expect either
blob ejection or the formation of a rotating boson star. The red hashed region is a subset of this region which we have not
sampled, but where rotating BSs may form.

C. Remnants: Scalar clouds, blobs, and kicks

Another interesting possibility is the formation of a
stable scalar cloud surrounding the remnant rotating
BH. A necessary condition for the scalar field to remain
around a spinning BH is the saturation of the superradi-
ant condition [83]. In particular, this condition is satu-
rated when the phase oscillation frequency of the scalar
field, ω, is synchronized with the angular frequency of the
BH, ΩH , such that ΩH = ω/m for some integer m. Syn-
chronized scalar clouds were not found originally from
the mergers of Proca stars [43], but more recent and
detailed equal-mass binary simulations of non-solitonic
bosonic stars showed long-lived, scalar hair around a ro-
tating horizon for a small range of the initial angular
momentum [59].

We examine the case C012-C022 to determine whether
any scalar field remains after the remnant has collapsed
to a BH. Visualizing the scalar field and its associated
Noether charged density reveals no significant remaining
scalar field (see the fourth column of the the C012-C022
case of Figs. 2 and 3). Furthermore, one sees the total
Noether charge drop quickly to zero after merger in Fig. 4
and the bottom panel of Fig. 7.

To evaluate the possibility of formation of a synchro-
nized scalar cloud, we calculate the oscillation frequency
of the scalar field for a numerical comparison of the syn-
chronization condition ΩH = ω/m. We note first that
the final BH has mass M = 1.89/(mbλ) and angular mo-
mentum Jz = 1.92/(mbλ)2, leading to a dimensionless

spin a = Jz/M
2 = 0.537. The radius and angular fre-

quency of the BH can be computed from expressions for
Kerr-Schild BHs as RH = M(1 +

√
1− a2) ≈ 3.5/(mbλ)

and ΩH = a/(2RH) ≈ 0.077mbλ. We Fourier transform
the scalar field at an arbitrary point outside the BH but
where the scalar field is well above any numerical noise
(roughly a distance of 12/(mbλ) from the BH, as in the
top panel of Fig. 7). We find a frequency ω ≈ 0.6mbλ
which, with the synchronization condition and the esti-
mate of the BH rotation ΩH , implies an azimuthal quan-
tum number m ≥ 8. Interestingly, as shown in the top
panel of Fig. 7, the real, and similarly the imaginary (not
shown), components of the late-time scalar field configu-
ration outside the BH resemble the high m-number struc-
ture of a stationary cloud. However, the amplitude of the
scalar field is decreasing fast, consistent with the decrease
in both the Komar mass and Noether charge, displayed
in the bottom panel of the same figure.

Previous studies suggest that initial data might need
to be fine tuned in order to form a stationary configura-
tion, unless such a configuration is a dynamical attractor
as in the case of the superradiant instability [83]. It is
worth noticing that Ref. [59] found Proca clouds with m
as high as 6, but in the vector case the superradiant in-
stability develops much faster than in the scalar case at
hand. In the small mbM limit, the instability time scale
of scalar fields is longer than that of vectors by a factor
(mbM)−2 � 1 [83]. Furthermore, the instability is very
suppressed for large azimuthal numberm. The imaginary
part of the fundamental (l,m) mode for a perturbation
with spin s (s = 0, 1 for scalars and vectors, respectively)
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depends on the factor βls =
[
(l−s)!(l+s)!
(2l)!(2l+1)!!

]2
[83, 84]. This

dependence is responsible for a suppression of the super-
radiant instability time scale when m � 1. Indeed, for
the most relevant l = m � 1, and focusing only on the
m-dependence, the instability time scale reads

τ = ω−1
I ∼ m2m(mbM)−4m−5+2s , (17)

which quickly becomes extremely large as m increases.
Note that the fastest growing superradiantly unstable
mode in the scalar case (l = m = 1) has an instabil-
ity time scale at least τ ∼ 105M for a nearly extremal
BH. This is already much longer than the time scale of
our simulations, and it becomes much longer for m � 1
modes and moderately spinning BHs. This discussion
strongly suggests that it is unlikely that an m = 8 su-
perradiant cloud could form dynamically over the limited
time scale of our simulations.

It might be possible that mergers leading to smaller
oscillation frequencies of the remnant scalar field or with
higher initial angular momentum (so that the final BH is
rapidly rotating) are more likely to produce clouds. Ei-
ther of these conditions would lead to a smaller required
m, but may limit the parameter space of cloud-generating
solutions. Clearly, more work is needed to answer this
question.

We now consider the ejection of scalar blobs. As pre-
viously explained, the case C012-C018 is the only one
with contact angular momentum close to that of the first
quantized spinning BS configuration (namely, Jz & N)
that does not collapse to a BH. Instead, whether the
spheroidal energy density formed in the merger somehow
prevents the configuration from relaxing to the toroidal
shape of the rotating BS or not, the system relaxes in-
stead to a nonrotating BS. To do so, the system must
shed its angular momentum.

In this case, the excess angular momentum is emitted
in the form of a blob of scalar field that is ejected from
the remnant soon after the merger (see the bottom row
of Figs. 2 and 3). This blob travels outward on the grid,
and its passage across the spherical surface (i.e., around
(t− tc)/M0 ≈ 100) at which the system mass and angu-
lar momentum are computed disrupts the assumptions of
the calculation, seen as non-monotonicity in the global
quantities shown in Fig. 4.

Using the values before and after the drop in mass,
we can estimate the blob’s mass as Mblob ≈ 0.12. De-
spite the blob containing only a small fraction of the total
mass, it carries a significant fraction of the total angular
momentum due to its large velocity, vblob ≈ 0.5 directed
nearly tangentially away from the remnant and its dis-
tance from the center of mass when ejected, L ≈ 7. In-
deed, using the same simple estimate for the angular mo-
mentum as in Paper I, we obtain Jz ≈MblobvblobL ≈ 0.4,
which is roughly equal to the sharp decrease of angu-
lar momentum observed in the middle panel of Fig. 4.
On the time scale of our simulation, the blob appears
bounded. In fact, the blob satisfies the stability condi-
tion (in mb = λ−1 units) λMblob < Nblob, with Nblob ≈
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FIG. 7. Details of the late-time behavior of case C012-
C022. (Top) Snapshot of the real part of the scalar field
at the latest time. Some scalar field remains around the BH
(whose apparent horizon is represented by the black sphere lo-
cated at the center of the plot) with a large m configuration.
The amplitude of the scalar field decays quickly during the
timescale of our simulations and does not reach the stationary
state expected for a single-mode synchronized scalar cloud.
(Bottom) Noether charge and Komar mass (formulated only
in terms of the stress-energy tensor and hence measures only
the scalar energy and not that of the BH) as a function of
time for the same case. After the sudden drop at the merger,
both quantities decay exponentially as the scalar field falls
into the BH.

0.05/(mbλ)2 (see Ref. [52] and references therein for a
discussion of the stability regimes of solitonic BSs).

In addition to the unequal mass case C012-C018 pre-
sented here, the ejection of condensed scalar field was ob-
served in two equal-mass BS binary simulations, one in
Ref. [39] and the other in Paper I. In those two cases, the
symmetry of the binary resulted in two, identical blobs
propagating along opposite directions. That three differ-
ent studies found blob ejection suggests that such ejection
might be typical in solitonic BS binaries under certain
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conditions.
The ejection of the blobs has important implications

for the astrophysics of BS mergers should such systems
(or similar systems such as axion stars) actually ex-
ist in nature. In contrast to the equal-mass case that
ejects two blobs in opposite directions, the ejection of
a single blob generates a kick on the remnant. For bi-
naries with large enough mass ratios, the kick can be
large; large even compared to the superkicks of binary
BHs (which are as large as a few × 103 km/s [85–88])
and larger than the typical escape velocities of galaxies
and of globular clusters (which are of O(102 − 103) km/s
and O(10) km/s, respectively). For example, the linear
momentum of the blob shown in the C012-C018 sim-
ulation is roughly Mblobvblob ≈ 0.06/(mbλ) which, by
linear-momentum conservation, implies that the rem-
nant with mass Mr = 1.17/(mbλ) recoils with a velocity
vr ≈ 0.05 ∼ 1.4×104 km/s . In practice, since the ejected
scalar blobs have a sizeable mass and relativistic speed,
they induce remnant kicks much more efficiently than
GW emission in asymmetric binary BH systems [85–88].
These large kicks would have important implications for
the merger rate of BS binaries in the universe, as they
largely exceed the escape velocity from bound structures
(e.g. nuclear star clusters [89] and galaxies [90]). As a re-
sult, the rate of successive generations of mergers (which
is particularly important for supermassive objects, see
e.g. Ref. [91]) may be suppressed relative to the BH
case. Moreover, “‘stray” BSs moving at high speeds may
be present in the intergalactic medium as a result of ejec-
tions from the host galaxies.

Finally, one might be tempted to associate this disrup-
tion and blob ejection to the nonaxisymmetric instabil-
ity present in some rotating BSs [79]. However, a recent
study shows that the NAI should be quenched for the soli-
tonic potential for sufficiently compact BSs [78], which
suggests that the NAI is not the cause of blob ejection.

D. Collision of boson and anti-boson stars

The use of BSs as a model of compact objects allows
easily for the study of anti-stars [92]. Here, the scalar
field represents its own anti-particle simply by changing
the sign of its phase oscillation, ω → −ω (this trans-
formation also switches the sign of the Noether charge
associated with the BS). The case C003-C022A repre-
sents a BS with a small “antimatter star” in a merging
binary. The evolutions of C003-C022A and C003-C022
differ only once the stars make contact, at which point the
antistar annihilates. In particular, the interaction of the
oppositely oscillating complex field annihilates such that
the remaining field lacks the harmonic oscillation in time
and the Noether charge density vanishes. Therefore, this
scalar field interaction breaks the coherence of the BS so-
lution, the dispersive nature of the scalar field dominates
over the attraction of gravity, and the unbound scalar
field is radiated to infinity.

The small difference between the final and initial mass
of case C003-C022A, ∆M ≈ 0.09, accounts roughly for
twice the value of the lightest BS, M = 0.0463. This
suggests that other energies, such as that of GW radi-
ation and binding energy, change little or are otherwise
very small. This simple calculation is also consistent with
the lightest star being completely annihilated during the
merger. It is interesting, and a sign of the stability of the
solutions under a large perturbation, that the remnant
still settles into a stable BS, even after the annihilation
of a significant fraction of its Noether charge.

IV. GRAVITATIONAL WAVE SIGNAL

We now turn our attention to the analysis of the gravi-
tational radiation produced by unequal-mass BS binaries.

A. Late inspiral and merger

Some of the most relevant (l,m) modes of the gravita-
tional radiation represented by the strain, together with
the angular frequency of the (2, 2) mode, are displayed
in Fig. 8. A simple inspection of these profiles already
confirms that the dominant mode during the inspiral is
always the l = m = 2 for our wide range of mass ra-
tios. As expected, mass ratios closer to unity (i.e., such
as the C012-C018 case), when the mass quadrupole mo-
ment is stronger, displays a larger predominance of the
l = m = 2 mode. On the other hand, for large mass
ratios (i.e., such as the C003-C022 case), the importance
of the higher-order modes increases. It is interesting to
note that after the merger the amplitudes of the various
modes are of the same order, without one clearly domi-
nating over the others.

Furthermore, as the mass ratio increases, the effects of
tidal deformations on the waveform become less relevant.
This can be understood as follows. A generic quadrupole-

moment tensor, Q
(i)
ab , of the i-th object affects the GW

phase starting at second post-Newtonian order. The ex-
tra 1/r3 dependence of the tidally-induced quadrupole
moment [see Eq. (12)] implies that tidal effects enter the
GW phase starting at the fifth post-Newtonian order,
with a phase correction [76, 77]

δφtidal = −117

8

(1 + q)2

q

Λ

M5
0

v5 , (18)

where v = (πM0f)1/3 is the orbital velocity, f is the GW
frequency, and Λ = 1

26 ((1 + 12/q)λ1 + (1 + 12q)λ2) is
the weighted tidal deformability. When q = 1, Λ = (λ1 +
λ2)/2 is simply the average of the two tidal deformability
parameters. However, in the large mass-ratio limit [93],
we can write the correction as

δφtidal = −k1
(

3

8
v5q + . . .

)
− k2

(
9

2
v5

1

q3
+ . . .

)
, (19)
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Binaries q k1 k2 Λ/M5
0

C003 - C022A 23.2 20 136494 0.75
C003 - C022 23.2 20 136494 0.75
C006 - C022 8.6 20 8420 0.99
C012 - C022 2.9 20 332 0.94
C012 - C018 2.1 41 332 1.79

TABLE IV. Tidal properties of unequal binary BS models
considered in our simulations. For each binary studied here,
the weighted tidal deformability Λ is shown. Despite the large
tidal Love numbers in the most unequal mass binaries, the
binary deformability increases as q → 1.

where we include for each of the tidal terms k1 and k2
only the leading-order term in the q � 1 expansion. The
above equation shows that the tidal deformability of the
primary is much more important than that of the sec-
ondary, which is suppressed by a relative factor ∼ q−4.
Thus, the net contribution of the tidal deformability in
the GW phase, compared to the point-particle phase, de-
pends on two competing effects: on the one hand, less
compact BSs have a large tidal Love number (see Ta-
ble I) but, on the other hand, for binaries with very dis-
parate mass stars the tidal Love number of the secondary
is negligible. The quantity Λ/M5

0 , which provides a mea-
sure of the relevance of the tidal contribution compared
to the leading-order point particle phase, is presented in
Table IV. For the binary systems under consideration,
the suppressing effect of large mass ratio more than com-
pensate for the large tidal Love number of the secondary,
and hence the quantity Λ/M5

0 is larger for the smallest
mass-ratio system in the catalog.

Let us now consider the waveform’s higher modes. We
can characterize the effect of the mass ratio on the higher
modes by examining the ratio between some relevant
modes hl,m and the dominant h2,2 mode. The top panel
of Fig. 9 displays this ratio for the two extremely unequal
cases, C012-C018 with q = 2.1 (dashed lines) and C003-
C022 with q = 23.2 (solid lines). The panel shows clearly
that h3,3 is much larger for the more unequal case while
the h4,4 case is less clear. A more quantitative compar-
ison can be performed by averaging the ratios hl,m/h2,2

over the last few orbits, corresponding roughly to the
range of orbital frequencies M0ωGW ∈ (0.05, 0.1). In this
way, we are then excluding both the early inspiral, con-
taminated with significant constraint violations, and the
post-merger phase. The bottom panel of Fig. 9 displays
these ratios as a function of the mass ratio. The mode
h3,3 increases relative to the dominant one by almost a
factor 1.7 when passing from q = 2 to q = 23, while h4,4

barely changes. Even for our largest mass ratio, the am-
plitude of the h3,3 mode is at most 25% of the dominant
one h2,2.

B. Post-merger

We analyze the post-merger frequencies of the gravita-
tional signal of the remnant, showing the power spectral
density of the dominant l = m = 2 mode in the top panel
of Fig. 10. In the bottom panel of Fig. 10, we display the
frequency of the dominant mode for all the cases studied
in this paper and Paper I, together with the fundamental
mode for isolated BS stars as a function of the compact-
ness of the remnant.

An analysis from Paper I indicates a correspondence
between the frequency of the first peak with the quasi-
normal mode (QNM) of isolated BSs. We scruti-
nize this hypothesis further by considering the post-
merger behavior of all configurations from both papers
as well as the QNM of isolated solitonic BSs with C =
{0.06, 0.12, 0.18, 0.22} calculated in Paper I. We fit the
spectral lines with a Lorentzian function, i.e.

h̃2,2(ω) ∼ ωI

(ω2
I + (ω − ωR)2)

(20)

to determine the peak frequency of the main mode ωR

and the inverse decay time ωI . In line with the discussion
on the relaxation of the remnant from Sec. III B, one
can construct quadratic fits for ωR(Mr) , ωI(Mr), where
Mr = M(Nr) [Eq. (9)],

MrωR ≈ 0.05 + 0.3Mr − 0.13(Mr)2 , (21)

MrωI ≈ 0.013 + 0.007Mr , (22)

for isolated scenarios from Paper I. As shown in Fig. 11
(left panel), excluding the C018-C018 case from Paper I
where the post-merger behavior is not reliable, real parts
of the post-merger main mode frequencies agree well with
the isolated solitonic BS QNM fit.

However, in the case of the imaginary frequency (see
Fig. 11, right panel) all remnants produced in the bi-
nary coalescence have an offset with respect to the iso-
lated QNMs. We notice that the three configurations
in which blobs do not form have lower imaginary fre-
quencies (longer decay times) compared to the isolated
configurations. In contrast, in the case of blob forma-
tion, frequencies are higher (shorter decay times) than
expected from the isolated QNMs. Note the three cases
with mbλMr ≈ 1.07 − 1.1 that have almost identical
real frequencies but vastly different imaginary compo-
nents. Understanding this peculiar behavior lies beyond
the scope of this paper. We speculate that the excess
angular momentum requires longer decay times in con-
trast to the isolated configurations, except in the case
of blob formation that removes the excess (rotational)
energy more efficiently than in the isolated case, thus
shortening the decay time.

We have also compared the fits with the tabulated
BH QNMs [94]. The BH remnant from Paper I,
i.e. the C022-C022 case (a = 0.698), has tabulated
value (MrωR,MrωI) = (0.532,−0.081), while we find
(0.469,−0.083), which is close to the time-domain fit
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FIG. 8. GWs in the coalescence. Different modes l = m of the strain as a function of time, together with the frequency of the
dominant mode l = m = 2. Clearly, the l = m = 2 mode is always much larger than the others, even for the largest mass ratio.
The vertical, gray lines show the merger time.

from Paper I where (0.5,−0.07). For the C022-C012 case
(a = 0.5), we find the tabulated value (0.464,−0.086),
while the fit gives (0.475,−0.061). This mild discrep-
ancy between the fit and the predicted ones for BHs
may originate from the numerical precision of the ADM
mass/angular momentum extraction and the fit, the pres-
ence of some remnant scalar surrounding the BH, or the
fact that the frequency estimate depend on the choice of
the post-merger time. Nonetheless, the overall agreement
corroborates the conclusion that the remnant is a BH.

C. Solitonic BSs in the LIGO/Virgo band

In this subsection, we quantify the difference between
the GW signal expected from BS binaries and from bi-
nary BHs, focusing on the LIGO/Virgo band. In partic-
ular, we assess whether analyzing LIGO/Virgo data with
binary BH templates can lead to missed detections or to
biases on the estimate of the parameters of the source,
under the assumption that the latter consists of a BS

binary.

As a preliminary test of this, we consider the BS binary
waveforms extracted from the unequal-mass simulations
of this paper, focusing on the l = m = 2 mode alone.
Actually, each of these simulations can be taken to rep-
resent a binary of any total mass, as long as frequencies
and strain amplitudes are properly rescaled, i.e. each
simulation actually corresponds to a one-parameter fam-
ily of systems with varying binary mass M , but with fixed
dimensionless product mbM/~. We choose therefore to
vary M in a range likely to yield observable effects in
the LIGO/Virgo frequency band, i.e. we choose M in
the interval [Mmin, 100]M�, where Mmin is such that the
smaller progenitor is always heavier than ∼ 3M�. For
each BS waveform obtained in this way, we rescale the
(2,2)-mode strain amplitude to correspond to a fiducial
luminosity distance of 400 Mpc. (We recall that choosing
a slightly different distance will simply rescale strains and
signal-to-noise ratios by a linear factor, at leading order.)
We then compare the BS signal obtained to SEOBNRv4
BH binary waveforms [95], as implemented in the Pycbc
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FIG. 9. GWs in the inspiral stage. (Top) Ratio between the
l = m ≥ 2 modes of the strain and the dominant l = m = 2
for the two most extreme cases C012-C018 (q = 2.1, dashed
lines) and C003-C022 (q = 23.2, solid lines). (Bottom) The
ratios averaged over the last few orbits for all the mass ratios
studied. Notice that the l = m = 3 mode increases by a factor
1.7 in this range of mass ratios, while the l = m = 4 barely
increases with mass ratio.

python package [96]. The component masses and lumi-
nosity distance of the BH binary waveform are chosen to
match those of the BS binary, the component BH spins
are set to zero, and the initial phase and merger time are
chosen so as to minimize the “difference” of the two sig-
nals. In particular, we minimize the signal-to-noise ratio
of the difference of the two signals,

ρ(∆) =

[
4

∫ |∆̃(f)|2
Sn(f)

df

]1/2
, (23)

with ∆(t) ≡ hBS(t)− hBH(t) the residual, i.e. the differ-
ence between BS and BH signals (computed for optimal
detector orientation and sky position), and with a tilde
denoting a Fourier transform. The (single-sided) power
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FIG. 10. GWs in the post-merger stage. (Top) Power spec-
tral density of the main mode (i.e., l = m = 2) of the strain
for the post-merger. (Bottom) Frequencies of the first peak
of the l = m = 2 mode for all the cases represented as a
function of the compactness of the remnant CN ≡ Mr/RN

(filled circles). Reliable results from the equal-mass mergers
of Paper I are shown with filled squares. The dashed line cor-
responds to the lowest quasinormal mode (QNM) frequencies
ωQNM of isolated BSs. The fact that the frequencies of the
merger remnants are in good agreement with those of isolated
BSs provides further evidence that the remnants have settled
to stable BSs. Notice that we have also included the cases
that collapse to rotating BHs (those with CN ≥ 0.5).

spectral density of the noise, Sn, is chosen to be that of a
single LIGO detector. More precisely, we consider both
the case in which Sn corresponds to the Livingston detec-
tor in O3b [3], or to the zero-detuning, high laser power
design sensitivity curve [97]. Accounting for the second
LIGO interferometer and for Virgo will further increase
the signal-to-noise ratio, roughly by a factor .

√
3 (with

the . due to the fact that the source can only be opti-
mally placed relative to one detector at a time, and that
Virgo is less sensitive than LIGO in O3b).

Two examples of BS binary waveforms, qualitatively
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FIG. 11. QNMs and post-merger spectrum. (Left) Real and (right) imaginary parts of the frequencies of the first peak of
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and (22).

representative of the two possible post-merger scenarios
(i.e. BH or BS remnant), are shown in Fig. 12, where they
are compared to the “most similar” BH binary waveforms
identified with this procedure.

The signal-to-noise ratio ρ(hBH) of the BH binary
waveform best matching each BS signal is shown in the
top panel of Fig. 13, as a function of M and for both
the O3b and design LIGO configurations. The signal-
to-noise ratio is computed by using the aforementioned
SEOBNRv4 waveforms, which (unlike our short BS sig-
nals) include inspiral, merger and ringdown. In the bot-
tom panel, we show instead the residual signal-to-noise
ratio ρ(∆), minimized over initial phase and merger time
for all the simulations that we have at our disposal.

This residual signal-to-noise ratio is computed by com-
paring BH and BS waveforms that are both cut below
the minimum frequency at which constraint violations
are significant in our simulations, in order to avoid bi-
asing the comparison. In this way, the residual signal-
to-noise ratio includes differences between BH and BS
waveforms that occur in the post-merger phase and also
in the late inspiral, thus including at least some contribu-
tion from tidal effects, while keeping the impact of initial
constraint violations subleading 6 . We then normalize
ρ(∆) by the full inspiral-merger-ringdown BH signal-to-
noise ratio ρ(hBH), since we have no access to the full

6 Improvements in the initial data would change the residual
signal-to-noise ratio only marginally at high masses, while at low
masses they would allow for simulating a longer portion of the
inspiral phase. Our residual signal-to-noise ratios should then be
regarded as lower bounds.

inspiral-merger-ringdown BS waveforms. As can be seen,
ρ(∆)/ρ(hBH) is always very large and grows with M , as
expected because for massive binaries only the merger
signal is in the band of terrestrial interferometers (i.e.
for those binaries the BS-BH differences in the post-
merger have a larger relative impact). Also note that
ρ(∆)/ρ(hBH) is smallest (although still quite significant)
in the case where the remnant is a BH (q = 2.9). Again,
this is expected: The collision of two non-rotating BHs
with q = 2.9 leads to a rotating remnant with a ≈ 0.52
[98], close to the value of the BH spin produced by the BS
binary in our simulation (a ≈ 0.5). As such, the differ-
ences in the merger-ringdown, where most of the in-band
power resides (at least for moderately high masses), are
small, c.f. e.g. Fig. 12.

As a rough rule of thumb, residual signal-to-noise ra-
tios ρ(∆) . 8/

√
3 ∼ 5 may allow for claiming a BS binary

detection (as opposed to a BH binary one), provided that
an accurate determination of the component masses and
spins is available (e.g. thanks to a long inspiral). In
the absence of a sufficiently long detected inspiral, large
residual signal-to-noise ratios may merely lead to biases
in the estimation of the parameters of the source (i.e. one
could mistake a BS post-merger signal for a BH ringdown
with remnant mass different from the actual one, and/or
non-zero spin), or even missed detections. As can be
seen from Fig. 13, this second possibility seems the most
likely at high masses, for which most of the inspiral is
out of band and BH templates miss most of the signal’s
power for binaries producing a BS remnant. Whether
this leads to a bias on the recovered parameters or just
a missed detection should be ascertained by considering
templates with varying BH progenitor spins. However,
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duced from our simulations and BH binary SEOBNRv4 tem-
plates, for a system leading to a BS (q = 8.6, M = 28M�;
top) or a BH (q = 2.9, M = 30M�; bottom). The tem-
plate’s initial phase and merger time are chosen to minimize
the residual signal-to-noise ratio. Both systems are optimally
oriented at a luminosity distance of 400 Mpc, and the BH
component masses and spins are set equal to the BS compo-
nent masses and to zero, respectively.

given the long duration of the BS post-merger signal (c.f.
e.g. Fig. 12), it seems unlikely that it can be detected by
any one BH template, i.e. we expect mainly missed detec-
tions at high M , at least for second-generation detectors
and for systems that lead to a BS remnant. For systems
that instead lead to BH formation (e.g. the q = 2.9 case
in Fig. 13), using BH templates may simply produce a
bias on the parameter estimation.

The situation will be more favorable for third-
generation interferometers [99] such as the Einstein Tele-
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FIG. 13. Inspiral-merger-ringdown BH binary SEOBNRv4
signal-to-noise ratio ρ(hBH) (top) and residual signal-to-noise
ratio ρ(∆) between BS and BH waveforms (bottom), as func-
tions of the total binary mass. The residual signal-to-noise
ratio is minimized over initial phase and merger time and
then normalized by ρ(hBH), for the BS waveforms extracted
from our unequal mass simulations. Both the BS and BH
binaries are optimally oriented at a luminosity distance of
400 Mpc, and the BH component masses and spins are set
respectively to the BS component masses and to zero. For
both signals and templates only the (2, 2) mode is included.
The signal-to-noise ratios are computed with the O3b single-
detector sensitivity (solid lines), and with the single-detector
design LIGO sensitivity in the zero-detuning, high laser power
configuration (dashed lines).

scope or Cosmic Explorer, which will observe many more
inspiral cycles. Not only will this allow for a better mea-
surement of progenitor masses and spins (which will re-
duce degeneracies when comparing the post-merger sig-
nal to BH templates), but it may also allow for measuring
the tidal Love number in the late inspiral [61, 100, 101].
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This will provide additional hints on the BS versus BH
nature of the system. We will explore the discovery space
of these detectors, and at the same time refine our anal-
ysis, in future work.

V. CONCLUSIONS

The coalescence of BSs allows us to study not only the
binary dynamics of one of the most viable and better
motivated models of ECOs, but also the two-body prob-
lem in General Relativity for large mass ratios. The soft
dependence of the BS radius with its mass, at least for
the solitonic potential used here, facilitates the numerical
simulations of binaries with very different compactness,
as compared to the more challenging case of asymmetric
BH binaries. Taking advantage of this feature of soli-
tonic BSs, we have studied numerically the coalescence
of unequal-mass binaries with mass ratios ranging be-
tween 2 and 23. The analysis of our simulations, which
extends the equal-mass binaries considered in Paper I
(i.e., Ref. [40]), confirms many of the findings obtained
in that previous study.

The fate of these binary mergers is either a nonrotat-
ing BS or a Kerr BH, as confirmed not only by global
quantities and by the structure of the solution, but also
by the gravitational QNMs of the remnant. As in Pa-
per I, we once again find no evidence that any of these
binaries form a rotating BS or a scalar cloud synchro-
nized in its rotation about a spinning BH. The asym-
metry introduced by the unequal mass of the constituent
stars perhaps makes the formation of either of these rem-
nants less likely. An analysis of the parameter space
indicates the need to refine the initial configura-
tions to assess whether a rotating remnant can be
formed.

For a certain range of the initial angular momentum,
the remnant undergoes a process similar to a tidal dis-
ruption in NSs, and a blob of scalar field is ejected. This
process has already been observed in the equal-mass bi-
naries of Paper I, although the symmetry in that case
induced the ejection of two blobs in opposite directions
instead of a single blob observed here. The ejection of
a single blob produces a large recoil of the remnant. In
our C012-C018 case, the estimate of the recoil velocity is
more than 104 km/s, larger than the superkicks of binary
BHs and large enough to have significant implications for
the expected dynamics of BSs in the universe. Because
recent studies suggest that rotating solitonic BSs should
be stable against the nonaxisymmetric instability [78],
the ejection of the scalar blob is not likely a result of
such an instability.

We also evolve an unequal mass binary with one of the
stars transformed to an anti-star. This anti-star com-
pletely annihilates upon contact, dispersing scalar field
to infinity. The remaining scalar field settles to a lower
mass, static BS in a clear demonstration of the stability
of these solutions under a strong perturbation.

Regarding the GWs emitted during the coalescence, we
have found results comparable to those of binary BHs:
the l = m = 2 mode of the strain is always dominant,
although higher-order modes become more relevant as
the mass ratio increases. We have estimated how the
ratio of the modes depends on the mass ratio during the
last few orbits of the coalescence.

We have also analyzed the prospect of detecting dif-
ferences between binary BS and binary BH gravitational
signals with ground interferometers. We have found that
while the merger portion of the signal is significantly dif-
ferent between the two classes of sources (at least if the
final merger remnant is a BS), distinguishing between the
two might be difficult with second-generation detectors
due to degeneracies between merger and inspiral parame-
ters. However, this task will ease considerably with third-
generation interferometers, such as Cosmic Explorer or
the Einstein Telescope.

Many interesting questions remain to be addressed, es-
pecially regarding the final state of the remnant. Evolu-
tions of solitonic BSs have yet to produce either a spin-
ning BS or a synchronized scalar cloud. More accurate
and longer simulations together with improved initial
data may shed light on such questions, or perhaps some
a priori analysis will indicate whether and under what
conditions such end states will result.
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