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—

Given the non-graph-changing Hamiltonian H[N] in Loop Quantum Gravity (LQG), (H[N]), the
coherent state expectation value of H[N], admits an semiclassical expansion in Eg. In this paper,
we explicitly compute the expansion of (H[N]) to the linear order in £% on the cubic graph with
respect to the coherent state peaked at the homogeneous and isotropic data of cosmology. In our
computation, a powerful algorithm, supported by rigorous proofs and several theorems, is developed
to overcome the complexity in the computation of (H[N]). Particularly, some key innovations in
our algorithm substantially reduce the complexity in computing the Lorentzian part of (H[N]).
Moreover, with the algorithm developed in the present work, we can compute the expectation value
of arbitrary monomial of holonomies and fluxes on one edge up to arbitrary order of ff,. Finally,
some quantum correction effects resulted from (H[N]) in cosmology are discussed at the end of this
paper.

PACS numbers:

I. Introduction

Loop Quantum Gravity (LQG) is an approach toward the background independent and nonperturbative quantum
gravity theory in four and higher dimensions [TH5]. Several recent progresses have been made by the active research
of the quantum dynamics of LQG [6HI6]. Particularly, tremendous progresses have been made in both canonical and
covariant LQG on the semiclassical limit and the consistency with respect to classical gravity e.g. [7, 8 15, I7H27].
However, regarding the full theory of LQG dynamics, less progress has been made on its quantum corrections (see
e.g. [28431] for some results, and [32] [33] for some results in the covariant approach). As a candidate of quantum
gravity theory, it is important that LQG should shed light on quantum corrections to the classical theory of gravity.

The present papg&cuses on the canonical aspects of LQG. Due to the non-polynomial Hamiltonian constraint

o —

operator H[N] = Hg[N] + (1 + 3%)H[N], there has been persistent confusion that the quantum dynamics of LQG
might not be computable analytically [34]. A previous work [8] partially resolves this confusion, where it has been
schematically shown that the coherent state expectation value of the Hamiltonian/master constraint are computable
order-by-order by the semiclassical expansion in A. It is remarkable that the proposed scheme in [8] can also be applied
to a wide class of non-polynomial operators used in the study of LQG dynamics. Although this scheme was proposed

L

as early as when [8] firstly published in 2006, the expectation value of H[N] has only been computed at its classical
limit, i.e. the 0-th order (in %). However, due to the complexity of the operator, especially the the Lorentzian part of

ﬁ[m (denoted as IE[W 1), the O(h) quantum correction has not been studied in the literature.
The goal of the present work is to fill this gap by providing an explicit computation of the O(k) quantum correction

in (H[N]) with respect to a certain coherent state. In this paper, in order to compute the quantum correction
in (H[N]), a powerful algorithm is developed to overcome the complexity of H[N] that is the non-graph-changing

Hamiltonian on a cubic lattice v. We explicitly expand (H[N]) to linear order in i by applying the algorithm, with
respect to the coherent state that is peaked at the homogeneous and isotropic data of cosmology. Namely we explicitly
compute Hy and H; in

—

(H[1]) = Ho+ 2H, + O(£Y), ¢ =hn (1.1)
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where kK = 8TGNewton and the lapse function N = 1. Hj, representing the 0-th order, reproduces the cosmological
effective Hamiltonian in the po-scheme [I5] 16l B5], B6]. Whereas, H; gives the first order quantum correction, which
is presented by our result in this work. The explicit expression of H; is given in Section [V} It is worth noting that

the coherent state used for computing (H[N]) is not SU(2) gauge invariant (the motivation is stated below).

This work is closely related to the reduced phase space formulation of LQG (see e.g. [9, 87, [38]. In this formulation,
some matter fields that are known as the clock fields is coupled to gravity. These matter fields are regarded as material
reference frames used to transform gravity variables to gauge invariant Dirac observables. This procedure resolves
the Diffeomorphism constraint and Hamiltonian constraint at the classical level resulting in the reduced phase space
Preq of Dirac observables. The dynamics of the gravity-clock system is described by the material-time evolution
generated by the physical Hamiltonian H on the reduced phase space &,.q4. As an interesting model, Gaussian dust
is chosen to be our clock fields [38, [39]. Then the resulting reduced phase space, &4, is identical to the pure-gravity
unconstrained phase space. This identification defines the pure-gravity Hamiltonian constraint with unit lapse (i.e.
N =1) H[1] on the resulting reduced phase space &4, which indictaes that the physical Hamiltonian H equals to
H{[1] for the case when gravity is coupled to Gaussian dust. In this model, the quantization of &,..q is the same as
quantizing the pure-gravity unconstrained phase space, which leads to the physical Hilbert space H that is identical
to the kinematical Hilbert space in the usual LQG. #H is unconstrained because it is from the quantization of Z2,..4.

¢

The physical Hamiltonian operator is obtained by H = %(ﬁﬁ] + H[1] ) with the usual LQG quantization of ﬁ[ﬁ]
[0l [40H42]. Therefore from the perspective of reduced-phase-space LQG, our work computes the <fI> with respect to

the coherent state peaked at cosmological data on the graph v, which is given by the real part of (H[1]) (1.1).

Recent works have been focused on building models of LQG on a single graph ~ [15], 20} 211, 28] 43-46]. Particularly,
the quantum dynamics in the reduced-phase-space LQG framework is formulated on a cubic lattice v with a path
integral [16] 22]

Algllg) = / dhldg] v]g) 319"/ %, (1.2)

which is the canonical-LQG analog of the spinfoam formulation. Ay 4 is regarded as the transition amplitude

of H between the initial and final SU(2) gauge invariant coherent states, denoted as |[g]), |[¢']) respectively. The
integration variables contains both trajectories of g € .4, and SU(2) gauge transformations h on v, with v[g]
being a measure factor. Due to a feature of the path integral (1.2), the SU(2) gauge invariant amplitude Ay (o is

expressed as an integral of SU(2) gauge non-invariant variables g and h 1. The action S[g, k] is linear to (H) at SU(2)
gauge non-invariant coherent states when the trajectories of g are continuous in time. In contrast to the usual path
integrals in quantum field theories, S[g, h] contains the O(h) correction from (H). Our work precisely computes this
O(h) correction in S[g, h] of cosmological dynamics.

A general study of the equation of motion provided by the semiclassical limit of Ay (4 is presented in [22]. The
application of it in cosmology is presented in [I6] [46]. The cosmological dynamics in the limit of & — 0 gives the pg-
scheme effective cosmological dynamics which reduces to the classical FRLW cosmology at low energy density. Next,
it is equally important to discover the O(h) correction of the effective cosmological dynamics. The effective dynamics
with O(h) correction can be obtained by the quantum effective action [47], denoted as I', from the path integral
defined in (I.2)). Perturbatively, the O(h) correction in I' for cosmology contains 3 contributions: (1) O(h) correction
in S[g, h] which is computed in this work, (2) O(h) correction in log v[g] where v[g] has been given explicitly in [16],
and (3) O(R) correction in 3 logdet($)) where the “I-loop determinant” det(§)) is the determinant of the Hessian
matrix ) of S[g, h]. The g-g matrix elements in $) has been computed in [46]. A continuous study of 3 logdet($)) is
postponed for future work. Therefore,in terms of the quantum correction in the effective cosmological dynamics, the
present work computes an significant part in the O(%) correction of the quantum effective action T

After introducing motivations above, let us summarize several key steps in the computation of the present work:

First of all, an important complication in H[N] is the volume operator V,, = 1/|Q,| which contains the square-root

and absolute-value, indicating that the H[N] is non-polynomial. When (E[F]) is studied with respect to the coherent

I Here is a brief explanation of the reason why the path integral is in terms of gauge non-invariant coherent states (see [16] for details):
The transition amplitude between gauge invariant coherent states is Ay} (o] = <\Ilfg] |U(T)|\Ilfg,]> where U(T) = exp (—%Tﬁ) The
gauge invariant coherent state is the group average of the gauge non-invariant state: |‘Ilfg]> = fdhw;h} where h is the SU(2) gauge
transformation. Since U(T') is gauge invariant, we have Afg) o] = [ dh(w§|U(7)|w2,h> where the integrand can be written as a coherent
state path integral with the standard method.



state, this issue is overcome by substituting V, with the semiclassical expansion [J]

2k+1

(v) 4 o ql—q)--(n—1—¢q) [ Q2 B "
=(Qy)? 1+Z 1 - <<Qv>2 1>

+ O(RF+) (1.3)

where QU is formulated as a polynomial of flux operators and ¢ = 1/4. Truncating Vc(?r) with a finite k£ and substituting

it back into H[N] allows us to express (H[N]) by a expectation value of a polynomial operator.
The resulting polynomial sums over a huge number of terms (~ 10'?), each of which is a monomial of holonomy
and fluxe operators. Computing expectation values of all terms would lead to a large computational complexity. The

major complexity is encoded in the Lorentzian part of H[N], denoted as H[N]. Several key methods are used to
reduce the number of computations:

e The expectation value of every monomial term can be factorized into expectation values of holonomy-flux
monomials with respect to different edges. Only certain types of expectation values of monomials on a single
edge shall be computed. We further reduce the number of types by using the commutation relations, and several
general formulae are derived for the expectation values of the resulting types (see Section .

e We develop a power-counting argument in order to specifically locate each power of ki, expression in O(h)
represents the leading order behavior of each expectation value of the monomial operator (see Section . Since

we are only interested in expanding (H[N]) to the its linear order in A, a substantial amount of expectation
values of monomials can be neglected due to the fact that they are only contributing to higher order in A.

e When the coherent states are peaked at homogeneous and isotropic data. A large amount of symmetries that
identify different terms are realized, which can be used to reduce the computational complexity.(see Secton .

Our method exponentially reduces the computational complexity. In particular, it is useful in computing the

expectation value of Lorentzian part in H[N].

In Section In order to present the reduction methodology more concretely, an example that contains 33™~1!
(m can be large) monomials is demonstrated. By applying our method, only 5 monomials’ expectation values need
to be computed.

The purpose of the present paper is to give detailed derivations for the results presented in [48]. Computations
in this paper are carried out by using Mathematica on the High Performance Computation server with two 48-Core
Processors (AMD EPYC 7642). One can find the Mathematica codes at [49].

The explicit resulting expression of O(h) quantum correction in (H[N]) is summarized in Section In order
to demonstrate the physical significance of our results and effects from the O(h) correction to the classical limit of
%(ﬁ[\l]), the proposal in [I5] is adopted: We view %(ﬁﬁ]} in as the effective Hamiltonian on the 2-dimensional
phase space, denoted as Z.,s, of homogeneous and isotropic cosmology. %(ﬁ[\lb generates the Hamiltonian time
evolution on the 2-dimensional phase space &.,s. Time evolution of the homogeneous spatial volume is plotted, and
is compared with the evolution generated by (ffﬁ]} at the limit of A — 0. The comparison demonstrates the effects
on (}?[\1]>, which is generated from the O(h) correction contribution (see Section ﬁ for details). We emphasize
that the proposal that we adopt for the cosmological evolution is not as rigorous as the path integral formula .
Nevertheless, we have argued that the O(h) correction in (ﬁ[\lb only contributes partially to the quantum correction
in I' which ultimately determines the quantum effect in the dynamics. The cosmological dynamics studied in Section

only aims for displaying the effect of the O(h) correction in (ﬁﬁ]), and is not a rigorous prediction from the
principle of LQG.

The structure of the present paper the followings. Section [[I] reviews the theory of LQG on a cubic lattice,
including the Hamiltonian and the coherent state. Section [Tl we demonstrate the computations of the expectation
value of operators defined at a single edge. Section@ we develop a power-counting argument in order to reduce
the computational complexity. Section [V|discusses (H[1]) with respect to the coherent states peaked at homogeneous
and isotropic data, and the symmetries which reduce the computational complexity. Section [VI] presents the explicit

results of the quantum correction in (ﬁ[\m Section we conclude and discuss a few outlooks of the present work.



II. Preliminaries
A. Quantization and Hamiltonian

Classically general relativity can be formulated with the Ashtekar-Barbero variables (A%, E%) consisting of SU(2)
connection A% and canonically conjugate densitized triad field E¢ defined on the spatial manifold 3 [50]. We denote
the coordinate on ¥ by (x,y,2z) . Let v C X be a finite cubic lattice whose edges are parallel to the axes of the
coordinates. The sets of edges and vertices in v are denoted by F(v) and V(v) respectively. Taking advantage of +,
we define holonomies along the edges of ~,

o0 1 tn to
he(A) :Pexp/A: 1+Z/ dtn/ dtn_lm/ dt1A(ty) - A(ty), Ye € E(v), (2.1)
e 0 0 0

n=1
and gauge covariant fluxes [51] on the 2-faces S, in the dual lattices v*,
) 2 ) _
() == optr [+ [ canhloio) B hlpito) )] (2.2

where S, € v* is the 2-face, p®(o) : [0,1] — 3 is a path connecting the source point s, € e to o € S, such that
pi(o) 1 [0,1/2] — e and pi(o) : [1/2,1] — S.. a is a length unit (e.g. a = lmm) to make ps(e) dimensionless.
Alternatively, one can choose the target point ¢, € e rather than s, to define

e

Ba?

where p*(c) : [0,1] — ¥ is a path connecting the target t. € e to o € S, such that pi(o) : [0,1/2] — e and
pt(o):[1/2,1] = Se. Given (A%, EY), Egs. (2.1) and (2.2) lead to a map from the E(v) to SL(2,C),

pile) =2t [ / sabch@z(o»E%o—)h(pz<o>—1>] | (2.3)

g:e— g = eipl;(e)T"’he. (2.4)
Because of the relation between ps and p;
pee™ ) = pr(e)m = —h. Pl (e)Tihe (2.5)
we obtain that
ge1 =9z (2:6)

Thus the map g : E(vy) —SL(2,C) generate a homomorphism from the groupoid of the graph 7 to SL(2,C). The
LQG phase space based on v is SL(2,C)I¥™I and consists of all such homomorphisms [51]. Given a SU(2)-valued
scalar field G : ¥ —SU(2) on X, G defines a gauge transformation on g, taking g to G > g with

(G>g)(e) = G(sc)g(e)G(te) ™", Ve € E(v). (2.7)

The quantization of this classical lattice theory gives us LQG based on the graph «. The Hilbert space H. consists
of the square integrable functions of the holonomies. Given two functions 9; : {he}eep(y) — C, the inner produce is

(Wrliha) = / dpn 1 (T eemon e {heteesin) (2.8)
SU(2)IE()]

where |E(7)| denote the number of elements (i.e. cardinality) of E(y) and py is the Haar measure. H, is the
kinematical Hilbert space of the canonical LQG with the operator-constraint formalism. Moreover, H, modulo gauge
transformations represents the physical Hilbert space of the reduced-phase-space LQG , where any gauge invariant
function of h.(A) and pj ,(e) are Dirac observables, realized from the deparametrization by coupling to clock fields
[37].

On H.,, pi(e) and pi(e) are quantized as the right- and left-invariant vector field, namely

A . d 67_1
(ps(e>w)(h6’7"'ah67"'7h6")22t& 1/)(he'7"'7€ h67"'ah6")
<0 (2.9)

Al . d er?
(pt(e)¢)(h6’7"' 7h67"' 7h6”) = -1t — w(he’f" 7hee [ 7he”)
e=0

de




where t = khi/a® =: £2/a® (if a = Imm, t ~ 6.56 x 10793) and 79 = (—i/2)07 with 07 being the Pauli matrix. Another
kind of basic operators are the multiplication operators D*, (h.) which is defined as

e)
(Dap(he)h)(A) = Dy (he(A))(A)
)

Dey
where D*(h.(A)) is the value of the Wigner-D matrix at h.(A) €SU(2). In this paper, D*(z) denotes the Wigner-D
matrix only if z is some specific SU(2) element. Moreover, h., when it appears alone as an operator, denote the
matrix-valued multiplication operator D'/2 (he) for simplicity. With this convention, the commutators between the
basic operators read

= 0= [pi(e). pi(e)]

)] 1
pL(e), Pl(€")] = —itbee €ijnil (€),
[pi(e), pL(e")] = —itdeereijnpt (e), (2.10)
5. (€), D" (her)] = itdeer D' () D" (he),
[9s(€), D" (hes)] = —itdees D" (he) D" (7).

where D'*(7%) is the corresponding representation matrix of 7.
It is useful to introduce the flux operators with respect to the spherical basis. We define

~ 1 AT N ~ ~2z
Py (€)= F—= (05 (e) £ ipy(e)), Pole) = py(e) (2.11)
V2
with v = s,t. In the following context, «, 3, --- = 0,41 is used to denote the indices in the spherical basis, and
i,j,k---=1,2,3, the indices in the Cartesian basis.

Taking advantage of the basic operators, one can define operators representing geometric observables such as areas
and volumes [52H54]. The volume operator plays an important role in the present work. Let R C ¥ be a region in X.
The volume operator of R is defined by

e Y G- Y i (2.12)

veV(y)NR veV(y)NR
where
A 5 (et Piles) — Piley) h(ed) — ph(es
2 2 2
where eii with i = x, y, z are the edges along the ith axis such that v is the source point of e;r and the target point

of e; . The total volume is denoted by V= ZUGV(’)’) V,. In terms of the flux operators with respect to the spherical
basis ([2.11)), the operator Q, defined in Eq. (2.13) becomes

P (ef) — p(ey) PE(e) —pE(e,) pi(ed) — pl(es) (2.14)
2 2 2

Q (ﬂa)fa’v

where €43, is defined by e_1 91 = 1.
In the operator-constraint formalism, the dynamics of LQG is encoded in the Hamiltonian constraint, which can
be written as

H[N] = Hg[N| + (1 + 82 HL[N] (2.15)

where Hg[N] is called the Euclidean part and Hp[N] is the Lorentzian part. N is the smeared function. H[N] is
constructed by using the Thiemann’s trick [6, [4T]. The operator corresponding to the Euclidean part is

——— 1

HolN] = o YoNw) Y T (hay e [V hel) (2.16)

veV(y) er,ej,ex at v

where e, e; and ex are oriented to be outgoing from v, e/7K = sgn[det(e; A e A ex)], ars is the minimal loop

around a plaquette consisting of e; and e, where it goes out via ey and comes back through e;, taking v as its end
point. With the same notion, the Lorentzian part reads

—_— —1 A A
HN) = S ON@) 30 (e [V H b ey (V. el e VIBCD. (2a7)

er,ej,ex at v



In the reduced-phase-space LQG where the diffeomorphismAand Hamiltonian constraints are solved classically, the
quantum dynamics is governed by the physical Hamiltonian H. When we deparametrize gravity by coupling to the
Gaussian dust [38, [39], the classical physical Hamiltonian H is formally the same as the Hamiltonian constraint with
unit lapse, except all quantities in H are understood as Dirac observables. The quantization gives the Hamiltonian
operator

Al (ﬁm n ﬁﬁf) (2.18)

H is defined on ‘H.,, which can be understood from a similar perspective of quantizing Dirac observables. Note that
here we consider the non-graph-changing version of the Hamiltonian (constraint). If H[N] is understood as constraint,
the discretization and quantization on + cause the constraint anomaly. However in the reduced-phase-space LQG,
the constraint anomaly is absent, because H[N] is not a constraint anymore.?. The self-adjoint extension of H exists

[40, [55], so we choose the extension and define the self-adjoint Hamiltonian which is still denoted by H.

B. Coherent states

Choosing a canonical orientation for each edge e € E(), the classical phase space based on the graph ~ is

I, = [SL(2, C)J E0). (2.19)
The complexifier coherent state Wg is [17]
Ve= & . bo(he) =D djem 10 0y (g ) (2.20)
e€E(7) J

where w;e is the SU(2) coherent state at the edge e. The character x;(geh, ') is the trace of the j-representation of
gehgt. The property x;(gehot) = xj(g. the) leads to the useful relation

wge (he) = ¢ge_1 (hefl )

Given g €SL(2,C), it can be decomposed as

g= PRT gy = et (nHiE)Ts (nt)~1, (2.21)
where n = —/p- p and n®,nt €SU(2), as well as £ € R, are given by
ns,7_3(ns)—l _ }ik - T,
7P (2.22)

nse ¢ (n")™t =u.

Although n® and n! are not uniquely defined by this equation, each of them relates to a unique vector through the
equation, with v = s, t,

n’r3(n¥)t =qav - 7 (2.23)
It is shown in [I9] and is revisited shortly that
(W, 1Bs(e)|e, ) s (W, [Pe(e)l,) _
W = —neiie + O(t), W = neity, + O(t) (2.24)

where 7., 71 and 7% are defined as the decomposition parameters of g. as in Eq. (2.21). This equation indicates that
nem! is the classical limit of the flux operator at e.

2 Sometimes, H[N] relates to conserved charges, then H[N] on v may break the classical symmetry.



The following properties of the 1/}2 [I7H19] are useful in our analysis. Firstly, the inner product of these states read

) 2 /Fellt (e
Wanlve) =¥ (D) = —5m— G

9192
where tr(gigg) = 2cosh(¢) and 3(¢) € [0, 7] with $(¢) the imaginary part of ¢ 3. Consequently, the norm of the
coherent state is

+O(t) (2.25)

2
2/met/* pe't
— (Yt 0 2.26
< >9 <1/) W) > t3/2 smh(p) +O(t )a ( )
where p = /p - p. Secondly, w; satisfy the completeness condition
[ oyl =1 (227)
where the measure di(g) is
24/2e~t/4 sinh(p) _»2 2
dig(g) = EE et dug(u)d®p = Wdu;[(u)dgp. (2.28)

Let us complete this section with some discussions on the volume operator contained in the Hamiltonian operator

—

H[N]. Because of the square root in the definition of the volume operator, matrix elements of these operators are
difficult to compute analytically. However, as far as the coherent state expectation value is concerned, the volume

operators V, in H|[N] can be replaced by Giesel-Thiemann’s volume [§] Vg}) which is a semiclassical expansion

2k+1

- n gl—q) - (n—1—¢q) [ Q2 !
V( v) _ 1+ Z +1 o ((QU>2 — 1)
) v)

where ¢ = 1/4. By making use of IA/G?F, firstly truncating VC(;?,E at finite & and replacing V, by VC(;T, H[N] can be
expressed by a polynomial of holonomies and fluxes. Up to higher order in ¢, it is now manageable to compute the

+ O(th+h) (2.29)

expectation value of H[N], through computing the expectation value of a polynomial of holonomies and fluxes.

III. Expectation values of operators on one edge

As becoming clear in a moment, computing the coherent state expectation value of ﬁm can be reduced to
computing expectation values of operator monomials on individual edges. In this section, let us firstly focus on the
expectation value of operators on one edge.

Given a monomial of holonomies and fluxes on an edge e, its expectation value with respect to the coherent state wf]e

labelled by g. = niet*™ (n!)~! relates to its expectation value with respect to 1 = 1/125, by a gauge transformation
generated by ng and n’ [20]:

(g, [PUBS ()} B ()1 A D, (he) Dy,)
= (UL | P({PE(e) Dh,a, ((n2) ™)}, A7 (€) Db, (nE) ™)} ADE o, (02Dt 4, (he) Dy, ()DL, ),

where P(x,y,z) represents any monomial of z = {x1, 29, -+ ,2m}, y = {1, -+ ,yn} and z = {z1,29,-- ,2;}. This
feature implies that one can always do the calculation with respect to ¥ , then restore the information of nj and n!
afterwards. In the following context, we denote

(WL IEul,) = (Fo)s,. (3.2)

Now let us consider the algorithm to compute (3.2)) for a general monomial Fe of holonomies and fluxes step by step.
Based on the algorithm described in the following subsections, our codes [49] are designed. By the codes, one can
compute the expectation value of arbitrary monomial F, up to arbitrary order.

eizeTs

(3.1)

3 Here we used the following result shown in [I9]. For any complex number z = R+ iI, there exist real numbers s € R and ¢ € [0, 7] such
that cosh(s +1i¢) = z. s and ¢ are uniquely determined except in the case I = 0 and |R| > 1 in which case the s is determined up to its
sign.



A. The algorithm
1. The first step

Given a monomial of holonomy and flux operators. To compute the expectation value of this monomial, we need
at first to remove all the holonomies to the right with the basic commutation relations (2.10). We use the following
proposition to implement the procedure.

Proposition 1. Let O be defined as

0=0,0;---0,. (3.3)
Denote T :={2,--- ,m}. Let Ty, := {i1, 42, - , i} with iy < iz < --- < iy be a sublist of T which contains k elements.
Then, by the definition of commutator, it has
m—1
0-01:0,04 S T1 0] 100,101 10, o
k=1 I \I€I-T,

The proof is quite straightforward with using the relation AB = BA + [121 E] iteratively. In Eq. (3.4)), the terms
at k carry k-fold commutator. Due to the factor t in the right hand side of the commutation relation , the
k-fold commutator produces a factor t* in the final results, which implies that the contributions of these terms to the
expectation value of O are at least at t*-order. .

Now let us see how to use Proposition |1{ to move the holonomies to the right precisely. Assume that O; = D!, (h.)
in Eq. and that all of the other operators are fluxes. Then according to Eq. , we need to calculate

[ - [[Da (he), 55 ()], 552 (e)) - - S ()], B (e)] - -, o (e)]-

The result can be derived by

’

[ [[D4y (he), 92 ()], 22 (€)] - - 2™ (€)] = (—it)™ Dty (1) Dk, 4, (72) -+ Dt o (79D (he) (3.5)
with a;, = a — Zle o;, and
[ (DL (he), 52 (e)], 852 (€)] - - B (e)] = (i)™ Dby, (he) Dy, (T4 )Dy: (79 1) - DY (T) (3.6)

with by = Zle b; + b, where we used that D!, (7%) « d4,p+q- Taking advantage of Egs. (3.5) and (3.6]), we have, for
instance,

<he>(ﬁza?i )(H% ))
(Hp )(HA‘% (©) Dlathe) — it (TL#2(@ )(HABJ )) Dot (r°%) Dty (he)

k=1 i#k

SO | A )(HA‘* )) D™ Da(r) Dl (he)

k<l ig{k,} (3.7)

+z‘ti<ﬁ]§§” )(HAB] ) (he) Dy (75%)
k=1 =1
+ (i)Y (ﬁﬁ?"‘(e))( [T 58 (€)) Dhelhe) Dia(r ™) Doy ()

k<l i=1 Jé{k1}
3 (T o e )(HABJ ) D) Drahe) Dl () + O)
ki itk

If there are more than one holonomies contained in O, one can use this procedure to permute them one by one.
Finally, O is expressed as summation of terms taking the form

l
H H 57 (e) [] Dity, (o). (35)



Then, one can merge the holonomies by applying the formula (C4), we eventually simplify O to be a sum of operators
of the form

(H"“ )(HAﬁ’ ) (he) (3.9)

2.  The second step

The second step is to transform pt ) in Eq. ( . to p?(e). To do this, we employ the formula
(B (e) -+ P (€)pr* (e) - By (€) Dy (he)) =,
=(=1)rem Otz (pln (e) - plH ()Pl (e) - - ™ (€) Dy (he)) =,

The proof of this formula is quit technical and is put in Appendix [C] Because of this equation, we now only need to
consider the expectation value of operators

Eoyom = pei(e) - e (e) Diy (he)- (3.11)

(3.10)

8. The third step

To compute the expectation value of FL‘:‘Z}7 , we need to consider the cases with « = 0 and ¢ # 0 separately. As

shown in Appendix @ the expectation value for F(%ld"o‘m = o1 om reads

().,
R T T
=5 5,0t t/4/ d =1 Y% P
(Za > H 1+|a|1/2 - mkl;[l 2 T +;O‘ 2 | 2sinh(y)

For the operator Fb’f‘l},'"a’" with ¢ # 0, the explicit results is presented by (D19) and (D24]). Then, as discussed in
Appendix D] at least for ¢ < 20, the results can be simplified as

+O(t>). (38.12)

y—=n

2 — (o2 14(.2 -1 -1 inh
<Fa1 >Ze _ tmebz€ Z 52(d7 O) e_Z(Zd —1) /dx e—zt(x —de)FL(x _ d, x %)sm (xn) + O(t—oo).

tab oSt 2 2 27 sinh(n)
d+.EZ
(3.13)
where FL(”’T_1 —d, %‘17 62”) also depending on the list {a;}™, is given by
m 1/2
z—1 T — 1
F, —d,—— —" i b,0)
5 ) Za o E(lﬂaw?((wa)ua><L+b>< b)!)
m k
( 1)(1 2a+b 877
(l’—d+ Doeit U 9 +Z@z)
4d s iy o (3.14)
Z(_l) (t+d).(5 3 7’+b_z+b)b+a( 5 — 5 — —b+2)i—a
= z!
t—d

(1 - (55 + 2 —d— ) (55 - 2 4 2
z! .

Il
=]

z

We would like to compare our results with the known results in [56]. At first, our formula and
generalize the known results in literature [56], in the sense that our formula gives the results for arbitrary lists {o; }7,
of flux indices and triples (¢, a,b) with at least ¢« < 20. Moreover, with our formula, one can get the expectation
values to arbitrary order of ¢. However, in [56], the authors give only the results for the special cases where the list
{a;}1, contains at most either a single —1, or a single 1, or a pair of (—1,1). They are all the cases such that
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the expectation values have non-vanishing O(t°) or O(t)-term. Other cases are also interesting when we study the
higher-order correction, even though the higher-order correction is beyond the present work. Our formula reduce
to these known results at the special cases. The current work only use these special cases, but our codes [49] are
designed based on the generalization formulas , and Theorem since the generalized formulas have
the potential in the generalization for computing higher-order correction.

Finally, let us complete this subsection by sketching the algorithm based on Egs. , and Theorem
to compute the expectation value of FL‘Z})O‘ One can refer to [49] for more details. According to Theorem EL we
can simplify (at least for ¢« < 20) the integrals in Eqgs. (3.12) and to a linear combination of integrals taking

the forms
L = / dl’eﬂwﬁﬂmw — " (erhi bt — erfi b—n
oo x 2 2v/a 2v/a

> 2 ei”m
= | dze " pol(x,0.)———
= | dee ol 0 s

where a > 0, b € R, f is some function and pol(z,d.) denotes a polynomial of z and 9,. This is the first step of
our algorithm, without considering the realization of their concrete form for now. Because I; as a function of a,b is
known, the next step of the algorithm is to compute I5. To do this, we first expand pol(z, d,) to write the integrand of

I5 as a linear combination of (8” 1 )x e—az’+betnz  Thep by substituting the results [ dz a™e™** *+botne , Is can

be computed easily. By this dlscussmn the only remaining problem is how to realize the concrete linear combination
form of I; and I, which can be illustrated by the derlvatlon of (F o1 am)  for ¢ = 1 in Appendix [E} For thls case,
the crucial step to simplify F} is to apply the formula and (E15) inspired by the proof of Theorem [D Takmg
advantage of Eq. , Eq. and the trick , one can ﬁnally get - which is a linear combination of integrals
taking the forms of I; and Is.

and

zZ=n

B. The cases when all flux indices vanish

In our computation, we often use the operator

Dy, (he) D2 (e)]™ [ ()]™ -+ Dgy, (he)[2 (€)™ [ ()] (3.15)

To deal with this kind of operators, let us consider the operator D, (h.)(p%(e))™(p?(e))™. By applying Proposition
it can be simplified to

by (Re) D9 (€)™ 57 (e)]”
=[03(e)]™ 07 ()] Diyy (he) — atm[pg(e)]™ B} ()] Dy (he) + btn[pl(e)]™ [57 ()] Doy (he) + O(1%).
Then, for the operator , it has
by (Re) D9 (€))™ 57 (e )]”1“' e, (he) [3 ()] [0 (e)]™*

k k
=[pR(e)] == ™l ()| =4 I"IHD )—t (Za lzm] P ( i'c‘l"“')_1[15?(6)]2?1””'1_[117;1171.(116)>
k

+t<zb[zm]pé ot @) ] >+o<t2>

(3.16)

(3.17)
By (C13] , we finally have
by (R (€)]™ D7 (€)™ - akbk( )9 (@)™ [y (e)]™
k k k k
B [ Dg ) o7 (Y S| 4300 (o] )
i=1 =1 =1 =i .

[p0(e) s (mtm IHD
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Recalling the derivation of (F%} ™). | we get

()" Diath).. = & (<05 ) DLy (3.19)

where the result of ((pY(e))™).. is given by setting ¢ = 0 = a = b. It can be verified that, (D', (he)).. takes the form
that

2

(Dl(he))=. = (1= g0+ 191(0) +O()) = F(0) g (g0 + 191 () + O(12)) (3.20)

with some functions gg, g1 and f. Therefore, with Faa di Bruno’s formula, we can have that

P) D).

e

(=)™~ (coth(n) + b)got + O(¢?)

(72(e))™ Dy (he)), = €t (t

=(1)z, (=)™ [g0 + tg1(m)] + (1)-, (3.21)

m
+ <1>Ze?

Based on these formula, we can propose a faster algorithm to deal with these cases.

IV. Power counting

After introducing the derivations of expectation values of several characterized operators, we finally need to deal
with a set of specific operators that takes the following form, ) . 71> %" 04, a,...q,,, Where T is some numerical

factors and O is some polynomial operators of holonomies and fluxes. In principle, we would need to compute the
expectation values of O, ...q,, for all indices @ = (a1, - -+ , ;). This computation can be preformed thanks to previous
sections. However, the computational complexity comes from the huge amount of terms in the sum over &. Since
we are only interested in the expectation value up to O(t), the complexity can be reduced by certain power-counting

argument: we count the least power of ¢ contains in each (O, ..., ) before explicit computation, then we omit those

terms only contribute to higher order than O(t) in (H[N]). It turns out that a large degree of complexity can be
reduced in this manner. The following arguments in this section will be proven rigorously in Appendix [F}
In this section, we will denote Wy defined in (2.20) by |¥g) with § = {ge}cecp(y), namely

Vg) = Q) [vg.)- (4.1)

e€E(y)

Similarly, [¥z¢)) denotes the coherent state that at the edge e is |1/19<i)). Let O take the form of
0=0,05---04 (4.2)

with O; being arbitrary polynomial of fluxes and holonomies. Inserting the resolution of identity (2.27)), we have

- k
(Ug |O|\If /H dV H *(i—1)|0’\i|\:[/§‘(i)> (4.3)
m=1 =1
where |Wz0)) = [¥z0)) := [Pg) and the measure du(gm™) is
v(g™) = ] dv(gt™) (4.4)

e€E(y)

with dl/(gém)) defined in . Eq. relates the expectation value of O to matrix elements of each individual O;.
Thus we are motivated to study matrix elements of polynomial of holonomies and flux. One can refer to Appendix [F]
for more details on this issue. According to the analysis therein, the matrix elements of the fluxes and holomomies
are of a form described below

(g 0iltbg;) = (W, |t0g:) (Bo(ges 9L) + tE1(ges L) + O(™)) - (4.5)
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Assigning to each edge e a complex number w, = p. — 6., we have the coherent state

|\Iju7> = ® |wwe>' (46)

e€E(y)
For the operator O in Eq. (4.2), we state the following result obtained firstly in [§]

Theorem IV.1. Consider an operator O = Hle O;. Assume that, for each operator O;, its matriz elements
(‘l/§<1)|0i|\11§(2)> take the following form

(W00 [0ilW ) = (W W) (B (D, 52) + B0 (3D, 52) + O(™) ) (4.7)
Let Ny be the number of operators O,, € {OAZ}f:1 such that

<‘I’<@§|“i;w> =0(t), (4.8)

where the O(t°) term vanishes on the RHS. Then the expectation value of O with respect to the coherent state |V )
satisfies

(¥slOa) No+1

W) o(t™), withn > |

J (4.9)

where |x] is the largest integer no larger than x.

A detailed proof of the above result is provided in Appendix [} including a careful stationary phase analysis, the
computation of nondegenerate Hessian matrix, and power-counting.

Because of the vanishing leading-order term of (Q — 1), it can be regarded as operator Om satisfying (4.8)).

(@)
R k —
Thus, Theorem |[I[V.1] is applied to count the power of ¢ for the term including (g; — 1) in (H[N]). Moreover,
in order to apply Theorem [[V.1} matrix elements of O; have to be computable. We have to factorize <g; —-1=

(i + 1) (i — 1) because every matrix element of Q is a polynomial of matrix elements of the flux operators,

(@) (Q)
while that of 2 is not.

Because the expectation values of pF'(e), pi'(e) and D, (h.) (a # b) with respect to Wy vanish, each of them
can also be considered as operator O,, in . Therefore, this theorem can be applied to study the leading order
of monomial of holonomies and fluxes. Let us use p?(e) to denote either p2(e) or p(e), and use M to denote the
monomial of holonomies and fluxes. Let N1 be the number of p*!(e) respectively and, M, (respectively M_) be the
number of D%%% (he) (respectively D?*% (he)) in M. According to our analysis above, the expectation value of M

with respect to the coherent state |i.. ) with z. € C is non-vanishing if

m k
D B+ (b —a;)=0. (4.10)
i=1 j=1
Hence, we have
Ny+My=N_+M_. (4.11)

Therefore, this theorem gives us that the leading order the expectation value (M), is O(tN++M+) or higher. We

1
have more discussions on this case. Since the matrix elements of p*(e) and D2, (h.) are computable, the results on
the leading order of M can be calculated more concretely. The result is summarized as the following theorem.

Theorem IV.2. Given M an arbitrary monomial of holonomies and fluzes. Let M’ be the operator resulting from M
1
by deleting all factors p°(e) and D&y (he). Denote the number of p2(e) and p?(e) in M as No s and Ny ¢ respectively, and
1 1
the number of D%, (he) and D?, ,(he) as Moy and My_ respectively. Then the leading order of (M), is exactly
22

2 2
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O(tM++N+) if and only if the leading order of (M’),. is evactly OtM++N+) where Ny be the number of ptl(e)
respectively and, My (respectively M_) be the number of D? , (he) (respectively D? , (h.)) in M. Moreover, it has
22 2’ 2

(M), = ((93(e))- )N‘“(<ﬁ?(e)>ze)N0"(<D§%(he)>ze)M°’+(<D2 1 (he))z )Mo (M)

—5—3 e

2

(4.12)

where = means the O(tM+TN+) terms of the left and right hand sides are equal to each other.

The proof of this theorem is quite technical and, thus, presented in Appendix

V. Cosmological expectation value

We apply our computation of expectation values to coherent states labelled by homogeneous and isotropic data.
The symmetry group of the homogeneous and isotropic cosmology is T x F' where F' is the isotropic subgroup and
T is the translation subgroup. Denote the subgroup of T x F' preserving v by S,. A classical state g is said to be
symmetric with respect to S if s*g := g o s is identical with g up to a gauge transformation s (Vs € S,). According
to this definition, classically symmetric states g are of the form [57]

g: e go = neen st (5.1)
with n. €SU(2) satisfying
nemsn, ' =il - 7. (5.2)

In the last equation, 7i. is the unit vector pointing to direction of edge e. Then, for each s = (¢, f) € T x F, it can be
verified that

gos=Adsjog (5.3)
where Ady o g(e) = fg(e)f~* for all e € E(v).

A. Symmetries of the expectation value

Given F, as a polynomial of fluxes and holonomies on e. For s = (t,f) € Tx F, Eq. (5.3) results in

<1/’g.g<e)|ﬁ‘5(€)|z/’gs(e)> = <wfgef*1|Fe|1/}fgef*1> = <wge‘(f>Fe)|1/’ge>- (5.4)

where f > F, denote the gauge transformed operator of E, by f and the last equality can be derived by using the
similar procedure as to derive Eq. (3.1)).

To expand the expectation value of Hg and H, to order O(t), one needs to replace the operator V, by V(Si}) defined
in (2.29). Then the Euclidean part Hg[N] is rewritten in terms of (there is no summation over I, J, K here)

HY (vier,eq,ex) = ——5erartt(hag, (e, Q2"hD), (5.5)

1
1Ba?t

and the Lorentzian part, in terms of

r(R) g, .
HL (U7U17U27U3,U4,€[,€J,€K>

-1 IJK A2k (k2) A2ks (ka) ~1rp, 2ks (5'6)
:me tr([ 617[ vy ’H ( )]] 61[ CJ’[ v3 aH ( )HheJ[ €K7Q ] eK)
with k = (k1, ka, ks, ku, ks). Define
H(n) Z H( (vier,eg,ex) (5.7)
€1,€J,€K
and
Iiflék)(v) = Z I?Iék)(v;vl,vg,vg,m;eI,eJ,eK). (5.8)

V1,V2,V3,V4,€1,€J,€K

The Euclidean and Lorentzian parts, with the replacement V,, — Vg}) truncated at a finite n, are linear combinations

of fl(En) (v) and f?[g;)(v) with various n and k respectively.
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1. Symmetries of the Euclidean part

According to Eq. (5.4)) and the gauge invariance of ﬁ (n) (v;er, ey, ek ), one realizes the following symmetry

(H (vier,eq,er)) = (HE (s(v); s(er), s(es), s(ex))), (5.9)

where (-) denotes the expectation value with respect to the cosmological coherent state given by (5.1)), and s = (¢, f)
is a symmetry of the graph.
By this relation, Eq. (5.7)) is simplified as

ﬁgl)( ) = 24(H(n) (v;ef, ;‘,ej) + H(") (v;ef, ejl',e;)) (5.10)
where the prefactor 24 is deduced by the fact that there are totally 48 terms in the RHS of

Moreover,  [h,z, an]h_il appearing in I:I](En)( sef e eF)  potentially relates fIE (v, ef,ef,ef) with
H(")(v, el e, e;).Concisely,

2n
R B . ﬂaQ 3.1 . R R R R R R . R
[hezi ’ an]hezil - Z Z ( + Zt%) le ealﬂl’nXalYﬁlT% Q€2 eazﬁszazyﬁvaz T le Eazﬁz’nXalYBl T QgH—l

=1 P,

(5.11)
where the edges eX are oriented so that s(ef) = ( 7), X = pe(e/) — p(e’) and Y = p(e”) — p2(e”), and
P ={p1,p2, - ,pi+1} with p; € Z, p; > 0 and Z = 2n — [.* Substituting the last equation into the expression
of I;TJ(E") (v), one has that

fllgn)(u;ej,e;,ej) + 1?[](5")( sedefel) = 2ﬁgn)(v;e:,e;,ej) (5.12)

where H(")(v e, el el) is the operator H( )( ;e el el) with applying the following replacement

N N A A A N A ~
[he;r’ 62‘2}"’7’]}116__"1 - Z Z ( — (IB(; ) ) le 6016171 Xalyﬁl T’Yl Q{? 6026272Xa2yﬁ2772 e le 601161'}11)(6” Yﬂl T’” Q£l+l .
lis odd P;
(5.13)

By Eq. . H (v) becomes H™M (v) = 48H(n)(v el el el). Thus, when we calculate the expectation value

7w7y?z

of the Euclidean part it is only necessary to consider H( )(v, ex,ef,el) rather than H(n)(v7 ef el ef).
Further, according to Eq. - the Euclidean Hamﬂtoman is of the form
Hl(gn) (vier,eg,ex) = €IJKtr(haIJTa)Oa7
where O, is a polynomial of fluxes. Then the fact tr(h7®) = —tr(h~17%) gives
fIgE")(v;eI,eJ,eK) :ﬁén)(v;eJ,eI,eK). (5.14)

In summary, originally there are totally 48 terms for every H (n)( )in Eq. (5.7). However, thanks to the symmetries
discussed in this section, we have fI(") (v) = 48H(n)(v, el ey, el), which means that only the expectation value of

H(")(v, el ey, el) is necessary to be computed.

2.  Symmetries of the Lorentzian part

Considering a list of vertices and edges (v; vy, va,v3,v4;€5,€,€ex) With er, ey and ex being outgoing from v, we
have that (ey,ey,ex) is either left-handed or right-handed. Thus, there exists a rotation f which leaves v invariant

such that (v; f(v1), f(v2), f(vs), f(va); f(er), f(es), f(ek)) is either
(U; f(Ul), f(v2)7 f(’Ug), f(’U4); 62—, 63—7 6:)

4 A general equatlon can be obtained analogously if the holonomy h oF is replaced by a holonomy along other edges. In the following

context, Eq. will be usually referred as this general equation.
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or

(’U; f(vl)v f(’l)g)7 f(Ug), f(’U4); 617 6;;7 6;)
Therefore, (5.8)) is simplified to

ﬁék) (v) =24 Z (f[ék)(v; V1, Vo, V3, Vg; € e;, el) + ﬁgg) (v;v1, 9,3, V45 €], e;r, e;)) (5.15)

V1,V2,V3,V4

Moreover, since the term [hej,QE"]h; appears in ﬁék) too, Eq. (5.11) can be applied again to simplify Eq. (5.15))
to obtain the following expression

H’gc)(v) =48 Z Iffék)(v;vl,vg,vg,m;ei,eJr el), (5.16)

Yoz
V1,V2,V3,V4

where this Hék) operator is given by f[gc)(v; V1, Vg, U3, V4; e;“, e;‘, ej) with the replacement ((5.13]). As a consequence,
it is only necessary to compute the expectation value of

5 (K

AP (001,02, 03, va5 €7, ef,el)
for different vertices vy, v9, v and vy.

The above discussion simplifies the computation of the Lorentzian part. However, more symmetries are required

in order to reduce the computation time to an acceptable level. For this purpose, let us firstly look at the term
[he QT h Y], Qu,] Which is from the commutator between the volume and the Euclidean part. We obtain the following

vy e

proposition which can be proven by Eq. (5.11) directly.

Proposition 2. Given an edge e with the source s(e) and the target t(e), [he| A;’(Le), h1,Qu) = 0 for all v # s(e).
With this proposition, we consider the commutator | A%’f, ﬁgl)(vg; er,eg,ex)] which defines the operator K as
N 1 ~ =«
K = ,—t[V,HE]. (5.17)
i

By definition, we have

Q2 (vsier, e exc)) = o (R + Ka) (5.18)
with
K1 =eryrte((Q3, hay,llhes, @10C) (5.19)
Ky i=ergrtr(hag, [QoF [hex, Quy1he,t])-
The classical analogy of Eq. is
K ={V,Hg}. (5.20)
Substituting the expression of Hg, one has
3 i i b Ej
K= vtig) = [ @V By oot (5.21)

According to Eq. (5.21)), only the Poisson bracket between volume V" and the curvature F, . is involved in the classical
expression of K. In the quantum theory, F, is quantized to a holonomy along some loop a;;. Thus, comparing to

Eq. (5.18)), the operator K, corresponds to the RHS of Eq. (5.21]), while K> gives an extra term in K. According to
Proposition [2| this extra term Ky vanishes unless v; = vo = s(ex) at which Eq. (5.11) can be applied to cancel the
holonomies inside the commutators of Ks. Then K5 is simplified to the following form

tr(ha,, [ng, polynomial of only fluxes]).
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Therefore, it is because of the non-commutativity between the flux operators that the operator K, appears in K.

Note that the existence of Ky does not affect the continuum limit of lim,_,o(H[N]) (the classical limit of (H[N])
reduces to the classical continuum expression of H[N] when the sizes of lattice edges are neglected [22]).

By Eq. (5.13), K> can be simplified as

—it(Ba?)3 A1 [A o %817 A2k —
T i, 708 Qi K X Q2

KQ =€J/JK Z (Qk)
p1+p2=2n—1

5 2%k(2k — 1) —it(Ba?)
2 8

(5.22)

3
+ €EIJK tr(haj‘]T’y)Q?U)l [Q’U? I:Q’U; 6041,31’)/1 X?lX?l]]Q%k—2+P2

p1+p2=2n—1

+0(th)

where X¢ = p%(es) — p*(er) and the conclusion that Ky # 0 if v; = v = v is used. For the first term, we have up to

Ot

—it(ﬁaz)g Y\A21 A o1 w811 AH2k—2
first term :€IJK(2TL)(2]€)T tr(ha,, 77)Q" [Qus €arpiyn X1 X7 Q0 (5.23)
2n(2n + 1) —it(Ba?)? Ao 1T A A 5 or BT A%k '
- (Qk) ( 2 ) (8 ) tr(haIJT’Y)Q'lQ} 1[QU’ [Qwealﬁl’YlXIlX?lHQik 2
For the second term, up to O(t*) we have
2k(2k — 1) —it(Ba?)3 A A A PR R
second term = ey yx (2n) ( 5 ) (5 ) tr(ha,, 7)QY T [Qu, [Qv,ealglelanglﬂQg’“*Q (5.24)
Finally, Ky is
- —it(Ba?)3 Ao T A 5ot B Mo
K, :EIJK(2N)(2]€)% tr(ha,,77)Q> [Qv,emgleI'ngl]ng 2
(2k)(2n)(2k — 2n — 2) —it(Ba?)3 (5.25)

+ €IJK tr(hoqj T’Y)QA'LQ)n_l [Qva [QA’LM €a1 8171 X]OLlX?l:I]QA%k_2

2
+O(th

Because of the commutators between fluxes operators,

[ﬁa(e)7ﬁ5(e)] =t(—1)"e_rapp”(e) =: tCapyp" (e) (5.26)

with €_1 91 =1 and p®(e) denoting p (e) or p$(e), one obtains the following
[ (e™) + s1pf(e7), 52 (™) + 29 (€7)] = tCuapy (B (e7) + 515257 (7)), (5.27)

with s1,s2 = +1. Substituting Eq. (5.27) into Eq. (5.25)), we express Ko, as well as K, as a polynomial of h, and
() (). ﬂ
Moreover, thanks to the above results, ﬁék)(”u) in Eq. (5.16) can finally be simplified to be in terms of

C
t—Qtr(he: Flh;;he;FthGl) (5.28)

where C is some constant of order t° or higher, F; with i = 1, 2 are some monomials of holonomies and (p%(e*)+p%(e™))
and G, is a monomial of (pS(e™) — pf(e™)).

The results in Sec. [[V] can be used to reduce the computational complexity too. To use these results, one needs
to apply the basic commutation relations to simplify the Hamiltonian operator such that the operators after
the simplification are written in terms of CP with C being some constant of order t¥ or higher, and P being some
monomial of holonomies and fluxes. R .

In order to achieve so, one needs to permute hej and Fy, as well as he; and Fy, in Eq. with applying Eq.

(3.4). Take the permutation of h + and Fy as an example: Implementing the results of Eq. (13.4), one substitutes

O, by ho+, and O;, by p2(ef) and/or p2(el). One of many these substitutions inevitably generates some special
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terms in which the commutators only contain p% (e} ). The computation of these commutators with will lead
to results that are proportional to h ot After substituting these permuted results into Eq. - this h et eventually

cancels with he +1 (similar to Eq. - . One can apply the same mechanism to permute h ef and Fb.

Let us collect these special terms coming from permuting % + and Fy as well as permuting he; and F,. Denote

(k)

the partial sum of these special terms in H (k) by altH Because of the cancellation between holonomies and their

()

inverses, alt fy 1,/ no longer depends on h_+ and h_+ .
z Y

It turns out that altﬁék) possesses more symmetries which will be discussed shortly below. These special terms
can be equivalently selected by considering only the non-commutativity between he; and p%(el) but ignoring the

non-commutativity between h 1 and p¢*(e;). That is
the special terms of h,+ Flh;l = h+ 3 h;l (5.29)

where s} is the segment within e} and does not contain the target (e} ). Because of the aforementioned cancellation
between the holonomies and their inverses, it is remarkable that the length of the segment does not cause any ambiguity
and the operator in Eq. - does not change graph ever segment of edges in the holonomy is chosen. Concretely,

Eq. results in

1t 7y (k) (. .
& HL (’l),’l)l,UQ,Ug,U4,€[,6J,€K)

-1 (k (k _ A _
=gegramn© o (s QU L @)lIn [, QU g™ (a1 o, QPR

(5.30)

It is interesting that the RHS could be understood as that from an alternative definition of the Lorentzian part,

LN = gt oM@ (g (VN o V. FEDE, o VBt ) (s3)

s7,87,5K at v

in which all edges ez, ey, ex are replaced by their corresponding segments sr, sy, sx with s; C er. Indeed, **Hp [N]
is obtained by an alternative regularization/quantization of the Hamiltonian, i.e. via the following replacement

-1
2k(ihB)?

where the holonomy along the segment s, C e instead of the entire edge e is used. Here, é* denote the vector tangent
to e.

Collect the terms in H ék) other than the special terms discussed above, and denote their sum by e’“”ﬁék), namely

{K,e"Au(2)} — [hs [V, HelIRS

extr 7y (K) . .
HL (07U17U27U37U476176J76K>

7 (F) (- : 16 77 (k) (. :
= H; "' (v;v1,v2,v3,v4;€1,€5,5) — HL)(v,vl,112,1)3,1)4,61,6J,6K). (5.32)

The operators !t H ék) and & F ék) are dealt with separately in our algorithm.

For altf[ék), the simplification procedures discussed above result in
C 1 -1
Shgr Flh h +F2 Gl, (5.33)

instead of Eq. (5.28)). Since [hs,,p¢(er)] = 0, we can simplify these terms with

e L1020 (€0) o it (D = 2@ [ oi ) +or () [ o r™ (5.34)

T ¢ JET
where T is a subsets of {1,2,---,m} with its length denoted by |Z|, s* and s~ are segments of e* and (e™)~!
respectively with e* oriented such that et and (e~)~! are both outgoing, o7 = 1 and o, = 1. The summation
over er, ey and ex in Eq. (5.8) motivates us to compute the following
m m
ho [T 537 (€) + 07 67 (e Dht = ha- T (0 27 (7)) + 07 57 (e))h (5.35)

i=1 i=1
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Then, one can apply the aforementioned replacement

m

hor [[(o7 05 (e7) + o7 pf (e DRt = > () [ (o 527 (%) + o7 b (e7)) T = (5.36)
J

i=1 i¢J jeg

with J C {1,2,---,m} such that

[Ies =-1 (5.37)

Jj€ET

Substitute Eq. ([5.36) into , one cancels the prefactor 1/t2, simplifying (5.33)) to be in the form of CP with
some constant C of order t° or hlgher Hence the results in Sec. can be apphed

Further, altﬁék) brings the following symmetries. Consider a m-rotation which transforms either e} to e, or e;j to
e, - Denote it by 5. Moreover, to indicate the dependence of F; on vertices and edges, we will rewrite F; in Eq. (15.33))
as F;(v,e). Then, since 5(8;) with k = z,y is either sﬁ or s, by definition of 5, Eq. (5.34) tells us

Bt Fils(0), 5L By Fals(0), sle)hy L Ga(s(v), s(e))

. . (5.38)
:hsIFl(s(U)75<e)>hs; hes Fa(s(v),s(e))h o G1(s(v),s(e)).
Furthermore, with recalling Eq. (5.4), we obtain the following equation
<h5jC'F1 ('U, C)h;EhSTFQ(U, e)h;rlGl(va €)>
v v (5.39)

=(hg F1 (ﬁ(v),5(6))h;£hS;F2(5(U),5(6))@5631(5(11)75(6))%

which reduces the number of contributing vertices and edges in the computation of altﬁgf).

For the operator e"“f[ék), Eq. (5.34]) can no longer be applied. Therefore, the symmetry implied by (5.39) is not
manifested. To reduce the complexity of the computation, the following strategy is proposed. Consider a rotation,
denoted by t, about the axis (1/v/2,1/4/2,0) for 7 radians which exchanges the z- and y-axes, and flips the z-axis.
We obtain

(P (w301, 09, v, 005 65, e, €)= (HP (1(0); v(01), v(02), v(v3), t(va); e(ed), vled), v(e)))

+
s e Y (5.40)
=(H " (v;e(v1), v(va), v(vs), v(va)s e e e ) = (HL (vie(v1), v(va), v(vs), v(va); e, e eF))

>
1

in which we use the definition of flék) in , assume t(v) = v without loss of generality. Moreover, the first equality
of the last equation is obtained by using Eq. (5.4)), the second one, by the definition of ¢ and, the last one, by Eq.
(5.34). Then consider the operator

F(v;v1,v2,v3,04; er el el) (5.41)
::Hi (v; Ul,UQ,’Ug,’U4,€I,€J, el) +H(k)(v t(vs), t(vg), t(vl),t(vg),ej,e;,ej)
According to , Fis
F(v vl,vg,vg,m,ej,e;r,ej)
= —tr((hgp (QX ) Hi™ (o) ey [Q35 H™ () [y Q1)) (5.42)
e Q2 Hi ™ (o) I ey [Q35 ) He™ (2o T Q201
up to an overall factor. For clarity, we will denote
X =l Q%) HE (e(wn)h )
Y =lhgy, Q%) He (o)) (5.43)
Z =[h.s, QY Ih
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Because of the holonomies therein, they are all operator-valued matrices whose entries, thus, will be denoted as ng,
Yai) and Z&B respectively. Then, one has

F= Xaé%azﬁfl - YaBXBazéﬁ = Yéexaézﬁfl - yaBXBaZAE& + [Xab’ Y ]Z (5.44)

According to Eq. (3.1), we first compute the expectation values of the operators with respect to coherent states
labeled by e**<7™2, and then gauge transform the results correspondingly. Hence, applying this procedure to the the
first two terms of Eq. (5.44]), one finally simplifies the subtraction of their expectation values as

Q%EaXaEZAE& - ?aBXBazéﬁ{ge} = (Cabcdef - Cclzbcdef)<?abXCdZ€f>{Ze} (5.45)

where Copedes and Cly e ¢ are two sets of constant coefficients produced by the gauge-transformation. Thanks to the
the last equation, one has

(F) (9.1 = (Cavedes — Covedes)YabXeaZes) 2y + ([(Xapr Vicl Zza) (9. - (5.46)

Regardless of the factors Copedef — Clpede f which is easy to compute, according to Eq. (5.45]), the expectation values of
<YachdZef>{ze} and <[Xab, Y 2 ga>{ge} are needed to compute to get (F>{ge}. While for the last term, [X. Y ]Z

@b’

itself is of O(t). Thus we only need to compute the leading-order term of ([X Y ] Zzz) by applying Theorem

ab’

V.2l By definition of F', without applying Eq. (5.46), we need to compute (Y X Z a) and (ngXgééea) to get
<F’ ). Comparing the computed terms before and after applying Eq. (5.46)), it is concluded that the computational
complexity is reduced due to Eq. (5.46]), because it is much easier to compute <[Xab, Y ]Z5(~1> by applying Theorem

To explicitly compute AC := Cabedef — Cppeqe s, let us use O; to denote expectation values of polynomials of fluxes

and holonomies with respect to coherent states labeled by e?*¢™. Then H ék) and the corresponding results of AC take
the following forms, which are discussed case by case.

(1) If Flgc) is expressed in terms of the form
(1.1) (nggOlTan;1)ag(nyOQTﬁnzjl)55(712037771;1)5&;
(1.2) (neO17%ngY) .5 (ny OamPr P2 ny 1 )5e(n20377n; 1) za;
(1.3) (anlTo‘lTD‘?n;l)ag(nyOgTﬁngl)Ea(nzOgTVngl)ga,
then AC is defined as the following,

AC =tr | (n; 'n,) H T n.)T7(n; 'ng) (ﬁ 7a>

a=1

TYLy

—tr n nm H’T) )77 (ny n HT

where (m,,m;) = (1,1), (2,1) and (1,2) for the cases (1.1), (1.2) and (1.3) respectively.

(2) If fI]gE) is expressed in terms of the form
(2.1) (nzO1h, + To‘h;;n;1)&5(nyOghe;Tﬁhe_gnzjl)l;a(nz()gr'ynz_l)5a;
(2.2) (nxOlhe;rTo‘h;n;l):(nyOghe:;TﬁlT'BZhlln;l)5~(n20377n;1)5&;
. Nz Orh+ 7 7% v Jap(MyW2n +7 Ny )pe(nUs7'n; " )za,
2.3) (noO1h 77 h 0y ) 15(ny Oah, h1 D;a(n0377n; !
then AC is defined as the following,

My

H 7’ (ﬁ Ta) {<n;1ny)ab[(ny_lnz)T’y(nz_lnm)]cd — (ny‘lnm)cd[(nglnz)ﬂ(nglny)ab}
B=1 a=1 da

be
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(3) It ng’“) is expressed in terms of the form

(3.1) (nyO1h, +T°‘h 'nt). g(nyOgTﬁlh TﬁQh ! ny e (n20377n; 1) za,
then AC is defined as the following,

AC = (17)5e(r)aa{ I3 1y 7 Jasl( 1) 7 (07 1)t = (05 02) 70 7 sl (0 ) e |

(4) It fff) is expressed in terms of the form
(4.1) (nzO17%*h, +T”‘2h ! nyl). i (nyO2h T h 1 ;1)5&(n20377n;1)5a,

"J

then AC is defined as the following,

AC = (Ta2)da(7ﬁ)b0{[(n;zlny)ab[(n;lnsznzflnme]cd - [(ngl)nz)fy(nglny)}ab[(”gjlnw)Tal]cd}

(5) If .FAIS;) is expressed in terms of the form
(5.1) (nzOrh+7h 1n Y23 (ny 0270, 1) (00370 ) zas
(5.2) (nzO1h+7h; fn Dy (ny Ot 720, 1) (0, 05770 )za;
(5.3) (naO1hgp772h "1y ) ap (nyO27Pny o (n0sm 70 )z,

then AC is defined as the following,

AC = (1_17“) {[(n;lny)(ﬂl_[ TB)(ny—lnz)T"f(nz—lnw)]ab [(ng 1nz ™ (ng ’I’L H . ’I’L nw ab}
a= ba =1

(6) If f?[g;) is expressed in terms of the form
(6.1) (nzO17%n; )5 (nyOsh, +Tﬂhjn;l);,(nzosfmgl)ea;
(6.2) (nyO17n;t), (nyOgh 7'517/32h ! ny 1 )5a(n20377n; 1) za;
(6.3) (anlTo‘lTa?n;l)ag(nyOg T heiny D32(n20377n; Y za,

then AC is defined as the following,

1] {iny nor ezt (T =)0 m)las — [y ) (] 7)) (0
B=1 a=1 a=1

ba

(7) It fAIgc) is expressed in terms of the form
(7.1) (nxOlrangl)&g(nyOgrﬂlh TBQ]'L ! ;1)55(%037711;1)5@,
then AC is defined as the following,

AC = (Tﬁz)ba {[(nZIWZ)TW(nz_Inm) “(ng ny) Bl]ab - [(ny_lnm)Ta(nz_ITLZ)TW(nz_lny)Tﬂl]ab}

(8) If ggc) is expressed in terms of the form
(8.1) (nyO17% b 4702 he_;:n;1)&5(nyOgTﬁanl)E&(nzOgT’ynz_l)5(1

the subtraction of the coefficients are of the form

1

AC = (1) (00 0,) 77 (1 12 T (1 00) 7 e — [ 1) 7 (0 ) 72

—1 o
Ny Ny T 1]ab}.
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In summary, let N7 be the original number of terms in alt f (Lk). The symmetries implied by Egs. and ( -

reduces this number to Nj /42, where the power 2 is from the fact that a“ﬁ (k) consists of two Hp. Then Eq (5-16)
reduces this number further to Ni/(42 x 48). Finally the symmetry (5.39] reduces this number to

Ny M
42 x 48 x 4 3072
Let N5 be the original number of terms in EXtrH (k) The symmetries implied by Egs. and 1 14)) are used at
first to reduce this number to Ny/4%2. Then Eq. reduces it to No/(4% x 48). Fmally, Eq. (5.46]) reduce this

number further to be about?®

Ny N,
42 x 48 x 2 1536°

B. Exhibit an explicit computation

In order to demonstrate the idea of our algorithm, some simple examples are used in this section. All of the
cases illustrated by these examples finally occur in our computation. Particularly, some functions like P(v, i,I(i’m)),
WDt(Z(#F)) and WD(Z(+*)) indeed exist in our codes [49] as the same manner.

Roughly speaking, the computation is divided into two steps. The first is to simplify the operator with applying
the commutation relations and the second is to compute the expectation values of the simplified operator.

In the first step, the non-commutative multiplications between operator make a non-trivial simplification. Because
of the operator ), we actually need to deal with

P (v,i) = p2(ef) — B (e)

where e are the edges along the ith direction satisfying s(e;) = v = t(e;). In the computation, we mainly need to
deal with the commutators between Po‘(v, 1) and holonomy. Thus let us consider the example

Hp v,1),h ] = thTO"“h + HP v, 1) (it)QZTa’Ta’“hej H P (v,7) + O(t%). (5.47)
j=1 J#k k<l Gk

Because these o appear in the computed operator as dummy indices, their specific values do not matter in the

operator-simplification procedure. In other words, H;n:l P (v,1) is treated like a tensor for which only the type does
matter. Therefore, based on our algorithm, we define a function

P(v,i, (™) H P(v, 1) (5.48)
a€eZ(im)

where Z(»™) denote an index set of length m. In the supperscript of Z(m) s used again for convenience so that
the multiplication of (P*(v,1)P?(v,2)P(v,3))™ occuring in Q™ can be denoted as

(P*(v,1)P?(v,2) P (v,3))™ = P(v,1,T0™) P(v,2, 73™)) P (v, 3, 73™).
Similarly, let us define
WDH(ZUH)) 1= 7o ponms .. pon (5.49)
where Z0-%) = {ay,- -+, a;}. With these notions, Eq. can be written as
[P(v,i,70™), =(it) ZWDt by Plo,i, 7™ )
(5.50)

(i) Y WDH(Z{ ) h 1 P(v,i, I ) + O(t)
k<l

5 The word “about” is because there exists cases with X = Y in Eq. (5.44).
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where Z,gll 7;;2) g is the index set of Z(»™) without the kith, koth, - - - ,kqth indices and fg?ﬁ e kg is the complement
(i,m)
of Ikl’k% ko

g

Further, let us implement an mnon-operator factor F (ZG™))  contracted with P(v,4,Z(™)) to consider
S rtimy F(ZE™)[P(v,i,Z3™), h_+] which is finally simplified as

e v

i €y

> F@Em)[P(v,i, 70™), b ]

T(i,m)

=@it) > WDHZOV)h Plo,i, 20m0) YT F{ZOmD, 0D ) (5.51)
T(im=1) 7(i.1) k=1
+@t)? > WDHIZP) Ay Pu,i, I0™) Y T FUZO™TD, 10D ) + O().
ZGm=2) 7(i,2) k<l

Here {I(ivm_”),I("’”)}(khkm_“ k,,) 15 a joint set obtained by merging Z(m=n) 7(n) in such a way that the elements
in Z) (respecting their original order) are distributed in kjth,-- - k,th position in {I(ivm_”),I(i’”)}(khkz,,,.,k").
Instead of deleting n indices in all possible Z(:™) one replace this deleting procedure by an inserting procedure,

namely merging all possible sets Z(»™~") with length m — n and Z(>™ with length n in the above way for all values
of k1 < ko < -+ < k. Therefore, Eq. (5.50) can be simplified further as

(et P(v,,T0™)] —

. , , . 5.52
AWDHZ )b P(o, i, T D) + (it) > WDH(ZO?) b+ P(o,i, 0™ 2)) + O(£). (5:52)

Then, for each evaluation of the index sets Z(@&m=n) and ()| we joint them in the aforementioned way to consider
{I(“”_”),I(”")}(khk%_.. k) for all values of ky < kg < -+ < k.
Similarly for the commutator [k -1, P(v, i, Z(-")], we have

3

[h(ef)*hp(vaiaz(i}m))] —
’ , 4 . , (5.53)
— tWDH(Z )y P(v,i, Z0™ ) + (=it > WDH(ZE2)h 1 P(v, 4, T0™2)) + O(t2).
For [h,-, P(v,i,Z7("™)] and [h(ej)fl,P(v,i,I@’m))], we need to define
WD(ZR)) = porgpon .o (5.54)
where Z(:-F) = {ay, -, ap ).
(s, P(0,1, 20™)] —
AWD(ZUD) by P(v,i, Z0m ) + (it) *WD(ZE2)h 1 P(v,4, T0m2)) 4+ O(t%), (5.55)
hiepy-rs Plo, i, Z0™)] |
— tWD(Z") b+ P(v,i, Z0m7) + (=it) > WD(ZE2)h o P(v,i, T0™2) + O(t%).
The second step is to compute the expectation value of the simplified operator. Let us still
take > rim ]-'(I(””))[P(mi,I(”m)),he;r] as an example. A subtlety here is that the operator

> rm F(IZE™) [P (v, i, TEm™), hej] involves two edges el because of the operator P (v,7). We consider its
expectation value with respect to coherent state |1, , ) ® [1b4 _), where, without loss of generality, we set

iz‘r;;n—l

Jef = YGey =g =ne

According to the above discussion, one can apply the result of Eq. (5.51) to compute the expectation value of its
LHS. Let us take the first term for instance. We need to compute the expectation value of

S WDHEE, a,0) (D () P(v,i, T D)) ST FTOm D, TED ) (5.56)
TCm—1) TG p 9 k=1
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Applying Eq. (3.1]), we finally obtain the following

WDHTD, a,6) ( Dy () Pv,3, 70 1) > Z]-' {Z0m=2) 76Dy )
I(i,m—l)’z(i,l)’b
= Y WDt a,b)Dy (n )<D1/2(h +)P(v,z’,l’(i’m’1))>
I(i,m—l))z(q‘,,l),b

(5.57)

z

D1/2(n—1) Z ]_':({I(i,m—Z) 7 I(i,l) }(k))

c'c
k=1

where F is given by

ﬁ({ah"' ak} Z f{ﬂlv aﬂk})Dalﬁl( ) Dakﬂk( 1)'

To compute Eq. (5.57)), the results of Theorem can be applied. Thus, one obtains the possible Z(:™~1) are:

(i) If one only computes the leading-order term of the expectation value, then Z(m=1) ig evaluated at {0,0,---,0}
1

(ii) If one only computes the expectation value up to O(t), then Z(™~1 is evaluated at {0,0,---,0},

—_———

m—1

{0,0,---,0,%1}, {0,0,---,0,1,—1} and {0,0,---,0,—1,1}.

m—1 m—1 m—1

With this discussion, Eq. (5.57)) can be computed by considering both the expectation-value part

<D§/2,(h ) P(v,i, 70 1>)>

z

and the non-operator-factor part
ZWDt T, a,b) Dyl (n) DY 2 (n 1) Y F{ZOm=2) 16D} )
k=1

for each possibility of Z(-m=1),

For the expectation-value part, the values 0f< b,/f, (he+)P(v,i I(i,m—l))> for Case (i) and the cases where Z(»™~1)
contains £1 in Case (ii) are computed by Eq. - Furthermore, for the cases where Z(»"~1) contains +1 in Case
(ii), the results are independent of the position of £1 in Z(»™~1). Therefore, only 14242 = 5 cases are considered in
Case (ii) finally. Comparing with the original number of cases 33m 1 one can obtain an advantage of our algorithm.

For the non-operator-factor part, given a possible Z(&m=2) and consider all possible Z(-Vs. ‘Then all possible
{I(“m_m,I(“l)}(k)s can be reconstructed. It is noted that, for Case (ii), the positions of 1 in Z(»™~2) does matter

to the value of F. Thus we need to consider the permutations of indices in (with keeping the relative order between
£1) Z(:m=2) in Case (ii) when reconstructing {Z(>™~2 7(:D} ;) With the results of these two parts, the results of
Eq.(5.56) is obtained correspondingly.

Finally, we complete this section with the discussion on the values of 7 and k in ﬁEE") and Hﬁ"”, which is summarized
as the following lemma,

Lemma V.1. To get the expectation values of fIEEn) and f[gc) up to order O(t), it is sufficient to set n and k=
(K1, ka, ks, ka, ks) respectively such that

n<3 (5.58)

and

|k1+k’2—3\+(k1+k’2—3)+|k3+k4—3\+(k3+k4—3)

ks < 3. 5.99
2 2 ks < ( )
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. _ . A k
The proof of this lemma is sketched as follows. When one replaces V,, in Hg by VC(f)T), the term <Q2 /(Q)? — 1)

in Vg}) contributes as the following

Strha, o [ (Q21Q 1) 0]

n arg'lsk s Mg pe

k—1 m (A2 /{ON2 1—1 R —m (5.60)
=3 g e (@11@02 - 1) L el 2y )

m=0

where the overall coefficient is neglected. Since Q2/(Q)% — 1 = (Q/<Q> + 1) (Q/(Q) - 1), and (Q/(Q) — 1) = O(t),

Theorem can be applied, which indicates that the leading-order expectation value of the operator ([5.60) is at
least O(tLF7?]). Thus, as far as expanding the expectation value to O(t) is concerning, one can sufficiently choose

k < 3, which leads ton < 3 in ﬁ(E") A very similar discussion for ﬁék) can be done, which gives us Eq. (5.59).

VI. Quantum correction in the expectation value

The resulting expectation value of the Hamiltonian with unit lapse ﬁ[\l] = f[; + (1 + 52) }/I\L at coherent states
with cosmological data (n < 0 in our convention) is shown as follows

<fl;> = 6ay/—pnsin®(&) — %at’ / —% sin? (g) cos (g) {cos (g) {8772 + 8n(4 cosh(n) — 3)csch(n) — 9}
— 12in sin (g) } +O(t%), (6.1)
—~ . 6ay/—PBnsin®(£) cos? (&) 3at 9
(H) = — P ~ SeaTaa(_ ) {2 (3 — 220n%) cos(6¢)

+ 4in(4838sin(§) — 6284 sin(2¢) + 4685 sin(3§) — 5222 sin(4€) — 105sin(5¢))
+2(—3611 + 8n(492n + 117)) cos(§) — 2(—789 + 4n(3057n + 18i)) cos(2¢)
+ (4413 — 4n(928n + 497)) cos(3E) + 8(—1978 4+ n(4192n — Ti)) cos(4€)

+ (=7 + 4(—272n + 5i)n) cos(5¢) — 4n coth(n) [536 cos(&) + 1731 cos(2€)
+ 1524 cos(3£) — 40548 cos(4€) + 116 cos(5E) + 117 cos(6€) + 37292]

+ 8nesch(n) [130 cos(§) + 918 cos(2€) + 801 cos(3£) — 18618 cos(4€)

+125 cos(5¢) + 58 cos(6¢) + 16362] + 8(1436 + 1(—40567 + 25i))} +O(#). (6.2)

According to (5.32), (Hp) = (" H.) + (*WH,), in which (" H) is,

s 3a~/—Bnsin®(2 3at
(LY = — “*/78”;21“ (26) _ TS (f T {4 (10402 — 79) cos(€) + (68 — 160n?) cos(2€)
+ 4 (55 — 104n°) cos(3€) + (944n* — 501) cos(4€) — 848n°
—2n [coth(n)(—(262 cos(&) — 6(46 cos(2£) + 65 cos(3€) — 380 cos(4€) + 366))) (6.3)

— csch(n)(—292 cos(&) + 268 cos(2€) + 420 cos(3€) — 2035 cos(4€) + 1799)

— 644(6sin(§) — 10sin(2€) + 6sin(38) — 7sin(4£))] + 241} +O(t?),
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and (U H) is

extr 77\ __ 9a \4 _ﬂn Sin2 (25) 3at
) = 82 T o6a1aa(— )2

{ — 2 (580n% + 72in — 517) cos(2€)

+ 2 (3 — 220n%) cos(6¢) + 4in [3302 sin(€) — 3724 sin(2¢) + 3149 sin(3¢)

— 35(98sin(4€) + BSin(SE))} + 2(—2347 + 8n(284n + 114)) cos(&)
+ (2653 — 41(967m + 491)) cos(3§) + 56(—211 + 7(464n — 7)) cos(4€)

+ (=7 + 4(=272n + 5i)n) cos(5&) — 4n coth(n) [1584 cos(&) + 627 cos(2¢) (6.4)

— 36 cos(3¢) — 31428 cos(4€) + 116 cos(5E) + 117 cos(6€) + 28508

+ 8ncsch(n) | 714 cos(§) + 382 cos(2€) — 39 cos(3€)
— 14548 cos(4€) + 125 cos(5€) + 58 cos(6€) + 12764} + 8n(—3208n + 25i) + 9560} + O(t%).

When expressing <ﬁ—ﬁ]> to be (ﬁ[\lb = Hy + tH; + O(t?), we notice that the O(t)-term H; contains 7 in its
denominator and, thus, is divergent if 7 — 0. This feature is implied by the fact that if QU> — 0, VévT) is divergent.
This is because when if  — 0, (Q,) — 0 since (Q,) ~ |n|>.

—

Hence, the expansion of (H[1]) becomes invalid when 7 is too small. More precisely, expressing <Eﬁ]> as <E[\1]> =
Vnl [fo + (t/n?) §1 + O(t?)], we get that fo is independent of n, and f; is regular at n — 0. Thus, it is concluded
that our expansion is valid when n? > t. This aspect is important for a new improvement of cosmological effective
dynamics derived from the full LQG [58]. The expansion is valid for large |n|, because f; is regular at |n| — cc.

Consider the reduced-phase-space LQG of gravity coupled to Gaussian dust. Then, the relational evolution with

—_

respect to the dust time 7' will be generated by the physical Hamiltonian H = i (H 1]+ H [1]T>. Its coherent state
expectation value reads

(H) = R(H) = Ho + tHy + O(t?), Hy = R(Hy). (6.5)

In order to demonstrate the physical application and effects from the O(h) correction we adopt the proposal in [15]

as follows. Firstly, we view (H) as the effective Hamiltonian on the 2-dimensional phase space .5 of homogeneous

and isotropic cosmology. Then, one can verify that n = ”; aP;’ and £ = uBKy where u is the coordinate length of

e € E(v), Py is the square of the scale factor and K is the extrinsic curvature. Thus, the Poisson bracket between

~

¢ and 7 reads {n,{} = 3555. With this Poisson bracket, the Hamiltonian time evolution on &, generated by (H) is
computable. The numerical result is shown in Fig. [I} which respectively depicts the dynamics of the spatial volume
governed by Hy, (ﬁ) = Hy + tH, and the classical FLRW Hamiltonian H,.; = —6aB3/2 /= &2,

In the example shown in Fig. [l a relatively small ¢ = 107° is chosen to display the effects of the next-to-leading-
order term. The coincided initial data of 1, dn/dT are chosen to be at T' = 0 for all of the three cases. Since n|r—
gives a large spatial volume, 7' = 0 is in the low-energy-density regime. As shown in Fig[l] toward 7' < 0, the
evolution with respect to Ho + tH; is similar as that corresponding to Ho, where the latter one gives the po-scheme
effective dynamics. Both of the effective Hamiltonian Hy+tH; and Hj resolve the big-bang singularity by “a bounce”.
Moreover, the dynamics of Hy and H.; at late time T' > 0 are compatible. Further more, it is shown in Fig. [1| that
tH, in Hy+tH; behaves like an additional matter distribution with negative energy density of O(t), which causes the
universe to re-collapse and have another bounce at very late time. It should be noted that the time of re-collapse is
extremely late because of the tiny value of ¢. It can be verified numerically that the time when the recollapse happens
is correlated to t, namely, the recollapse happens earlier for a larger ¢t but happens later for a smaller ¢t. For vanishing
t, it needs infinitely long time before the recollapse happens, i.e. there is no recollapse. Finally, the collapse occurs in

the FLRW phase with ¢ < 1. Thus expanding H; at £ = 0, we have

3a(—m)?/2 (12805% — 30725 coth(n) — 1792ncsch(n) — 5568)
26214437

H, = +0(€). (6.6)
That is, when £ is vanishing, H; contains terms which do not vanish. It is these terms that lead to the recollapse.
These terms are all contributed by the Lorentzian part, and is the consequence from the Thiemann’s regularization
of the Lorentzian Hamiltonian.



26

1016 - (
1012 o e—--e--o--e-—-e-—o-—o—--e—--o—-o—-e--e--o"->‘ |
g 108 8
= - Ho
=
— Hy+tH
104+ 4
o Hy
1L 4
10~4 & . . . . . .
0 50000 100000 150000 200000 250000
T

FIG. 1: Evolution of the spatial volume generated by (ﬁ) = Ho + tH, in (6.5) (black curve), Ho (red dashed curve), and Hy
(black circles). The coincided initial data of n,dn/dT are chosen to be at T = 0 for these 3 cases. The parameters are set to

bea=1,¢t=10"°% and 8 = 0.2375.
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FIG. 2: Plots of the critical density p. of the dynamics governed by Hy (red circle) and, Ho + tHy with ¢t = 1077 (dash-dotted
curve) ¢ = 0.01 (solid curve). The parameters are set as a = 1 and 8 = 0.2375.

For the critical density p. plotted in Fig it also receives correction from ¢tH 1 at the T" < 0 bounce. As is known,
the critical density from the ug-scheme dynamics governed by Hy reads p. = m with |n,| being the value

of |n| at the bounce. When H 1 term is considered, the dependence of p. on 7, is only known numerically. Some
numerical results are presented in Fig. [2| As shown there, instead of blowing up for small |n,|, the corrected p. from
(ﬁ> = Hy + tH; is bounded from above for small values of [75|. In an optimistic viewpoint, this correction of p.
might hint that the correction from higher-order term in ¢ could potentially flatten the dependence of 7, in p.. This
flattened behavior of p, is also supported by the current model of fi-scheme effective dynamics with complete quantum
corrections, which is considered as an important feature of fi-scheme Loop Quantum Cosmology. However, by recalling
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the fact that our expansion in ¢ requires 7% > ¢, one realizes that the small |1;| regime, where the correction of p,
becomes significant, mostly violates this requirement (see ﬁg. Hence the quantum dynamics near the bounce is still
an open problem from this point of view.

It should be emphasized that the proposal [I5] adopted here for studying the effective dynamics is not as rigorous as

the path integral formula (1.2]). As argued in Section the O(t) correction in (H[1]) is only a partial contribution in
the quantum effective action that ultimately determining the quantum effect in the dynamics. Hence, the cosmological

dynamics plotted in Fig only shows O(t) correction in (H[1]) from one of the three O(¢) contributions in I', and is
not yet a rigorous prediction from the principle of LQG. We have only focused on non-gauge-invariant coherent state
and neglected the group averaging that impose the gauge invariance in the path integral . Moreover, this paper
only focus on the effects of the quantum correction of linear order in ¢, and the effects from higher order corrections
are still unclear and beyond the scope of this paper.

VII. Conclusion and outlook

In this paper, we developed an algorithm to overcome the complexity of computing the expectation value of LQG

Hamiltonian operator H[N]. With this algorithm, the O(k) correction in the expectation value (H[N]) at the coherent
state peaked at the homogeneous and isotropic data of cosmology is computed. In the current work, there are several
perspectives which should be addressed in the future:

The first one is to complete the computation of the quantum effective action I' mentioned in Section [ After
completing of this current work, the only missing ingredient in the O (%) terms of T" is the “1-loop determinant” det($).
Therefore, a research to be carried out immediately is to compute this correction of det(f)) at the homogeneous and
isotropic background. Once we obtain all of the O(%) contribution to I', the variation of I' should give the quantum
corrected effective equations which will demonstrate the quantum correction to the cosmological model implied by
LQG. -

The next step of generalizing our computation is to study the expectation values of (H[N]) with respect to the
coherent states peaked at cosmological perturbations. The semiclassical limits of the expectation value and the
cosmological perturbation theory from the path integral have been studied in [46]. Thus, it is interesting to
study the O(¢p) correction to the cosmological perturbation theory.

Finally, the computation of the quantum correction in (E[FD should also be extended to the model of gravity
coupled to standard matter fields. The contributions of matter fields to H[N] have been studied in [59, [60]. Since

o — —

the matter parts in H[N] is much simpler than the Lorentzian part in H[N], the computation of their expectation
values should not be hard. Study of the matter contributions and their quantum corrections is a project currently
undergoing [61].

Our work expands (H|[N]) to the order t* and neglects the higher order terms. It is important to understand higher
order contributions, or namely the reminder of the expansion, in order to rigorously estimate the regime in the phase
space where the expansion is good (see e.g. the paragraph above for the discussion of the phase space regime
such that tH; is small).
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A. SL(2,C) and SU(2) groups
Let 0; with ¢ = 1,2, 3 be the Pauli matrices and 7 := —io /2. Define

0 = (0sin(v) cos(), O sin(t) sin(¢), 0 cos(v))). (A1)
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h €SU(2) can be coordinatized as
A
gz [cos() —isin(%)cos(yy) —isin(§)sin(y)e”
h=e = ( —isin () sin(y)e’®  cos (§) +isin (%) cos(w) (A2)
with 0, ¢ € (0,27) and ¢ € (0, 7). The Haar measure then is

N TN
dpg(6) = 72 5in (5) sin(+)dfdyde. (A3)
Moreover, by defining
P = (psin(a) cos(B), psin(a) sin(B), p cos(«)) (A4)
with p > 0, a € (0,7) and 8 € (0,27), g € SL(2,C) can be parameterized as
9(p,0) = €77l T = P h(6). (A5)

For each p > 0, there exists ug € SU(2) such that
(uz) ™ P 7 (uz) = £prs. (A6)

Note that u;f is determined by Eq. (A6]) up to a right transformation by e*™. Namely ugem3 for all « € R are
solution to Eq. (A6]) provided u;)f does. Moreover, u;f has the relation

ut =T . (A7)

9(7,0) = ue"™ u~'h(9) (A8)
For v~ h(#) €SU(2), decomposing it as
uth(f) = e €p ! (A9)
one get
9(7,0) = uel 11, (A10)
Note that Eq. determines n up to a right transformation by e*™ as that for uf}f n satisfies
n(nrs)n”" = h(0)(7- 7)h) . (A11)

The Wigner 3-j5 symbol < 7511 7‘112 7‘7713 ) is an SU(2)-invariant tensor, namely
1 M2 mg

g1 ja js JioJe gz N\ _ [ Jv J2 3
Dn1m1 (h)D’ﬂzmz (h)Dngmg (h) ( my Mo M3 ) - ( ny Mo N3 ) ) Vh € SU(Q) (A12)
Define 7, with o = —1,0,1 as
1 + iTQ

T41=F , To = T3. A13
+1 ) 0 3 (A13)

We obtain the j-representation of 7, in terms of the 35 symbol, according to the WignerEckart theorem, as

. L

D'rzwn’ (TOé) - Z’UJ] Ej ( il 7,%/ a ) (A14)

where w; = /j(j +1)(2j + 1) and €,,,, = (=1)77§(n, —m) is the 2-j symbol. The 2-j symbol is also SU(2) invariant.
By 3-j symbol and €,,,, any SU(2)-intertwiner can be constructed as

L(klkig . kn—l)mlmgmg---mn — ( Ji o J2 kl ) €le/1 (];111 J3 k2 ) 6?22”2 . ekn72/ ( k/n72 IJn—1 JIn ) ) (A15)

mi Mme l1 ms 12 ln—2li, 5 ln72 Mp—1 My

Moreover, the Clebsch-Gordan coefficients relates to 3j-symbol as

. L
v Jamal M) =(— >2J2\/meMN< " Jl)

N mo MMy (Alﬁ)

=(—1)172 2J+1<‘71 /2 J)q’VM

mq m2N



29

B. the Clebsch-Gordan coefficients with negative parameters

Given ji, m1, j2, mo and m = my + mg, the Clebsch-Gordan coefficients (j1m1jams|pm) = {Tz: T]nQ T}:L] for
1 M2

various p satisfy the difference equation [62]

J1 Jj2 p+1 i J2 p—1 v J2 p | _
A [ 22 P ) | BB P (e e [ 22 P 0 @y
where max(|m/, |j1 — j2[) <p < j1 + j2 and
1 2 _ ¢2 2 _ ¢2 2 _ ¢2
A(p) __ _ (p 51)(]7 > 62)(p 53)7
p 4p® —1 (B2)
§16283
Ag(p) =——>—
olp) p(p+1)
with
S=n—J2 = +j+1l &E=m
With the initial data
[ JioJz g +j2] _ (241)! (242)! (J1 + J2 = m)! (1 + j2 +m)! (B3)
my mg M (271 + 292)! (j1 — m1)! (G1 + ma)! (G2 — m2)! (J2 + m2)!
the Clebsch-Gordan coefficients for other values of p are computable with Eq. (BIJ).
In order to extend the Clebsch-Gordan coefficients to negative parameters, we define a function
Colx) = (252N T2z + 1)z +jo —m+ DI (z + j2 + m+ 1) (B4)
o (J2 — m2)! (j2 + mo)'T' (22 + 2o + )T (z — my + DI (z +my + 1)’
with which
Jiod2 gitge| ...
EEnA B AY (85)
It is remarkable that Co(x) is well-defined not only for positive = such that
x—my €Z, x> |m] (B6)
but also for negative x satisfying
x—my1 €N, x <min(—|mq]|, —jo — |m| — 1) (B7)
where those gamma functions with negative integers is understood as
L(—mq)---T(—myg) — lim I(z—mq) - T(z—my) L (o qymb = ny!- - ng! (BS)
T(—nq)---T(—ng) z=0 T'(z —nyp)---T'(z — ng) mal---my!

By definition, the Clebsch-Gordan coefficients { 7311 1312 N +7‘77§ —t } is obtained by applying the recurrence relation
1 M2

(B1)) successively for ¢ steps with the initial data Co(j1,j1 + j2). Then, we defined [mjl J2 T2l ], the
1

mo m
Clebsch-Gordan coefficients with negative parameters, as the result by applying the recurrence relation
-1 j2 —q—-1|_ 1 i -J1 Jj2 —q+1 W —j1 J2 —q
g T =g (A | T ot e | ) o

with the initial data Co(—j1), where
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This definition extended the Clebsch-Gordan coefficients to negative parameters. It guarantees that,

—J1 Jo —Jitie—t¢| _ | J1 Je Jitj2—t
[ mi Mo m } o {ml ma m ] ) , (B11)
J1——
By definition, it has
Col—j1) = (251 — 242 — 1)1 (252)! (j1 — my — 1)! (1 +my — 1)!
o(—J1) = - - . - - - .
(21 = D1 — g2 —m =D (G = j2 + m = D (j2 — m2)! (j2 + mo2)! (B12)
=(—1)dztma Ji—1 j2 j1i—j2—1
mi Mo m ’
Moreover, [ jlm_ 1 7‘7712 = 2m+ e-1 ] can also be obtained by applying successively the recurrence relation
1 2
hode 0o (B | 2 By 1) g ) | ST (B13)
mi; Mg M B(q) mi mg m mi; Mg m
with the initial data [ Juo g2 ==l ], where
mi Mmoo m
Bla) = A@|;, ;, 1 Bo(@) = Aola)| . (B14)
Furthermore, it can be verified that
B(q) = —A(=q), Bo(q—1) = Ap(—q). (B15)
Therefore, according to Eqgs. (B12)), and (B13)), we finally have
—J1 J2 —Jitj2—u| _ (—1)ztma= =1l g2 ji—jpte—1 (B16)
mi M2 m mi Mo m ’
namely
—J1 Je —ntA _ (—1)A+m Jji—1 j2 jh1—1-A (BI7)
mi m2 m mi Mo m :
C. Proof of
One can refer to [63H65] for more details on this method. The 2-j symbol is graphically represented as
o = (~1)7"5(m, —n) = m_J 0. (C1)
The 3j-symbols is graphically represented as
J1 J2 J3 (C2)
my M2 M3

My ms3

The Wigner-D matrix D, (h), as a tensor h € H; @ H}, is

DI, (h) = (mlhljn) = ™ h| a8 (C3)



For the multiplication operator D', (he), its action on D7, (h) reads
; & ¢t 3 J A
) Dih) = 3 i) (02 20) (53 ) Pl
=t

where ( ; 731 _‘5\/[ ) denotes the Wigner 3j-symbol. This graphically corresponds to

J1 ,

h J1t+da J1 J J1
J2 - Z 4 4 N
/h J=|j1—J2| j2 jQ

For the operators p’(e) and p!(e), by (2.9) we have
v . . y y 1 .
Py (S)D%m(he) = _twjeihm < ;% Tfl/ ) Dzn’n,(h€)7
INeY J _ J J J 1
(O Dh () = taseh (19

where we used ((A14]). Thus , one has

J
I I o I

N .

3
—4|
A

3

J J
o m_ gl ez
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(C7)

(C8)

where the dashed lines represents the indices possessed byAFe. Some dashed lines may carry arrows depending on the

form of F,. With this formula, the expectation value of (E.),, is

(Fu)s, = Y djem 30UFDHG+D) | Fy F.

i’

(C10)
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To prove (3.10)), we claim that

N . J i 4 j j

* [ ] [ ‘ k' — plh—atait+am)Z k * | | | | ‘ K" (C11)
a, o

a a

@, o ﬁl ﬂn

which can be verified easily with the fact that DJ  (e¥*™3) = €*™§,,,, and the non-vanishing condition of the 3j-symbol
Ji J2 J3
that ( mi ms ms ) 0.8 6m1+m2+m370-
Consequently, it has

_ 7 . J "
I+ e R A |_|_ ]
k 1 | | | | I_, | | ‘ k' = e(ﬂ1+"'ﬁk:)ze k * | | I_el | | ‘ k”, (012)
a @, o ﬂl ﬁk ﬁk+1 ﬁ;z b a am al ﬂn b
which leads to
|_|
( Iﬁl > ( Iﬁl >
J _ J
L Izj| o — o~ (Bt Bn)Ze + |Zj| _ . (013)
T ETT T EN
a %y Q) J ﬂl ﬁn b a Ay ﬂl ﬁn j/ b

This graphical equation can be decoded as (3.10), where the factor (—1)" in the right hand side is because of the
minus sign in the definition of p¢(e).

D. Expectation value of %1 om

tab

1. for the case with :+ =0

Let us consider
Fgy " om = Fovom = poa(e) - pIm (e). (D1)
Eq. (C6) gives us that

% sinh((25 4+ 1)n)

ﬁa1~-am L =™ d. 7tj(j+1)F .
< )= Z 3 olJ; 2) sinh(n) (D2)

iz1/2

where the function Fj is given by
: m g1 g\ g1 g
Fo(j, k) =(—wj) dgkl (k‘1 a; ny ) €k (k2 Qs Mo >
J il 0\ i1
nm—2km—1 \ k. 1 Qup_1 Mm—1 nm—1km \ ko ooy k
By Egs. (Al6) and (B17)), we achieve

wje%k(ka > ,

which results in
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Therefore

n—1 %) e
2 7 27 2sinh(n)

T P TN
neEZ

where n = 25 4+ 1. Substituting the values of the 3-j and 2-j symbols, we have that

=000 (H (T + el 1/2) [Lens =3+ 3 e b7
=1 =1 k=1

Applying the Poisson summation formula to Eq. , we get

<Fa1am >ze
e (D8)

_ . m t/4 > — iz s z—1 7% - o oo
5<;a“0>t H +\a\1/2 [mdxe ' xg(an 2 2 +;ak)251nh(77)+0(t -

By the trick

7 exn n exn D9
" sinh(n) ((x—i— ) sinh( )> . (D9)
Eq. can be finally simplified as
<Fa1"'a7n>zc
b 0 T ! va [Ty (ol 9§ ap | eZEEe O (B10)
= i tm - 5 i~ | v e
;a }:[1 (1—|—|ai|)l/2€ [m xxkl;[l 2 YT +;a 2 | 2sinh(y) yanJr ()

The integrand is a polynomial of x multiplied by a Gaussian function e~ta* /44 Thys let us integrate ghe—tz’/2+an

* n —La;2+17w 3 Slnh(n) s n n—2k 3 ko n
dzz"e” 1 = i (1) Z ok )1 3 (2k — 1! (D11)

—o0 n =0

where |y] denotes the greatest integer less than or equal to y and Eq. is substituted because we are concerned
on the expectation value with respect to the normalized coherent states, i.e. (F®@m)_ /(1). The leading-order
term of the RHS of Eq. (D11)) is O(¢t~"*!) with n the power of z in the integrand. Thus it is the highest-power
term of x in the integrand of @D that leads to the leading-order term of <F°‘1'“O‘m> 2., and the highest-power and

second-highest-power terms of x lead to the next-to-leading order term of (F“l”'o‘mpe, and so on. Therefore, we
finally get

(Fenem).,
- ' (- ) mADm ot
=J (;a1,0> <1>};[1 1+ |Oéi|)1/2{ <kl:[1(ak 1) ) (1:[ ap — 1) > 5 n 2+ 12
Jri H(Olz‘*l) (COth(n2)+ak+a1+...+ak_l>nm1t+“'}'
k=1 \itk

2. for the case with + # 0

Now let us consider the operator

Egyem = pei(e)---pim () D he)s ¢ # 0. (D13)
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By using ((C6|) and (C4)), it can be obtained that

(Foaemy, =3 djem U0 G g (—puyy ) 3 bR T e A gy
Lab Fe L ) . W ki ar ny ) k2 \ ky ap ng
33 kk (D14)

A T A A I PN (T g
km,—l AUm—1 Nyp—1 Mm—1km km Ay Mim Mon kg1 km+1 a k aa’ kKb k// K7k
Because the products of these 3j-symbols vanish unless k = k&’ + b, the last equation can be simplified as

GG ., 0y, sinh((2 + 1)n)
For = tMmebe GG+ G D) (5, ¢, Ty SIAET T D))
< Lab Ze € Ze 2 (.77] 5 9 ) Slnh(n) (D15)

where F, is given by
. . . . . .
SN g g (e ym T g1 g\ /A S K W B 1 J i’
FL(-]M] ’k ) '_deJ ( Wy ) ekt’k1 < kl a] Ny ) 6711]62 ( k-2 a9 Mo > ( km—l Q1 Mm—1 e"’bm—lkm
AR P i e (70 g
km Q. Mo N Km 41 km-}-l a k’/+b aa’ kb k" k' k! 4+b*
The possible values of j are |5/ —¢|, |7/ —¢|+ 1, ---, j'+¢. By applying Egs. (A16]) and (B17) again, we have

Ejl j/ L J j/ L ej
N Km 41 km+1 a’ k/—l-b b k" k' k'+b

(D16)

i=i'-A

(D17)
—a i’ | Joueg j
:(_1)17 +1 EZLmka (karl J K+ b) (k/ b k" ) Giu kb
j:j"'l‘A jlﬁij/il
Together with Eq. (D4]), it leads to
FL(jI+A’j/7k/) :_FL(jl_Aajlvk/) (D18)
|
where we use F,(j, ', k) < §(3>_%, a; —a+b,0). Thus for j' = j £ d with d > 0, one has
, On sinh(d 77 On, sinh(d;mn)
(d3)F, d,j J , On,smh(d;n)
Z J(d5) R+ 2) sinh(n Z fd 4.7 2) sinh(n)
2j'+d>e 25’ —d>e
. on, sinh(— ., On . sinh(d;n)
= dVE, (-5 —1+d,— 177 (Ol St 14 P
D SR =1 d =i =15 D Zf =435 )
—2j'—24d>1 3 —d>u

n—1 n—1 0y, sinh(nn)

= ) d3)F, —d - .

e’ Fldj)E( 2 2 72 ) sinh(n)
n¢ld—u,d+1]

Here the conditions 25’ + d > ¢ are from the the triangle condition i.e. j' 4+ 5 > ¢, of the 3j-symbol. The second
equality is because of the replacement j° — —j’ — 1 in the first summation, dj; = 2j' +1 = n and f is an arbitrary
function. Therefore,

2—0(d,0) _z(9q2_ Cly(n2— n—1 n—1 0, sinh(nn)

Foa Qm R :tmebz(3 ) e 4(2(1 1) e 4t(n 2dn)FL —d, ’l - D19

(Flab 2 0<Z:d<L 2 nze; ( 2 2 2 ) sinh(n) ( )
d¥+.EZ né¢[d—i,d+1]

To calculate F,(j, ', k"), we notice that

J . . _
—Wj€n, ik, (] L > = 0(k; + a; +n4,0) (aijl—m)\/( U’ = niz1)! (i £ 7)1 (D20)

ki o; ny 17041) (Ozl+1) (] —nz) (7744’])
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Moreover, by applying Eq. (A16) and the expression of the Clebsch-Gordan coefficients (Eq. (5), Section 8.2.1 in
[66]) , we have

y . L
i J L] J L] j - b
b ( kmi1 a k ) < E b K ) o = (=1 T I g B X

<j+b—j'>!<j—a+j'>!<—j+L+j')!( (' + 1)’ = nn)! )“2 (D21)
(G+e+g +1) G+ NG — )N+ a) (e — a’)'(L—H)) (t—0b)!
Z (=1)G e+ k=2 —k+2)! Z —1)F( 4o+ K —2)I(§ — K +2)!
A —j+e—2)NG +k+a =) (j—t—k—a +2)! z']—j +L—z) (G+k—2)( —t—k+2)"
Egs. andlead to
m m 1 1/2
F,(j —d,JJf):é(Zai—zH—b() 21;[1 1+|a|1/2 < L+a) L—a'(b+b)!(b—b)!>
d—2a+b _ m
(25’ —d+L+1 )20+1 ot (D22)
(1 (A4 0.+ b= 24 Derald’ —d— kb5 2) s
Z 2!
>y D =d).(' —d+F =240, = F +2)1p
2!

z

where (), :=x(x —1)--- (x — n+ 1) is the falling factorial.

There is subtle issue on the summation over k and k' in Eq. . In order to obtain the factor sinh((2j" +
1)n)/ sinh(n) in (D15]), one has to consider a summation of 2K over all values of &’ in [—5', j']. However, except the
constraint of |k’| < j’ for K/, there exists another condition of |k’ +b| = |k| < j implied by k = k' + b, which seemingly
narrows the range of k’. In order to preserve the range of k', one can always “artificially engmeer” F,(4,7',k") such
that it vanishes for |k’ 4+ b| > j, which has actually been done by the triangle inequality of 3j-symbols in the RHS Eq.
(D16]). Thus the subtlety is now encoded in the condition that F,(j,j’, k") vanishes for |k’ +b| > j. We need to verify
this for the algebraic expression of F,(j, ', k') in the RHS of Eq. (D22)). To check it, assume k' +b=j+6 = j' —d+ 9§
with 0 <6 <d+b. Then (j' — k¥ + 2),4p, in the second summand over z, vanishes because

K 4z2>d+b—56>0,j —kK +2—(+b)+1<35<0 (D23)

where 0 < 2z < ¢ — d is applied. Therefore, we conclude that the RHS of Eq.(D22)) vanishes for j — b < k' < j'.
Slmllarly, it can be checked that (j' —d + k’ — z + t),—p vanishes, indicating the Vamshmg of the RHS of Eq.(D22 m
for —j < k'4+b< —j —b. We thus clalm that the RHS of Eq. D2 vanishes for |k’ + b > j, which indicates that
the expression of the RHS of Eq.(D22) can be analytically extended to give F,(j,;’, k") for the full range of ¥, i.e.
K| < j.

Replacing 5" and k' in Eq. (D22) by "T_l and %” respectively, we have

m m 1/2
n—1 — 1
F, _d77 —77 i — b,0)
(= 3) Za ot 1;[1 1+|a1/2<(b+a)(ba)u+b) (Lb)!)
m k
(—1)d=2atbn(n — 2d) 8,,
(TL*d+L2,+1 kl;[l 9 "‘2011)
t+d z n—1 n—1 ) (D24)
(-1) (L+d)Z(T+7n+b*Z+L)L+a(7*Tn*d*bJrz)L—a
pomr z!
S AP+ G —d—z+ ) (P - F + D
2! '
z=0

In order to apply the Poisson summatlon formula to ) to calculate the summation over n, we need to extend the
summation to entire Z, while Eq. ( sums n over Z\ [ —t,d+]. However, because of the term (n —d+t)g,41 in
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the denominator of F,, this extension is not trivial. We need to prove that F, (251 —d, 252, %) S;?:}f%) is well-defined

at the points where F, itself does not. Once it is proven, we have

2—0(d,0) _t(og2_ C1p(2_ x—1 x—1 9, sinh(zn)
Foa ‘O, - m bze ) 4(2d 1) /d 4t(w 2dw)FL —d “n
< rab > e e O;.KL 9 € €Te ( 2 ) ) ) 2 ) Slnh(n)

d+.€7 (D25)

B ~tt(nP-2dn) =1 m—1 0Oy sinh(nn) o
>, e F(———d — ,2)Sinh(n) + O(t™).

neld—,d+)NZ

Moreover, the integrals in the last equation usually produce a factor e”’/t. Thus the second term given by the
summation over n € [d — t,d 4+ ¢] N Z decays exponentially as ¢ — 0 after normalization. Therefore, we finally obtain

2 — (02 1, -1 —1 sinh
<Fa1 am> .. tmebz"‘ Z we—z@d _1)/(1.736 Z( de)FL(x _d7$ %)bln (5577) +O(too)

cab oS 2 2 7 27 sinh(n)
dFLEZ
(D26)
In order to show that F, (%5t —d, %5+, 82" ) S:ﬁgl(&rg) is well-defined at the poles of F,, we have checked that F,(%5+ —
d, ”Tfl —) for at least + < 20 can be simplified as summation of terms taking the form®
1 sinh(zn)

x—nf(x’ n)m

where f(z,0,), a polynomial of z and 9, satisfies that f(n,-) takes 9, =2k for all k € ZN [f"?*l, ”T*I] as its zeros.
Then, the following theorem will be helpful.

Theorem D.1. Let f(z,k) be a polynomials of x and k and n € Z be some integer. Let

1 sinh(xn)

h(z) == pr— nf(x,an)m.

(D27)

Then h(n) := lim,_,, h(z) is well-defined, i.e., n is a removable singularity of h(x), provided that for x =n f(x,0,)
satisfies

n—1
2

f(n,0y) =g(n,0,) | I (@a+28) |, (D28)

—_n-1
k=—"35

with some polynomial g(n,dy) of n and Oy,. Moreover, if (D28)) holds, h(x) will take the form

sinh((x — n)n

h(z) = g(x,0y) ( go(z,n)———— i Y aem)@—n)|. (D29)

r—n
>1

Proof. We will prove that

n—1

o sinh( xn

H (O + 2k) Snh(r Zgl (z,m)(x —n)" (D30)
f—_ n=1

2

with g; some function of z and 7, and gy taking the form

g0(x,n) = go(z,n) sinh((z —n)n). (D31)

6 Here, we conjecture that this statement is true for all ¢.
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Let y = x — n. Then we have

sinh(zn) B 1 ) .
Sinh(n) _ smb() (cosh(yn) sinh(nn) + sinh(yn) cosh(nn)). (D32)

Substitute the above expression into the LHS of Eq. and expand the result. One then expresses the LHS of
Eq. as a linear combination of terms taking the forms of &/, (h1(n)sinh(yn)) and 9}, (ha(n) cosh(yn)), where hy
and hs are some arbitrary functions. Expanding the action of the differential operator by Leibniz’s rule, we obtain
linear combinations of ¢;(n) cosh(yn)y™ and ga2(n) sinh(yn)y™, where ¢; and g2 are some arbitrary functions. Thus,

(D30) is obtained.

To get go, one just act 0, on neither cosh(yn) nor sinh(yn). Thus

n—1 n—1

E sinh(nn) 2 cosh(nn)
= Op + 2k) ——= h Op + 2k) ———= | sinh D33
go=| I @2 Zqe | coshlom)+ | T (@ +20) “Zpem | sinh(yn) (D33)
k=—"5= k=—5=
Since S;Iﬁ‘h(&’g) = izfj e 2k with 25 +1 = n and (9, + k)e " = 0, we have
n—1
sinh(nn)
2k) ———= =0. D34
o
Therefore
n—1
go = H (@ + 2%) <)) ) (D35)
0 ) K sinh(n) "
k=—"5=
O
E. (F%®m), for the case of 1 =1
By setting ¢ = 1 in (D19)), we can obtain
(Fro ),
- (=D b <m 1 ) 1 _tm2q
=—9 a; —a+b | ——t"e’% e~ a(n =1
(; > 2 ';I;[l\/l+|ai| V(1 [al) (1 +[8]) nze:z
n¢[—1,1]
n— 87 n— 0,
ﬁ(a n—1 0, ia>n(a21+b+27) (le_Tn)sinh(nn)
k - 5 7 n2— o
k=1 2 2 I T sinh(n) (E1)
- - 1 1 L n1)?
+6 a; —a+b (71)1770,tm6bze ( > 671("+1)
; ) il;[n/1+|a¢| V(A [al) (1 + b)) ,;Z
ng¢[—2,0]
u Eo\ (M = el =0 ) (- (bl =1 -0+ bl
H B n+17%+2a- 2 2 2 2 sinh(nn)
o 2 ! ntl sinh(n)
k=1 =1 2
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where in the second term we replaced n by —n for the further convenience. It is easy to check that Theorem can
be applied to extend the summation in the last equation to all n € Z. Therefore, we obtain that

(Fiy ™)

(-1 (& beo (TT L ! / e
=— ) a; —a-+b)tme dre 2"
> (& Ilwhwﬂaavﬂ+wwv@+ww oo

=1 =1

1 0, k _ z—1 0, 2z (b(z — 1) — 0y) sinh(xn)
2+;0¢1> (a 2 +2+b) x?—1 sinh(n)

- (E2)
" 1 1 o 12
+(=1)07% ( o; —a+ b) tmebze ( ) / dge 1@+
; Hw+m¢Hmw+ng
T n—|—1_7 n+1 O (z+1— (1 —1|b| — b)d,) sinh(nn)
1};[1 < o i Z ) < ~ el -1 b) - |b|> z+1 sinh(n)
+O(t>).

To show the algorithms to compute Eq. (E2]), m # 0 will be assumed without the loss of generality. For the case
of m = 0, the algorithm can be applied very similarly.
To begin with, we will rewrite Eq. (E2) as

(Figy )=

e

()" (< b (T ! . /OO —§@*-1)
_— 5 i—a+b|tmeb d ’
T OO ‘ H\/1+|o¢i| Jirla/iem ) )

i=1 i=1
i z—1 0, b _ z—1 0, O Oy '\ sinh(nn)
kl:[z (ak 2 2" ;al> (a 2 + 2 + b) v (b c—1)\ M 11 sinh(n) (E3)
% - 1 1 > L(ah1)?
b ag _ a+b> mebze ( ) / dxefz(erl)
; i) -
k
_r+l J x+1 O 1y 9y ) sinh(an)
r:[ ( o y o ) (55 o= 1-0% e pl) (1- 0 pl-n, 5 ) S,

Then for the first integral, it is

> tp2_1 i Xr —
I 2/ dpe 1@~ )H (ak
k=2

+ZO“> ( x_1+62n+b)x(b_93&71> (al_ﬁ&) m

R (B4
Because
Oy Oy '\ sinh(zn)
(b_ x— 1) (a1 T+ 1) sinh(n)
o sinh(an) N cosh(nz)  sinh(n(z — 1)) cosh(nz)  sinh(n(z + 1))
_<b sinh(n) ( sinh(n)  sinh®(n)(z — 1)) b( sinh(n)  sinh®(n)(z + 1)) " (ES)

(sinh(nx) N cosh(n) sinh(n(z — 1))  cosh(n) sinh((z + l)n))
sinh(n)  sinh(n)3 x—1 sinh(n)3 z+1 ’



I; can be deduced further as the following

(bay + 1) sinh(zn) —
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(a1 + b) cosh(nx)

) N m z 9 k
- —t(z?-1) - n
Il_/_ooda:e i(= U(ak 5 2+Z

z—1 0,
)(a 5 +2+b)$

sinh(n)

k . .
o 0, y 0 ay sinh(n) + cosh(n) sinh(ny)
W +2y) Z_ , A/ 1
+/_oodye H(ak2 5 +;al) <a2+ 5 —|—b>(y+ ) SN )
m k—1 . .
(2 —2y) y Oy ‘ Yy, Oy B 9 cosh(n) — bsinh(n) sinh(yn)
/ dye™ H( Uy = +;az> <a2+ 5 +b—a)(y—1) Sinh()? o
(E6)
Then by using the trick
n ,tx n, tx
Ope=f(n) = (o +0.)"e="f(2)]__, (ET)
we have
e - 0 b a+s —a+0
T L(z?-1) Qg —S Qg + 0, ‘ .,
1= Z/ dre” H( > T 5 —&—Zal 5 T+ 5 +b
s==+1 k=2 1=1
(—(a1 +b) + s(bag +1))e**
2sinh(z) z—n
St TT (=8, % ats O
+Z/ dye™ H< +Zaz>( 2+b
s==%1 (ES)
se’™ q sinh(z) 4 cosh(z)
1
(y+1) 2y sinh(z)3 z—m
+ s 0.
se®™ cosh(z) — bsmh
Yy sinh(z) z—n)
By defining
m k .
B Oy aq sinh(n) + cosh(n)
_kl:IQ< 2 +Zal> ( ) sinh(n)3
- (E9)

cosh(n) — bsinh(n)

() (o)

sinh(n)3
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I; can be finally simplified as

k
t(a?-1) ap — 8 _ak—i—a a+s —a + 0,
I = E / dre” H( —&-E T+ 5 +b

s==1
(—(a1 +b)+ s(bal +1))es®
x
2sinh(z
+Z/ dy e “y)(ﬁ(aks —+Za>(a+s +az+b)
Y i B)
s==+1 k=2
inh h sny
(y+1)a1 sinh(z )—|—cos (= —C1> se (E10)
sinh(z —n 2y
2 m — —|—S 3
- d e~ 1 -2 ak : _7_|_ ozZ (a —|—Z—|—b—a)

(y—1) Cosh(Sl)n;(b )smh 2)

gesnY
— Oy
—n Yy

T, /oo e 1 +2y) sinh(ny) dy — Cs /Oo P {20 sinh(ny) dy.
— 00 Yy — 00 Yy

In this expression, the integrands of first three terms involve only polynomials of the integral variables, which can be
computed by using the same procedure as that to compute <Ff;bam> For the last two terms, by using the formula
2

(E11)

and
erfi l — e ZI‘ E12
z - n=0 ( )

a straightforward calculation can be performed as the following

R I e
(E13)

where Eq. (2.26]) is substitute because we are concerned about the expectation value with respect to the normalized

coherent state, i.e. <FL‘;}) “@m /(1). This complete our computation for .

Secondly, I> can be simplified as the following

& _t(s 2 1o 33—1—1 Tz +1 15) sinh(zn
Izz/ dze 1@+ H<_ +Z )( (|b|—1—b)2n+|b|>smh<(n))

- k=1
0 _ > 15 Oy x+1 Oy (1 — |b| — b)0,, sinh(zn)
— 4(3:""1) _ - 1= n
/_Oodxe k}l( o +Z )( (p—1-p)2 +|b|) R
(E14)
Because
0Oy sinh(zn) 1 . sinh((z + 1)n)
= h h - E1l
x+1 sinh(n)  sinh(n)?2 sinh(n) cosh(wn) x+1 (B15)



41

we have
o) k
I2=/ dze= i @+D? H[ x+1 %‘f’zai {x;—l (|b\—1_b)a +|b]
—oo i=1
sinh(zn) — (1 — |b] — b) cosh(an)
sinh(n) (E16)
0y 0 (1 — |b| — b) sinh(yn)
ty? —a 2 =21 Z_ _ b))
/ dye™ H l ag —&—Z:al] { (o] =1—10) 5+ |b|} Sinh ()2 ,
By defining

C= (al—%’) (a1+a2—8277)---((041+---+am—82"> (|b|—(|b|—1—b)a2"> 1si_n}|1b(|77;2b’ (E17)

oo m k

I :/Ood:cefi(wfl)2 H [akxgl f%+ . a;| X

k=1 =1

z+1 O sinh(xn) — (1 — |b] — b) cosh(zn
o102 4] ()%&B) (1)

(E18)

8

+ dyeif{ I1 [ak — % + Z ak] [ — (bl —1- b)i + b@ } (lsm1|1b(|n)2b) sinh(yn)

k=1 )
+C /oo dy67£y2 smh(y’n) '
—o0 Y

Similar as I, the first two integrals are computable because the integrands therein are just polynomials multiplied
by the Gaussian functions. For the last term, we have

C/ dye™* 2 Sinh(yn) = Csgn(n)merfi
o Y 2

ez R+ ()

where Eq. (2.26) is substitute because we are concerned about the expectation value with respect to the normalized
coherent state, i.e. (Fo"*™)/(1). Therefore, Iy is computable.
In summary, we obtain

o (_1)(1 - b . 1 1
(Fr @ m) e, = — ) a;—a+b|tme I
o & U v
m m 1 1
+(=1)0796 < a; —a+ b) tmebze < > Io + O(t™)
i:zl 1:1 V1 ail 1+ ]aly/1+ 0]

where I; and Iy can be computed by using the algorithm introduced above. Taking the operator Fia = D;b(he) as
an example, we can have

a7 (E19)

(E20)

) e tanh( 2 _
et <tah(3)+lez£>t+o(t2), a=b=1,

2n
(Frap)s. /(1) = 124 o), a=b=0, (E21)
e <e lstssh(f) + 615>t+0(t2) a=>b=—1,

which is compatible with the corresponding result given in [20].
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F. Mathematical supports for Sec.

To begin with, we need to study the matrix element of the holonomy and flux. According to the results in [19], we
have

€ 6) 1 oo
(g, [P 0g,) = z<wgewge>m ( ¢ + (coth(¢!”) — <é°>)2> +O0(t™). (F1)
where C(EO) is given by 2cosh(C§0)) = tr(gLgl). For p¢(e), one has
(1) = 4. ) SO (00— (corn(c) - —)E ) + 0 (F2)
9. 1Pt Vg, ) = U\Pg. |¥g.,) — inh( éo)) e e @3 .

For the holonomy operator D!, (h.), we have [19]
(Vg.1Dgy (he) g, )

2t D3 (rkgl) @ D2(gl) | - /
) | PP 2 Dl 2 (1) 0+ (e + 0] ) + 00
(ecém + 1) o 2Ce 4

According to Egs. (F1)), (F2)) and (F3]), the matrix elements of the fluxes and holomomies are of a form described
below

(F3)

(V4 |Oilthg;) = (Vg |09:) (Eo(Ge, g) + tE1(ges gL) + O(t)). (F4)

Recalling Eq. (4.3)), we are going to consider integrals containing % These integrals can be analyzed with
ge gl

the generalized stationary phase approximation guided by Hormanders theorem 7.7.5 in [67].
Theorem F.1. Let K be a compact subset in R™, X be an open neighborhood of K, and k be a positive integer. If
(1) the complex functions u € C3*(K), f € C3*+1(X) and S(f) > 0 in X, with I(f) being the imaginary part of f;

(2) there is a unique point xg € K satisfying S(f(x0)) =0, f'(xo) =0, and det(f"(x0)) #0 (f" denotes the Hessian
matriz), f' # 0 in K\ {xo} then we have the following estimation:

/Ku(z)e”‘f(z)da: ¢iM (o) {d ¢ (W)]_ki (i)sLsu(:zro)

s=0

1\" o
<C ()\) Z sup |D%ul . (F5)
la| <2k

Here the constant C is bounded when f stays in a bounded set in C3**1(X). We have used the standard multi-index
notation o = {1, ..., a) and

glel n
Da = (=) = . F
(—1) pFrTa e where | E oy (F6)

Lgu(xg) denotes the following operation on u:

l

2 1 n 82 .
L) =7 30 3 S TS ) 5| (o) (). (F7)
l—m=s2l>3m a,b=1
where H(x) = f"(x) denotes the Hessian matriz and the function g.,(x) is given by
1 a
9uo (@) = f(@) = flzo) — S H * (o) (& — @0), (x — o), (F8)

such that go, (vo0) = gy, (x0) = gir, (x0) = 0. For each s, Ly is a differential operator of order 2s acting on u ().



43

1. Analysis of integrals containing %
gellllYgr
Define
GV, 6 5 gy = Pew Vo) (F9)
g [1thge |l
with ¢(*) parameterized by
g0 = (P TIVE p g 9 (F10)

According to Eq. (2.25) and Eq. (2.26), G(p'V, 5(1)7ﬁ<2),§(2)) reads

_ ¢+/sinh(p™) sinh(p®) - 22 (p(1))25 (p(2))2

GG 5 g P11
0,700, 7 = R (F11)

where p(0) = /p{®) . 5() and ¢ is given by
2cosh(¢) = tr(g{gg). (F12)

Denote
S, 0, 52,59) = —2¢2 4 ()2 4+ (O
We first claim that

Lemma F.1. R(S(5Y, 60, 52 62)), the real part of S(FV, 60, 52 62 is non-negative and vanishes iff > =
7V and 2 = g,

To prove this lemma, let us introduce the following proposition which is given in [I8].

Proposition 3. Let g = Tl Considering ¢ = s+i¢ € C with s € R and ¢ € [0, 7] determined by cosh(¢) = tr(g),
we have, with denoting p := /D' p,

p2
5=Z—SQ+¢220 (F13)

where the equality occurs iff 0 := V g-0=0.
Thanks to this proposition, we prove Lemma as follows.

Proof of Lemma[F]] g1 gs can be decomposed as

Denote x = vZ-Z and y = vv - iy. Then
22
%@@7TD=%—§+@mV+@%? (F14)
where § := 22/4 — R(¢)? is non-negative according to the proposition [3| Thus we only need to prove that —z2/2 +
(p™M)? + () > 0.
By definition, we have 2 cosh(z) = tr(gigggggl), which leads to
2cosh(z) = tr(e%ﬁl)'?e%ﬁ(z)'?). (F15)

Since e = cosh(4)I + 22’% sinh(%§) with g = /fi - fi, we have

cosh(z) = !

- 1
p cosh(p® — p@) + %ﬂ cosh(p™ 4+ p?)) < cosh(p™) + p?) (F16)
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where 6 = % € [~1,1] and cosh(p® + p@) > cosh(p®™ — p®?) is used. Moreover, because of

V2(pM)2 +2(p™@)2 > pM) 4 p >0, it has

cosh(\/2(p(1))2 +2(p@)2) > cosh(pt) + p@). (F17)

Combining the results of (F16)) and (F'17)), one finally have

2

— SN+ () 20 (F18)
where the equality occurs only if g1 = p(2).
In summary we have
R(S(7,0,7,0)) > (F19)
and R(S(7,6,7,0)) = 0 only if 5V = 52 and § = 0 which means () = §(2), O

It turns out below that the integrand of Eq. (4.3)) consists of a Gaussian-like function
o (SEIFD TV 45D 5D 5D D) 445 50 5.6)) (F20)
Lemma suggests us to do the stationary phase approximation analysis at () = § and g = §. Notice that 19

and 6 are given to parameterize g as g := e”7e? 7, and g labels the coherent state [tg) with respect to which the
expectation value of O is computed. Thus, rather than considering all values of p’ and 0, it is sufficient to set

Fo = (0,0,p), 65 = (0,0,0) (F21)
according to (3.1). Denote
fk;ﬁ,g(ﬁ(l)7§(1)a T 7ﬁ(k)7§(k)) = S(ﬁ>§7p(1)>§(1)) + S(ﬁ1)7§(1)aﬁ(2)7§(2)) +eee S(p(k)7§(k)7@§)7 (F22)

we have the following result:

—

Theorem F.2. (i) (f,c 9) > 0 and the equality occurs only when all g9 coincide, namely 7@ = p and 60 = 4.

(ii) At 5D =5, = (0,0,p) and 6 = 6, = (0,0,0), it has
V5 fk;ﬁoggo =0= Vg(i)fk;ﬁo,§07 Vi=1,--- k. (F23)
(iii) The Hessian matriz fllc/;ﬁoﬁo of fk;ﬁoﬁo at p9 = p, = (0,0,p) and ) =@, = (0,0,0) is non-degenerate with the
determinant
k
1024sin* (4)
det (fk,po790) PO =p,,00) =6, - ( 94 (F24)
Proof. The first statement is true by using Lemma For the second statement, let us consider
SO, 50,5, 0%) = 262 + (60)? + (7)) (F25)
where ( is given by
1 22 = ALY = 1) = D) =
cosh(¢) = itr(eem'Te_a(l)'Te”;m‘Tezﬁ2>'7). (F26)
Then it has that
0 cosh(¢) 0 cosh(() djs .
—m | =@ | =3 smh®)
op;" 15,4, op;” 15,4,
(F27)
0 cosh 0 cosh 0;
COS(IEC) _ COS(ZEC) i 5,3 sinh(p)
00; Porbo 00; 7,00
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— —

where the subscript ﬁmé; indicates to take values at p!) = p, = p{?) and 6 = g, = 6. According to Eq. (F27)),

we have
)’ é’(?))

vﬁmg( 1) -(2) 9(2 )

_=0= VW)S(ﬁ“)ﬁ(U 52

Poybo

,k. For Vo"(i) fk‘;po "O 7.

(F28)

Po,00

and, thus, V) fk;ﬁoﬁo |ﬁo,§o =0foralli=1,2,--- g the second equation in Eq. (F27) gives

us
55 = Vg(i)g(ﬁ(ifl),gq(ifl)vﬁ(i)vg’(i)) o _ + Vi )5( i) é’(i)’p(iﬂ),é’(iﬂ)) 5d =0, (F29)
which completes the proof of the second statement.
For the last statement, using the conclusion of the second statement, we can immediately get that
of, - 7
—eles 0, |i—j|>1 (F30)
Oz Oy |5, 4,
where a:sn and y(J ) represent 9_( or ﬁ(m). Therefore, if we order the arguments p{¥), 01 as
2 2) (2
p§1)7pél)7p31)761 7051 793 7p§ )7pé ap3 a9§ 792 )7€3 y " . (Fgl)
to arrange the matrix elements of f]’c’ (10(,7 O) f”p gl the resulting matrix is block-tridiagonal matrix.
5P sPosYo |5,,0,

Moreover, since all of the p-arguments, as Well as the #-arguments, in fk,ﬁ 7. are symmetric, we conclude that

Lc hibo,6 _ Vs, (F32)
&T%)@yl Py &fnm)ayl(j) Y
Consequently fli’ 8 (ﬁo,go) takes the form
A B 0 0 0
BT A B 0 0
o 0 B" A B 0
Fig,a,Porbo) = . L (F33)
0 O BT A B
0 0 0 BT A

where A and B are 6 x 6 matrix. The matrix A and B can be calculated by considering the case with & = 2, which

gives us

0
p
4tanh(£)
0 — 2
Ao 0 0
_451n2(%) tanh(%) 25sin(0) tanh(%)
0 0,
_25111(9) tanh(%) _4sin2(%)tanh(g)
0 4
0 0
and
_ 2tan;’1(g) 0
0 _Ztanh(%)
p
B 0 0
2 sinz(%) tanh(%)fi sin(0) i(cos(0)+i sin(0) tanh(%)fl)
0 0
—i cos(6)+sin(6) tanh(%)+i 2 sin2(%) tanh(g)fi sin(0)
%

0
0

0

OO O Mo O

0

-1
0
0

—1

74sin2(%)tanh(g)

2 sin(0) tanh(ﬁ)

2 0

0

0
0 0 0

4p(cos(#)—1) coth(p)

__4p(cos - coth(p 0 0
0 _ 4p(cos(9)g2l) coth(p) 0
0 0 2

2 sin2(%) tanh(g)Jri sin(0)

bm(@)tanh( )Jrz(cos(e) 1)

—i cos(6)—sin(0) tanh(g ) +i
0

0
2p(cos(0)—1) coth(p)
92

2ip(cos()—1)
92
0

0
QSin( )tanh( )+zsm(0)
0

0

_ 2ip(cos(0)—1)
02
2p(cos(0)—1) coth(p)
92
0

<. O O

o O
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With the expression of A and B, it can be verified that
BA™'BT = BTA™'B =0. (F34)

To calculate det(f” (po,ﬁ ), we define matrices of B, C' and D of dimensions 6 x 6(k — 1), 6(k — 1) x 6 and
6(k—1)x6(k—1) respectlvely such that

" > 2y A B
f’;ﬁo g‘o(poaeo) - ( C~¢ D ) . (F35)
Then by using the property of the Schur complement, it has
det(fy . 5 (7 ,0,)) = det(A) det(D — CA™'B) = det(A) det(D) (F36)

where we used CA~'B = 0 because of Eq. (F34) and that f}’c’ 5.0 is block-tridiagonal matrix. Because D is the

Hessian matrix f}’c’_l_][7 7 (Po, 9;), we finally have

k
" 1024 sin* (¢
det(f) 5 5 (o, 00)) = det(A)" = (ﬂ) : (F37)

O

By these results, the stationary phase approximation method introduced in Theorem can be applied to calculate

the integral (4.3).

Taking advantage of the above results, we now can come to the proof of Theorem

2. proof of Theorem

As in Eq. (4.3), it has
<‘I’ |O|‘I’ / Wi 1>|O‘|‘I’~<i>>
d (u)d F38
TWala) I IT H I (F38)

Jj=1 eEE('y)

where we denoted |Wz0)) = [Wzu)) := [Vg), applied Eq. (2.28) and used the decomposition
g = ¢ P07 07 i 7, (0) (F39)
By the assumption, we have

<\I’§(171)|OA7;|\I/§(1,)> <‘1/§(i—1)|\11§(i)>

= S (30, 59) + B0 (55, 59) + 0(t) ) (F40)
[Csa-n 1Tz ll  1Yga-n g0 ( 0 !
Thus Eq. (F38]) takes the form
<‘I’ |O|‘I’ / g“ 1>|‘I’g<> l) ~(1—1) l)
dpr (u E ) F41
el HE{) e H 17 owgo - H (740
with P({g"}5_,) denoting the function
EOG,g0) = (B G ,5) + B0 (3470, 60) + 0™) ) (F42)

Eq. (F41)) can be analyzed with the stationary phase approximation according to Theorem It should be noticed
that the Haar measure duy can be expressed as

sin? (%\/ g 5) .
dpg(u) = md?’@ (F43)
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where u € SU(2) is coordinatized as u = ¥ 7 and d30 is the Lebesgue measure on R3. Substituting the last equation
into Eq. (F41]) and applying Eq. (F5|) as well as Eq. (F24)), we finally obtain

(050 5) 62 S e ) z
WA ——5 ot 2t)° D¢ ¢
(V| p) eel;[m sin?(6,/2) ;( D o iwers e TOE) (F44)

where D) takes the form
l

(_1)l27l n . 82 ) k )
D =(-1)° Y > BT > Hy'(wo) 5 Jen GOT[E®
@ i=1

l—j=s21>3j a,b=1

(F45)

gt =eiweTs Vi e

with GU) being defined as the following,

—1 SiH2(|9_£n)‘/2) H kl:[l Cé",n—i—l) sinh(pg")) sinh(pén—!—l))
g(n)
|62 ccB(mn=0  \/p"pI T sinh ()

Here g, is some function defined by applying to the current case.

If the leading order term of D) is claimed to be O(t%), then each term in the summation over s of Eq. is
O(t¥+4s). Moreover, for each [ in Eq. , the derivative acting on G/ 11 E ig of order 2! in total. Because of the
properties given by Eq., the non-vanishing result appears when there are at least 3;j derivatives acting on G,
which indicates that the order of derivative that acts on the term [] E® in Eq. is 2l — 3j. Because 2l —3j = s
and [ = s + j, there are at most 2s — j derivatives acting on HE(i). Further, since j > 0, the maximum order of
derivative acting on the term [] E( is 2s, which only occurs for I = s. Then, let us count the leading order of D)

6o () = | 11 ]

e€E(y) n=1

0o ({7OYZ1)

(F46)

for a given s. According to the expression of D) once it is evaluated at the critical point given by ggk) = eiweTs
those E(™) contributed by operators O,, satisfying (4.8) will inevitably increase the power of its leading order term
if they are not acted by any derivative operators. For a fixed s there are at least ns of these “non-acted” terms with

(N[) - 28) + ‘NO - 28|

ne = : (Fa7)
Therefore, W is of order of t" with
(VW)
n > min(s +ny) = |20 (F48)
3. proof of Theorem [IV.2]
At first, denote p°(e), Di%(he) and D%%_%(he) by O4 with a = 1,2,3 respectively, and p*!(e), Di_%(he) or

1 ~ ~
D2, (he) by O* with a = 1,2, 3,4 respectively. According to (F1)), (F2)) and (F3)), the matrix elements of O! take
the 2f(r;rm

<¢g(1) |O;‘wg(2)> = <wg(1) |¢g(2>>E2;O(g(1)79(2)) + O(t)7 Vi = d? nd. (F49)

Then by formulae listed in Sec. we obtain:

5 7 i) 7

Lemma F.2. Given g(¥) = ¢ we have

2

(6$§€j>Eg;0)(eiW3,eimg) =0,j=1,2 and k=1,2
9 End iwTy LiwTs) 0. i=1.2 (F50)
( mgj) a;O)(e ) € ) y J )
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or all w = p —i0 € C, where x ) denotes p( D or 09, Moreover, consider the matriz A and B in Eq. (F33). E»{
J J a;0
satisfies that

VI By (e ™ ) AT B = 0= Vi, Eif(e™™, e ™) A7 BT,

Vio Eg;%(@imk ,eMT)ATIBT = qu)Ele%(eimk ,e"),
Vf(2>E;‘%(emTk LeWTYATIR = fvf@)E;‘%(eimk , €T, -
BT Ao B (€™, e"™) = 0 = BA™'V o) ERg (™7, €7, (F51)
BA—lvf(l)Eg;%(eink,eing) _ —Vf(mEg;%(eink,eins),
BTA—lvf(z)Eg%(eiwrk,eiun—g) _ —vi(z)Eg%(eink,eiwq—s),

where Yz = (0, Oy, 0iy, Oy, Oztiy, Oy )T and Vz(i) 18 its transpose.
Py Py P3 61 0, 05 z

The second lemma is on the inverse of the Hessian matrix (F33). Recalling Eq. (F'35]), one has that the inverse of

" -1 :
f}c,z,“ denoted as Hk,ﬁo,go’ is
B A'+ AT'B(D—-CA'B)"'CA™! —AT'B(D - CA™'B)™! (F52)
koFosBo —(D - CA~ 1B) 10A-? (D—-CA-'B)~!
Since CA™'B =0 and D = f}’c’ Lgd, Ve have
-1 —1pg-1 A -1 1 1
H T <A + A FHk—lﬁoﬁolCA —A- BlHk L6 ) . (F53)
k,Po,00 _kal,p*(,ﬁ,,CA Hk71750790
For k=1, H ! P A1, Thus one has that BH;; i C =0 and
A~? ~A'BHL
H! = 1 A o, bpele |
Posbo — _ - ~
2,p Hl,i,ﬂoCA Hl)pme
Doing this successively, one has BHk_ 150 6 C =0, and
. At —~AT'BH ' .y
Hk,ﬁoﬁo =| g e _ Porlo | (F54)
k_1750790 k_17ﬁo700
Finally, Hk_; 7. can be obtained with this recurrence relation and the initial data H ﬁ 7= A~L. The result is as

follows:

Lemma F.3. H ! i satisfies that

k;Po,00
(=1)lm=rlaA=1(BA-Y)Im=l m <
(HY Y = AL m=n (F55)
(—1)lm=nlA- (BTA Him=nl " m > n

1 : : -1
where Hk,po 5. is arranged as a block matriz as f” g, [F'33)/, with (Hk;ﬁmé*o)mn as a block.

Now the theorem (IV.2)) can be proven.

Proof of Theorem[IV.2. For convenience, we define s, = M, + N,. By Theorem (M), is of order t*° or higher.
Adopting the result from equation (F44)), O(t**) only occurs when s = s, and D¢ is of O(t").

Set s = s, in the definition (F45)) of D). For given [ and j, if there is one E(™) taking the form of E2% + O(t) not
being acted by derivatives, then the eventual evaluation at the critical point will vanish. Moreover, in ©(), on one
hand it contains 2s, of Er‘% 4+ O(t), and on the other hand the maximum order of derivative that can act on [[ E(® is
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250, which only occurs when [ = s,. Therefore, only when [ = s, and m = 0, all E(‘;% + O(t) are acted by derivatives.
Finally,

; (F56)

. M[-1 6(|M|—1) IM|-1
S1n2(g) 250 52 )
Ds0) = 2 H'!——— E®
( 92 o) Z ab 01,01 H

a,b=1 i=1

g(l) —etwTy ,Vl

where | M| denotes the number of factors in the monomial M.
To calculate 7 we employ the notion introduced in Lemma [F.2) E and [F.3 - to treat H~! as a block matrix. Then

M|-1 2
ZQ(L 1' )Habl 95 90, is rewritten as

6(]M|-1) o2 M1
Hy ——— Lo (117 ) Vi F
;1 T Z V Lom) \M|—1:50.7, mnvw() (F57)
We then expand [Zlﬁ’l T‘L iVT(m (ﬁ|7\/1(| 15 5) Vi(n)} " and let each individual term of the expansion act on
—HlPosYo/ mn

]_[lMl YE@. In each individual term of the expansion, it contains derivative with respect to certain #(?). Because
each E;% + O(t) only depends on certain 7@ we only consider the case when all derivatives are paired with all
Eg% + O(t) with the same argument. For the other terms of the expansion, they give vanishing results because of the

evaluation at the critical point.
The procedure mentioned above is equivalent to the follows. We first partition these E{l‘% +O(t) into ordering pairs.

Denote all possibilities of the partition as P. Given a pair (E24 (2=, #(™) 4+ O(t), E2d (2=, &™) + O(t)) in
a partition p € P. It can be acted by

Vim (H/T/ll—l;ﬁo,é:, Ymn Vo), (F58)
-1
v"(nz 1) (H —1;ﬁO7§o)m_1’nvf(n) P (F59)
Vo (H 1;ﬁo,§o)m,nflvf(n*1)7 (F60)
vf(m—l) (HXAI_l;ﬁmgo)mfl,nflvf(n—l) (F61)
According to Lemmas and
(1) If m < n, only the operator (F60) gives non-vanishing results which reads
—*(mfl) (m) — . nd =(n—1) =(n)
Viaom Ege (& )(HM v, g, Jmn—1V - Byl (T ,3) (F62)
=Vim) ai,o(f(m*”,f(m))A 1Vi<"—1>E23;0(f(n71)vf(n))
(2) If m > n, only the operator (F59) gives non-vanishing results which reads
Ve 5 o (@D FNH L Y n Vo B (50, 50)
:Vf(mil)Egi;O(f(m—lx f(m))A 1vf(")E23(f(n—1)’ i:(n)) (F63)
=V Bano (@0, Z) ATV g B (370, 70),

where in the last step we used A = AT.

It should be reminded that an evaluation at the critical point has been done in Eqs. and (F63).

According to the results in Eqgs. and , rather than partitioning the g + O(t) into ordering pairs, we
can identify the partitions p; and p, if p; can be the same as py by reordering each of its pairs. The set with this
identification will be denoted by P. Then we finally have

|M|—1 %o M|-1
. (2)
Z vx(m) ( |M| 1: po eo)mn vaj(") H E .
m,n=1 i=1 gD =eiwTs V] (F64)
005 TT Vo B AT B, T Bl 101
peP (m,n)€p lePC

with m<n
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where PC denotes the set of those E(*) of the form ES;O. Substituting the results, we finally have

(W= Mlo-,) o .
AFZelr 7 1 W2e/ 2t V»m ENC. m— m) A~ V*(n 1)E —(n— ) ) «
(2 [z, 5ol Z II (om0 (2 )) o(@ )
peP (mn)ep (F65)
with m<n
11 Edo(e™™, ™) + O@*)
lePC
Note that in
[T Voo Bo o @02 A7 Vi By (5, 2),
(m,n)€p
with m<n

the first argument in the most left factor and the second argument in the most right factor cannot be acted by the
derivative operator. Therefore, by the similar discussion as above, one verifies that

(Ve M2, )
(2. [¥2.)

—{ @0 53 T Vo Bt @, 5 A7 W B2y (500, 500) | + 0(e5H),

peP (m,n)€p
with m<n

(F66)

Moreover, E;il.(o)(ei‘””,eiw?’) represents the leading order of the expectation value of its corresponding operator.

Since these Ed o) (€ e ei“Ts) do not vanish, we conclude that (M),  is of order % if and only if (M), is. Thus

Eq. is true for the case when both sides are of order t*. Moreover, both sides of Eq. ( are of O(tM++N+)
or hlgher and if the leading order terms of both sides are not O(tM++N+) then they both Vamsh at O(tM++N+),

O

, 1
4. derivative of the matrix element of p'(e) and D2 (he)

Note that the results show below ignore the terms of order ¢ and higher. We denote V3 := (Vﬁ(i),vé'(i)) and x*
is the complex conjugate of x.

Ve <¢g(1>\]3§(6)|%<2>> _ < 11 (2) O,_ipsin(ﬂ)csch(p) ip sin® (g) csch(p)70>T

(Wg [Yg@) 22 itanh 20 ' 9
_ (Vﬂ <¢g<1>|ﬁi(€)|¢g<2)>)*
= <1/}g(1) |wg(2)> ’
T
(Vg [P3(e)[ge) < 1, P 1 ipsin® (§) csch(p)  ipsin(f)esch(p) (F67)
= | —=itanh —~.0 - _ 0
<wg(1)|¢g(2)> QZ ( >’ 2, ’ ? 20 )
_ <Va2 <¢g<1>|ﬁ§(€)|¢g<z>>)*
i (g [P g) ’

(g [P2(e) Y ge) < 1 i >T < (g [D3(e) [ ge)) ) "
Vza =1(0,0,—=,0,0,—= = | Vie
o (g [ge) 227 2 = (g [thge)

V iz 5

>




o1

o (W [PH@)ge) [ + e iemi0 (P — e20) =i (—1 4 €i®) p (2 + ¢if)
z(1 - Yy )
= (Ygw [Yg@) 2eP +2 2(er 4 1) 20 (e?r — 1)
. . . T .
w—w(—1+e”)p(¥p—€w)() —-(V <¢¢n@%®ﬂ¢¢m>>
) - Z(2 ;
20 (e2r — 1) @ (Y [Pg)
o Wl @Yg) _ (ie™ (ze? +e?) e 4 erm ie™? (~1+e')p (—e* + ) (F68)
= (Vg [y@) 2(er 4+ 1) T 2P 42 20 (e2r — 1) ’
, , , T .
6—10 (_1 + ez@) P (621) + 620) 0 B (V <'(/}g(1) |ﬁ%(6)|¢g(2)>>
20 (e? — 1) , = (W [Yg@) ’
o N T ~ *
Vg a0 OWg@) _ (0,0, 1,070,2) _ (Vm) Wy P §(6)|¢g(2>>>
(Vg [Yg=) 2 2 (Vg [Yg@)
1
(g [ D3 1 (he)|thge) 1 1. _w\"
Vs 2 =(0,0,-7€7%,0,0,—ie™> ),
= (Vg [Yg@) ( 4 )
1
2 i T
(Yg ‘Dl %( W}g@’ e Bl tanh ) ie’” tanh (%) 0 isin (g) sin (g) 0
ol T2y T G40 fager )
2 i T
. {90 ‘DQ 11 (he)ltge) Bl tanh (%) _ie_?6 tanh (%) _ieP sin (£) ersin (%) 0
¢ <¢g<1>|1/fg<2) ’ 2p " 04 0er T O+ Oer ] ’
<’(/}g(1) ‘Dgé (he)|1/1g(2)> 1 i 1. w0 T
Z(1) =(0,0,-e2,0,0, —ie2 ,
(Pgm b)) 4 4 (F69)
1
(thgw | D3 1 (he)ltrge) 1w 1 w\7
2 22 =(0,0,-¢"2,0,0,—=ie" 2 |
(Vg [Yg@) 4 4
1
2 i i T
" (¥ ‘Dgfé (he)lge) _ e tanh (%) ie’ tanh (%) _iePsin (g) _ePsin (g) 0
‘ (Y [Yg@) 2p 2p T 0+0er T O+ 0ep ’
1
2 i i T
(Y0 ‘Di%% (he)ltbg@) B e~ 7 tanh (%) ie=% tanh (g) isin (g) sin (g) 0
= (Ve hy@) B 2p ’ 2p " O+ 0er’ O+ fer’ ’
1
(g [ D211 (he)[¥ge) 1 i 1 w\7
Vf 22 = 0,07_7677()’0771‘67 .
@ (Vg [Yg@) ( 4 4 >
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