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Measurements of secondary cosmic microwave background (CMB) anisotropies, such as the
Sunyaev-Zel’dovich (SZ) effect, will enable new tests of neutrino and dark sector properties. The
kinetic SZ (kSZ) effect is produced by cosmological flows, probing structure growth. Ultra-light
axions (ULAs) are a well-motivated dark-matter candidate. Here the impact of ULA dark mat-
ter (with mass 10−27 eV to 10−23 eV) on kSZ observables is determined, applying new analytic
expressions for pairwise cluster velocities and Ostriker-Vishniac signatures in structure-suppressing
models. For the future CMB-S4 and ongoing DESI galaxy surveys, the kSZ effect (along with pri-
mary anisotropies) will probe ULA fractions ηa = Ωaxion/ΩDM as low as ∼ 5% if ma ' 10−27 eV
(at 95% C.L.), with sensitivity extending up to ma ' 10−25 eV. If reionization and the primary
CMB can be adequately modeled, Ostriker-Vishniac measurements could probe values ηa ' 10−3 if
10−27 eV . ma . 10−24 eV, or ηa ' 1 if ma ' 10−22 eV, within the fuzzy dark matter window.

I. INTRODUCTION

A standard cosmological model has been established,
using measurements of cosmic microwave background
(CMB) anisotropies [1–4], determinations of cosmic ac-
celeration from Type Ia supernovae [5], and the cluster-
ing/lensing of distant galaxies [6]. In this Λ cold-dark
matter (ΛCDM) model, the cosmic energy budget con-
sists of baryons, non-relativistic dark matter (DM), neu-
trinos, and ‘dark energy’ (DE), with relic-density param-
eters of Ωbh

2 = 0.0224±0.0001, Ωch
2 = 0.1200±0.0012,

and ΩDE = 0.6847± 0.0073 [3].
The standard model (SM) of particle physics does

not contain compelling DM or DE candidates, signal-
ing (along with the hierarchy problem [7], the strong CP
problem [8], and neutrino mass [9]) that new physics is
needed. Future observations will include cosmic-variance
limited measurements of CMB polarization using the Si-
mons Observatory (SO) [10], CMB Stage 4 (CMB-S4)
[11], and extensive maps of large-scale structure (LSS)
by the Vera C. Rubin Observatory [12], the Dark Energy
Spectroscopic Instrument (DESI) [13], the Nancy Grace
Roman Space Telescope [14], and the Euclid satellite [15].

These efforts will test dark-sector physics, probing neu-
trino masses [10, 11], the number of light relics [10, 11],
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and the DE equation-of-state parameter [14, 15], as well
as physical properties of DM [16]. The CMB’s sensitiv-
ity to new physics will depend on secondary anisotropies
[17–22], such as CMB lensing and the Sunyaev-Zel’dovich
(SZ) effect, caused by the Compton scattering of CMB
photons by free electrons [17, 23, 24].

The SZ effect induces a CMB intensity change propor-
tional to (ve/c)τ , where τ is the scattering optical-depth
and ve is the electron velocity. The SZ contribution from
thermal electrons is known as the thermal SZ (tSZ) effect
[23, 25], while the bulk-flow contribution is known as the
kinetic (kSZ) effect [17, 19]. The tSZ effect is measured
using its nonthermal spectrum [26]. In contrast, the kSZ
effect has a thermal spectrum and responds to real time
structure growth [27, 28], as electron peculiar velocities

scale as vpec,e ∝ δ̇ by the continuity equation, where δ
is a fractional overdensity and dots denote time deriva-
tives [27, 29–33]. The r.m.s. kSZ imprint on the CMB
is ∼ 10 µK and suppressed as v/c (compared to the tSZ
effect), making detection challenging.

Nonetheless, the kSZ effect due to bulk flows [32, 34–
37] has been detected, using the cross-correlation of At-
acama Cosmology Telescope (ACT) CMB maps with
Sloan Digital Sky Survey (SDSS) LRG and CMASS
galaxy data [34, 35], as well as other data, such as
Planck and South Pole Telescope (SPT) maps of the
CMB, and the Baryon Oscillation Spectroscopic Survey
[32, 36, 38]. The kSZ signature of mildly nonlinear fluc-
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Figure 1. Impact of axions on mean-pairwise velocities of
galaxy clusters as a function of separation r, relative to
ΛCDM predictions. Curves are obtained as described in Secs.
III B-IV B. Velocities for unbiased tracers (dashed lines) are
suppressed below characteristic scales (dotted lines), where
density fluctuations drop to 90% of ΛCDM values. Due to
structure suppression, fixed tracers are higher significance
peaks in the density, making them more biased (peak boost
behavior), and thus enhanced relative to ΛCDM on large
scales (solid lines). The level of enhancement is dependent
on the axion abundance ηa.

tuations (known as the Ostriker-Vishniac or OV effect)
could test models of cosmic reionization [20, 39–49].

Future kSZ measurements could probe neutrino masses
down to ' 33 meV [50], ∼ 5%-level changes to the DE
equation of state [51–53], and deviations from general
relativity [53, 54]. We determine the response of kSZ ob-
servables to ultra-light axions (ULAs), hypothetical par-
ticles that could contribute to the dark sector [55–58].

ULAs (with 10−33 eV . ma . 10−10 eV) are ubiq-
uitous in string-inspired scenarios, e.g. as Kaluza-Klein
modes of fields in extra dimensions [55, 56, 59–62], and
behave as ‘fuzzy’ DM (FDM) [63]. If ma & 10−27 eV,
ULAs begin to dilute as matter (with density ρ ∝ a−3,
for scale factor a) before matter-radiation equality. There
could be an ‘axiverse’ of ULAs of many masses, with one
solving the strong-CP problem [8, 55, 57, 60, 64–69].

Via SM interactions, ULAs could be detected us-
ing experiments and astronomical observations [70–85],
though we focus on gravitational effects [55, 58, 85, 86].
ULAs suppress clustering on galactic scales due to their
large de Broglie wavelengths [63, 87–92]. For masses
ma & 10−22 eV, ULAs mitigate challenges to ΛCDM,
such as Milky-Way satellite populations [93–103] and
galaxy cores [104–110]. ULAs would alter the black-hole
mass spectrum and gravitational-wave signatures [111–
119]. ULAs may even Bose condense [120–122]. For val-
ues ma ≤ 10−23 eV, data allow a ∼ 1 − 5% ULA con-
tribution to DM [91, 123–126]. ULA-like particles could
resolve cosmological tensions [127–136], such as the ∼ 5σ

tension between CMB and supernovae inferences of the
Hubble constant H0.

CMB primary temperature anisotropies have been
used to impose the limit Ωah

2 ≤ 6 × 10−3 at the 95%
C.L. [91] if 10−32 eV . ma . 10−25.5 eV, while polar-
ization and CMB lensing data require Ωah

2 ≤ 3× 10−3,
with considerable sensitivity extending toma ' 10−24 eV
[125]. Using lensing, future efforts like SO and CMB-S4
will probe values as low as Ωah

2 ≤ 2×10−4 [10, 11, 137],
with improvements from galaxy lensing [138] and inten-
sity mapping [139]. The power of CMB lensing motivates
us to determine how ULAs alter the kSZ effect.

We derive and evaluate the OV power spectrum in
the presence of structure-suppressing species (focused on
ULAs, but with applications to neutrinos and ark en-
ergy). We find that ULA fractions of ∼ 10−3 might
be probed using future OV measurements. So far, kSZ
detections have been made by taking the difference be-
tween CMB temperature measurements in the directions
of galaxy clusters [29, 30, 35, 52, 140–142], probing their
pairwise velocities. Clusters (with masses M ∼ 1014M�)
are the heaviest collapsed objects, and their mass func-
tion responds to ULAs [143]. We apply the halo model
[144–155] to explicitly derive (to our knowledge for the
first time in the literature) expressions for cluster pair-
wise velocities in structure-suppressing scenarios, which
differ from those in Refs. [50, 52, 53], with more physical
behavior at small scales.

We use AxionCAMB1 [91, 125, 137] to obtain power
spectra and perturbation growth rates. We compute
pairwise velocities, which are suppressed at small scales.
Our results are summarized by Fig. 1. Compared to
ΛCDM, cluster galaxies are rarer, more biased, peaks
in density, enhancing velocities at large separations (as
noted in Refs. [136, 139]).

The effect can be large compared to typical peculiar
velocitis; the residual is as large as 200 km s−1 at comov-
ing separations r = 50 Mpc h−1 for ma = 5×10−26 eV or
about∼ 1.5 times the LCDM velocity at r ≥ 50 Mpc h−1.
We perform a sensitivity forecast, finding that CMB/LSS
data at S4 [11] and DESI [13] sensitivity levels will probe
ULA fractions of Ωa/ΩDM ∼ 10−2 for ma ' 10−27 eV
(with comparable sensitivity up to ma ' 10−25 eV).

We begin in Sec. II by summarizing cosmological as-
pects of ULAs. We continue in Sec. III by deriving kSZ
observables in ULA scenarios, beginning with the OV
effect, and continuing with pairwise halo velocity signa-
tures. In Sec. IV, we obtain numerical predictions as well
as a Fisher-matrix forecast for the sensitivity of kSZ mea-
surements to ULAs. We conclude in Sec. V. Expressions

1 axionCAMB [91], available at http://github.com/dgrin1/

axionCAMB, is a modified version of the Boltzmann code CAMB
[156]. The version of AxionCAMB used here is found at
http://github.com/gerrfarr/axionCAMB. The code used for
kSZ predictions is available at https://github.com/gerrfarr/

Axion-kSZ-source.

http://github.com/dgrin1/axionCAMB
http://github.com/dgrin1/axionCAMB
http://github.com/gerrfarr/axionCAMB
https://github.com/gerrfarr/Axion-kSZ-source
https://github.com/gerrfarr/Axion-kSZ-source
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for the OV power spectrum are derived in Appendix A.
Halo-model derivations are found in Appendix B, while
some numerical integration techniques/parameter degen-
eracies are discussed in Appendices C and D, respectively.

II. ULA STRUCTURE FORMATION

ULAs with cosmologically relevant densities have ex-
tremely high occupation numbers and may be modeled
as a classical wave (see Refs. [56, 157] and references
therein). The ULA energy density is roughly constant at
early times and then transitions to DM-like dilution with
the cosmic expansion. Gradient energy in the scalar field
prevents localization of ULAs on length scales smaller
than their de Broglie wavelength λdB = 1/(mav), lead-
ing to the suppression of growth in cosmological structure
for comoving wavenumbers k > 2π/(aλdB) [56].

The fractional temperature difference induced by in-
verse Compton scattering of CMB photons (the kSZ ef-
fect) off ionized material in the IGM is given by the in-
tegral along the line of sight [39]

∆T

T
= −

∫
neσT e

−τ [v(χr̂, a) · r̂] a dχ, (1)

where χ is the comoving distance along the line of sight,
ne is the electron density, σT is the Thomson cross sec-
tion, τ is the optical depth to χ and v(χ, a) is the bulk
electron velocity field. The unit vector r̂ points along the
line of sight.

On the other hand, it can be shown from the continuity
equation (e.g. Ref. [20, 158]) that on sub-horizon scales,
the bulk electron velocity with Fourier wave vector k (and
magnitude k = |k|) is given to linear order by [41]

ṽ(k, t) =
ia

k2
H(a)

G(k, a)

G0(k)

d lnG
d ln a

kδ0(k), (2)

where the growth factor G(k, a) describes the time-
dependence of density perturbations,

G(k, a) ≡ δ(k, a)

δ(k, a = 1)
(3)

and the 0 subscript stands for the present-day (a = 1).
As a result, the ULA-induced contribution to cosmic

structure formation will modify observations affected by
the kSZ effect. To assess this effect quantitatively, we
must first determine the evolution of linear perturba-
tions in ULA models. We begin with a summary of the
changes to linear cosmological perturbation theory in-
duced by ULAs, following closely the treatment in Ref.
[91].

The background ULA field φ0 obeys the Klein-Gordon
(KG) equation in an expanding homogeneous Friedmann-
Robertson-Walker (FRW) spacetime, which is

φ′′0 + 2Hφ′0 +m2
aa

2φ0 = 0, (4)

where ma is the ULA mass in natural units, a is the cos-
mological scale factor, H = a′/a is the conformal Hubble
parameter, and ′ denotes a derivative with respect to
conformal time η, defined by dη = dt/a. ULAs make a
contribution

ρa =
φ′20
2a2

+
m2
aφ

2
0

2a2
(5)

to the total energy density and

Pa =
φ′20
2a2
− m2

aφ
2
0

2a2
(6)

to the total pressure, working in the quadratic ap-
proximation to the full ULA potential [V (φ) ∝ (1 −
cosφ/fa)] ' φ2/(2f2

a ), which is valid through most of
the parameter space of observational interest [91].2

Early on, φ0 rolls slowly with equation-of-state param-
eter (EOS) wa ≡ Pa/ρa ' −1. Once the Hubble param-
eter H has fallen sufficiently for the condition 3H � ma

to be satisfied, the field coherently oscillates with a pe-
riod ∆t ∼ 1/ma and so the cycle-averaged energy dilutes
as matter. In other words, 〈ρa〉 ∝ a−3 and 〈wa〉 ' 0,
where the brackets 〈〉 denote a cycle average [160]. The
transition between these regimes occurs when a = aosc,
defined by m = 3H(aosc).

If this transition occurs prior to matter-radiation
equality (after which most modes responsible for galaxy
formation enter the horizon), that is, if aosc ≤ aeq

(matter-radiation equality), we may think of ULAs as
‘DM-like’, because they begin to dilute as DM prior to
the horizon entry of the modes relevant for large-scale
structure formation.

On the other hand, if this transition occurs after equal-
ity (if aosc ≥ aeq), standard galaxy formation is altered
if ULAs are considered as a component of dark matter.
In this case, we can think of ULAs as ‘DE-like’. The
boundary between these two regimes occurs for a value
ma ∼ 10−27 eV. When using a halo-model approach with
ma . 10−27 eV, there are subtle complications that arise
in determining if (and for which scales) ULAs should be
treated as a clustering component of the cosmological
density field [91, 139, 161]. Here, we restrict our atten-
tion to DM-like ULAs, and defer these lower-ma compli-
cations for future investigation.

Perturbations to the ULA fluid (denoted φ1) obey the
perturbed version of Eq. (4), with additional terms due
to metric perturbations, which are sourced by ULAs and
SM fields through the Einstein equations. For a ULA

field fluctuation with Fourier wave vector ~k, ULA con-
tributions to the metric are determined by their energy
density perturbation δρa, pressure perturbation δPa, and
momentum flux ua:

2 See Refs. [97, 159] for a discussion of interesting phenomena in
halo cores and linear-theory mode growth in the strongly anhar-
monic portion of the potential.
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δρa =a−2φ′0φ
′
1 +m2

aφ0φ1 − a2φ̇2
0A, (7)

δPa =a−2φ′0φ
′
1 −m2

aφ0φ1 − a2φ̇2
0A, (8)

ua − (1 + wa)B =k
φ′0φ1

ρaa2
, (9)

where A is the scalar metric perturbation and B is the
longitudinal vector perturbation (in any chosen gauge).
The first term in both of Eqs. (7) and (8) is the pertur-
bative expansion of the canonical kinetic term for small
field fluctuation, while the second term comes from per-
turbations to a quadratic potential. Eq. (9) expresses the
velocity perturbation in terms of conformal-time deriva-
tive of the background field and fluctuations φ1.

For our purposes, these perturbations are conveniently
(and exactly) described using the generalized dark matter
(GDM) equations of motion (EOM) [162], with Fourier-
space continuity and Euler equations that may be derived
directly from the perturbed KG equation. They are given
in synchronous gauge by

δ′a =− kua − (1 + wa)h′L/2− 3H (1− wa) δa

− 9H2
(
1− c2ad

)
ua/k, (10)

u′a =2Hua + kδa −
w′a

k (1 + wa)
ua, (11)

where k is the Fourier wave mode-number of the frac-
tional ULA density perturbation δa = δρa/ρa and its
corresponding value of ua.

The term proportional to ua in the continuity equation,
Eq. (10), is present due to mass flux out of infinitesimal
volumes. The remaining terms in Eq. (10) are gauge-
dependent terms of relevance for super-horizon modes.
The synchronous gauge time-time metric perturbation is
hL, following the conventions of Ref. [158], which we
use throughout this discussion. The term proportional
to h′L is present due to redshift in the presence of a local
gravitational field.

The sole term on the left-hand-side and last term
on the right-hand side of Eq. (11) arise from terms
of the form dp/dη in the standard Euler momentum-
conservation equation. The 1st term on the right-
hand side of Eq. (11) corresponds to the redshifting of
non-relativistic momentum in an expanding Friedmann-
Robertson-Walker background. The second term on the
right-hand side of Eq. (11) represents the impact of pres-
sure gradients on fluid velocities.

In addition to the EOS parameter wa, fluid perturba-
tion evolution is governed by the adiabatic sound speed

c2ad ≡
P ′a
ρ′a

= w − w′a
3H (1 + wa)

. (12)

In terms of GDM variables, the ULA contributions to the
00 and trace of the ii Einstein equations are

δρa =ρaδa, (13)

δPa =ρa

[
δa + 3H

(
1− c2ad

) ua
k (1 + wa)

]
. (14)

The GDM EOMs [Eqs. (10)-(11)] are an exact restate-
ment of the perturbed KG equation. They become
prohibitively expensive to solve with sufficient accuracy
for cosmological observables when a � aosc, however
because coherent oscillations occur much faster than
the Hubble expansion, resulting in rapid oscillation of
Einstein-equation terms that couple background pressure
oscillations, metric fluctuations, and field perturbations
[163].

To ease this difficulty, we follow past work [63, 91, 92,
126, 160, 163–168] and use an effective fluid approxima-
tion (EFA). This approximation is obtained by taking a
cycle average of perturbed fluid variables and restating
the perturbed KG equation into a gauge in which the
cycle average 〈ua〉 = 0. Recasting the perturbed KG
equation in terms of perturbed fluid variables [applying
Eqs. (13)-(14) and transforming back into synchronous
gauge], the following continuity and Euler equations are
obtained [91, 126, 160, 164]3

δ′a =− kua −
h′L
2
− 3Hc2sδa − 9H2c2sua/k, (15)

u′a =−Hua + c2skδa + 3c2sHua. (16)

The EFA is essentially an implementation of the WKB
approximation, averaging over the ULA field’s rapid os-
cillations and encoding the structure growth suppression
of the model with a scale-dependent effective sound speed
[126, 164]:

c2s ≡
〈δPa〉
〈δρa〉

=
k2/(4m2

aa
2)

1 + k2/(4m2
aa

2)
. (17)

Deep in the horizon and for ULA-dominated gravita-
tional potentials, an approximate 2nd-order EOM can be
obtained for perturbations [56, 63, 86, 92, 160, 169]:

δ̈a + 2Hδ̇a +

[
k2c2s
a2
− 4πGρa

]
δa = 0. (18)

Here dots represent derivatives with respect to coordi-
nate time. In Eq. (18), we can clearly see the competi-
tion between ULA pressure and self-gravity. If k � kJ

[where the ULA Jeans scale is kJ = (16πGa4ρa)1/4], we
expect DM-like perturbation growth, whereas if k � kJ,
we expect oscillation rather than growth. The numeri-
cal solution to the full EOMs for individual modes (with
arbitrary amplitudes) is shown in Fig. 2 and bears out
these expectations.

To obtain the time-dependent matter power-spectrum
P (k, a) needed to compute kSZ signatures, we use the
axionCAMB code [137]. For a ≤ aosc, Eq. (4) is solved

3 In the limit that wa = w′a = c2ad = 0 for the exact equations
and c2s = 1 for the EFA, the 2 sets of EOMs agree, but we stress
that while Eqs. (10)-(11) are exact, Eqs. (15)-(16) apply (and
are used) deep in the rapidly oscillating regime.
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Figure 2. The growth of perturbations on small scales is sup-
pressed in ULA models as can be seen for the k = 0.2h Mpc−1

mode shown. On larger scales perturbation growth locks on
to the ΛCDM solution at late times. The evolution shown
here is for ma = 10−26eV ULAs.

numerically, with Eqs. (5)-(6) applied to determine the
ULA contribution to the Friedmann equation

∆
(
H2
)

=
8πGa2ρa

3
. (19)

The initial value of φ0 is chosen (as described in Ref.
[91]) to yield the desired relic density of ULAs.

Initially, perturbations are evolved using Eqs. (10)-
(11), with appropriate contributions to the metric func-
tion hL given by Eqs. (13)-(14). Once a > aosc, the scal-
ing ρa ∝ a−3 is used (along with Pa ' 0), matching ρa to
its value at a = aosc. In this regime, the EFA equations
[Eqs. (15)-(16)] are used to evolve perturbations (using
δPa ' c2sδρa), with fluid variables continuously matched
at the transition.

Of course the definition of aosc is somewhat arbitrary,
and a more general choice m = nH could be used (the
prescriptions of Refs. [92] are formally equivalent to the
EFA, as shown in Ref. [160]). Ultimately there is a trade
off between improving the accuracy of the WKB approx-
imation and decreasing the integration time available for
numerical transients to dissipate. This issue is discussed
extensively in Ref. [91].

axionCAMB may be used to compute the power spec-
tra of CMB anisotropies and the matter power spectrum,
defined by

〈δ(k, a)δ∗(k′, a)〉 = (2π)
3
δ(3)(k− k′)Pm(k, a), (20)

where matter includes baryons, CDM, and ULAs in the
range of ma values considered here.

III. KSZ SIGNATURES IN ULA MODELS

There are in principle two approaches to observing the
kSZ signature. The first is to directly search for the addi-
tional small-scale anisotropies produced by the kSZ effect
using only CMB data. The second is to cross-correlate
CMB maps with tracers of foreground structure.

The linear theory power spectrum of the additional
small scale anisotropies induced in the CMB by the kSZ
effect is given by the Ostriker-Vishniac (OV) power spec-
trum (see Ref. [39]). In Sec. III A we derive the OV
power spectrum in the presence of ULAs, computing it
numerically in Sec. IV A.

Pursuing the 2nd approach, pairwise velocities of
galaxy clusters can be estimated using kSZ-induced shifts
to the CMB temperature along cluster sight lines. This
approach was used in the first detection of the kSZ ef-
fect (see Ref. [34, 35]). Using CMB observations from
the Atacama Cosmology Telescope and galaxy clusters
identified in the SDSS III Baryon Oscillation Spectro-
scopic Survey, the kSZ effect was detected at 2.9σ signifi-
cance, and subsequently with significance as high as 5.4σ
by subsequent observational efforts, using various com-
binations of data from the Baryon Oscillation Spectro-
scopic Survey (BOSS), the South Pole Telescope (SPT),
the Dark Energy Survey (DES), the Planck satellite and
others [26, 36–38, 170–172]. It has been shown that using
pairwise velocities inferred using such kSZ observations,
next-generation LSS and CMB observations will be sen-
sitive to a number of beyond ΛCDM scenarios (see Refs.
[52, 53] for the effect of dark energy/modified gravity or
Ref. [50] for probes of massive neutrinos). Indeed kSZ
detections of 20→ 50σ could be be possible using DESI
and Advanced ACT/S4 data [173]. We derive the rele-
vant expressions for the kSZ signature of ULA models in
Sec. III B.

A. Ostriker-Vishniac effect in ULA models

Our derivation of the Ostriker-Vishniac power spec-
trum for cosmological models with scale dependent
growth closely follows the formalism presented in Ref.
[41] for a CDM cosmology, but is valid in a more general
context, including ULA DM, as well as for neutrinos or
novel dark-energy components (whose clustering is highly
suppressed). We begin with Eq. (1) and introduce the
visibility function

g(χ) = ne(χ)σTa(χ)e−τ(χ), (21)

in order to write

∆T

T
= −

∫
dχ g(χ) q(χr̂, a) · r̂. (22)

where q(χ, a) = [1 + δ(χ, a)]v(χ, a) is the momentum
density expressed in terms of the density contrast δ(χ, a).
From now on we continue in Fourier space. A derivation
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of the Fourier transform of q is given in Appendix A. The
bulk velocity depends directly on Ġ(k, a), the derivative
of G(k, a) with respect to physical time.

When projecting along the line of sight, any contri-
bution of Fourier modes k along the line of sight must
approximately cancel for small-scale modes, due to the
presence of many peaks and troughs along the line of
sight [41]. The contribution of the lowest-order expres-
sion q(χ, a) ' ṽ(χ, a) to Eq. (22) thus integrates to 0,

because ṽ(k, a) ∝ k. At 2nd-order, however, we have con-

tributions of the form
∫
dχg(χ)

∫
d3k′δ̃(k′)ṽ(k′ − k) · r̂,

as a result of the convolution theorem. Since the modes
include wave vectors k′ with significant components or-
thogonal to the line of sight r̂, the 2nd-order OV effect
does not vanish. A lengthy but straightforward calcula-
tion, then yields

q̃⊥(k, a) =
iaH(a)

2

∫
d3k′

(2π)3
δ̃0(k′)δ̃0(k − k′)G(|k − k′|, a)

G0(|k − k′|)
G(k′, a)

G0(k′)

×

[
d lnG
d ln a

∣∣∣∣
k′,a

(
k′

k′2
− k(k · k′)

k2k′2

)
+

d lnG
d ln a

∣∣∣∣
|k−k′|,a

(
−k′

|k − k′|2
+

k(k · k′)
k2|k − k′|2

)]
,

(23)

as shown in Appendix A. We have used the fact that
GdG/dt = G2H(a)d lnG/d ln a to obtain expressions in
terms of scale factor a rather than physical time.

It follows from the Limber approximation (see e.g.,
Ref. [174]) that the power spectrum of the induced
anisotropies is approximately given by

C` =

∫
dχ

χ2
P⊥

(
`+ 1

2

χ
, a

)
g2(χ). (24)

In this expression, P⊥(k, a) is the power spectrum of the

projection of q̃ onto the line of sight. By expanding
〈q̃⊥(k1, a) · q̃∗⊥(k2, a)〉, we show in Appendix A that

P⊥(k, a) =
a2H2(a)

8π2
S(k, a) (25)

[where S(k, a) is referred to as the Vishniac power spec-
trum in the literature], which in contrast to ΛCDM has
a time dependence

S(k, a) = k

∫ ∞
0

dy

∫ 1

−1

dxP0(k
√

1− 2xy + y2)P0(ky)
G2(k

√
1− 2xy + y2, a)

G2
0(k
√

1− 2xy + y2)

G2(ky, a)

G2
0(ky)

× 1− x2

1− 2xy + y2

[
d lnG
d ln a

∣∣∣∣
ky,a

(
1− 2xy + y2

)
− d lnG

d ln a

∣∣∣∣
k
√

1−2xy+y2,a

y2

]2 (26)

This expression gives the power spectrum of sec-
ondary CMB anisotropies in the presence of ULAs and
other species that induce scale-dependent growth beyond
ΛCDM, and could thus be applied to determine how neu-
trinos and other light relics affect OV observables.

In the limit of late-time scale-independent growth, the
scale-dependent function G(k, a) → D(a) (the standard
ΛCDM growth function, which captures late-time struc-
ture formation) and all time-dependent terms may be
factored out of the integral in Eq. (26). The Vishniac
power spectrum S(k) then approaches the standard ex-
pression in Ref. [41]. This can be simply understood by
examining Eq. (2), because if G(k, a) → D(a), the scale
and time-dependence of ṽ becomes significantly simpler.
We assess in Sec. IV A whether these departures from
the pure ΛCDM case are detectable using present and
planned CMB experiments and LSS surveys.

B. Mean Pairwise-Velocity spectra in ULA models

For collisionless particles (e.g. DM particles or galax-
ies) pair conservation implies that (see Refs. [144, 148])4

d(1 + ξ̄)

d ln a
= −3v12

Hr
[1 + ξ] . (27)

4 Strictly speaking, Eq. (27) is derived from the collisionless Boltz-
mann equation, which must be modified for wave DM. However,
Eq. (27) holds for halos once they form, and our key results,
Eqs. (31)-(33), are still valid, as the halo model can still be used
to relate halo density-correlation functions ξh to P lin

0 (k, a) and
G(k, a). We note, however, that Eq. (27) should not be inter-
preted as directly describing the evolution of the pairwise veloc-
ity of density fluctuations in the ULA field. Rather, the equation
describes the velocity field of a limiting construct, a population of
unbiased, low halo-mass tracers, as well as biased, heavy tracers
of a single mass.
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Here ξ and ξ̄ ≡ 3/(4πr3)
∫ r

0
4πr

′2dr′ξ(r′) are the real-
space correlation function and its volume average respec-
tively, v12 is the average pairwise velocity of particles,
H and a are the Hubble parameter and the scale fac-
tor respectively, and r is the inter-particle separation.
Through Eq. (27), v12 can be predicted using pertur-
bation theory and the halo model [50, 52, 53]. ULAs
would alter the growth of structure (as discussed in Sec.
II), thus modifying the velocity statistics predicted by
Eq. (27).

Observationally, we are interested in the pairwise ve-
locities of galaxy clusters, which are identified observa-
tionally in galaxy surveys. These may be estimated by
re-writing Eq. (22), taking the small optical depth limit
(τ ∼ 10−5 � 1, valid for galaxy clusters) and applying
it to a single cluster sight line. The minimum variance-
estimator over multiple cluster sight lines in a survey is
then [34, 36, 38, 171, 175, 176]

v̂12(r, a) =
cp̂kSZ(r, a)

τTCMB
, (28)

where τ is the mean optical depth to a galaxy cluster
and assumed not to vary significantly between clusters
and p̂kSZ(r, a) is the mean-pairwise momentum estima-
tor, given by

p̂kSZ = −
∑
i<j (δTi − δTj) cij∑

i<j c
2
ij

. (29)

Here δTi is the kSZ-induced CMB temperature
anisotropy, while cij is a geometric factor given by [29]

cij ≡
(ri − rj) (1 + cos θ)

2

√
r2
i + r2

j − 2rirj cos θ, (30)

where ri and rj are the comoving distances to the rel-
evant clusters and θ is their angular separation on the
sky. If multi-frequency data are available, internal linear
combination (ILC) techniques may be used to remove the
tSZ effect from data and generate maps that contain the
primary CMB and kSZ effect only, as in Refs. [32, 176].
Spatial filtering techniques (e.g. aperture photometry
[176, 177]) leveraging the known `-dependence of the pri-
mary CMB power spectrum can be used to remove the
primary CMB anisotropy contribution to δTi [176]. Also,
individual cluster contributions are suppressed due to the
averaging in Eq. (29) [38, 171]. Once v12 is extracted
from the data, it can be compared with theoretical pre-
dictions to test hypotheses like ULA DM, among others
[50, 53].

We now summarize the theoretical prediction for the
cluster mass-averaged pairwise velocity v(r) obtained
from the predicted halo-correlation function. Each clus-
ter represents a dark matter halo with some mass M . We
will thus work in terms of the halo correlation function
ξh. The cluster samples are typically selected for halo
masses in some range Mmin to Mmax. Averaging over
halos of different masses in the sample we can write the
predicted mean pairwise-velocity as

v(r) ≡ 〈v12〉m =−Hr
〈
dξ̄h/d ln a

〉
m

3 [1 + 〈ξh〉m]
. (31)

We derive this result in more detail in Appendix B.
The mass-averaged halo correlation function is given

by

〈ξh〉m =
1

2π2

∫
k2dkj0(kr)

G2(k, a)

G2
0(k)

P lin
0 (k)B2(k, a),

(32)

while the mass-averaged derivative of the volume-
averaged correlation function is given by〈

dξ̄h
d ln a

〉
m

=
3

π2r3

∫ r

0

dr′r′
2
∫
k2dkj0(kr′)

×
[

d lnG
d ln a

G2(k, a)

G2
0(k)

P lin
0 (k)B(k, a)N (k, a)

]
.

(33)

The functions B(k, a) and N (k, a) are given in terms of
the halo bias b(M,a), the halo mass function n(M,a) and
the Fourier transform of the real-space window function

W̃ (x) by

B(k, a) =
1

n̄(a)

∫ Mmax

Mmin

dM n(M,a)b(M,a)W̃ [kR(M)] ,

(34)
and

N (k, a) =
1

n̄(a)

∫ Mmax

Mmin

dM n(M,a)W̃ [kR(M)], (35)

where the total halo number density is given by

n =

∫ Mmax

Mmin

n(M,a)dM (36)

It should be noted that while Eqs. (33) and (35) are
similar to relevant expressions in Refs. [50, 52, 53], they
differ in detail. We point out in Appendix B that the ex-
pressions presented in those references exhibit unphysical
behavior on small scales, biasing velocities dramatically
on those scales and by as much as 16% even on scales
larger than about 20 h−1 Mpc, possibly modifying fore-
casts for neutrino mass sensitivity using the kSZ effect.
Our results are in agreement with Ref. [148] for the case
of scale-independent growth and in the absence of a win-
dow function.

We obtain the halo mass function and bias using the
semi-analytic excursion set formalism [also known as the
extended Press-Schechter (EPS) formalism] [178]. In this
model, dark matter halos are assumed to form in regions
where linear growth crosses the threshold for self-similar
spherical collapse. Using the statistics of Gaussian ran-
dom fields and cosmological power spectra, the halo mass
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function is obtained. Rare peaks in the density field typ-
ically form on top of long-wavelength perturbations, and
are thus more clustered (and thus biased) than the un-
derlying density field. The EPS model may be used to
compute this bias.

The EPS halo bias is given approximately by [53, 178]

b(M,a) = 1 +
δ2
c − σ2

M (a = 1)

σM (a = 1)σM (a)δc
, (37)

where δc ≈ 1.686 is the critical fractional overdensity for
self-similar spherical collapse [179] and σ2

M (a) is the vari-
ance of the matter density field smoothed on the char-
acteristic scale associated with a cluster of mass M at a
scale factor a,

σ2
M (a) =

1

2π2

∫
dkk2W̃ 2(kR)P (k, a). (38)

Here P (k, a) is the power spectrum at scale factor a.
For the halo mass function n(M,a) we employ the ana-

lytic Press-Schechter approximation [180], which predicts
that the halo mass function is given by

n(M,a) =

√
2

π

ρDMδc
MσM

∣∣∣∣d (lnσM )

dM

∣∣∣∣ e− δ2c
2σ2
M , (39)

where n(M,a)dM is the number density of halos with
masses in the interval M → M + dM and ρDM is the
average DM mass density.5

It has been shown that non-linear structure in mod-
els with suppressed small-scale growth is most accu-
rately captured by sharp k-space filters [188]. We thus

choose the window function W̃ (x) such that W̃ (x) = 1

if x ≤ 1 and W̃ (x) = 0 if x > 1. We map from the halo
mass M to the filter length-scale R using the expression
M = 4π(αR)3ρDM/3 where ρDM is the mean DM density,
and α ' 2.5 is a factor fit to simulations [188]. This fac-
tor is required because sharp-k filters do not correspond
uniquely to a well-defined M value (due to broad support
at many radii).

ULAs affect these theoretical predictions in a num-
ber of ways. They suppress the present-day linear
power spectrum P lin

0 (k) as well as the growth function
G(k, a) for scales k > kJ within the ULA Jeans scale
[56, 63, 86, 90, 160]. Additionally, by suppressing small-
scale structure, they increase the bias of nonlinear struc-
tures [see, e.g., Eq. (37)], while decreasing the number
counts of smaller mass halos, as indicated by Eqs. (38)-
(39).

5 The mass function used here includes scale-dependent linear
growth self-consistently, but does not include ellipsoidal collapse
[178], the impact of scale-dependent growth on excursion-set bar-
rier crossing (e.g. Refs. [181]), or the impact of quantum pressure
on self-similar spherical collapse itself [182, 183]. Such issues are
discussed in Refs. [155, 184] or for warm dark matter in Refs.
[185–187], but are unlikely to affect our results beyond a factor
of order unity, as e.g., in Ref. [181].

IV. IS THE ULA KSZ SIGNATURE
DETECTABLE?

A. Using the Ostriker-Vishniac power spectrum

In order to numerically obtain the Ostriker-Vishniac
power spectrum, we output the present-day power spec-
trum P0(k) and the scale-dependent growth function
G(k, a) using AxionCAMB [91], a version of the stan-
dard cosmological Boltzmann code CAMB [156] that has
been modified to include the impact of ULAs and output
the mode evolution and d lnG/d ln a.

We then numerically evaluate the integral in Eq. (24)
to obtain predictions for the CTT

` contributions from the
kSZ effect in the presence of ULAs. We precompute and
interpolate Eq. (26) using 128-point gaussian quadrature
on a regular grid in ln(k) and a, using again gaussian
quadrature to evaluate the projection integral in Eq. (24).
Some details of the numerical methods used are discussed
in Appendix C.

The results of our computations are shown in Fig. 3.
We observe that the suppression of small-scale structure
in the presence of axions translates into a suppression of
the OV signal relative to ΛCDM. The suppression scale
is set by the axion mass. Fig. 3 also shows the primary
CMB signal and the expected uncertainty for a CMB-
S4-like survey. Our estimates for the S4 uncertainties
are based on Refs. [189, 190]. We see that the typical
fractional kSZ fluctuation ∆T ≈ TCMB×10−2, justifying
a perturbative treatment of the OV effect on the scales
of interest.

For ` . 3000 the OV signal will be inaccessible due
to cosmic variance and for ` & 5000 even a S4-like sur-
vey will not provide the instrumental sensitivity to ob-
serve the OV signal directly. This leaves a range around
` ' 4000 in which the signal may be observed. We com-
pute the χ2 between the OV-induced C`s and standard
ΛCDM predictions, showing the result as a heat map in
Fig. 4. We see that values ηaxion ' 10−3 are detectable in
the range 10−27 eV . ma . 10−25 eV. We see that the
data are sensitive to ηa ' 1 up to ma ' 10−22 eV, and so
it is possible that the OV effect is sensitive to ULAs in the
true FDM window, where they could compose all of the
DM. Of course this requires extremely accurate subtrac-
tion of the primary CMB, using TT measurements at
low-` or E-mode polarization anisotropies over a broad
range of `.

Additionally, we note that the curves in Fig. 3 were ob-
tained using our 2nd-order perturbative results Eqs. (24)-
(26), and were computed in the approximation of instan-
taneous reionization. Additionally, the detailed shape of
the ULA-induced modifications to the OV signature will
have degeneracies with ΛCDM parameters. Our sensitiv-
ity estimate from ULA-induced changes to the OV effect
is thus likely to be overly optimistic.

A more realistic treatment would include the impact
of the topology of reionization (the ‘patchy reionization’
signature, quantified by a bubble power spectrum for ion-
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Figure 3. Ostriker-Vishniac power spectrum for cosmologies
in which the total dark matter is made up of ma = 10−25 eV,
ma = 10−24 eV, or ma = 10−23 eV axions. For comparison
the signal expected from ΛCDM model is shown. We also
show the power spectrum of primary CMB fluctuations and
the one-sigma uncertainty expected from a CMB-S4-like sur-
vey. The uncertainty is dominated by cosmic variance at low
` and by instrument sensitivity at large `.

ized regions), as described in Ref. [49]. Such a computa-
tion would also include the impact of ULAs in delaying
reionization (see Ref. [191] for a discussion) and their
effect on the bubble power-spectrum (see Ref. [192] for
an example of how neutrinos alter the nature of patchy
reionization and the resulting OV/kSZ observables). Our
results for the magnitude and future sensitivity of OV sig-
natures in ULA models should be taken as a provisional
indication that they might be experimentally detectable,
motivating more elaborate modeling in future work.

B. Using Mean Pairwise-Velocity Spectra

We now turn to the mean pairwise-velocity approach.
As in the previous section we obtain present-day den-
sity fluctuation variables and their time evolution us-
ing AxionCAMB. We then compute the expected mean
pairwise-velocity spectra according to the expressions
presented in Sec. III B. We employ Convolutional Fast
Integral Transforms as implemented in mcfit6 to eval-
uate the relevant integrals presented in Sec. III B and
Gaussian quadrature for the bias integrals involving fi-

6 https://github.com/eelregit/mcfit/

nite limits (Eq. 34 and 35). The results are shown in
Fig. 5. A simpler summary is depicted in Fig. 1.

For small comoving separations r, mean pairwise-
velocities are suppressed in the presence of axions relative
to a ΛCDM model. The suppression scale increases with
decreasing axion mass and increasing axion abundance.
At large separations, axions lead to an enhancement of
observed pairwise-velocities. This is due to the fact that
the same massive clusters are higher-σ peaks of the cos-
mological density field than in ΛCDM models. They are
thus rarer and exhibit stronger clustering (larger bias),
causing an enhancement at large r. This effect is visu-
alized in Fig. 6. We observe that if galaxy bias is ne-
glected (i.e. computing the mean pairwise-velocity of the
matter density field), velocities in the presence of axions
are suppressed on small scales and approach the ΛCDM
prediction on large scales. Using the same cosmological
model but now including halo bias (i.e. computing the
galaxy pairwise-velocities) then leads to the enhancement
on large separations (as also noted in Refs. [136, 139]).

C. Forecast for ULA abundance sensitivity of
pairwise-velocity spectra

As the impact of ULA dark matter on mean pairwise-
velocities is comparable to the error bars (e.g. Fig. 5)
of forthcoming experiments (determined from their ex-
perimental covariance matrix, modeled as discussed in
Sec. IV C), it is plausible that ULA DM is detectable
using the kSZ effect.

We thus proceed with a standard Fisher-matrix fore-
cast (following the formalism developed in Refs. [193–
195]), in which the likelihood of a model (specified by a
set of parameters) is obtained in the limit of small devia-
tions from the fiducial model, yielding an approximately
Gaussian model-parameter posterior.

Given some axion mass ma we consider ΛCDM as a
model specified by a parameter-space vector Θ consisting
of 5 of the 6 ΛCDM parameters as well as the axion
abundance ηa = Ωaxion/ΩDM,

Θ =
(
ΩDMh

2,Ωbh
2, h, ns, As, ηa

)
.

For the fiducial cosmology Θfid we assume that all
ΛCDM parameters take the fiducial values obtained by
the Planck Collaboration in their final full-mission anal-
ysis (2018) [2], that is, total (including ULAs) dark-
matter density, ΩDMh

2 = 0.120, baryon density Ωbh
2 =

0.0224 scalar spectral index ns = 0.965, h = 0.674, and
ln (1010As) = 3.04.

Mean pairwise-velocities are insensitive to the optical
depth to reionization, and we hence choose to fix it to its
best-fit value from Ref. [2], τreion = 0.054. In addition
to these 6 cosmological parameters we follow Refs. [196,
197] and consider a set of nuisance parameters bi that
scale the bias B → biB independently in the ith redshift
bin. This accounts for the uncertainty (due to a variety
of baryonic effects) in the mapping from observed galaxy

https://github.com/eelregit/mcfit/
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density field (dashed) and galaxy field (solid) in comparison.
We compare a model with ma = 5 × 10−26 eV and ηa = 0.5
(red) to a ΛCDM model (black). The velocities of the matter
density field (dashed lines) are suppressed by axions on small
scales and approach ΛCDM on larger scales, while galaxy
pairwise-velocities exhibit enhancement at large separations
due to large bias. Bottom panel: Fractional differences be-
tween ULA and ΛCDM pairwise velocity signatures, for an
unbiased tracer of the DM density field (dashed) and halos
(solid), respectively.

masses to dark-matter halo masses, as a function of z.
Unless otherwise noted, we marginalize over these these
parameters to obtain all the results below.

The kSZ Fisher matrix is then given by a sum over
redshifts and comoving radii,

Fij =

Nz∑
k

Nr∑
m,n

∂v(rm, zk)

∂θi
C−1
rm,rn,zk,zk

∂v(rn, zk)

∂θj
. (40)

Here Nz and Nr are the number of redshift and radial
bins respectively. Here, C−1

rm,rn,zk,zk
is the appropriate

element of the inverse-covariance matrix given by Eqs.
(41) and (45). Forecast uncertainties on individual pa-
rameters (labeled by the index i) after marginalization

over the others are then given by σi =
√

F−1
ii , where

F−1 denotes the inverse of the Fisher matrix.
In order to determine the minimum axion fraction

which could be detected given some axion mass ma we
consider a range of fiducial axion abundances ηa between
10−4 and 0.95. 20 values are chosen to span this range
logarithmically, with 20 more values chosen to make sure
1 and 2 − σ detection thresholds are well resolved in
sensitivity plots.7 For the axion mass ma, 41 values
are chosen, distributed logarithmically to cover the do-
main from 10−27 eV → 10−23 eV. As noted in Refs.
[91, 124, 125, 137], the posterior probability of ma is
highly non-Gaussian, and so Fisher analysis is of lim-
ited use for ma itself. It is thus easiest to follow Refs.
[91, 124, 125, 137] and consider ma as a fixed parameter.
At each value of ma, we conduct a Fisher sensitivity fore-
cast w.r.t ηa. For each fiducial cosmology Θfid we assume
that all ΛCDM parameters take the values obtained by
the Planck Collaboration [198]. The detection threshold
is obtained as the minimum axion abundance for which
the forecast 1σ (or 2σ) uncertainties on ηa are smaller
than ηa itself.

Similarly to Ref. [50] we consider 3 different CMB sur-
vey stages. SII represents currently available data, SIII
like surveys will become available in the near future, and
SIV represents long term prospects. The survey spec-
ifications and expected uncertainties on the measured
pairwise-velocities are summarized in Tables I and II re-
spectively. We consider a DESI-type galaxy survey [13].
A spectroscopic galaxy sample can of course be arbitrar-
ily divided into z bins without changing the fundamental
information content of the sample. For consistency with
Ref. [50, 53], however, we choose Nz = 5 z-bins. We note
that we could have considered a different number of bins,
making z-evolution of the velocity field more manifest,
but with smaller numbers of pairs in each bin such that
total signal-to-noise (and ULA sensitivity) is unchanged.

We adopt the covariance prescription presented in the
Appendix of Ref. [53], modifying the expressions there
with our expressions for v(r) and neglecting the sub-
dominant, non-Gaussian contribution. The covariance
matrix for the mean pairwise-velocity spectra has three
dominant components: one from the measurement un-
certainty, one due to cosmic variance and one due to
sampling noise. We assume that the measurement un-
certainty is uncorrelated between different radial separa-
tion (r) and redshift (z) bins and only contributes to the

7 We find that the derivatives obtained via finite difference rule
are contaminated by numerical noise for step sizes smaller than
about 5%. The use of one sided difference rules also introduces
spurious signatures for all sufficiently large step sizes. Conse-
quently, we are unable to properly probe ηa = 1.
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Table I. Reference survey specifications used to model SII,
SIII and SIV (reproduced from Ref. [53]).

Survey Stage

Survey Parameters SIIa SIIIb SIVc

CMB ∆Tinstr (µKarcmin) 20 7 1
Galaxy zmin 0.1 0.1 0.1

zmax 0.4 0.4 0.6
No. of z bins, Nz 3 3 5
Mmin (1014M�) 1 1 0.6

Overlap Area (1000 sq. deg.) 4 6 10

a Currently available CMB/LSS surveys such as ACTPol and
SDSS BOSS.

b Near term survey generations (e.g. AdvACTPol) and SDSS
BOSS dataset.

c Long term survey prospects such as CMB-S4 combined with a
LSS data set such as DESI.

Table II. Uncertainties for different survey stages. The table
is reproduced from Ref. [53].

Parameter
Survey
Stagea

Redshift bin
0.15 0.25 0.35 0.45 0.55

(∆τ/τ)2 0.15
στ (km/s) 120
σinstr (km/s) SII 290 440 540 - -

SIII 100 150 190 - -
SIV 15 22 27 34 42

σv(km/s) SII 310 460 560 - -
SIII 160 200 230 - -
SIV 120 120 120 120 130

a Survey parameters for different stages are provided in Table I.

diagonal elements of the covariance matrix [50, 52, 53]

Cmeasurement|rn,rm,zj ,zk =
2σ2

v

Npair
δmnδjk. (41)

Here, σv =
√
σ2

instr + σ2
τ is the uncertainty on the ve-

locity measurement, including both the direct measure-
ment error σinstr and the variance in v, σ2

τ , induced by
the variance in the optical depth, through the scaling
τ ∝ v−1, shown in Eq. (28). We thus have στ = v∆τ/τ .
Both contributions are estimated in Table II.

The number of cluster pairs, denoted Npair, is given by

Npair =
n̄(z)Vs(z)

2

(
4π

∫ r+∆r

r

n̄(z) [1 + ξh(r, z)] r2dr

)
.

(42)
The average number density of clusters at a given redshift
z is

n̄(z) =

∫ Mmax

Mmin

dm n(m, z), (43)

where Vs(z) is the survey volume as a function of scale
factor. The halo sample is taken to have lower and
upper mass limits Mmin and Mmax. We can see that
n̄(z)Vs(z) is the total number of clusters in the survey
at a given z. The number of clusters in a spherical
shell of inner radius r and outer radius r + ∆r (where
∆r is the radial bin width) around a given cluster is

4π
∫ r+∆r

r
n̄(z) [1 + ξh(r, z)] r2dr. Thus, the product of

these two factors gives the number of pairs, in order to
avoid double counting we divide by two which gives the
expression above. Assuming that ξh is approximately
constant over the interval from r to r + ∆r, we have

Npair =
n̄2(z)Vs(z)V∆(r)

2
[1 + ξh(r, z)] , (44)

where V∆ is the volume of the radial bin.
The contribution from cosmic variance and shot noise

is given by:

[
Ccosmic + Cshot

]
rm,rn,zj ,zk

=
4δjkz

2
k

π2Vs(zj)

(
H2(zj)

[1 + ξh(rm)] [1 + ξh(rn)]

)(
d lnD

d ln [1 + z]

∣∣∣∣
zj

)2

×
∫
dk

[(
P (k, zj)B(k, zj)N (k, zj) +

1

n(zj)

)2

×W∆(k, rm)W∆(k, rn)

]
,

(45)

where W∆ is

W∆(k, r) = 2

{
r3W(kr)− (r + ∆r)3W[k(r + ∆r)]

(r + ∆r)3 − r3

}
,

(46)

and

W(x) =
2 cosx+ x sinx

x3
.

The factors of W∆ and W arise from Fourier transforms
and integrals over real-space covariance expressions for
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Figure 7. Full covariance for mean pairwise-velocity spectra
constructed from a SIV-like survey at redshift z = 0.15 [see
Eqs. (41) and (45)]. The individual components contribution
to the covariance are shown in Figure 8.

pairs of clusters with radial separations within a fixed
bin with width ∆r (and the resulting Bessel functions).
The usual ΛCDM growth function D(a) is defined by
the relation P lin(k, a) = P lin

0 (k)D2(a)/D2(a = 1), and
captures late-time scale-independent growth, as is the
case for the fiducial model.

The resulting covariance matrix in the lowest redshift
bin centered on z = 0.15 for a SIV survey is shown in
Fig. 7. Additionally, the different contributions to the
covariance are detailed in Fig. 8. We see there that cos-
mic variance dominates along the diagonal at all scales,
with secondary contributions from shot noise. The con-
tribution due to scatter in the cluster optical depth is
negligible compared to other contributions.

The approximate error bars shown in Fig. 5 are ob-
tained by fixing z and then taking

√
Crm,rm,zk,zk . At

large r, the covariance flattens due to the fact that the
measurement error drops off with the increasing num-
ber of pairs in a volume, while the window function W∆

asymptotes to a constant. The signal v(r) itself falls off
at very large separations. As a result, there is a rise in
the fractional error at large r.

We obtain numerical derivatives with respect to our
six cosmological parameters by finite differencing using
a five-point rule and adopting the step sizes suggested
by Ref. [195] for the five ΛCDM parameters. We test
different step sizes between 1% and 40% in ηa and find
excellent convergence across the entire axion mass range
within the few percent level for all step sizes & 5%.

The minimum axion abundance that may be detected
at 1σ (2σ) significance via mean pairwise-velocities alone
is shown in Fig. 9, obtained by evaluating Eq. (40). We
can see that for axion masses well below ma ' 10−25

eV the axion abundance could be strongly constrained
by kSZ observations alone (to the ∼ 10% level with SII
or III and at the percent level with SIV). The sensitivity
worsens rapidly with increasing ma. The maximum mass
that can be probed with a SII and SIII survey is around
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Figure 8. Contributions to the total mean-pairwise velocity
covariance in the lowest redshift bin centered on z = 0.15
[see Eqs. (41) and (45)]. (Top Left) Cosmic Varaiance, (Top
Right) Shot Noise (×10), (Bottom Left) Shot Noise - Cosmic
Variance cross term (×3), and (Bottom Right) measurement
uncertainty mostly due to scatter in cluster optical depth
(×80).

3 × 10−26 eV and 6 × 10−26 eV respectively. With SIV
this increases to about 2× 10−25 eV. We also show that
there is a slight dependence of forecasted detection limits
on our knowledge of the expected halo bias. Neglecting
the bias nuisance parameters bi tightens the constraints
for axion masses ma . 3× 10−26 eV.

In Figs. D.1-D.4, we show the degeneracies between
ηa, the standard cosmological parameters, and the bias
parameters b1, b2, b3, b4, and b5, for several fiducial
parameter sets of ma and ηa. These figures are gener-
ated using a methodology described in Appendix D. We
note that there are strong degeneracies within the bias
model. There are also strong degeneracies within the
pairs {ns, bj}, and the pairs {As, bj}. This level of de-
generacy is responsible for the difference between the con-
straints obtained when marginalizing over vs. neglecting
bias nuisance parameters.

We additionally also tested the impact of varying as-
sumptions on the scatter in the cluster optical depth,
which arises due to the variance in the cluster popula-
tion, not measurement error. In our fiducial analysis we
adopt (∆τ/τ)2 = 0.15, similarly to Ref. [50], leading to
a optical- depth induced uncertainty in the mean pair-
wise velocity of στ = 120km/s (see Table II). We tested
(∆τ/τ)2 values between 0.001 and 0.8 without major im-
pact on detection limits, as shown in Fig. 10.

We also explored the promise of future survey efforts
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Figure 9. Forecasted detection sensitivity in ηa = Ωa/ΩDM as a function of the ULA mass ma for SII, SIII and SIV surveys as
defined by Ref. [53]. Regions above the dotted lines (or shaded areas) would be detectable at 2σ (or 1σ). The maximum mass
that can be probed at the 2σ level with SII and SIII surveys is of the order ma ' 10−25eV and up to ma ' 5× 10−25 eV with
SIV. When we do not marginalize over the bias nuisance parameters bi the constraints are tightened in the mass region below
about ma ' 3× 10−26eV.

with much lower minimum halo masses. We re-computed
Fisher matrices with a number of Mmin values. We found
that the sensitivity of pairwise velocity estimators alone
could improve by a factor of ∼ 3 in ηa if Mmin ' 1013M�,
as shown in Fig. 11.

To verify our results we conduct a χ2-analysis of the
ηa sensitivity of the kSZ effect. In this approach, the
likelihood for the observables is treated as Gaussian, but
the full (non-linear) dependence of observables on model
parameters is used. In other words, we went beyond the
Fisher approximation to critically assess its validity.

We fixed all parameters except the axion abundance to
their fiducial values. For a single varying parameter (ηa),
this approach is in principle exact, and the predicted 1σ
uncertainty should agree approximately with the inverse
square root of the ηa diagonal element of the Fisher ma-
trix. The results are shown in Fig. 12, and indeed if only
ηa is varied, the χ2 and Fisher-level sensitivities agree, up
to a nearly mass-independent factor of ∼2. This differ-
ence results from the assumption of Gaussian posteriors
and the linear expansion of v(r) around fiducial ΛCDM
values. The overall trend is that our forecasts are likely
more conservative than a complete future data analysis.

D. Combining results from mean pairwise-velocity
spectra with primary CMB observations

We combine and compare our results with primary
CMB observations and CMB lensing measurements as
they are expected from a CMB-S4-like survey. In addi-
tion to the 6 cosmological parameters we vary in our kSZ
analysis we also include the optical depth to the CMB in
the forecast for the primary CMB observations and CMB
lensing. We compute the CMB Fisher matrix using the
OxFISH code [199], by varying the axion parameters in
combination with the other five primary parameters.

As described above and in Ref. [137], for fixed axion
mass ma, we assume a range of fiducial axion fractions,
given that the current constraints from cosmology are
only upper limits. The step size assumed in a Fisher
matrix forecast is a key factor in determining the balance
between the accuracy of the derivatives and numerical
noise. To account for this, we vary the step size assumed
in a range from δΘ/Θ∗ = 0.2, 0.1, 0.05, 0.01 for a given
fiducial value Θ∗, to check for the stability of the final
Fisher error σΘ.

We make the following assumptions about the analysis
of future CMB-S4 data combined with Planck : for the
lowest multipoles 2 < ` < 30 we use a modified Planck
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Figure 10. Forecasted detection sensitivity in ηa = Ωa/ΩDM as a function of ma for an SIV survey as defined by Ref. [53], for
a number of different priors on the mean cluster optical depth τ . Regions above the dotted lines (or shaded areas) would be
detectable at 2σ (or 1σ).

configuration that mimics a prior of σ(τ) = 0.01 on the
optical depth. For the range 30 < ` < 2500 we model the
Planck HFI instrument but only on 20% of the sky to re-
move ‘double counting’ of CMB-S4 numbers on the same
sky area. Finally, we include the CMB-S4 noise modeled
as a Gaussian component with a beam of 1 arcminute
and a noise level of 1µK−arcmin, included via the Knox
formula [189].

Nαα = (∆α)2 exp

(
`(`+ 1)2θ2

FWHM

8 ln 2

)
. (47)

The polarization noise is a factor of
√

2 larger than the
temperature noise. Both are included between 30 < ` <
4000. In addition we include the lensing deflection power
spectrum from 30 < ` < 3000. We compare the runs with
and without adding information from the lensing deflec-
tion reconstruction in Figure 13. The lensing deflection,
which couples the modes in temperature and polarization
to reconstruct the lensing potential, is computed using
the Hu & Okamoto quadratic-estimator formalism [200].

We find that combining kSZ and CMB observations
allows sensitivity to an abundance of ∼0.5% below ma =
10−26eV. This is an improvement over observations of the
primary CMB alone as shown in Fig. 13. When marginal-
ization over bias nuisance parameters is taken into ac-
count, the improvement over CMB-only constraints di-
minishes with increasing axion mass.

This sensitivity level is competitive with the combina-
tion of primary CMB and CMB lensing to within a factor
of order unity, roughly consistent with the comparative
sensitivity of the same observables to the neutrino mass,
as discussed in Ref. [50]. Further improvements are
likely possible using large, photometric samples, higher
n-point functions of the reconstructed velocity field, lower
Mmin values, or foreground tracers, like field galaxies or
neutral gas line-intensity maps [201]. Additionally, the
combination of kSZ observations with the primary CMB
can provide a valuable cross check on CMB and CMB
lensing results.

It is interesting to consider these forecasts in the con-
text of the sensitivity of LSS observables at the level of 2-
pt correlations, perhaps as measured using a photometric
galaxy survey such as that planned for the Large Synoptic
Survey Telescope (LSST) [12, 202]. Preliminary forecasts
by some of us and others [203] indicate that in the mass
window 10−27 eV . ma . 10−25 eV, LSST’s galaxy sur-
vey alone should be sensitive to 5×10−2 . ηaxion . 10−1

comparable to pairwise measurements of the kSZ alone.
LSST would manifest largely mass-independent sensitiv-
ity to ηaxion as high as ma ∼ 10−23 eV, so the primary
strength of kSZ data is to offer comparable sensitivity
for a sub-dominant but non-negligible component of the
dark sector.

If limits to neutrino abundances are a reliable guide,
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Figure 11. Forecasted detection sensitivity in ηa = Ωa/ΩDM as a function of ma for an SIV survey as defined by Ref. [53], for
different minimum cluster masses. As above regions above the dotted lines (or shaded areas) would be detectable at 2σ (or 1σ).
Here we do not marginalise over uncertainties in the bias. Doing so degrades the constraints obtained with lower minimum
masses more strongly, partially eliminating any gains made by including lower mass clusters. The main improvement is the
ability to probe higher axion masses.

the inclusion of priors to the LSST projections from CMB
acoustic-scale anisotropy measurements could improve
sensitivity to ηaxion by a factor of ∼ 0.2 reduction in
error bar [204]. In parallel, the same priors would also
improve kSZ sensitivity by another order of magnitude,
though both of these statements are crude estimates that
await a proper future forecast. Galaxy power spectrum
and kSZ observables are thus on their own comparably
sensitive to ULAs.

Galaxy power spectra and pairwise velocity signatures
have different dependencies on unknown bias factors, b,
specifically scaling as ∼ b2 and ∼ b respectively, and it is
thus likely that these distinct data sets will prove com-
plementary by breaking each others’ degeneracies. Weak
lensing is likely to be comparably sensitive to this new
physics, but manifests distinct systematics (e.g. galaxy
alignment, image point-spread function measurement er-
rors) [205], making combined probes necessary to ro-
bustly detect new physics.

At the moment, there are constraints to ULA DM from
the absorption spectra of high-z QSOs, known as the
Lyman-α forest [206–210], imposing a limit of ηaxion .
0.2 for ma . 10−21 eV. Future Lyman-α measurements
could reach an order of magnitude lower sensitivity to the
absorption optical depth [13], and while a ULA-specific

forecast does not yet exist, it could be that this offers
an additional factor of ∼ 10 improvement in sensitivity
ηaxion . 0.2 for ma . 10−21 eV, competitive with the
pairwise kSZ sensitivity level forecast in our work.

Thinking further ahead into the future, intensity map-
ping efforts with the cosmological 21-cm and other lines
could offer novel probes of the linear density field. Ef-
forts like HIRAX [211] and the Square Kilometer Ar-
ray (SKA) [212] could offer a full additional order-of-
magnitude improvement in sensitivity ηaxion for masses
as high as ma ∼ 10−24 eV [139], but must progress to a
robust 21-cm fluctuation detection before being useful as
a fundamental physics probe.

V. CONCLUSIONS

The next decade of cosmological observations will yield
nearly cosmic-variance limited measurements of CMB
polarization, as well as deep spectroscopic surveys of
∼ 107 galaxies that facilitate ever more precise maps of
cosmological large-scale structure. These measurements
will improve our understanding of reionization, cluster
thermodynamics, radio point sources, galaxy formation,
and fundamental physics [11]. Increasingly, cosmologi-
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for masses below 10−26eV. We show the 2σ detection limits
for a combination of DESI and CMB-S4.

cal data will be used not only to probe the dark-sector
energy budget, but also its particle content.

Ultra-light axions (ULAs) could exist over many
decades in mass and are a well-motivated candidate to
compose some or all of the dark matter. Going beyond
WMAP and Planck measurements, much of the sensitiv-
ity of upcoming CMB experiments to dark-sector particle
physics will be driven by secondary anisotropies, such as
gravitational lensing and the kinetic Sunyaev-Zel’dovich
effect [11].

In this work, we have computed the ULA signature
on Ostriker-Vishniac (OV) CMB anisotropies imprinted
after reionization, and on the pairwise cluster veloc-
ity dispersion (measured using the CMB and cluster
surveys), including scale-dependent growth in a self-
consistent manner. In future work, we will explore the
impact of our analytic results on predictions for kSZ sig-
natures of neutrinos. The OV signature of ULAs was
found to be detectable if ηa & 10−3 at S4 sensitivity levels
with fairly simple assumptions. Future work will exam-
ine the robustness of this signature to degeneracies with
a number of reionization-related parameters and realistic
subtraction of the primary CMB, as well as other rela-
tively featureless foregrounds. Proposed futuristic small-
scale efforts like CMB-HD could offer even more promis-
ing opportunities to detect this signature [213, 214]. This
signature seems competitive with all the LSS probes con-
sidered above, but in future efforts, we must carefully
consider foregrounds and marginalization over our igno-
rance of the true model of reionization (which could itself
be inhomogeneous) [215].

Using ULA linear perturbation theory and the halo
model of structure formation [145–150, 152, 178], we
found that if 10−27 eV ≤ ma ≤ 2 × 10−25 eV, CMB-
S4 and DESI could together reveal ULA mass fractions
in the range 0.002 ≤ Ωa/Ωd ≤ 0.02, offering compara-
ble sensitivity to CMB lensing [137]. In future work, it
will be valuable to jointly assess lensing and kSZ observ-
ables for ULA sensitivity, in order to fully account for
degeneracy breaking from these multiple observables.

Our forecast assumed a spectroscopic redshift survey
(e.g. DESI). Future photometric LSS experiments like
LSST, however, will produce surveys with 103 → 104

times as many galaxies, while sacrificing accuracy in red-
shift [12, 202]. Although such surveys will suffer from
lower signal-to-noise than comparably voluminous red-
shift surveys (due to washout of modes with large pro-
jections along the line-of-sight) [142], they have already
been used for kSZ pairwise velocity detections [170]; in
the future, we will assess the kSZ-driven sensitivity of
LSST and other photometric surveys (combined with
CMB data) to ULA signatures, as well as the complemen-
tary nature of more direct measurements of the matter
2-point function.

Going forward, we could build upon the halo-model
techniques employed here, for example, using more accu-
rate halo mass functions and the accompanying Sheth-
Tormen bias functions [178], extending our model to



18

properly include the effect of scale-dependent barrier
crossing (as in Ref. [181]). We somewhat arbitrar-
ily included ULAs in the definition of DM used to cal-
culate fractional density contrasts. In future efforts,
we can follow the lead of Ref. [216] for massive neu-
trinos, and account for the fact that some fraction of
the ULA mass density will be bound and some will
be unbound. Given the tremendous recent progress in
numerical simulations of ULA structure formation us-
ing hydrodynamic, Schrödinger-Poisson, and modified
N -body solvers [96, 217–219], it would be interesting
to directly apply simulation outputs (including baryon
physics where possible) in order to more realistically
model kSZ observables in the presence of ULAs.

As shown in Ref. [142], a variety of statistical methods
for analyzing kSZ data are equivalent to the pairwise ve-
locity dispersion used here, as they are all fundamentally
tied to the δδv bispectrum [142]. One such method uses
the peculiar velocity field-estimator v̂, obtained using off-
diagonal correlations of the CMB temperature field and
galaxy density [220]. An advantage of this language is
that it furnishes another useful kSZ statistic, the cor-
relation function 〈v̂(~r + ~x)v̂(~r)〉 evaluated at comoving
separation x̂, leveraging 4-pt correlations (the trispec-
trum) to provide additional statistical power, potentially
breaking degeneracies of cosmological parameters with
bias parameters and the mean kSZ optical depth [142].

Past work on using the kSZ effect as a probe of novel
physics explored its sensitivity to neutrino mass and
novel (non-GR) anisotropic stress in the gravitational
sector. Here, we have gone further and demonstrated
the utility of the kSZ effect as a probe of the nature of
dark matter. There are a variety of other theoretical
possibilities related to dark matter that would also sup-
press structure formation, with changes in power spectra
similar to ULAs, such as non-standard baryon-DM scat-
tering [16, 221], neutrino-DM scattering [222], or sterile
neutrino DM (see Ref. [223] and references therein). Fu-
ture efforts should thus establish the full sensitivity of
the kSZ effect to a broad range of theoretical dark-sector
models.
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Appendix A: Detailed derivation of Ostriker-Vishniac power spectrum

For this paper we adopt the following Fourier conventions

f̃(k) =

∫
d3xe−ik·xf(x), (A1)

f(x) =

∫
d3k

(2π)3
eik·xf̃(k). (A2)
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We will start with our expression for the projected temperature anisotropies [Eq. (22)]:

δT =
∆T

T
= −

∫
dχ g(χ) q(χr̂, a) · r̂. (A3)

where we have defined the momentum density q(χ, a) = [1 + δ(χ, a)]v(χ, a). Here the visibility function g(χ) is the
projection kernel for the field Q(χ, a) = q(χr̂, a) · r̂. The Fourier transform of q(χ, a) is given by

q̃(k, a) =

∫
d3χe−ik·χq(χ, a) = ṽ(k, a) +

∫
d3k′

(2π)3
δ̃(k′, a)ṽ(k − k′, a), (A4)

which we obtained by substituting for δ(χ, a) in terms of its Fourier transform. We could have just as easily substituted
in for v(χ, a) and obtained

q̃(k, a) = ṽ(k, a) +

∫
d3k′

(2π)3
ṽ(k′, a)δ̃(k − k′, a). (A5)

For symmetry reasons we will thus use

q̃(k, a) = ṽ(k, a) +
1

2

∫
d3k′

(2π)3

[
δ̃(k − k′, a)ṽ(k′, a) + δ̃(k′, a)ṽ(k − k′, a)

]
. (A6)

Using Eq. (2) we can write this expression solely in terms of the density contrast and the growth factor

q̃(k, a) =
iaH(a)

k2

G(k, a)

G0(k)

d lnG
d ln a

kδ̃0(k) +
iaH(a)

2

∫
d3k′

(2π)3
δ̃0(k′)δ̃0(k − k′)G(|k − k′|, a)

G0(|k − k′|)
G(k′, a)

G0(k′)

×

[
d lnG
d ln a

∣∣∣∣
k′,a

k′

k′2
+

d lnG
d ln a

∣∣∣∣
|k−k′|,a

k − k′

|k − k′|2

]
.

(A7)

As argued in the main body of this work and more rigorously shown by Ref. [41] only modes perpendicular to the line
of sight contribute appreciably to the line of sight integral and thus the projection of q(k, a) onto the line of sight is
approximately given by q⊥(k, a), the projection onto the direction perpendicular to k. We can obtain this projection
by

q̃⊥(k, a) =

(
I − K

k2

)
· q̃(k, a), (A8)

where I is the identity matrix and K is a matrix, such that Kij = kikj . This yields

q̃⊥(k, a) =
iaH(a)

2

∫
d3k′

(2π)3
δ̃0(k′)δ̃0(k − k′)G(|k − k′|, a)

G0(|k − k′|)
G(k′, a)

G0(k′)

×

[
d lnG
d ln a

∣∣∣∣
k′,a

(
k′

k′2
− k(k · k′)

k2k′2

)
+

d lnG
d ln a

∣∣∣∣
|k−k′|,a

(
−k′

|k − k′|2
+

k(k · k′)
k2|k − k′|2

)]
.

(A9)

The power spectrum P⊥(k) is defined by

〈q̃⊥(k1, a) · q̃∗⊥(k2, a)〉 = (2π)3δD(k1 − k2)P⊥(k1, a). (A10)

From Wick’s theorem it follows that

〈δ̃0(k1 − k′1)δ̃0(k′1)δ̃∗0(k2 − k′2)δ̃∗0(k′2)〉
= (2π)6P0(|k1 − k′1|)P0(k′1)[δD(k1 − k2)δD(k′1 − k′2) + δD(k1 − k2)δD(k1 − k′1 − k′2)],

(A11)

where P lin
0 (k) is the linear mass power-spectrum at the present time. Therefore, we obtain

〈q̃⊥(k1, a) · q̃∗⊥(k2, a)〉 =δD(k1 − k2)
a2H2(a)

2

∫
d3k′1P0(|k1 − k′1|)P0(k′1)

G2(|k1 − k′1|, a)

G2
0(|k1 − k′1|)

G2(k′1, t)

G2
0(k′1)

×

[
d lnG
d ln a

∣∣∣∣
k′1,a

(
k′1
k′21
− k1(k1 · k′1)

k2
1k
′2
1

)
+

d lnG
d ln a

∣∣∣∣
|k1−k′

1|,a

(
−k′1

|k1 − k′1|2
+
k1(k1 · k′1)

k2
1|k1 − k′1|2

)]2

.

(A12)
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In order to integrate over all space we change to spherical coordinates defined such hat k = (k, θ = 0, φ = 0).
Furthermore we substitute, θ = cos−1 x and k′ = ky. With these substitutions we have k · k′ = k2xy and |k − k′| =
k
√

1− 2xy + y2. We finally find

〈q̃⊥(k, a) · q̃∗⊥(k2, a)〉 =(2π)3δD(k − k2)
a2H2(a)

8π2
k

∫ ∞
0

dy

∫ 1

−1

dxP0(k
√

1− 2xy + y2)P0(ky)
1− x2

1− 2xy + y2

× G
2(k
√

1− 2xy + y2, a)

G2
0(k
√

1− 2xy + y2)

G2(ky, a)

G2
0(ky)

[
d lnG
d ln a

∣∣∣∣
ky,a

(
1− 2xy + y2

)
− d lnG

d ln a

∣∣∣∣
k
√

1−2xy+y2,a

y2

]2

.

(A13)

Our expression is in agreement with Ref. [41] when the scale dependence of G is dropped.8 We thus write the analog
of the Vishniac S(k, a) power spectrum as in Eq. (26), including additional time dependence as expressed there.

Appendix B: Mean Pairwise-Velocity spectra

As discussed in the body of this paper, we start with the pair conservation equation as given by Ref. [144] and
cited by Ref. [148]:

d(1 + ξ̄)

d ln a
= −3v12

Hr
[1 + ξ] . (B1)

Here ξ and ξ̄ are correlation function and its volume average respectively, v12 is the average pairwise velocity of any
two particles in the field, H and a are the Hubble parameter and the scale factor respectively, and r is the separation
between particles.

Consider now halos of mass m, a biased tracer of the matter field δ(x) smoothed with a spherically symmetric
window function on some characteristic scale R that depends on m. If the bias b is linear and a function of m and
the scale factor only we have

δ
(m)
h (x) = b(m, a)

∫
δ(x)WR(|x− y|)d3x.

Now, by the Fourier convolution theorem we can write the transform of this as

δ̃
(m)
h (k) = b(m, a)δ̃(k)W̃R(|k|),

where the tilde shall denote Fourier transformed quantities. We can define a function W̃ (x) such that W̃ (kR) = W̃R(k).
Consider now halos with masses m1 and m2. The cross power spectrum at equal time is given by

〈δ̃(m1)
h (k)δ̃

(m2)∗
h (k′)〉 =b(m1, a)b(m2, a)〈δ̃h(k)δ̃∗h(k′)〉W̃ (kR1)W̃ (k′R2)

=(2π)3δ
(3)
D (k − k′)b(m1, a)b(m2, a)P lin(k, a)W̃ (kR1)W̃ (k′R2).

(B2)

In the above we have written the characteristic size of halos of mass m1 and m2 as R1 and R2 respectively.
We assume that the linear power spectrum can be written in terms of the present day power spectrum P lin

0 and
a growth function G(k, a) which in our case depends on scale. P lin(k, a) = P lin

0 (k)G2(k, a)/G2
0(k). The correlation

function of halos of masses m1 and m2 is therefore given by

ξ
(m1,m2)
h =

1

2π2

∫
k2dkj0(kr)

G2(k, a)

G2
0(k)

P lin
0 (k)b(m1, a)b(m2, a)W̃ (kR1)W̃ (kR2). (B3)

The halo bias b(m, a) is given to good approximation by (see Ref. [148])

b(m, a) = 1 +
δ2
c − σ2

m(a = 1)

σm(a = 1)σm(a)δc
, (B4)

8 There is however a difference of a factor of 2 between the two
derivations. The same difference was found in Ref. [41], when

comparing to other published results. Our expression is in agree-
ment with the other published results.
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where σ2
m is the variance of the matter density field smoothed on some scale R(m) and δc ≈ 1.686 is the critical

collapse overdensity for self-similar spherical collapse [179].
If the growth of structure is scale independent, the derivative of the bias with respect to ln a is given by (see e.g.

Ref. [148])

db

d ln a
=

d lnD

d ln a
[1− b(m, a)] . (B5)

We argue below that even in the case of scale dependent growth this derivative is well approximated on all scales of
interest by

db

d ln a
=

d lnG
d ln a

[1− b(m, a)] . (B6)

Taking the derivative dξ
(m1,m2)
h /d ln a yields

dξ
(m1,m2)
h

d ln a
=

1

2π2

∫
k2dk j0(kr)P lin

0 (k)W̃ (kR1)W̃ (kR2)

×

[
d

d ln a

(
G2(k, a)

G2
0(k)

)
b(m1, a)b(m2, a)

+
G2(k, a)

G2
0(k)

db

d ln a

∣∣∣∣
m1,a

b(m2, a)

+
G2(k, a)

G2
0(k)

b(m1, a)
db

d ln a

∣∣∣∣
m2,a

]
(B7)

which simplifies with the help of Eq. (B6) to

dξ
(m1,m2)
h

d ln a
=

1

2π2

∫
k2dk j0(kr)

d lnG
d ln a

G2(k, a)

G2
0(k)

P lin
0 (k)W̃ (kR1)W̃ (kR2)

×

[
2b(m1, a)b(m2, a)

+ [1− b(m1, a)] b(m2, a)

+ b(m1, a) [1− b(m2, a)]

]

=
1

2π2

∫
k2dk j0(kr)

d lnG
d ln a

G2(k, a)

G2
0(k)

P lin
0 (k) [b(m1, a) + b(m2, a)] W̃ (kR1)W̃ (kR2).

(B8)

Lastly, we still need to take the volume average of Eq. (B8) as follows:

dξ̄
(m1,m2)
h

d ln a
=

3

r3

∫ r

0

(r′)2dr′
dξ

(m1,m2)
h

d ln a
(B9)

Following Eq. (B1) the average pairwise velocity of pairs of halos of masses m1 and m2 is then

v
(m2,m2)
12 = − Hr

3
[
1 + ξ

(m1,m2)
h

] dξ̄
(m1,m2)
h

d ln a
(B10)

with ξ
(m1,m2)
h and dξ̄

(m1,m2)
h /d ln a given by Eq. (B3) and Eq. (B9) respectively.

To obtain the pairwise velocity averaged over pairs of different masses in the halo sample used, we weight this by
the product of the number density per unit mass of clusters of mass m1 and the number density per unit mass of
clusters of mass m2 a distance r from the former, relative to the total number density of cluster pairs in our sample
separated by a distance r.

w(r, a,m1,m2) =
n(m1, a)n(m2, a)

[
1 + ξ

(m1,m2)
h

]
n̄2(a) [1 + 〈ξh〉m]

. (B11)
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Here n̄(a) =
∫Mmax

Mmin
dm n(m, a) is the total number density of clusters with lower and upper mass limits Mmin and

Mmax for the halo sample and 〈ξh〉m indicating the sample-averaged halo correlation function defined by

〈ξh〉m =
1

n̄2(a)

∫ Mmax

Mmin

dm1

∫ Mmax

Mmin

dm2 n(m1, a)n(m2, a)ξ
(m1,m2)
h

=
1

2π2

∫
k2dkj0(kr)

G2(k, a)

G2
0(k)

P lin
0 (k)B2(k, a).

(B12)

Here B(k, a) is defined as

B(k, a) =
1

n̄(a)

∫ Mmax

Mmin

dm n(m, a)b(m, a)W̃ [kR(m)] . (B13)

There is no window function in the denominator in the definition of n(a) here, in contrast with the expressions in
Refs. [52, 53].

Combining now the weighting from Eq. (B11) with Eq. (B10) and integrating over m1 and m2 we have the mean
pairwise-velocity

Vh = 〈v12〉m = − Hr

3 [1 + 〈ξh〉m]

1

n̄2

∫
dm1

∫
dm2n(m1, a)n(m2, a)

dξ̄
(m1,m2)
h

d ln a
(B14)

We notice that the integral appearing here gives the sample average over the ln a derivative of the volume averaged
halo correlation function〈

dξ̄h
d ln a

〉
m

=
1

n̄2

∫
dm1

∫
dm2 n(m1, a)n(m2, a)

dξ̄
(m1,m2)
h

d ln a

=
3

π2r3

∫ r

0

dr′r′
2
∫
k2dkj0(kr′)

d lnG
d ln a

G2(k, a)

G2
0(k)

P lin
0 (k)B(k, a)N (k, a)

(B15)

where we have additionally defined

N (k, a) =
1

n̄(a)

∫ Mmax

Mmin

dm n(m, a)W̃ [kR(m)]. (B16)

This factor arises from the integral over the window function without matching factor in the bias which was introduced
when we took derivatives of the bias in Eq. (B8).

The mean pairwise-velocity then becomes

Vh = 〈v12〉m =−Hr

〈
dξ̄h

d ln a

〉
m

3 [1 + 〈ξh〉m]
. (B17)

If W̃ (x) = 1 and G(k, a) = D(a), Eqs. (B15) and (B17) reduce to the expressions presented in Ref. [148]. They do
not, however, agree with the expressions presented in Refs. [52, 53]. In particular, the halo bias term differs between
these two models. Instead of the term B2(k, a) that appears in Eq. (32), Refs. [52, 53] define

b
(q)
h (k, a) =

∫Mmax

Mmin
dm m n(m, a)bq(m, a)W̃ 2 [kR(m)]∫Mmax

Mmin
dm m n(m, a)W̃ 2 [kR(m)]

. (B18)

This is manifestly not equivalent to the expression above. Similarly, in Eq. (B15) our term B(k, a)N (k, a) is replaced

by b
(1)
h (k, a). Eq. (B18) does also not reduce to the bias expected in Ref. [148] because setting W̃ (x) = 1 does not

yield ξh = b̄2(a)ξlin where b̄(a) would be the averaged halo bias as specified in Ref. [148]. Instead Eq. (B18) leads to

ξh =

∫
dm m n(m, a)b2(m, a)∫

dm m n(m, a)
ξlin

i.e. the sample average (modulus some mass weighting) of the squared halo bias rather than the square of the averaged
halo bias.
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Figure B.1. Comparing different bias prescriptions at z = 0.0 for our fiducial ΛCDM model. Left : Bias as presented by
Refs. [52, 53]. The dashed lines indicated the analytically computed asymptotic limit. Right : Bias as computed using Eq. (B13).
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Figure B.2. Comparing the mean pairwise-velocity obtained with these two prescriptions for our fiducial ΛCDM model. As in
Ref. [53] we adopt a Gaussian filter here. While the difference is large on small scales, it approaches a constant factor of ∼ 1.15
over the range of scales used in the analysis.

The bias term as given in Eq. (B18) exhibits some unexpected behavior at large k. When choosing a Top-Hat or

Gaussian filter for W̃ (x), the bias asymptotically approaches a finite, non-zero value at large k (as seen in Fig. B.1).
That appears counter intuitive since it implies that the sample traces even scales smaller than R(Mmin). We would
expect to see the bias approach zero for k � 1/R(Mmin). This problem does not arise with the bias expression from

Eq. (B13). Furthermore, Eq. (B18) becomes undefined for large k when using a sharp filter in k-space W̃ (x) = 1 for
x ≤ 1 and 0 otherwise, as the denominator will evaluate to zero for k > 1/R(Mmin) making the bias undefined. As
discussed above, we use sharp-k filters because they yield more accurate halo formation histories than other filters in
structure suppressing models.

The impact of our modifications is shown in Fig. B.2 where we adopt a Gaussian filter as in Ref. [53]. Not
unexpectedly the difference is largest at very small scales which are not usually used in the analysis because of
observational uncertainties. Even on large scales, however, there remains an overall normalization difference.

Lastly, it remains to justify our approximation for Eq. (B6)

db

d ln a
' d lnG

d ln a
[1− b(m, a)] . (B19)
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For this purpose we can rewrite the ln a derivative of b in terms of derivatives with respect to σm(a) as

db

d ln a
=

dσm(a)

d ln a

db

dσm(a)
=

d lnσm(a)

d ln a
[1− b(m, a)] . (B20)

We can compute d lnσm(a)
d ln a as

d lnσm(a)

d ln a
=

1

2

d lnσ2
m(a)

d ln a
=

1

2π2σ2
m(a)

∫
k2dk

d lnG
d ln a

G2(k, a)

G2
0(k)

P lin
0 (k)W̃ [kR(m)]. (B21)

After mass averaging, if we use Eq. (B21) instead of the RHS of Eq. (B19), we obtain the following instead of the
factor d lnG

d ln aN (k, a) in Eq. (B15)

d lnG
d ln a

B(k, a) +
1

n̄

∫
dm n(m)

d lnσm(a)

d ln a
[1− b(m, a)] W̃ [kR(m)] . (B22)

As mentioned in the body of the paper, if the scale dependence is weak, our approximation is exact. For small axion
masses the axion abundance is strongly constrained and thus we expect only relatively weak scale dependence in the
late time growth rate. For large axion masses on the other hand, while their abundance is relatively unconstrained
they act increasingly like cold dark matter and introduce only weak scale dependence as well. We compare the
numerical value for Eq. (B22) to d lnG

d ln aN (k, a) and find that within the range of masses and abundances allowed at
least by a SIV-like survey the difference is never larger than ∼4% even for the most strongly scale dependent cases
allowed by our forecast (ma = 10−27eV and ηa = 0.1). This increases to about 20% for axion masses of ma = 10−27eV
and ηa = 0.25. For any masses larger than ma = 10−26eV, the inaccuracies due to this approximation are at the
sub-percent level for all axion abundances. We thus expect the use of Eq. (B19) to induce deviations no worse than
1%− 20% induced deviations in halo mass-function averaged predictions for v(r). We reran our Fisher forecasts for a
subset of our mass range (below 10−26eV) and found that our approximation has a negligible impact on the predicted
detection limits (. 4%).

Appendix C: Numerical treatment of Ostriker-Vishniac integrals

We note that the integral to be evaluated to obtain S(k) [Eq. (26)] appears singular at x = y = 1. We argue here
that this singularity behaves as ε−n for 0 < n < 1 and is thus integrable. For the purposes of this argument we will
assume that the growth function is approximately scale independent, i.e. G(k, a) ≈ D(a) which is true on large scales.
With this approximation the integrand becomes

I(x, y) = P (ky)P (k
√

1 + y2 − 2xy)
(1− x2)(1− 2xy)2

(1 + y2 − 2xy)2
. (C1)

The power spectrum P (k) falls off quickly at large k and so the contribution from such modes is small. At sufficiently
small k, P (k) ∝ kn where n is the tilt of the power spectrum. Therefore, the integrand goes as

I(x, y) ∝ k2nyn
(1− x2)(1− 2xy)2

(1 + y2 − 2xy)2−0.5n
. (C2)

Expanding to first order around x = y = 1 we find

I(1− ε, 1 + δ) ∝ k2n

22−0.5n

(1 + nδ)(2ε)(1 + 4δ − 4ε)

ε2−0.5n

≈ k2n

22−0.5n

2ε

ε2−0.5n

=
k2n

21−0.5n

1

ε1−0.5n
.

(C3)

In the expression above we have made use of the fact that n is observationally constrained to be close to unity. We
can now see that for any physically reasonable value of n the singularity should be integrable.

In order to numerically evaluate the integral we perform a coordinate transform x → t. Since the singularity has
the form 1/(1 − x)1−0.5n one can require dx

dt ∝ (1 − x)1−0.5n. If we then redefine the integrand in terms of t we will

have multiplied out the divergent factor. This implies (up to scalar factors) t = (1− x)n/2. With this transformation∫ 1

−1

I(x, y)dx =
2

n

∫ 2n/2

0

t2/n−1I(1− t2/n, y)dt. (C4)
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Figure D.1. Parameter degeneracy forecasts from our Fisher-matrix analysis. This figure shows degeneracies between the ULA
fraction ηa and the standard ΛCDM cosmological parameters. The symbol ωi = Ωih

2 for species i ∈ {DM, b}.

Appendix D: Mean-pairwise velocity parameter degeneracies

In order to inspect degeneracies between different parameters in our analysis we draw 106 random samples from
a multidimensional Gaussian distribution with covariance given by the inverse of the Fisher matrix computed as
described in Eq. (40). The samples drawn are then analyzed using GetDist.9 Degeneracies between the ΛCDM
cosmological parameters and the ULA fraction, the bias parameters and the ULA fraction, and the ΛCDM cosmological

9 https://github.com/cmbant/getdist
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Figure D.2. Parameter degeneracy forecasts from our Fisher-matrix analysis. This figure shows degeneracies between the bias
nuisance parameters b1, b2, b3, b4, and b5 as well as the ULA fraction ηa.

parameters and the bias parameters are shown in Figs. D.1, D.2 and D.3 respectively. We also show the degeneracies
obtained when neglecting the marginalization over the bias parameters (Fig. D.4).
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M. A. Rodŕıguez-Meza, Mon. Not. Roy. Astron. Soc.
475, 1447 (2018), arXiv:1701.00912 [astro-ph.GA].

[108] X. Du, B. Schwabe, J. C. Niemeyer, and D. Büurger,
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(2018), arXiv:1809.09619 [astro-ph.CO].

[210] K. K. Rogers and H. V. Peiris, Phys. Rev. Lett. 126,
071302 (2021), arXiv:2007.12705 [astro-ph.CO].

[211] L. B. Newburgh et al., Proc. SPIE Int. Soc. Opt. Eng.
9906, 99065X (2016), arXiv:1607.02059 [astro-ph.IM].

[212] L. Staveley-Smith and T. Oosterloo (2015)
arXiv:1506.04473 [astro-ph.GA].

[213] H. N. Nguyen, N. Sehgal, and M. Madhavacheril,
(2017), arXiv:1710.03747 [astro-ph.CO].

[214] N. Sehgal et al., (2019), arXiv:1906.10134 [astro-
ph.CO].

[215] M. A. Alvarez, S. Ferraro, J. C. Hill, R. Hložek,
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