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The nature of the Fermi γ-ray Galactic Center Excess (GCE) has remained a persistent mystery
for over a decade. Although the excess is broadly compatible with emission expected due to dark
matter annihilation, an explanation in terms of a population of unresolved astrophysical point
sources e.g., millisecond pulsars, remains viable. The effort to uncover the origin of the GCE is
hampered in particular by an incomplete understanding of diffuse emission of Galactic origin. This
can lead to spurious features that make it difficult to robustly differentiate smooth emission, as
expected for a dark matter origin, from more “clumpy” emission expected from a population of
relatively bright, unresolved point sources. We use recent advancements in the field of simulation-
based inference, in particular density estimation techniques using normalizing flows, in order to
characterize the contribution of modeled components, including unresolved point source populations,
to the GCE. Compared to traditional techniques based on the statistical distribution of photon
counts, our machine learning-based method is able to utilize more of the information contained in
a given model of the Galactic Center emission, and in particular can perform posterior parameter
estimation while accounting for pixel-to-pixel spatial correlations in the γ-ray map. This makes
the method demonstrably more resilient to certain forms of model misspecification. On application
to Fermi data, the method generically attributes a smaller fraction of the GCE flux to unresolved
point sources when compared to traditional approaches. We nevertheless infer such a contribution
to make up a non-negligible fraction of the GCE across all analysis variations considered, with at
least 38+9

−19% of the excess attributed to unresolved points sources in our baseline analysis.

I. INTRODUCTION

Dark matter (DM) represents one of the major un-
solved problems in particle physics and cosmology to-
day. The traditional Weakly-Interacting Massive Particle
(WIMP) paradigm envisions production of dark matter
in the early Universe through freeze-out of dark sector
particles weakly coupled to the Standard Model (SM)
sector. In this scenario, one of the most promising av-
enues of detecting a dark matter signal is through an ob-
servation of excess γ-ray photons at ∼ GeV energies from
DM-rich regions of the sky produced through the cascade
of SM particles resulting from DM self-annihilation.

The Fermi γ-ray Galactic Center Excess (GCE), first
identified over a decade ago using data from the Fermi
Large Area Telescope (LAT) [1], is an excess of photons
in the Galactic Center with properties—such as energy
spectrum and spatial morphology—broadly compatible
with the expectation due to annihilating DM [2–16]. The
nature of the GCE remains contentious however, as com-
peting explanations in terms of a population of unre-
solved astrophysical point sources (PSs), in particular
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millisecond pulsars (MSPs), remaining viable [9, 17–25].
Analyses of the morphology of the excess have shown it
to prefer a spatial distribution correlated with baryonic
structures in the Galactic Center region rather than a dis-
tribution expected due to DM annihilation [15, 26, 27],
although these conclusions can depend on details of the
modeling [28, 29]. Studies leveraging the statistical dis-
tribution of photon counts in the Galactic Center have
shown the γ-ray data to prefer a point source origin
of the excess [30–33], a conclusion corroborated using
wavelet-based techniques [31]. Recent studies have, how-
ever, pointed out the potential of unknown systematics,
such as the poorly understood morphology of the dif-
fuse foreground emission and the existence of unmod-
eled point source populations, to affect the conclusions
of these analyses [34]. Ref. [32] showed that many of
these issues can be ameliorated through the use of bet-
ter diffuse foreground models, as well as by augmenting
existing models with additional degrees of freedom.

The complexity associated with analyzing high-
dimensional γ-ray maps—typically binned spatially using
a pixelization scheme—has motivated the use of approx-
imate likelihoods based on e.g., the statistics of photon
counts in individual pixels [30, 35, 36] or scale decomposi-
tion of the photon map using wavelet techniques [31, 37–
39], in order to enable computationally tractable analy-
ses. Under certain assumptions, using such approxima-
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tions can capture all of the information contained in a
given spatial model of the γ-ray data. This is the case,
e.g., for a likelihood based on the expected probabil-
ity distribution of photon counts factorized across pix-
els when pixel-to-pixel correlations can be assumed to be
negligible. When such correlations are present, however,
the use of such approximations necessarily involves loss
of information compared to that contained in the original
γ-ray map.

Recent developments in machine learning have enabled
analysis techniques that can extract more information
from high-dimensional datasets, and can therefore be
used to leverage more of the information contained in
models of γ-ray emission. Machine learning methods
have recently shown promise for analyzing γ-ray data [40]
and specifically for understanding the nature of the Fermi
GCE [41–43]. In particular, Ref. [41] used a method
based on Bayesian neural networks in order to infer the
flux fractions associated with various modeled compo-
nents in the Galactic Center region, finding the GCE
to be predominantly smooth in contrast to prior analy-
ses depending the statistics of photon counts. Ref. [42]
extended this framework, using a novel non-parametric
approach [44] to extract the characteristics of the PS pop-
ulation associated with the GCE, finding a non-negligible
portion of the emission to be attributable to a dim PS
population. We will show the results of our analysis on
Fermi data to be qualitatively consistent with those ob-
tained in that work.

In this paper, we present a complementary ap-
proach that leverages recent developments in the field
of simulation-based inference (SBI, also referred to as
likelihood-free inference; see, e.g., Ref. [45] for a recent
review) in order to weigh in on the nature of the GCE.
In particular, we use conditional density estimation tech-
niques based on normalizing flows [46, 47] to characterize
the contributions of various modeled components, includ-
ing “clumpy” PS-like and “smooth” DM-like emission
spatially tracing the GCE, to the γ-ray photon sky at
∼ GeV energies in the Galactic Center region. Rather
than using hand-crafted summary statistics, we employ
a graph-based spherical convolutional neural network ar-
chitecture (previously utilized in Refs. [41, 42]) in order
to extract summaries from γ-ray maps optimized for the
downstream task of estimating the distribution of param-
eters characterizing the contribution of modeled compo-
nents to the GCE. Unlike traditional approaches based on
the statistics of photon counts, this approach allows us to
capture more of the information contained in a model of
the Galactic Center emission, and in particular implicitly
uses the distribution of pixel-to-pixel correlations as an
additional discriminating handle. As we will show, this
makes our method more resilient to certain systematic
uncertainties compared to these approaches. A schematic
illustration of our method is presented in Fig. 1.

This paper is organized as follows. In Sec. II we de-
scribe our forward model and analysis framework based
on neural simulation-based inference. In Sec. III we val-

idate our pipeline on mock observations of the Fermi
GCE. Section IV presents an application of the method
to Fermi γ-ray data, including systematic variations on
the analysis. In Sec. V we study the susceptibility of the
analysis to known mismodeling of the signal and back-
ground templates. We conclude in Sec. VI.

II. METHODOLOGY

We begin by describing the various ingredients of our
forward model and datasets used. After a brief sum-
mary of established methods based on explicit likeli-
hoods, we detail our analysis methodology going over, in
turn, the general principles behind simulation-based in-
ference, posterior estimation using normalizing flows, and
learning representative summary statistics from high-
dimensional γ-ray maps with neural networks.

A. Datasets and the forward model

Datasets and region of interest: We use the datasets
and spatial templates from Refs. [48, 49] to create sim-
ulated maps of Fermi -LAT data in the Galactic Cen-
ter region. The templates and data used correspond
to 413 weeks of Fermi -LAT Pass 8 data taken between
August 4, 2008 and July 7, 2016. The top quartile
of photons as graded by quality of PSF reconstruc-
tion in the energy range 2–20 GeV and event class
ULTRACLEANVETO are used. The conventional quality cuts
are applied: zenith angle less than 90◦, LAT CONFIG==1,
and DATA QUAL==1.1 The maps are binned spatially
using the HEALPix [50] pixelization scheme with reso-
lution parameter nside=128, roughly corresponding to
pixel area ∼ 0.5 deg2. This dataset has been previously
used in the literature for analyses based on explicit like-
lihoods [32–34] as well as machine learning-based anal-
yses [41] for characterizing the GCE. All templates are
normalized, per-pixel, within a region defined by r < 30◦.

The inner region of the Galactic plane, where the
observed emission is especially difficult to model, is
masked at |b| < 2◦, and a radial cut r < 25◦ defines the
region of interest (ROI) for our analysis. Even though
the GCE is spatially confined to the inner 10–15◦ of the
Galactic Center [10, 11], using a larger ROI improves the
ability to constrain other spatially extended templates
and helps mitigate spatial degeneracies that would
otherwise crop up in a smaller ROI. On the other hand,
using a ROI that is too large can exacerbate the effects
of misspecified spatial templates [51]. We mask resolved
PSs from the 3FGL catalog [52] at a radius of 0.8◦,

1 https://fermi.gsfc.nasa.gov/ssc/data/analysis/

documentation/Cicerone/Cicerone_Data_Exploration/Data_

preparation.html
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1 Introduction

u ⇠ ⇡(u) = N (u; 0, 1)
Your introduction goes here! Simply start writing your document and use the Recompile button

to view the updated PDF preview. Examples of commonly used commands and features are listed

below, to help you get started.

Once you’re familiar with the editor, you can find various project setting in the Overleaf menu,

accessed via the button in the very top left of the editor. To view tutorials, user guides, and further

documentation, please visit our help library, or head to our plans page to choose your plan.

2 Some examples to get started

2.1 How to create Sections and Subsections

Simply use the section and subsection commands, as in this example document! With Overleaf, all

the formatting and numbering is handled automatically according to the template you’ve chosen. If

you’re using Rich Text mode, you can also create new section and subsections via the buttons in the

editor toolbar.

2.2 How to include Figures

First you have to upload the image file from your computer using the upload link in the file-tree menu.

Then use the includegraphics command to include it in your document. Use the figure environment

and the caption command to add a number and a caption to your figure. See the code for Figure 1 in

this section for an example.

Note that your figure will automatically be placed in the most appropriate place for it, given the

surrounding text and taking into account other figures or tables that may be close by. You can find

out more about adding images to your documents in this help article on including images on Overleaf.

2.3 How to add Tables

Use the table and tabular environments for basic tables — see Table 1, for example. For more infor-

mation, please see this help article on tables.

Item Quantity

Widgets 42

Gadgets 13

Table 1: An example table.
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FIG. 1. A schematic overview of the inference framework used in this work. A normalizing flow is used to model posterior
distribution of the parameters of interest characterizing the contribution of point source populations as well as diffuse (“smooth”)
components to the γ-ray data. The flow transformation from the base distribution to the posterior is conditioned on learned
summaries of the γ-ray map extracted using a convolutional neural network. The normalizing flow and feature-extractor neural
networks are trained simultaneously using maps simulated from the forward model. Once trained, samples from the flow can
be generated conditioned on a new dataset of interest in order to obtain an estimate of the corresponding parameter posteriors,
which can be used to infer physical quantities of interest such as source-count distributions of modeled PS populations as well
as fluxes associated with the diffuse components. See Sec. II for a detailed description of the analysis pipeline.

approximately corresponding to 99% PSF containment
for photons in the data type employed [52].

Diffuse emission forward model: The simulated
data maps are a combination of diffuse (alternatively
referred to as smooth or Poissonian) and PS contribu-
tions. The smooth contributions include (i) the Galactic
diffuse foreground emission, (ii) spatially isotropic emis-
sion accounting for, e.g., uniform emission from unre-
solved sources of extragalactic origin, (iii) emission from
resolved PSs included in the Fermi 3FGL catalog [52],
and (iv) lobe-like emission associated with the Fermi
bubbles [53]. Finally, (v) Poissonian DM-like emission
is modeled using a line-of-sight integral of the (squared)
generalized Navarro-Frenk-White (NFW) [54, 55] profile,

ρgNFW(r) ∝ 1

(r/rs)
γ

(1 + r/rs)
3−γ (1)

with inner slope γ = 1.2 motivated by previous GCE
analyses [8, 10, 56]. Here, r is the radial distance from
the Galactic Center, rs = 20 kpc is the Milky Way scale
radius, and we take R� = 8.2 kpc as the distance to the

Galactic Center [57, 58]. Templates for components (ii)–
(iv) are obtained from Ref. [49].

The Galactic foreground component accounts for γ-
rays produced due to cosmic rays interacting with inter-
stellar gas and radiation, which makes up the majority
of the observed emission in the Galactic Center region.
In particular, bremsstrahlung emission from cosmic-ray
electrons scattering off of gas as well as photons produced
as a result of the decay of pions produced through cosmic
ray protons scattering elastically with the gas both trace
the Galactic gas distribution, modulated by the incoming
cosmic ray density. These components exhibit structure
on smaller angular scales. Additionally, inverse Compton
(up-)scattering (ICS) of the interstellar radiation field
by cosmic ray electrons produces an important compo-
nent of the γ-ray Galactic diffuse emission which spatially
traces the Galactic charge carrier density and does not
show modulation on small scales. Normalizations of the
gas-tracing components, subscripted ‘brem/π0’, and the
ICS-tracing component, subscripted ‘ICS’, are included
separately in our forward model. Templates for these
two components are described in our baseline configura-
tion by Model O, introduced in Ref. [32]. There, it was
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found to be better fit, as quantified by the likelihood of
describing the data up to Poisson noise, to the counts
map in the Galactic Center region compared to diffuse
foreground templates previously employed in GCE anal-
yses. We explore the effect of variations on the assumed
Galactic diffuse model in Sec. IV C.

The diffuse emission templates have been pre-
smoothed with the Fermi point-spread function (PSF)
at 2 GeV for the dataset employed, modeled as a
pair of King functions.2 The total diffuse emission in
a given pixel p, xp, is modeled as a Poisson realiza-
tion of a linear combination of the diffuse templates
T pi , where i indexes the individual templates, with
their corresponding normalizations Ai regarded as pa-
rameters of the forward model; xp ∼ Pois (xp |∑iAiT

p
i ).

PS emission forward model: Assuming the locations
of individual PSs are not known a-priori, the statistics
of multiple PS populations can be completely specified
through (i) their spatial distribution, described by tem-
plates T p discretized over pixels p, (ii) the distribution
of expected photon counts S contributed by each PS,
p(S), and (iii) the distribution of the number of PSs for
each population. Additionally, the modeled instrumental
point-spread function quantifies the spatial distribution
of photon counts sourced by an individual PS around its
location due to the finite angular resolution of the LAT
instrument.

Here, we parameterize the distributions of photon
counts S contributed by each PS through a doubly-
broken power law,

p(S | θPS) ∝





(
S
Sb,1

)−n1

, S ≥ Sb,1
(

S
Sb,1

)−n2

, Sb,1 > S ≥ Sb,2
(
Sb,2

Sb,1

)−n2
(

S
Sb,2

)−n3

, Sb,2 > S

(2)
specified by the break locations {Sb,1, Sb,2}, spectral in-
dices (slopes) {n1, n2, n3}, and appropriately normalized
to unity. Higher subscript indices correspond to dimmer
parts of the source-count distribution. Together, we de-
note these parameters by θPS.

The PS component of the simulated Fermi map is cre-
ated as follows, practically implemented using the code
package NPTFit-Sim [59]. The total number of PSs to
be simulated is drawn as n ∼ Pois(n | npixλ), where
npix is the number of pixels in the ROI and λ is the
mean number of PSs per pixel. The sample of PS an-
gular positions {rn} is drawn from a PDF constructed
by linearly interpolating the relevant pixel-wise spatial
template T p; {rn} ∼ p(r) ∝ T (r). The expected num-
ber of photons emitted by each PS, indexed by i, is

2 https://fermi.gsfc.nasa.gov/ssc/data/analysis/

documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html

drawn by first sampling from the mean PDF of expected
photon counts in Eq. (2), S ∼ p (S | θPS), and scaling
this as Si = Sε(ri)/〈ε〉 to account for variations in the
Fermi exposure at the sampled PS positions, ε(ri), over
the mean exposure 〈ε〉 in the ROI. The actual sample
of photon counts emitted by the simulated PSs, {xn},
is taken to be a Poisson realization of this expecta-
tion; xi ∼ Pois (xi | Si). Given the angular positions
of and photon counts emitted by PSs {rn, xn}, the ra-
dial coordinates of photons relative to the positions of
PSs are drawn following the modeled Fermi PSF, with
the azimuthal coordinates sampled uniformly assuming
a spherically-symmetric PSF. This procedure is repeated
for each PS population, and the final simulated PS map
is constructed by binning the sampled photon positions
within the ROI according to the pixelization scheme used.
In practice, in order to avoid computational costs asso-
ciated with simulating a large number of low-flux PSs,
the dim component of the PS population below a spec-
ified threshold is partially accounted for in the DM-like
component, as described in detail towards the end of this
subsection.

In the NPTF literature, modeled PS populations are
often compactly described through the so-called source-
count distribution (SCD) d2N/dSdΩ, which quantifies
the differential number density of sources per unit angu-
lar area emitting S photons in expectation. The source-
count distribution jointly describes the distribution of
photon counts from individual PSs p(S | θPS) and their
mean per-pixel abundance λ, and is related to these as

d2N

dSdΩ
= λ p(S | θPS)/Ωpix (3)

where the the pixel area Ωpix is used to convert the per-
pixel source count to per-area, rendering it agnostic to
pixel size. We will present our results in terms of the
source fluxes (d2N/dFdΩ) rather than expected counts
(d2N/dSdΩ), with the conversion S = 〈ε〉F where 〈ε〉
is the mean exposure in the region considered. In the
analysis ROI used here, the mean exposure is 〈ε〉 ' 7 ×
1010 cm2 s. For brevity, we will denote the distribution
as dN/dF , leaving the per-area normalization implicit.

In this paper, we consider two independent PS popula-
tions: (i) those spatially correlated with the GCE, mod-
eled the same as the Poissonian counterpart using a line
of sight integral of the (squared) generalized NFW profile
in Eq. (1) with γ = 1.2, and (ii) those spatially correlated
with the Galactic disk, modeled by a doubly-exponential
profile motivated by studies of the spatial distribution of
Galactic millisecond pulsar populations [60, 61],

ρDisk(R, z) ∝ exp

(
− R

Rd

)
exp

(
−|z|
zs

)
(4)

where R and z are the radial and vertical Galactic cylin-
drical coordinates, and the disk scale height and radius
are set to zs = 0.3 kpc and Rd = 5 kpc respectively in
the baseline scenario. The final maps are obtained by

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html


5

combining the diffuse and PS emission components of
the forward model.

Prior specification: We use uniform priors for the nor-
malization factors of the Poissonian templates. For the
PS components, we use uniform priors on the param-
eters that characterize the broken power-law distribu-
tion of photon counts within the intervals defined below.
The break associated with the brighter end of the SCD,
Sb,1 ∈ [5, 40] photons, reflects a ‘turn-on’ associated with
the source luminosity function, above which sources are
either individually resolved or not inferred to exist. This
turn-on is further enforced by specifying a highest slope
n1 ∈ [10, 20] that is steeply rising with decreasing S. The
middle slope, n2 ∈ [1.1, 1.99], is associated with the phys-
ical luminosity function of the source population, typi-
cally expected to be in this specified range for a Galactic
pulsar population [25].

Emission from a PS population is nearly degenerate
but still statistically distinguishable from that follow-
ing a Poisson distribution when associated with sources
emitting ∼ 0.1–1 counts in expectation [42]; in prac-
tice, however, residual effects of model misspecification
and degeneracies between multiple PS populations can
make characterizing the source-count distribution in this
low-photon regime challenging [33]. The dimmer break,
Sb,2 ∈ [0.1, 4.99] photons, therefore specifies a regime
where we do not attempt to explicitly characterize the
PS population. This is enforced by allowing for a lowest
slope n3 ∈ [−10, 1.99] that is steeply falling with decreas-
ing S, encouraging the SCD to turn off in this regime.
This gives preference to the smooth component in ab-
sorbing flux close to and below the single photon regime,
and our analysis therefore conservatively aims to esti-
mate a lower bound on the contribution of PS emission
to the GCE by primarily considering the relatively bright
regime of the source-count distribution. In order to quan-
tify the effect of the prior in the low-photon regime, we
also explore an alternative specification where the lower
range of the upper break prior is brought down to a single
photon, Sb,1 ∈ [1, 30] photons, giving the PS component
more overlap closer to the degeneracy regime and thus
allowing it to account for more of the dim emission. In
App. A, we show how the prior choices map onto the
source-count distribution for the baseline and alternative
configurations.

The overall abundance of PSs associated with a mod-
eled population is specified as follows. Rather than sam-
pling the expected number of PSs per pixel λ with a
uniform prior, we instead uniformly sample a related
parameter 〈SPS〉 =

∫
dS S λ p(S | θPS), the expected

number of photon counts contributed by the PS popula-
tion per pixel. Similarly, for the Poissonian GCE com-
ponent, the template normalization AGCE is reparame-
terized through a constant multiplicative factor into the
mean per-pixel expected counts 〈SPoiss

GCE 〉. This is done in
order to place the flux distribution of the PS-like com-
ponent 〈S&1 ph〉 on the same ‘footing’ as that associate

Poissonian PS-like (GCE and disk)

Parameter Prior range Parameter Prior range

〈SPoiss
GCE 〉 [0, 2.5] ph 〈SPS〉 [0, 2.5] ph

Abrem/π0 [6, 12] n1 [10, 20]

AICS [1, 6] n2 [1.1, 1.99]

Aiso [0, 1.5] n3 [-10, 1.99]

Abub [0, 1.5] Sb,1 [5, 40] ph

A3FGL [0, 1.5] Sb,2 [0.1, 4.99] ph

TABLE I. Parameter priors used for the components of the
forward model described in Sec. II A. All priors are uni-
form within the ranges specified. Priors on the Poisso-
nian components, corresponding to overall normalization, are
shown in the left table column, while those of the GCE- and
disk-correlated PS components, parameterized according to
Eq. (2), are shown in the right table column. The overall nor-
malizations of the Poissonian GCE and PS-like components
are parameterized through the mean number of photon counts
contributed by the respective components in the ROI.

with smooth emission 〈S.1 ph〉. Since a uniform prior
on λ would not correspond to a uniform prior on 〈SPS〉,
these reparameterizations a-priori distribute photons ap-
proximately uniformly among the regimes 〈S.1 ph〉 and

〈S&1 ph〉. We note here the possibility of using other prior
prescription proposed in the literature, e.g. in Ref. [62]
where, in addition to enforcing an equivalence between
dim PSs and smooth emission (rather than enforcing
a distinction between relatively-bright PSs and smooth
emission as done here), the SCD slopes are specified in
terms of the angles between adjacent parts of the bro-
ken power law and the break positions are specified as a
fraction relative to the brightest break.

The forward model is thus specified by a total of 18
parameters—6 for the overall normalizations of the Pois-
sonian templates {〈SPoiss

GCE 〉, Abrem/π0 , AICS, Aiso, Abub,
A3FGL}, and 6×2 parameters modeling the source-count
distributions associated with GCE-correlated and disk-
correlated PS populations {〈SPS〉, n1, n2, n3, Sb,1, Sb,2}.
The priors used in the forward model are summarized in
Tab. I. In order to improve sample efficiency, the priors
are motivated by posteriors obtained from a Poissonian
template fit to the real Fermi data.

B. Inference with likelihoods based on simplified
data representations

Before discussing the methodology used in this pa-
per in detail, we will provide a brief overview of an es-
tablished class of techniques—Non-Poissonian template
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fitting—that have been successfully deployed in order to
characterize the contribution of PSs to the GCE. We will
focus on a schematic description of the method with-
out delving into details of the implementation, aiming
to highlight the elements that introduce approximations
and where our ML-based approach differs.

A central object in statistical inference is the likeli-
hood p(x | θ), which quantifies the probability of an ob-
servation x given parameters of interest θ. In the sim-
plest incarnation of astrophysical template-fitting meth-
ods dealing with counts data, the likelihood of the map
x in the region of interest is computed as a pixel-wise
product of Poisson likelihoods with mean given by a
linear combination of spatial templates T pi , p(x | θ) =∏
p Pois (xp |∑iAiT

p
i ), where normalizations Ai of the

respective spatial templates are the parameters of inter-
est. This captures the diffuse part of the forward model
described in Sec. II A, and inference here can easily be
performed within a frequentist or Bayesian framework.

In practice, unobserved latent variables z are often in-
volved in the data-generation process, and computing the
likelihood involves marginalizing over the latent space,
p(x | θ) =

∫
dz p(x | θ, z). In typical problems of in-

terest, the high dimensionality of the latent space often
means that this integral is intractable, necessitating sim-
plifications in statistical treatment as well as theoreti-
cal modeling. For the forward model in Sec. II A, the
presence of PS populations introduces a large number of
latent variables, specifically the position of and counts
emitted by each PS. Ignoring the contribution from dif-
fuse components for the moment and considering only a
single isotropically-distributed PS population, the like-
lihood for the map x in the region of interest is given
by

p(x | λ, θPS) =

∞∑

n=0

∫
dnz p (n | λ) p(z | θPS) p(x|z), (5)

where θPS parameterize the distribution of photon counts
from individual PSs. n is the total number of PSs in the
ROI, with the sum running over all possible number of
PSs. This high-dimensional integral is, for all practical
purposes, computationally intractable. The presence of a
finite instrumental PSF introduces additional latent pro-
cesses, decoupling the positions of the photons and PSs.
Given these difficulties, a simplification of the problem
setting is typically required to make further progress.

The 1-point PDF (probability distribution function)
framework, first introduced in the context of γ-ray anal-
yses in Ref. [35] and extended to allow for non-trivial
spatial PS distributions in Refs. [30, 36] under the name
of non-Poissonian template fitting (NPTF), considers a
simplification of the problem by computing the pixel-wise
likelihood assuming each pixel to be statistically inde-
pendent (1-point then referring to values over individual,
independent spatial positions in the sky). This signifi-
cantly reduces the latent space dimensionality by elimi-
nating the positions of individual PSs as latent variables.

Since non-Poissonian template fitting has been widely
used in analyses of the GCE, we briefly outline the basic
philosophy behind this method, pointing the interested
reader to a more detailed discussion as well as numerical
implementations in Refs. [30, 49].

Since emission from each PS can be regarded as inde-
pendent conditioned on θPS, the probability of a given
PS, indexed i, emitting xpi photons in a pixel p is given
by

p(xpi | θPS) =

∫
dSi p(Si | θPS) p(xpi |Si), (6)

where Si are the expected photon counts from the PS
following some probability distribution parameterized
by θPS, in this case following a doubly-broken power
law with parameters θPS = {n1, n2, n3, Sb,1, Sb,2}, and
p(xpi |Si) is the distribution of actual counts given latent
Si, assumed to follow a Poisson distribution on Si. The
probability of having a total of xp counts in a pixel from
multiple PSs is then described by a multinomial distri-
bution, subject to the constraint that the total number
of counts be equal to the observed counts:

p(xp |λ, θPS) =

∞∑
n=0

p (n | λ)
∑
nj

δ

(∑
j

njj − xp
)

× δ

(∑
j

nj − n

)
n!∏
j nj

n∏
j=1

p(xpi = j | θPS)nj ,

(7)

where nj is the number of PSs contributing j counts. The
distribution of the number of PSs in a pixel is usually
assumed to follow a Poisson distribution on the mean
expected number of PSs λ i.e., p(n | λ) = Pois(n | λ).
In this case, the sum over n can be eliminated and the
distribution of observed counts is given by

p(xp |λ, θPS) =

∞∑

nj=0

δ


∑

j

njj − xp



×
∏

j

Pois (nj | λ p(xpi = j | θPS)) .

(8)

where p(xpi = j | θPS) is given by Eq. (6). While not im-
mediately obvious from this expression, eliminating the
positions of individual PSs as latent parameters as well as
the sum over the possible number of PSs n renders the
per-pixel likelihood tractable, and the total data likeli-
hood can then be computed as a product over pixels,
p(x | λ, θPS) =

∏
p p(x

p | λ, θPS).
We emphasize that we have only provided a brief

overview of the NPTF method here, with further ana-
lytic simplifications, extensions to approximately incor-
porate the effect of non-trivial instrumental point-spread
function and exposure, as well as a numerical recipe for
evaluating the likelihood described in detail in Ref. [49].
We note that including the effect of a finite point-spread
function in the NPTF framework renders the per-pixel
likelihood only approximately correct, since this intro-
duces correlations across pixels over the scale of the PSF
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size. Previous studies have shown this approximation to
be accurate enough for the present problem when using
a pixel size of the order of the PSF size itself [33]. Fur-
ther generalizations of the method that can account for
more extreme variations in the instrumental point-spread
function and exposure without resorting to an approxi-
mate treatment—necessary for application to e.g. X-ray
data—were introduced and studied in Ref. [62].

Probabilistic cataloging [63, 64] is another method that
has been proposed for characterizing the sub-threshold
contribution of PS populations in counts data and found
application in γ-ray analyses [65]. This technique keeps
the latent variables in Eq. (5) i.e., the positions and ex-
pected fluxes of individual PSs, as parameters of interest,
and uses trans-dimensional sampling techniques to ob-
tain the distribution over possible catalogs of unresolved
PS populations. For computational reasons, probabilistic
cataloging techniques generally require a strong assump-
tion on the nature of the putative PS population and can
thus produce highly prior-dependent results.

In this paper, we show results on Fermi data using
the NPTF algorithm in order to establish a comparison
point to previous GCE studies employing the method.
We perform these analyses within a Bayesian framework,
obtaining an approximation to the posterior distribution
p(θ | x) = p(θ) p(x | θ)/Z, where Z ≡ p(x) the Bayesian
evidence. We use the NPTF likelihood implemented in
NPTFit [49] and obtain representative posterior samples
over the parameters of interest described in Sec. II A us-
ing nested sampling [66, 67] implemented in dynesty [68].
The static variant of the nested sampling algorithm is run
in its default configuration with 1000 live points, stopping
when the estimated contribution of the remaining poste-
rior volume to the log-evidence falls below ∆ logZ < 0.1.
Although it’s possible to correct for non-uniform expo-
sure within the NPTF framework by considering inde-
pendent sub-regions with different exposure values, given
the fairly uniform Fermi exposure in the Galactic Center
region we use the mean exposure in our NPTF bench-
marks for simplicity.

1-point PDF-based techniques, and in particular
NPTF, have been widely applied for characterizing γ-
ray PS populations below the Fermi detection threshold,
both in relation to the GCE [30, 32, 69–71] and more
generally e.g., for characterizing the contribution of ex-
tragalactic PSs at high latitudes [72–74] and for searching
for a DM annihilation signal from Galactic subhalos [75].
It has recently been pointed out, however, that signal and
foreground mismodeling associated in particular with the
emission in the Galactic Center region can hamper the
ability to accurately characterize the contribution of PSs
to the GCE [34, 69]. In particular, Refs. [30, 33, 34]
pointed out that spurious residuals associated with fore-
ground mismodeling can lead to the mischaracterization
of a purely DM signal as a population of PSs. Ref. [32]
recently showed that many of the issues associated with
the expression of such effects in Fermi data could be
mitigated through the use of better Galactic foreground

models along with affording them more degrees of free-
dom on large angular scales. Refs. [69, 70] further showed
and described analytically how mismodeling, in particu-
lar an unmodeled asymmetry in a DM signal, could lead
to the spurious inference of PSs in NPTF analyses of the
GCE.

The fact that NPTF analyses rely on a simplified per-
pixel likelihood can make them especially susceptible to
the effects of model misspecification (alternatively re-
ferred to as mismodeling)—systematic departures of the
forward model from the true data-generating process.
This can be intuited from the fact that, assuming a corre-
sponding permutation of template pixel labels, the NPTF
likelihood is invariant to a permutation of pixels within
the analysis ROI. This means that residuals associated
with a misspecified background model can mimic the
effect of PSs through the distribution of their photon
counts, disregarding the specific spatial structure associ-
ated with a PS population. The full likelihood sketched
out in Eq. (5) and implicitly defined by the forward model
described in Sec. II A contains significantly more spatial
structure than is encoded in the distribution of photon
counts, and in particular accounts for the distribution
of pixel-to-pixel correlations in the γ-ray map; see also
Ref. [42] for an extended discussion on this point. In the
rest of this section, we will describe the building blocks
of our machine learning-based method that, in contrast
to NPTF, aims to estimate the likelihood implicitly as-
sociated with the γ-ray forward model, leveraging pixel-
to-pixel spatial correlations with the overall aim of more
robustly characterizing the PS contribution to the GCE.

C. Simulation-based inference

Simulation-based inference (SBI) refers to a class
of methods for performing inference when the data-
generating process does not have a tractable likelihood.
This is the case for the model described in Sec. II A,
where the likelihood in Eq. (5) cannot be used explic-
itly for practical purposes without further simplifications.
The model is then defined through a simulator as a prob-
abilistic program, often knows as a forward model. Sam-
ples x from the simulator then implicitly define a like-
lihood, {x} ∼ p(x | θ). In the simplest existing re-
alizations of SBI, simulated samples {x} can be com-
pared to a given dataset of interest x′, with the approxi-
mate posterior defined by parameter values whose corre-
sponding samples most closely resemble x′ according to
some distance metric. Such methods—usually grouped
under the umbrella of Approximate Bayesian Compu-
tation (ABC) [76]—are not uncommon in astrophysics
and cosmology. Nevertheless, they suffer from several
downsides. The curse of dimensionality usually necessi-
tates reduction of data to representative, hand-crafted,
lower-dimensional summary statistics s(x), resulting in
loss of information. A notion of distance in the lower-
dimensional summaries domain as well as a tolerance
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threshold, ||s(x) − s(x′)|| < ε, is necessary to trade off
between precision and sample efficiency, leading to inex-
act inference. Additionally, the ABC analysis must be
performed anew for each new target dataset.

Recent advances in machine learning, particularly the
proliferation of neural network architectures suited to a
variety of data structures and the development of algo-
rithms that can efficiently approximate functions and dis-
tributions in high dimensions, have galvanized the field
of simulation-based inference, substantially increasing its
domain of applicability; see Ref. [45] for a review of re-
cent developments. In the following subsections, we will
describe the specific SBI methods employed in this work
for parameter estimation on the forward model described
in Sec. II A.

D. Conditional density estimation with
normalizing flows

We approximate the joint posterior p(θ | x) over the
parameters of interest θ through a distribution p̂φ(θ | s)
conditioned on summaries s = s(x) from simulated sam-
ples {x}, parameterized by φ and modeled by a neural
network. This class of simulation-based inference tech-
niques, known as conditional density estimation [77, 78],
directly models the posterior distribution given a set
of samples {x} ∼ p(x | θ) produced from the forward
model, where parameters θ are sampled according to
some prior proposal distribution {θ} ∼ p(θ). We note
that, given the absence of explicit labels associated
with the sampled parameters of interest, estimating the
probability density is an example of an unsupervised
learning problem.

Normalizing flows: In this paper we employ normal-
izing flows [46, 47], a class of models that provide an
efficient way of constructing flexible and expressive high-
dimensional probability distributions. Normalizing flows
model the (conditional) distribution over the parameters
of interest p̂φ(θ | s) as a series of transformations, de-
noted by f such that θ = f(u), from a simple base distri-
bution π(u) to the target distribution. Suppressing the
conditional dependence on s for the moment for simplic-
ity, we have

p̂(θ) = π(u)

∣∣∣∣det

(
∂u

∂θ

)∣∣∣∣ = π(f−1(θ))
∣∣det Jf−1(θ)

∣∣ (9)

where det Jf−1 is the Jacobian of the inverse transforma-
tion f−1.

The defining characteristic of transformations in flow-
based models is that they be diffeomorphic i.e., f be
differentiable and invertible with a differentiable inverse.
This renders the Jacobian and inverse in Eq. (9) com-
putable, allowing for the evaluation of the probability
density of the target distribution p̂(θ) at a given param-
eter point θ once the transformation is defined. In prac-
tice, the transformation f (or f−1) is chosen such that

det J can be efficiently computed and is usually defined
by a neural network, and the base distribution π(u) is
chosen to be a standard Gaussian u ∼ N (u; 0,1), which
we follow here.

A crucial property of diffeomorphic transformation
such as those that define normalizing flows is that mul-
tiple transformations can be chained together through
composition. Given two transformations f1 and f2, their
composition will also be differentiable and invertible:
det Jf1◦f2(θ) = det Jf2 (f1(θ)) det Jf1(θ) and (f2◦f1)−1 =

f−11 ◦ f−12 . This can be used to define more expres-
sive probability distributions by chaining together several
flow transformation. ‘Flow’ thus refers to the trajectory
through which parameters in the simple base distribu-
tion are transformed into the target parameter space,
and ‘normalizing’ refers to the inverse transformation
into the base distribution. Flow-based models are gener-
ative—given a new dataset x′, it is easy to sample from
the base distribution and then run the forward trans-
formation conditioned on x′, obtaining a set of parame-
ter samples representative of the posterior distribution,
{θ} ∼ p̂(θ|x′).

A number of methods have been proposed for defining
the flow transformation e.g., based on affine transfor-
mations [79–82], spline-based transformations [83, 84],
and continuous-time transformations [85]. We refer
to Ref. [46] for a recent review of normalizing flows,
including details of practical implementations as well as
an overview of proposed methods.

Masked autoregressive flows for (conditional)
density estimation: In this paper we use Masked Au-
toregressive Flows (MAFs) [79] to define the flow trans-
formation. Autoregressive models can be used to learn
a complex joint probability density p(θ) as a product of
one-dimensional conditional densities where each θi de-
pends only on the previous θ1:i−1 in the parameter se-
quence: p(θ) =

∏
i p(θi | θ1:i−1). The MAF is built using

blocks of affine transformations subject to the autore-
gressive constraint; for a single block, the affine transfor-
mation from u to θ is expressed as

θi = ui · expαi + µi (10)

where µi = gµi (θ1:i−1; s) and αi = gαi (θ1:i−1; s) are scal-
ing and shift factors modeled by neural networks and
additionally parameterized by summaries s from the for-
ward model. The autoregressive property is enforced by
masking out connections between network layers using
the recipe introduced in Ref. [86]. The inverse transfor-
mation is easily identified from Eq. (10). This allows for
an analytically tractable Jacobian determinant, for an
N -dimensional distribution given by

∣∣det Jf−1(θ)
∣∣ = exp

(
−

N∑

i=1

αi

)
(11)

and a forward pass through the flow according to
Eq. (10). Multiple transformations fj can be composed
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together in order to model more expressive posteriors,

p̂(θ | s) = π
(
f−1(θ)

) K∏

j=1

∣∣∣det Jf−1
j

(uj−1)
∣∣∣ (12)

where we have reinstated the conditional dependence on
data summaries s, keeping it implicit in the transforma-
tions on the right hand side. The log-probability of the
posterior can then be computed using Eq. (11):

log p̂(θ | s) = log
[
π
(
f−1(θ)

)]
−

K∑

j=1

N∑

i=1

αji , (13)

which acts as the optimization objective during training.
Here, we use 8 MAF transformations, each made up of
a 2-layer masked neural network with 128 hidden units
and tanh activations. The ordering of parameters in the
autoregressive sequence is randomly permuted between
successive transformations in order to reduce dependence
on the specific ordering of input variables. Each trans-
formation is conditioned on summaries s(x) extracted
from the γ-ray maps x (described in the next section
below) by including these as additional inputs into the
transformation block i.e., the scaling and shift factors in
Eq. (10) can be expressed as µi = gµi

(θ1:i−1; s(x)) and
αi = gαi

(θ1:i−1; s(x)).

E. Learning summary statistics with neural
networks

The curse of dimensionality makes it computationally
inefficient to condition the density estimation task on
the raw dataset x i.e., the γ-ray pixel counts map in
the region of interest (ROI). Representative summaries
s = sϕ(x) of the data can therefore be used in order
to enable a tractable analysis, where ϕ parameterizes
the data-to-summary transformation. Although many
choices for data summaries are possible—e.g., a Prin-
cipal Component Analysis (PCA) or angular power
spectrum decomposition of the photon counts map,
or simply a histogram of the photon counts—in this
paper, we use a neural network to automatically learn
low-dimensional summaries that are optimized for the
specific downstream task at hand of estimating the
posterior distributions of the parameters associated with
the forward model.

Graph construction and network architecture:
The DeepSphere architecture [87–89], with a configura-
tion similar to and inspired by that employed in Ref. [41],
is used to extract representative summaries from γ-ray
maps and is briefly outlined here. DeepSphere is a graph-
based spherical convolutional neural network (CNN) ar-
chitecture tailored to data sampled on a sphere, and in
particular is able to leverage the hierarchical structure
of data in the HEALPix representation. This makes it
well-suited for our purposes.

The HEALPix sphere can be represented in terms of
a weighted undirected graph G = (V, E , A) where V is
the set of Npix = |V| vertices, E is the set of edges con-
necting pixels, and A is the weighted adjacency matrix.
Each pixel i is represented by a vertex vi ∈ V and is
connected to the 8 (or 7, depending on the pixel) ver-
tices vj which represent the neighboring pixels j of pixel
i, forming edges (vi, vj) ∈ E . The weights of the ad-
jacency matrix over neighboring pixels (i, j) are given

by Aij = exp
(
−‖ri − rj‖22/ρ2

)
where ri specifies the 3-

dimensional coordinates of pixel i. The kernel widths ρ
at a given HEALPix resolution are obtained from Ref. [87],
which used empirical measures of rotational equivariance
in order to optimize for this hyperparameter.

We use the combinatorial graph Laplacian, defined as
L = D − A, where D is the diagonal degree matrix,
and which can be used to define a Fourier basis on a
graph. By construction being symmetric and positive
semi-definite, the graph Laplacian can be decomposed
as [90] L = UΛUT , where U is an orthonormal eigenvec-
tor matrix and Λ is a diagonal eigenvalue matrix. The
Laplacian eigenvectors then define the graph Fourier ba-
sis, with the Fourier transform x̃ of a signal x on a graph
being its projection x̃ = UTx. Given a convolutional ker-
nel h, graph convolutions can be efficiently performed in
the Fourier basis as h(L)x = Uh(Λ)UTx [90].

The isotropic DeepSphere convolutional kernel h is de-
fined as a linear combination of Chebychev polynomials,

h(L) =
∑K
k=0 ckTk(L) where Tk are the order-k Cheby-

shev polynomials and ck are the K + 1 filter coefficients
which are the trainable parameters to be learned during
model optimization. The graph filtering operation can
then be expressed as

h(L)x = U

(
K∑

k=0

ckTk(Λ)

)
UTx =

K∑

k=0

ckTk(L)x. (14)

We set K = 5, having checked that larger values
do not quantitatively affect the results of the analysis.
Tk(Λ) acts on the diagonal eigenvalue matrix, Tk(Λii) =
Tk(Λ)ii.

Following Refs. [41, 88], the feature extraction archi-
tecture is built out of graph convolutional layers which
involve progressively coarsening the pixel representation
of the γ-ray maps while increasing the number of filter
channels at each step. The input map corresponds to the
16,384 pixels at HEALPix resolution nside=128 in the
nested pixel ordering within the single pixel correspond-
ing to nside=1 covering the Galactic Center region, with
the masked pixels set to zero. Each graph convolution
operation is followed by a batch normalization, a ReLU
nonlinearity, and a max pooling operation which down-
samples the representation by a factor of 4 into the next
coarser HEALPix resolution, starting with input maps at
nside=128 until a single pixel channel at nside=1 re-
mains after the final convolutional layer. All together, 7
layers of this kind are employed. The number of filter
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channels is doubled at each convolutional layer until a
maximum of 256.

The output of the final convolutional layer is aug-
mented with 2 additional auxiliary variables—the log-
mean and log-standard deviation of the γ-ray map within
the region of interest—and passed, via a ReLU nonlin-
earity, through a fully-connected layer with 1024 hidden
units outputting a desired number of summary features,
which we take as 128 in our baseline configuration. Pixels
outside of the ROI as well as masked PSs are set to zero
in the input maps. All input maps are standardized to
zero mean and unit variance across the training sample.

Using a convolutional neural network-based feature
extractor, we implicitly use an approximation to the full
data likelihood in Eq. (5) associated with our forward
model of emission in the Galactic Center region. The
method is thus able to capture pixel-to-pixel correlations
in the γ-ray map, mitigating some of the limitations
of approximate likelihood-based methods described in
Sec. II B.

Optimization, training, and evaluation: The opti-
mization objective in Eq. (13), log p̂φ(θ | sϕ(x)), is used
to train the graph convolutional and normalizing flow
neural networks simultaneously, optimizing their respec-
tive parameters {ϕ, φ}. 106 samples are generated us-
ing the prior proposal distribution of parameters given
in Tab. I, and models are optimized with batch size 256
using the AdamW [91, 92] optimizer with initial learning
rate 10−3 and weight decay 10−5, using cosine anneal-
ing to decay the learning rate across epochs. Training
proceeds for up to 30 epochs with early stopping if the
validation loss, evaluated on 15% of samples held out,
has not improved after 8 epochs.

After training, given a new dataset of either real or sim-
ulated Fermi data in our ROI, the posterior is obtained
by drawing samples from the flow within the prior distri-
bution using rejection sampling, conditioning each flow
transformation on summaries extracted by the convolu-
tional neural network with the new dataset as input. The
model is amortized, which means that after the upfront
cost of training the neural network, the required number
of posterior samples corresponding to a new dataset can
be obtained on a few-second timescale. This makes it
efficient to validate the performance of a trained model
using mock data, which we do in the following section
before applying the method to Fermi data.

III. TESTS ON SIMULATED DATA

We begin by validating our pipeline on simulated Fermi
data. We create simulated datasets with the parameters
of interest in the forward model fixed to posterior medi-
ans obtained in a fit of the baseline model to real Fermi
data, and test the ability of our model to infer the pres-
ence of either DM-like or PS-like signals on top of the
modeled astrophysical background.

Figure 2 shows results of the analysis conditioning the
trained baseline model on five simulated maps where the
GCE consists of purely DM-like emission, drawing 20,000
representative samples in each case. The left column
shows the median (solid lines) as well as middle-68/95%
containment (dark/light shaded regions) of the posteri-
ors on the source-count distributions F 2dN/dF of GCE-
correlated (red) and disk-correlated (blue) PS emission,
evaluated point-wise in flux F . The dashed grey vertical
lines correspond to the flux associated with a single ex-
pected photon count per source (below which Poissonian
and PS-like emission is expected to be nearly degenerate)
and the approximate 1-σ threshold for detecting individ-
ual sources (below which the degeneracy is often observed
in practice [32, 33]). The middle column shows the poste-
riors on various modeled emission components, excluding
emission from resolved 3FGL PSs as the posterior in that
case is largely unconstrained owing to the fact that re-
solved PSs are masked out in the analysis. The right
column shows the joint posterior on the fraction of DM-
and PS-like emission in proportion to the total inferred
flux in the ROI. The true underlying parameter values
from which the data was generated are represented by
dotted lines in the left and middle columns, and by star
markers in the right column. We see that, in all cases
shown, the pipeline successfully recovers the presence of
DM-like emission, with little flux—. 10% of the total
inferred GCE emission in all cases—attributed to PSs.

Figure 3 shows the corresponding results for simu-
lated data containing PS-like emission correlated with
the GCE. We see that PS-like emission is successfully in-
ferred in each case, while at the same time exemplifying
some degeneracy with the Poissonian component. Fur-
thermore, as seen in the left column, the method is able
to characterize the contribution of the two modeled PS
components through the inferred source-count distribu-
tion. The inferred posteriors for the contribution of the
DM-like component are seen to be compatible with zero.
The overall flux of all modeled components, both PS and
diffuse, is seen to be consistent with the true values used
for the simulations in both sets of tests.

IV. RESULTS ON FERMI DATA

We finally apply our neural simulation-based infer-
ence pipeline to the real Fermi dataset. As a point of
comparison, we also run the NPTF method described
in Sec. II B on the data using the same spatial tem-
plates and prior assumptions as those used in the cor-
responding SBI analyses. A summary of the results for
different analysis configurations, obtained by re-training
the model using different assumptions about spatial tem-
plates or parameter priors, is shown in Table II, including
the fraction of overall emission attributed to the GCE,
fraction of the GCE attributed to PS-like emission, flux
corresponding to the highest break in the GCE broken
power-law source count, fraction of the overall emission
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FIG. 2. Results of the analysis on simulated Fermi data where the GCE consists of purely DM-like emission, with different rows
corresponding to five different simulated realizations. The left column shows the inferred source-count distribution posteriors
for GCE-correlated (red) and disk-correlated (blue) PSs. Dashed vertical lines corresponding to the flux associated with 1
expected photon per source and the approximate 1-σ threshold for detecting individual sources are shown for reference. Solid
lines correspond to the inferred posterior median, and the lighter and darker bands represent the middle-68% and 95% posterior
containments respectively, evaluated point-wise in flux F . The middle column shows the posteriors for the Poissonian templates.
The right column shows the joins posterior on the flux fractions of DM-like and PS-like emission. The dotted lines (in the left
two columns) and the stars (in the right column) correspond to the true simulated quantities. DM-like emission is successfully
inferred in each case, with the other parameter posteriors corresponding faithfully to the true simulated values.

attributed to disk-correlated PSs, and flux corresponding
to the highest break in the disk-correlated broken power-
law source count. Medians as well as middle-68% ranges
on the respective posteriors are presented. In these anal-
yses, we draw a larger number 50,000 of samples from
the trained flow in order to reduce sample variance when
quoting summary quantities of the inferred posteriors.

A. Baseline analysis on Fermi data

Figure 4 shows posterior distributions for the base-
line analysis on Fermi data, with the top panel show-
ing results for the SBI analysis and bottom panel cor-
responding to the NPTF analysis. Consistent with pre-
vious studies using a similar configuration, a significant
fraction of the GCE—55.0+8.8

−22.9%—is attributed to PS-
like emission within the NPTF framework. For the SBI
analysis, although posteriors for the astrophysical back-
ground templates are seen to be broadly consistent with
those inferred in the NPTF analysis, the preference for
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FIG. 3. Same as Fig. 2, but for five simulated realization of Fermi data where the GCE consists of predominantly PS-like
emission. PS-like emission is inferred in each case, with the other posteriors corresponding faithfully to their true simulated
quantities. The GCE-correlated source-count distribution is also seen to be successfully recovered in the left panel. We note
that, as detailed towards the end of Sec. II A, PS flux below ∼ 5 photons is partially accounted for by the smooth DM-like
component, which is responsible for the sharp turn-off in the modeled as well as inferred GCE-correlated SCD with decreasing
flux.

PSs is reduced, with 37.9+8.9
−19.2% of the GCE emission

being PS-like. We also note that, in both cases, the in-
ferred GCE-correlated source-count distribution sits at
lower values than those inferred in previous NPTF anal-
yses, which have generally found the bulk of PSs to lie
just below the 3FGL PS detection threshold at ∼ 2–
3 × 10−10 ph cm−2 s−1 [30]. Given our doubly-broken
power-law parameterization, the actual peak of the SCD
is not physically meaningful—it can be driven simply
by the position of the lowest break which marks a soft
boundary between PS-like and smooth (but still possibly
PS-driven) emission for accounting purposes. Instead, we
use the upper break as a proxy for where the brightest
unresolved sources are inferred to lie. In this baseline
configuration, the SCD upper break is constrained to be

1.3+0.3
−0.4 × 10−10 ph cm−2 s−1, corresponding to ∼ 8—10

photons. This ‘dimming’ of the inferred SCD compared
to previous NPTF analyses was also observes in Ref. [42],
where it was found to be largely driven by the use of more
up-to-date diffuse models. We note that even though
the SBI analysis prefers a smaller GCE fraction in point
sources, there is significant posterior overlap in the in-
ferred joint PS and DM flux fraction posteriors between
the SBI and NPTF analyses.

Besides the modeled GCE-correlated components, the
fluxes associated with the other Poissonian astrophysi-
cal templates in our analysis are broadly consistent with
previous studies of the Galactic Center. We note, in par-
ticular, that the relatively high ICS emission inferred in
our analysis is consistent with previous studies of the
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Galactic Center region where this component was floated
separately [11, 13, 42, 93].

B. Signal injection test on Fermi data

A crucial test of self-consistency is the ability of the
method to recover an artificial signal injected onto the
real γ-ray data. As shown in Ref. [34], initial applications
of the NPTF to the GCE would generally fail this clo-
sure test, with implications for characterizing the nature
of PSs in the Galactic Center explored in Refs. [32, 33]. In
particular, it was shown that this test can help diagnose
underlying issues associated with mismodeling of the dif-
fuse foreground emission, which have the potential to bias
the characterization of PS populations. Recent NPTF
analyses using improved descriptions of foreground mod-
eling [32] show consistent behavior under thist closure
test. We perform a version of this test within our frame-
work, testing the ability of our method to recover differ-
ent mock signals injected onto the real Fermi data.

Figure 5 shows the results of this test, with
the different rows corresponding to different signal
configurations—purely DM, bright PSs, medium-bright
PSs, and dim PSs. Bright, medium-bright, and dim
PS configurations are taken have a maximum PS flux
(given by the highest break in Eq. (2)) at 20, 10, and
5 photon counts respectively, with other parameters set
to median values inferred on real Fermi data, except the
lower break, which was set to 2 photon counts. The left-
most columns show the baseline analysis on Fermi data,
with subsequent columns showing signals of progressively
larger sizes injected onto the data, up to approximately
the size of the original GCE signal. The dotted horizontal
and vertical lines show the total emissions including the
injected signal and the median fluxes for the PS and DM
components of the GCE inferred without any additional
injected signal, respectively.

The additional injected signal is seen to be recon-
structed correctly within the inferred 95% confidence in-
terval in all four cases. For the DM signal (top row), the
brighter inferred DM signals tend to be slightly overesti-
mated. The injected PS signals (rows 2–4) are correctly
reconstructed in all cases, with the dimmer PS signals
showing a more prominent flat direction with Poissonian
emission, as expected.

C. Systematic variations on the analysis

We test the robustness of our results by exploring
several systematic variations on the baseline analysis,
using alternative descriptions for the diffuse foreground
emission template, the spatial distribution of disk-
correlated sources, and prior configuration. Here, the
neural network is re-trained on a new set of simulations
obtained using the alternative forward model before
applying it to Fermi data. Results of these analysis

variations are summarized in Tab. II.

Variation on the diffuse foreground model: In ad-
dition to diffuse Model O considered in the baseline anal-
ysis, we consider the alternative Models A and F from
Ref. [11] to model the diffuse foreground emission, again
including separate templates for gas-correlated emission
and inverse Compton scattering. While shown to be a
worse fit to the present dataset [32], these models have
been previously used in the GCE literature [32, 69, 70]
and provide a useful comparison point.

Results for these variations are shown in Figs. 6
and 7, respectively. In each case, results using the SBI
pipeline are shown in the top row, with corresponding
results using the NPTF pipeline in the bottom row.
A somewhat larger fraction of the GCE, 57.3+9.9

−25.6, is
attributed to PSs when using diffuse Model A (Fig. 6)
compared to the baseline analysis using Model O. The
corresponding NPTF analysis finds a still larger fraction
of 74.9+6.6

−22.5%. Using Model F, a similar 59.4+10.4
−26.3 of

the GCE is attributed to PSs, with qualitatively similar
results found by the NPTF analysis. The total emission
absorbed by the GCE in this case is about ∼ 60% of
that found in the baseline scenario. This is consistent
with the results of Ref. [32], which found that the total
GCE flux could vary by up to a factor of ∼ 2 between
analyses using different diffuse models.

Variation on the disk template: The baseline sce-
nario considered a disk-correlated PS population with a
spatial distribution given by Eq. (4), setting the scale
height scale height zs = 0.3 kpc corresponding to the
‘thin-disk’ scenario. Given uncertainties in the spatial
distribution of the point source population (in particular,
that of millisecond pulsars) associated with the Galactic
disk, a ‘thick-disk’ spatial distribution has been employed
in the literature as an alternative model [30, 32, 34],
where the scale height is typically set to zs = 1 kpc.

Results using a thick-disk template for the disk-
correlated PS population are shown in Fig. 8. For
the SBI analysis, a slightly larger fraction 42.2+9.6

−21.0 of
the GCE flux is attributed to a PS population in this
case compared to the baseline scenario. Once again,
the NPTF analysis estimates a higher relative fraction
75.0+7.1

−22.6% of the GCE in point sources. The emission
attributed to disk-correlated PSs is reduced in this case
compared to the baseline scenario, possibly indicating
a redistribution of PS-like emission between the GCE-
and disk-correlated components.

Alternative prior specification: In the baseline anal-
ysis, we have chosen to enforce a soft distinction between
relatively-bright PSs emitting & 5 photons in expecta-
tion, and a combination of dimmer PSs and smooth emis-
sion following Poisson statistics taken together. This is
done by placing a prior on the source-count slope below
this chosen counts threshold that encourages a steeply-
falling distribution with decreasing PS flux, allowing for
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Configuration Method
GCE

Total

GCE PS

GCE
FGCE
b,1

Disk PS

Total
FDisk
b,1 Posteriors

- - [%] [%]
[10−10 ph cm−2 s−1]

[%]
[10−10 ph cm−2 s−1]

-

Baseline
SBI 7.8+0.2

−0.6 37.9+8.9
−19.2 1.3+0.3

−0.4 5.0+0.5
−1.1 2.2+0.2

−0.5
Figure 4

NPTF 7.7+0.2
−0.6 55.0+8.8

−22.9 1.1+0.1
−0.2 5.4+0.5

−1.1 2.0+0.2
−0.5

Dif. Model A
SBI 6.4+0.2

−0.6 57.3+9.9
−25.6 1.2+0.2

−0.3 4.9+0.6
−1.3 2.3+0.2

−0.5
Figure 6

NPTF 6.7+0.2
−0.6 74.9+6.6

−22.5 1.1+0.1
−0.2 5.1+0.5

−1.3 2.2+0.2
−0.5

Dif. Model F
SBI 5.0+0.2

−0.6 59.4+10.4
−26.3 1.4+0.3

−0.4 4.5+0.5
−1.1 3.3+0.3

−0.8
Figure 7

NPTF 5.2+0.2
−0.5 67.5+8.6

−26.7 1.1+0.2
−0.3 6.4+0.5

−1.1 2.0+0.2
−0.4

Thick disk
SBI 7.9+0.2

−0.6 42.2+9.6
−21.0 1.6+0.4

−0.6 3.5+0.6
−1.3 2.7+0.4

−0.8
Figure 8

NPTF 8.2+0.3
−0.7 75.0+7.1

−22.6 1.1+0.1
−0.2 2.3+0.7

−1.1 3.1+0.6
−1.2

Alt. priors
SBI 7.7+0.2

−0.6 54.2+11.9
−27.4 0.9+0.2

−0.4 5.9+0.5
−1.1 2.4+0.2

−0.4
Figure 12

NPTF 7.9+0.2
−0.6 77.7+6.5

−21.4 0.9+0.1
−0.3 5.9+0.5

−1.1 2.3+0.2
−0.4

TABLE II. Inferred values for the inferred GCE flux as a fraction of the total flux, the GCE PS-like flux as a fraction of the
total GCE flux, the position of the upper source count flux break Fb,1 for the GCE and disk PS components, and the disk
flux as a fraction of the total flux. For the baseline configuration as well as the various systematic variations explored, the
median along with the 16th and 84th posterior percentile values are shown for the simulation-based inference (SBI) and NPTF
analyses.
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FIG. 4. Results of the baseline analysis on real Fermi data. (Top row) Analysis using neural simulation-based inference with
normalizing flows, and (bottom row) using the 1-point PDF likelihood implemented in the non-Poissonian template fitting
(NPTF) framework. While moderate preference for a PS-like origin of the GCE is seen in the case of the NPTF analysis
(bottom), the simulation-based inference analysis attributes a smaller fraction of the GCE to PS-like emission (top).

a conservative interpretation of our results as a lower
bound on the amount of PS emission. We also explore
an alternative configuration where the lower break on the
SCD is allowed to go down to a single photon, giving the
PS component more overlap with the dim emission, and
thus accounting for more emission in the PS-like compo-

nent. The results of this analysis on data are summarized
in the last row of Tab. II.

Reassuringly, the total flux attributed to the GCE
is consistent between the alternative and baseline prior
choices. As expected, allowing the lower SCD break to
go down to smaller expected counts increases the frac-



15

Signal injection on Fermi data

0 5 10 15
DM [%]

0

5

10

15
D

M
si

g
n

a
l

P
S

[%
]

Signal injection
DM signal

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

D
im

P
S

si
g
n

a
l

P
S

[%
]

Signal injection
Dim PS signal

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

M
e
d

iu
m

-b
ri

g
h
t

P
S

si
g
n

a
l

P
S

[%
]

Signal injection
Medium-bright PS signal

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

B
ri

g
h
t

P
S

si
g
n

a
l

P
S

[%
]

Signal injection
Bright PS signal

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

0 5 10 15
DM [%]

0

5

10

15

Inject larger signal −→

FIG. 5. Joint posterior for the flux fraction of PS-like and DM-like emission when an artificial DM signal is injected onto the
real Fermi data. The different rows correspond to different signal types, from top to bottom, purely DM, dim PSs (maximum
of 5 expected counts per PS), moderately-bright PSs (maximum of 10 expected counts per PS), and bright PSs (maximum of
20 expected counts per PS). The leftmost panels shows the baseline analysis on Fermi data, with subsequent panels showing
results with progressively larger signals injected onto the data. The dotted lines show the expected total emissions including
the injected signal and the median fluxes. The additional injected DM and PS signals are seen to correctly reconstructed within
the respective posterior bounds in all cases.

tion of the GCE flux attributable to PS-like emission, for
the SBI case increasing the median fraction by ∼ 16%
relative to the baseline case. The NPTF analysis sees a
larger increase in PS flux, with the median increasing by
∼ 23%. The fact that the NPTF analysis is relatively
more sensitive to the details of modeling close to the
single-photon limit is not surprising—since mismodeling
is most likely to affect this dimmer regime in the source-
count distribution, this is also where the two methods can
be expected to diverge more significantly. The position
of the upper flux break, quantifying the inferred fluxes of
the brightest sources in the PS population, is slightly re-
duced to 0.9+0.2

−0.4×10−10 ph cm−2 s−1, corresponding to 5–
7 photons. The posterior distributions for these cases, as
well as the prior distribution on the source-count distri-
bution corresponding to the two prior choices, are shown
in App. A. There, we also check that the inferred emission
below 5 photons is consistently redistributed between the

PS-like and DM-like components when using the two dif-
ferent prior configurations.

V. SUSCEPTIBILITY TO MODEL
MISSPECIFICATION

Given the complex astrophysical environment in the
Galactic Center, a key challenge in γ-ray analyses of the
GCE is that associated with effects of mismodeled sig-
nal and background templates. As explored in detail in
Refs. [30, 32, 33, 69, 70] within the NPTF framework,
mismodeling can hamper the characterization of an In-
ner Galaxy PS population and, if sufficiently severe, can
result in the attribution of mismodeled residuals to a spu-
rious PS population when the underlying emission is ac-
tually smooth in nature.

In this section we assess the susceptibility of our
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FIG. 6. Same as Fig. 4, but with the diffuse foreground emission modeled using the alternative Model A.
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FIG. 7. Same as Fig. 4, but with the diffuse foreground emission modeled using the alternative Model F.

simulation-based inference pipeline to several known
sources of mismodeling. We do so by creating mock data
with a smooth GCE signal and a background model
that was perturbed compared to the model that was
used to train the SBI pipeline, and analyzing it with
our baseline neural network i.e., the one trained on
the forward model described in Sec. II A and used in
the baseline analysis on data in Sec. IV. The ability
of our method to correctly characterize the injected
signal is then indicative of the level of robustness that
can be expected in the real data under corresponding
circumstances. Results for the various tests performed
are shown in Fig. 9, and will be described below. In each
case, we show posteriors obtained by combining 50,000
samples from analyses of 10 different mock datasets
(thinned by a corresponding factor of 10) in order to

characterize the ‘average’ mismodeling associated with
a given configuration. The first row of Fig. 9 shows the
aggregate analysis without mismodeling i.e., conditioned
on mock data created with the same forward model as
that used for training the neural posterior estimator, as
a point of comparison.

Test of diffuse mismodeling using an alternative
diffuse emission template: We create mock data
using diffuse Model A, and analyze it using our baseline
analysis pipeline trained with Model O. The aggregated
results over 10 different maps are shown in the second
row of Fig. 9. We see that even though some of the
other diffuse component posteriors are shifted relative
to their true values, the DM-like emission is faithfully
recovered, and no additional PS-like flux is inferred.
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FIG. 8. Same as Fig. 4, but with the spatial distribution of disk-correlated PSs modeled using a thick-disk template (scale
factor zs = 1 kpc in Eq. (4)) rather than the default thin-disk template (zs = 0.3 kpc).

A data-driven test of large-scale mismodeling: We
construct a data-driven model of foreground mismodeling
on large spatial scales (specifically, well above the scale
of the instrumental PSF) and assess the ability of our
method to recover a smooth DM-like signal in this case.
Following Ref. [94], we perform a Poissonian template
analysis on the Fermi dataset x, modulating the diffuse
model template Tdif , which describes the bremsstrahlung
and neutral pion decay components of diffuse Model O,
by an (exponentiated) Gaussian process (GP) f :

x ∼ Pois


∑

i 6=dif

AiTi + exp (f)AdifTdif


 . (15)

The other Poissonian templates Ti, including a GCE DM
template and the inverse Compton component of the dif-
fuse foreground model, are treated as before using an
overall normalization factor Ai. f ∼ N (m,K) is the GP
component with prior mean m set to zero, and the covari-
ance K described using the Matérn kernel with smooth-
ness parameter ν = 5/2. We refer to Ref. [94] for further
details of the analysis, as well a validation of the GP-
augmented template fitting pipeline on simulated data.

Five random samples from the Gaussian process de-
scribing multiplicative mismodeling relative to the real
Fermi data when using our baseline diffuse Model O are
shown in Fig. 10. The largest mismodeling by magnitude
in this case is inferred to be concentrated in the southern
regions of the baseline ROI. We note that, when analyz-
ing the real Fermi data, the recovered GCE flux tends
to be lower by up to 40% when using the GP-modulated
diffuse model compared to that obtain in a Poissonian
fit without the GP, with the missing emission absorbed
by the GP-modulated template. This is indicative of the

fact that a component of the centrally concentrated emis-
sion could be better described by the modulated template
rather than the generalized NFW template modeling DM
annihilation. We leave a detailed study of implications
of this fact for the morphology of the excess to future
work. When creating simulated data containing DM-like
emission in association with this modulated template, the
fraction of DM-like flux in the simulation was correspond-
ingly reduced by 40%.

In order to test the effect of such mismodeling on
recovery of a DM signal we modulate the bremsstrahlung
and neutral pion decay-tracing components of Model O
using samples drawn from the inferred Gaussian process.
These simulated samples are used as mock data that
are then analyzed with our baseline model, where the
unmodulated Model O was used to create training
samples. The results of this test are shown in the third
row of Fig. 9. It can be seen that while large-scale
mismodeling can distort the total flux attributed to
individual modeled components, in particular causing
the disk-correlated PS emission to be significantly
overestimated, preference for a smooth origin of the
signal remains robust.

Effect of mismodeling the disk spatial template:
We replace the thin-disk template, described by a
scale height zs = 0.3 kpc in Eq. (4), with a thick-
disk template with zs = 1 kpc in the simulated data.
Results of then analyzing 10 mock maps using the
thin-disk template used in the baseline configuration
are shown in the fourth row of Fig. 9. We see that
the disk-correlated PS emission is underestimated, and
a small amount of GCE PS-like emission is inferred
while the marginal DM-like posterior is not significantly
affected. This could be indicative of a reshuffling of the
emission between disk- and GCE-correlated components.
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FIG. 9. Effect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with diffuse Model A, showing a possible
effect of diffuse mismodeling. (iii) Mock data where the diffuse template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.
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Effect of an unmodeled asymmetry in the sig-
nal: Besides mismodeling associated with astrophysical
background templates, another concern is that associated
with mismodeling of the signal emission itself. In particu-
lar, as pointed out in Refs. [69, 70], a North-South asym-
metry in a putative dark matter signal, if unaccounted
for, could lead to spurious inference of a PS population
associated with the purely smooth, asymmetric signal in
the NPTF framework. Refs. [69, 70] found preference for
such a scenario in real Fermi data, with the GCE signal
in the Northern hemisphere a factor of ∼ 2 larger than
that in the Southern hemisphere when the GCE template
in the two regions is floated separately in a ROI defined
by r < 10◦. In this case, for certain diffuse models, no
preference for a PS-like GCE was found in contrast to
the case when a single template was used to model the
GCE.

We test the impact of a North-South-asymmetric dark
matter signal within our framework by running our
baseline pipeline on simulated datasets where the dark
matter-like signal in the Northern hemisphere of the
ROI is 2 times larger than that in the Southern hemi-
sphere, mimicking the preference in real data found in
Refs. [69, 70]. The result of this test over 10 such sim-
ulated realizations is shown in the last row of Fig. 9.
We see that even with the presence of a substantially
asymmetric DM-like signal we retain preference for a
predominantly smooth GCE. While some additional PS-
like emission is inferred, the effect is small compared to
that exhibited within the NPTF framework in analogous
tests [69, 70]. We attribute this to the fact that the
DeepSphere-based convolutional neural network feature
extractor can account for pixel-to-pixel correlations in
the γ-ray counts map, and can thus be sensitive to local
PS-like structures. In contrast, the 1-point PDF-based
NPTF framework, being agnostic to the ordering of the
pixels, can notice spurious PS-like structures in the distri-
bution of ‘residuals’ associated with an asymmetric signal
when analyzed with a symmetric template. As done in
Ref. [32], we emphasize that the presence of a substan-
tial asymmetry in the GCE signal, if not attributed to
diffuse mismodeling, would point towards astrophysical
explanations of the GCE since a true dark matter signal
would not be expected to be significantly asymmetric.

In all cases tested, while posteriors for certain tem-
plates can show systematic biases, preference for a
smooth origin of the GCE remains robust and the frac-
tion of inferred PS-like emission is compatible with zero.
Finally, it is also interesting to similarly consider the ef-
fect of mismodeling on a PS-like GCE signal. We perform
a subset of the tests described above on simulated GCE
PS signals in App. B, showing successful recovery of an
overwhelmingly PS-like GCE in the face of mismodeling.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have leveraged recent advances in
neural simulation-based inference in order to jointly char-
acterize a putative DM-like signal and PS-like population
associated with the observed Fermi Galactic Center Ex-
cess. Consistent with Ref. [41] which used a Bayesian
neural network and first leveraged a DeepSphere-based
feature extraction architecture for analyzing γ-ray data
in the Galactic Center region, our analysis based on con-
ditional posterior density estimation with normalizing
flows finds a reduced contribution associated with a po-
tential population of unresolved PSs to the GCE com-
pared to previous analyses based on the photon statis-
tics of the γ-ray map. In particular, depending on the
analysis configuration, we find a median value of ∼ 40–
60% as the fraction of GCE emission that can be at-
tributed to a PS population, with the brightest unre-
solved sources inferred to be at somewhat smaller fluxes
∼ 10−10 ph cm−2 s−1 compared to values found in previ-
ous analyses based on the non-Poissonian template fitting
(NPTF) framework [30]. The NPTF analyses performed
in this work find a similarly dimmer source-count dis-
tribution, in all cases however attributing a larger frac-
tion ∼ 50–80% of the GCE to a PS population as com-
pared to the corresponding SBI analyses. Even though
the SBI analyses presented here generically attributed a
smaller fraction of the GCE flux to PSs, we note that
there is significant overlap within posterior uncertainties
between results returned by the two methods, as can be
seen from Tab. II. We note that, as detailed in Sec. II,
modulo details associated with the respective inference
procedures (i.e., the posterior sampling algorithm in the
NPTF case, and architecture specification and training
in the SBI case), we expect differences in results between
the two methods to be primarily driven by the distinct
ways they respond to model misspecification and the ex-
istence of a finite point spread function.

It is interesting to ask whether the fraction of PS emis-
sion inferred in our analysis is consistent with physically-
motivated models of astrophysical PS emission, e.g. from
a millisecond pulsar population, in the Galactic Center.
While a detailed study is beyond the scope of this pa-
per, Ref. [95] recently estimated this fraction for several
models in the literature. They generally find an O(1)
fraction of point sources to be resolvable (although with a
wide range of variation given the uncertainties associated
with modeling the astrophysical PS population), consis-
tent with the results of our analysis. However, given the
inherent degeneracy between a population of dim PSs
and diffuse emission, a definitive statement about the ori-
gin of the smooth component cannot be made and more
exotic contributors like dark matter annihilation cannot
be ruled out.

The results of this paper are broadly consistent with
and complementary to those obtained in Ref. [42], which
used a DeepSphere-based architecture which was, in con-
trast to our parametric approach, combined with a novel
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neural network-based non-parameteric approach to infer
the counts distributions associated to PS populations us-
ing histograms with modeled uncertainties [44]. Their
approach does not explicitly distinguish between Poisso-
nian and PS-like components, treating emission associ-
ated with the inferred counts PDF below some thresh-
old as effectively Poissonian. While this makes a direct
comparison to the results of their analysis challenging,
the overall conclusions regarding the fraction of emission
that can be attributed to PSs and the characteristics of
the GCE and disk source-count distributions are quali-
tatively similar between the two studies. In particular,
both papers find a dimmer GCE-correlated source-count
distribution, with a smaller lower bound & O(40%) on
the fraction of the total GCE emission associated to PSs
compared to previous studies based on the NPTF.

Our qualitative conclusions are robust to the system-
atic variations we have explored, including different mod-
els for the diffuse foreground and spatial distribution of
disk-correlated PS emission. We used a novel Gaussian
process-based method to construct a data-driven model
of large-scale spatial mismodeling, finding our method
to be resilient to such effects when it comes to inferring
the presence of DM-like emission. As in any Galactic
Center γ-ray analysis, we caution of the potential of un-
known systematics, such as mismodeling on the scale of
the size of the Fermi -LAT point-spread function, to bias
the results and conclusions of our analysis. Although
machine learning-based analyses can utilize more of the
information encoded in the forward model, and in partic-
ular in the present case can take advantage of pixel-to-
pixel correlations, this can also make them more suscep-
tible to specific modeled features compared to traditional
techniques based on data reduction to hand-crafted data
summaries. We leave a more detailed investigation of the
potential impact of these effects on our analysis to future
work.

Several improvements to the framework presented here
are possible. Although we have used a dataset restricted
to the top quartile of photons by quality of PSF recon-
struction, as shown in Ref. [69] the use of a larger data
sample can provide improved sensitivity to a PS popu-
lation while acting as a consistency check with results
obtained on the smaller sample. Since our method does
not rely on an approximate treatment of the PSF and can
exploit pixel-to-pixel correlations in inferring the pres-
ence of PS populations, we expect that it should be able
to better handle the presence of a larger PSF compared
to the NPTF approach. For the same reason, widen-
ing the energy range employed below 2 GeV may pro-
vide improved sensitivity since the GCE signal extends
to lower energies. The inclusion of energy-binning infor-
mation in the analysis can be implemented in a straight-
forward manner by splitting up the data and template
maps into individual energy bins and feeding these as
separate channels in the graph-convolutional feature ex-
traction network. The use of more complex feature ex-
traction architectures can additionally improve the ro-

bustness of our results. While we have considered a
simulated-based inference framework based on posterior
density estimation with normalizing flows, alternative
frameworks based on likelihood-ratio estimation [96–102]
or flow-based likelihood estimation [103, 104] can pro-
vide complementary ways to characterize the γ-ray PS
population in the Galactic Center. Additionally, the use
of sequential active-learning methods [104] and methods
that make use of additional latent information from the
simulator [96–98, 105, 106] can significantly improve the
simulation sample efficiency and allow for extensions to
more complex forward models, which can be important
in particular for an energy-binned analysis and if includ-
ing additional degrees of freedom for the astrophysical
background models.

Since diffuse mismodeling is the largest source of un-
certainty in any analysis that aims to characterize the
GCE, we also note the possibility of using adversarial
learning methods [107] or distance correlations [108] to
account for systematic differences between the modeled
and real Fermi data. Alternatively, generative modeling
of the diffuse foreground either in a Gaussian process-
based data-driven framework or using, e.g., autoencoders
trained on an ensemble of plausible diffuse models, can
provide a principled way to account for the large la-
tent space associated with diffuse emission modeling.
Motivated by quantitative variations in our results on
Fermi data when using different disk templates, self-
consistently accounting for plausible variations in the
spatial distribution of disk-correlated PSs can strengthen
the results of our analysis when it comes to characterizing
the PS population in the Galactic Center. These exten-
sions can lead to a more robust characterization of an
unresolved PS population in the Galactic Center region
associated with the GCE, and we leave their study to
future work.

The code used to obtain the results in this paper as
well as a pre-trained neural network model associated
with the baseline analysis presented here is available at
https://github.com/smsharma/fermi-gce-flows.
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APPENDIX

Appendix A: Prior-predictive distributions and
results for alternative priors

Figure 11 shows the prior distribution induced on
the source-count distribution for the baseline PS model
with upper SCD break priors uniform in the interval
Sb,1 ∈ [5, 40] photons (left) and the alternative prior spec-
ification with Sb,1 ∈ [1, 30] photons (right). The latter
prescription gives the PS-like component more overlap
with emission just above 1-photon, since the slope below
the second break encourages the SCD to steeply drop. It
can be seen that both prior choices still allow for signif-
icant PS-like emission below their respective counts soft
thresholds.

Figure 12 shows posterior distributions for the anal-
ysis using the alternative prior set. These results are
summarized in the bottom row of Tab. II. As expected,
both the SBI (top row) and NPTF (bottom row) analyses
show a larger inferred PS flux compared to the analysis
using the baseline prior choice. Reassuringly, the total

3 https://github.com/FloList/GCE_NN
4 https://github.com/deepsphere/deepsphere-pytorch

flux absorbed by both GCE components taken together
remains consistent between the analyses with different
prior choices.

Finally, Fig. 13 shows a check of how the partitioning
of flux between PS-like and DM-like components varies
between the two prior choices. The excess dark matter
flux (shown as inferred counts per-pixel 〈S〉) in the base-
line prior configuration (topmost data point) is seen to be
consistent with the cumulative excess flux below 5 pho-
tons in the alternative prior configuration compared to
the baseline one (second data point from the top). When
this excess flux is added to the total PS flux in the base-
line configuration (middle data point), the combination
(second data point from the bottom) is additionally seen
to be consistent with the total PS flux in the alternative
prior configuration (bottommost data point). We note
that this test is merely heuristic—in particular, since the
posteriors for baseline and alternative prior analyses are
described by independent samples, the component counts
were combined or subtracted assuming uncorrelated er-
rors (computed as standard deviations over the respective
posteriors), which is certain to not be the case. However,
this test is indicative of the fact that the inferred flux be-
low the threshold we set for accounting purposes is redis-
tributed between the PS and DM components, as would
be expected if the two analyses were self-consistent.

Appendix B: Mismodeling effects on a simulated
GCE PS signal

Figure 14 shows the analog of Fig. 9 where we test the
effect of mismodeling on a PS-like rather than smooth
GCE. As in the test on simulated maps with a smooth
GCE described in Sec. V, the data containing GCE-
correlated PSs is created using a forward model that is
different in a specific way from that used do train the neu-
ral network model: (i) No mismodeling; simulated data
is constructed with the same templates as those in the
forward model used for training the posterior estimator
(top row). (ii) Mock data created with diffuse Model A,
showing the effect of diffuse mismodeling (middle row).
(iii) Mock data where the thick-disk template is used in
lieu of the thin-disk template (bottom row).

In each case, the aggregate posterior described by
50,000 samples obtained over 10 simulations and then
thinned by a factor of 10 is shown. Since the GP-
modulated (smooth) diffuse template tends to absorb a
substantial fraction of the GCE flux when applied to real
Fermi data, a test using this modulated template was
not performed here as it would not yield self-consistent
results. It can be seen from the rightmost column of
Fig. 14 that a substantially PS-like GCE is recovered in
both cases tested, although a small fraction of flux is at-
tributed to DM-like emission when mismodeling of the
diffuse emission template is considered.

http://iaifi.org/
https://github.com/FloList/GCE_NN
https://github.com/deepsphere/deepsphere-pytorch


23

10−11 10−10 10−9

F [ph cm−2 s−1]

10−12

10−11

10−10

F
2

d
N
/d
F

[p
h

cm
−

2
s−

1
d

eg
−

2
]

1-
p

h

‘1
-σ

’

Baseline priors

10−11 10−10 10−9

F [ph cm−2 s−1]

10−12

10−11

10−10

F
2

d
N
/d
F

[p
h

cm
−

2
s−

1
d

eg
−

2
]

1-
p

h

‘1
-σ

’

Alternative priors

FIG. 11. Prior-predictive distribution on the source-count distribution for the baseline PS model priors (left) and alternative
prior specification giving the PS component more overlap with emission close to the single-photon limit (right). The median
(lines), middle-68% containment (darker bands), and middle-95% containment (lighter bands) regions are shown.
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FIG. 12. Same as Fig. 4, but using the alternative prior specification for the PS model, with the break on the lower SCD break
uniform within Sb,1 ∈ [1, 30] photons rather than Sb,1 ∈ [5, 40] photons. This configuration gives the PS model more overlap
with the dim PS-like emission.

Appendix C: Effect of allowing a negative
normalization for the DM template

Ref. [34] showed that systematic mismodeling in GCE
analyses can be manifest in terms of unphysical negative
values of the normalizations of spatial templates, and in
particular that a significantly negative Poissonian DM
template normalization can be symptomatic of oversub-
straction due to diffuse mismodeling. We perform a ver-
sion of this test by re-training our our model using sim-
ulated samples where the prior on the normalization of
a DM-like signal was allowed be negative—specifically, it
was modified from 〈SPoiss

GCE 〉 ∈ [0, 2.5] ph/pix in the base-
line case to 〈SPoiss

GCE 〉 ∈ [−1, 2.5] ph/pix. We note that

since the amplitude of the GCE signal is much smaller
than that of the Galactic diffuse emission, which is re-
stricted to be positive, the total expected counts in a
pixel are never negative even when allowing for a nega-
tive normalization for the DM template.

Results with this model on simulations containing
purely PS-like emission, in analogy with those shown in
Fig. 3 for the baseline case, are shown in Fig. 15. The pos-
terior on the contribution of DM-like emission now con-
tains zero and, over the simulation ensemble, is roughly
centered on it. This is as expected for a consistency when
purely PS-like emission is present, further validating the
analysis.

We apply this model to Fermi data, showing results in
Fig. 16. We see that the inferred posteriors are consistent
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FIG. 13. A heuristic check of the dis-
tribution of PS-like flux below 5 photons
in the analyses with baseline and alter-
native priors. The excess dark matter
flux (shown as counts per pixel 〈S〉) in
the baseline prior configuration (topmost
data point) is seen to be consistent with
the cumulative excess flux below 5 pho-
tons in the alternative prior configura-
tion compared to the baseline one (sec-
ond data point from the top). When
this excess flux is added to the total PS
flux in the baseline configuration (mid-
dle data point), the combination (second
data point from the bottom) is addition-
ally seen to be consistent with the total
PS flux in the alternative prior configu-
ration (bottommost data point).
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FIG. 14. Effect of mismodeling on a PS-like GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model. (ii) Mock data created with diffuse foreground Model A, showing a possible effect
of diffuse mismodeling. (iii) Mock data where the thick-disk template is used in lieu of the thin-disk template. A substantially
PS-like GCE is inferred, although a subdominant fraction of DM-like flux is inferred as well when considering diffuse foreground
mismodeling.

with those obtained in the baseline analysis in Fig. 4
where the DM-like flux is restricted to positive values; in
particular the DM-like flux does not tend to unphysical
negative values.
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FIG. 15. Same as Fig. 3 (SBI analysis on simulated Fermi data with PSs only), but with the normalization of the DM-like
template allowed to go negative. The posteriors for the DM-like flux now contain zero, as expected for a consistent analysis.
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FIG. 16. Same as Fig. 4 (SBI analysis on real Fermi data), but with the normalization of the DM-like template allowed to take
on negative values. Results consistent with the baseline analysis are seen, and the DM-like flux does not take on unphysical
negative values.
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