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We construct a template to model the post-merger phase of a binary black hole coalescence in the
presence of a remnant U(1) charge. We include the quasi-normal modes typically dominant during a
binary black hole coalescence, (`,m, n) = {(2, 2, 0), (2, 2, 1)} and also present analytical fits for the
quasinormal mode frequencies of a Kerr-Newman black hole in terms of its spin and charge, here also
including the (3, 3, 0) mode. Aside from astrophysical electric charge, our template can accommodate
extensions of the Standard Model, such as a dark photon. Applying the model to LIGO-Virgo
detections, we find that we are unable to distinguish between the charged and uncharged hypotheses
from a purely post-merger analysis of the current events. However, restricting the mass and spin to
values compatible with the analysis of the full signal, we obtain a 90th percentile bound q̄ < 0.33
on the black hole charge-to-mass ratio, for the most favorable case of GW150914. Under similar
assumptions, by simulating a typical loud signal observed by the LIGO-Virgo network at its design
sensitivity, we assess that this model can provide a robust measurement of the charge-to-mass ratio
only for values q̄ & 0.5; here we also assume that the mode amplitudes are similar to the uncharged
case in creating our simulated signal. Lower values, down to q̄ ∼ 0.3, could instead be detected when
evaluating the consistency of the pre-merger and post-merger emission.

I. INTRODUCTION

The most generic family of regular, stationary, asymp-
totically flat, electrovacuum solutions in Einstein-Maxwell
theory is the Kerr-Newman (KN) family of black holes
(BHs) [1, 2]. This solution extends the Kerr metric [3]
and is uniquely characterised by the mass M , the di-
mensionless spin χ, and charge-to-mass ratio q̄, typically
identified with the electric charge-to-mass ratio of the BH.
Astrophysical BHs are expected to carry negligible electric
charge [4–6]. Although a rotating BH embedded in a mag-
netic field can selectively accrete electric charge, the max-
imum amount accreted through this effect is negligible for
astrophysical values of magnetic fields [7]. Additionally,
mechanisms such as vacuum polarization, breakdown pair
production, and neutralisation from surrounding material
prevent a stellar-mass BH from sustaining a large amount
of electric charge [4, 5]. Even if a significant amount of
charge is acquired, it is dissipated on a time scale much
shorter than the one probed by gravitational-wave (GW)
observations [5]. These dissipation mechanisms have roots
in the large charge-to-mass-ratio of the electron [8]. As a
consequence, gravitational-wave (GW) searches, param-
eter estimation (PE), and population studies [9, 10] are
routinely carried out by assuming that BHs giving rise
to the signals observed in the LIGO-Virgo interferom-
eters [11, 12] can be accurately described by the Kerr

metric. Even though all these arguments rely on well
understood physical principles and thus in standard as-
trophysical scenarios the neutral BH approximation is a
reasonable one, a robust and direct observational veri-
fication of charge neutrality for the population of BHs
observed by LIGO and Virgo is still missing.

The confirmation of small or null electrical charge would
also constrain more exotic scenarios, where the charge
parameter of the KN family can be identified with the mag-
netic charge (due to primordial magnetic monopoles [13–
15]), vector charge in theories mediated by a gravitational
vector field [14], a hidden electromagnetic charge in mod-
els of minicharged dark matter [8], or a topologically
induced charge [16]. Models of minicharged dark matter
would evade the aforementioned discharge mechanisms
due to their different charge-to-mass-ratio, while charge
effects arising from modified gravity scenarios would be
due to the presence of an additional gravitational field.
Given that at the scale of BH mergers all these effects
can be parametrised with the same parameter appearing
in Einstein-Maxwell theory, we will simply refer to this
parameter as charge, bearing in mind its different mean-
ings depending on the context in which this parameter
is interpreted. Charged BHs have also recently gained
interest as a possible explanation of ultra high energy
cosmic ray particles [17]. GWs constitute a unique probe
of these exotic scenarios for stellar-mass binary black hole



2

(BBH) mergers, since the corresponding electromagnetic
(EM) signal emitted by such sources would lie in the kHz
range, where plasma absorption and reflection by the
interstellar medium would prevent the detection of an
EM counterpart [8, 18]. For these reasons, we will not
discuss possible EM counterparts to GWs that would be
present if BHs possess a charge; in the recent past this
topic received considerable attention due to a putative
EM counterpart to GW150914 [19–23].

Finally, in addition to probing effects due to new physics
or uncommon astrophysical scenarios, KN BHs provide
an excellent opportunity to test current phenomenological
paradigms to search for violations of the Kerr hypothesis
in a plausible and well understood scenario. The KN
case is in fact an extensively studied modification to Kerr
BHs in GR, stemming from a well-posed extension of
Einstein’s equations, the Einstein-Maxwell theory. It
will also include some of the effects one would find in
Einstein-Maxwell-dilaton theory, which is also well-posed;
see [24] for simulations of binary black holes in the theory
starting from approximate initial data, [25, 26] for post-
Newtonian calculations, and [27] for computations of
quasinormal mode (QNM) frequencies for nonspinning
black holes in this theory. Conversely, most alternative
theories of gravity which could likely leave detectable
imprints in GW signals from binary BHs, are instead
often not known to have a well-posed formulation or their
effects on observable quantities have been computed only
approximately, e.g., [28–38]. However, see [39, 40] for
well-posed formulations of some theories, though still
assuming weak coupling, and [41, 42] for initial numerical
simulations using these formulations.

Investigating the impact of the KN scenario on GW
measurements is of paramount importance to explore
complications that may arise when considering non-
perturbative beyond-GR effects in a self-consistent man-
ner. These complications include the excitation of ad-
ditional modes not present in GR, and the correlations
among beyond-GR parameters and BH intrinsic parame-
ters in the different phases of the coalescence. The LIGO-
Virgo Collaboration (LVC) routinely applies a battery of
tests to GR [9, 43, 44] on confident GW detections, aimed
at detecting deviations from GR predictions in the ob-
served signals. A variety of effects are tested with different
methodologies, including modifications to the generation
or propagation of GWs, the nature of the merging objects,
or the presence of additional polarizations, absent in GR.
Residuals in the interferometer strain, obtained subtract-
ing a representative best-fit waveform, are also tested for
the presence of additional coherent power not modeled
by GR templates [45, 46]. Some of these tests are in prin-
ciple sensitive to the presence of charge. Examples are
the parametrised family of tests targeting the emission of
dipole radiation during the early inspiral [44, 46, 47], the
parametrised ringdown tests [46, 48–52] and the inspiral-
merger-ringdown (IMR) consistency test [53, 54].

Nevertheless, the aforementioned tests all follow a phe-
nomenological approach, meaning that they do not as-

sume a specific form for the modification to GR. The
un-modelled approach is thus non-committal to a specific
alternative scenario. On the one hand, this is a desirable
feature, given the extraordinarily large number of possible
alternatives to GR [55]. On the other hand, ignoring pre-
dictions from specific theories implies a loss in sensitivity
when looking for deviations from the GR Kerr predictions.

In this work, we improve on the aforementioned ag-
nostic tests and search for signatures of astrophysical
or exotic charges in the merger-ringdown signal of BBH
coalescences detected by the LIGO-Virgo interferome-
ters. We do so by tabulating the QNM frequencies of
a KN BH for arbitrary values of charge and spin, build-
ing on the work of Ref. [56], and constructing a GW
template implementing these predictions. We then use
this template to perform an observational analysis on
all confident post-merger BBH observations, deriving a
bound on the maximum amount of charge compatible
with current observations. Additionally, we present a
study of the detectability of charge using the projected
design sensitivity of the current detector network. We
employ a robust statistical framework and, for the first
time, a non-perturbative treatment of the effects of charge
and spin in the gravitational ringdown modes, without
relying on assumptions such as a small-charge or WKB
approximations, as used in previous analyses [8, 57]. We
also take into account possible modifications in the am-
plitude of the waveform, in addition to the modifications
to the phase.

We additionally compute analytic fits for the QNM
frequencies as a function of mass and spin. Such fits
are a crucial ingredient for the construction of complete
inspiral-plunge-merger-ringdown analytical templates for
charged binary black holes (generalizing the ones available
for uncharged black holes) aimed at routinely extracting
all the possible available information on BH charges from
current LVC observations. Such templates will also re-
quire input from post-Newtonian calculations [25, 26] and
numerical relativity simulations [14, 58] in the charged
case.

The paper is structured as follows: in Sec. II we sum-
marise the results obtained in a companion study [59],
discussing a large dataset of QNM numerical solutions as
a function of the charge and spin of the remnant BH. In
Sec. III we use the numerical data to construct parametric
fits in an analytical form. We give the fit coefficients in
the Appendix. Sec. IV deals with the construction of a
suitable waveform template describing a KN BH resulting
from a BBH coalescence and the analysis of all available
merger-ringdown observations from the LVC. Sec. V dis-
cusses the prospects of extracting the BH charge from up-
coming merger-ringdown observations using ground-based
interferometers. Finally, we conclude and discuss future
developments in Sec. VI. Throughout the manuscript we
use both c = G = 1 units and Gaussian units in the
electromagnetic sector. The charge to mass ratio, the
parameter entering QNM computations directly, is de-
fined by q̄ := |Q|/M , with Q the BH charge in Gaussian
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units, and the absolute value is quoted due to the QNM
spectrum invariance with respect to the sign of the charge
in the Einstein-Maxwell theory. Additionally, for statis-
tical quantities, we quote the median and 90% credible
levels (CL) – or credible regions (CR) when discussing
multidimensional distributions – unless explicitly stated
otherwise. When discussing observations, we always quote
BH redshifted masses, as observed in a geocentric refer-
ence frame.

II. NUMERICAL QNM COMPUTATION

In the 1980s, Chandrasekhar, in his seminal text-
book [61], identified the coupled system of two partial dif-
ferential equations (PDEs) that, under a particular gauge
choice, describe the most general gravito-electromagnetic
perturbations of a KN BH (excluding the perturbations
that change the mass, angular momentum and/or charge
of the solution). See also Ref. [62]. Since then, different
studies have attempted to solve these PDEs using certain
approximations. In a first attempt, [63, 64] studied per-
turbations described by the so-called Dudley-Finley equa-
tions. This is a decoupled system of Teukolsky-like equa-
tions that describes exactly the spin 0 (scalar field) pertur-
bations of KN and are expected to be a reasonably good
approximation for the higher spin gravito-electromagnetic
perturbation equations. Later, Chandrasekhar’s equa-
tions for KN were solved perturbatively in a small rotation
(a) expansion about the Reissner-Nordström BH [65, 66],
and in a small charge (Q) expansion about the Kerr back-
ground [62]. The calculation of QNMs, within a WKB
and/or near-horizon approximation, in the KN extremal
limit was also considered in Ref. [67].

More recently, it was shown that the most general
gravito-electromagnetic perturbations of KN can be de-
scribed by a coupled system of two PDEs for two gauge
invariant Newman-Penrose fields [56] that, upon gauge
fixing, reduce to the PDE system originally found by
Chandrasekhar [61, 62]. These equations were then solved
numerically using numerical methods reviewed in [68], in
relevant ranges of the KN parameter space (notably for
KN with a = Q), to establish strong evidence in favour
of linear mode stability of the KN BH against gravito-
electromagnetic perturbations [56] (further supported by
the non-linear time evolution study of [69]). However, it
was only recently [59, 60], that the most desired task of
obtaining the full frequency spectra of the QNMs with
slowest decay rate (and others of physical interest) was fi-
nally completed. In the rest of this section, we will borrow
and discuss results from our companion papers [59, 60]
that will form the theoretical basis for the present study.

For the astrophysical investigations considered in
this work, we wish to identify the families of gravito-
electromagnetic QNMs that dominate the ringdown emis-
sion following a BBH merger, focusing on the perturba-
tions with spin weight −2. Here by dominant we mean
the families that have the slowest decay rates for all KN

BHs parametrized by the adimensional {a,Q} pairs1. Not
surprisingly, the dominant family of QNMs is the one that,
in the a = Q = 0 limit and using Chandrasekhar’s nota-
tion [61], reduces to the Schwarzschild gravitational Z2

{` = m = 2, n = 0} mode. Here ` is the harmonic number
that gives the number of zeros of the QNM eigenfunction
along the polar direction and n is the radial overtone
(related to the number of zeros of the QNM eigenfunc-
tion along the radial direction). The second family of
interest is the one that reduces to the gravitational Z2

{` = m = 2, n = 1} mode in the Schwarzschild limit [61].
Although this mode has a short lifetime, in the uncharged
case it contributes significantly to the emission soon af-
ter the peak of the GW waveform [71] due to its large
excitation. These QNM spectra were obtained in our com-
panion paper [59] and further detailed in the associated
extended study [60]. Finally, we will also need informa-
tion about the spectra of the QNM family that reduces
to the Schwarzschild gravitational Z2 {` = m = 3, n = 0}
mode in the a = Q = 0 limit. This mode makes a signifi-
cant contribution to the emission for BBH mergers where
the progenitor’s mass ratio is significantly different from
unity.

The task of identifying the most dominant modes within
each of these families of QNMs is made less trivial by the
fact that for each family {` = m,n} there are not one
but actually two sub-families of QNMs [59, 60]. These
can be denoted as 1) the photon sphere (PSn), and 2)
the near-horizon (NHn) sub-families, although this sharp
distinction is unambiguous only for small rotation pa-
rameters, i.e., close to the Reissner-Nordström family.
To classify them in the Kerr-Newman background, we
start by identifying them in the Reissner-Nordström limit
and then we follow these two sub-families as the rotation
parameter increases. In this Reissner-Nordström case,
the PS family of QNMs is the one that in the eikonal or
geometric optics limit − i.e. the WKB limit m = `→∞
− has a frequency spectrum that is closely connected
to the properties of unstable equatorial circular photon
orbits: the real and imaginary parts of the PS frequency
are proportional to the Keplerian frequency and to the
Lyapunov exponent of the orbit, respectively. The latter
describes how quickly radial deformations increase the
cross section of a null geodesic congruence around the
orbit. On the other hand, the NH family of QNMs is char-
acterized by having a wavefunction that near-extremality
is very much localized around the horizon and quickly
decays to zero as we move away from it. It is further

1 We use the notation of [59, 60]. In Boyer-Lindquist coordinates,
the outer and inner horizon radii r± are related to the KN mass M

and charge Q by r± = M±
√

M2 − a2 −Q2 and the event horizon
angular velocity and temperature are ΩH = a

r2++a2
and TH =

1
4πr+

r2+−a2−Q2

r2++a2
. At r− = r+, i.e., a = aext =

√
M2 −Q2, the

KN BH has a regular extremal (“ext”) configuration with T ext
H =

0, and maximum angular velocity Ωext
H = aext/(M2 + a2

ext).
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FIG. 1. Imaginary (left panel) and real (right panel) part of the frequency for the Z2 ` = m = 2 KN QNMs. The orange surface
(top of both figures) represents the PS family of the n = 0 mode. The green surface (right side of both figures) represents the
NH family of the n = 0 mode. The dark-red surface (below the orange surface) corresponds to the PS family of the n = 1
mode. Finally, the blue surface (almost on the top of the green surface) corresponds to the NH family of the n = 1 mode. The
point at a = 0 = Q in the orange (dark-red) surfaces matches the gravitational QNM of Schwarzschild [60,61] for the n = 0
(n = 1) modes, while the brown curve marks the extremal limit. In these figures and the others we just plot the NH surface up
to Q/r+ = 0.99 which explains the small gap between the green (blue) surface and the extremal brown curve. These highly
charged values can be computed with an analytical formula derived in [59, 60] that provides an excellent approximation to the
numerical solution. We display NHn (i.e., the green and blue surfaces) only for large charge where they can dominate over the
PSn sub-families; for smaller charge they are very strongly damped.

FIG. 2. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, ` = m = 2, n = 0 KN QNM with lowest
Im |ω̂|. At each (a/M , q/M) point, only the “dominant” QNM family (i.e., the one with the larger damping time between the
PS and NH families) is shown. The orange (green) surface denotes the region where the PS (NH) family is dominant. The
yellow area indicates the region where the two families of modes trade dominance. At extremality, the dominant mode always
starts at Im ω̂ = 0 and Re ω̂ = mΩ̂ext

H (brown curve). The dark-red point (a = 0 = Q), ω̂ ' 0.37367168− 0.08896232 i, is the
gravitational QNM of Schwarzschild [61, 70]. In the right panel, the yellow and green regions are so close to the extremal brown
curve that they are not visible.
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FIG. 3. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, ` = m = 2, n = 1 KN QNM with lowest
Im |ω̂|. At each (a/M , q/M) point, only the “dominant” QNM family (i.e., the one with the larger damping time between
the PS and NH families) is shown. The dark-red (blue) surface denotes the region where the PS (NH) family is dominant.
The magenta area indicates the region where the two families of modes trade dominance. At extremality, the dominant mode
always starts at Im ω̂ = 0 and Re ω̂ = mΩ̂ext

H (brown curve). The red point (a = 0 = Q), ω̂ ' 0.34671099− 0.27391488 i, is the
gravitational QNM of Schwarzschild [61, 70]. In the right panel, the magenta and blue regions are so close to the extremal
brown curve that they are not visible.

characterized by the fact that its QNM spectrum has an
imaginary part that vanishes in the extremal limit and, in
the Reissner-Nordström case, has vanishing real part (un-
like the PS modes). Starting in the Reissner-Nordström
solution, as the rotation increases and we run over the
KN parameter space, these PS and NH sub-families define
two surfaces (in a {Q, a, ω} plot) that do intersect (with
a simple crossover) or have the interesting phenomena
of eigenvalue repulsions in the KN parameter space as
detailed in [59, 60]. Typically, this happens for very large
values of Q/M , in a region of the parameter space which
is difficult to probe with observations. When eigenvalue
repulsion occurs, instead of a simple intersection, it be-
comes harder to make a clear distinction between the PS
and NH sub-families. Additional difficulties emerge from
the fact that non-trivial intersections with eigenvalue re-
pulsions can also happen between different (sub-)families,
e.g., between {` = m = 2, n = 0} and {` = m = 2, n = 1}
modes. This requires a careful analysis of the data to
identify to which (sub-)family a particular QNM belongs;
see Ref. [59, 60] for additional details. For each KN BH
parametrized by {a,Q}, we derive all the relevant PSn
and NHn QNMs for a given {` = m,n} family, and iden-
tify the modes that have the slowest decay rate within
that particular {` = m,n} QNM family.

An overview of four (out of the six) sub-families of
QNMs that we need for our study is presented in Fig. 1,
in order to give a general reference of their relative position
in the frequency plane. Namely, in this figure we focus on
the {` = m = 2, n = 0} and {` = m = 2, n = 1} families
and, for each of them, we display the spectra of each of
their two sub-families, namely PSn and NHn. We plot

the imaginary (left panel) and real (right panel) part of
the frequency for these KN QNMs as a function of the
KN rotation and charge. In this particular figure we use
dimensionless quantities in units of the horizon radius r+

(instead of units of M), namely â := a/r+, Q̂ := Q/r+,
because it turns out that the distinction between the four
sub-families is better seen in these units. For the frequency
we always use units of M : ω̂ := ωM , Ω̂ := ΩM . The
brown curve with Im ω̂ = 0 and Re ω̂ = 2Ω̂ext

H corresponds

to extremality (‘ext’) where âext =

√
1− Q̂2. Note that,

as expected, PS0 always has smaller |Im ω̂| than PS1, and
NH0 always has smaller |Im ω̂| than NH1. Focusing our
attention on the families with slowest decay rate, the PS0

and NH0 curves intersect at large charge (with simple
crossovers or with intricate eigenvalue repulsions not clear
in this overview figure, but identified in [59, 60]). Starting

from Q = 0 until a critical large charge Q̂ = Q̂c(â), the
PS0 dominates the QNM spectra and terminates on the
brown curve at extremality, while for Q̂c(â) < Q̂ ≤ Q̂ext

it is instead the NH0 (which always terminates at the
brown curve) that has the slowest rate. It should be
noted that the NH0 green surface also intersects the PS1

dark-red surface often with eigenvalue repulsions that
are not clearly visible in Fig. 1 but that are detailed in
[59, 60]. They also leave an imprint in the dark-red PS1

surface that is partially visible in the left panel of Fig. 3
just to the left of the magenta region. For reference,
although not shown in Fig. 1, the PS0 surface of the
{` = m = 3, n = 0} QNMs would be in between the
orange and dark-red surfaces, and the NH0 surface of the
{` = m = 3, n = 0} QNMs would be in between the green
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FIG. 4. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, ` = m = 3, n = 0 KN QNM with lowest
Im |ω̂|. At each (a/M , q/M) point, only the “dominant” QNM family (i.e., the one with the larger damping time between the
PS and NH families) is shown. The magenta (blue) surface denotes the region where the PS (NH) family is dominant. The
orange area indicates the region where the two families of modes trade dominance. At extremality, the dominant mode always
starts at Im ω̂ = 0 and Re ω̂ = mΩ̂ext

H (brown curve). The dark-red point (a = 0 = Q), ω̂ ' 0.59944329− 0.09270305 i, is the
gravitational QNM of Schwarzschild [61, 70]. In the right panel, the orange and light-blue regions are so close to the extremal
brown curve that they are not visible.

and blue surfaces.
After this generic overview of two of the main QNM

families of interest for our study, we now give the QNM
spectra of the slowest decaying mode for each of the three
main families, namely {` = m = 2, n = 0}, {` = m =
2, n = 1} and {` = m = 3, n = 0}, used in our study. This
time we parametrize the KN BH by χ = a/M, q̄ = Q/M .

In Fig. 2, we show the result for the {` = m = 2, n = 0}
mode. For small and intermediate charge, the spectra is
dominated by the PS0 mode (orange surface). On the
other hand for very large charge (up to Q/M = 1), the
spectra is instead dominated by the NH0 mode (green
surface). In between these two, there is a yellow area in
the left panel where the PS0 and NH0 intersect either
with a simple crossover or eigenvalue repulsions and they
trade dominance. The yellow area picks the frequency of
the mode that has the smallest |Im ω̂|. In the right plot of
Fig. 2, the yellow and green areas are not visible because
in units of M the real part of their frequency is very, very
close to the extremal brown curve.2 These surfaces are
however well visible when we use horizon radius units:
see Fig. 1.

In Fig. 3, we repeat the exercise for the {` = m =
2, n = 1} mode. The PS1 mode (dark-red) dominates
for small and intermediate charges, while the NH1 mode
(blue) dominates for very large charges. In between, there

2 A similar discussion applies to Figs. 3 and 4.

is a small window with a magenta area where the PS1 and
NH1 modes trade dominance and we display the mode
with smallest |Im ω̂|. In the rightmost side of the dark-red
PS1 surface one identifies a small region where the surface
is very deformed by the eigenvalue repulsion between this
` = m = 2 PS1 family and the ` = m = 2 NH0 family as
detailed in [59, 60].

Finally, in Fig. 4 we give the spectra for the {` =
m = 3, n = 0} mode. The PS0 mode (magenta surface)
dominates for small and intermediate charges. The light-
blue surface is the NH0 mode and dominates for very
large charges. In between, the orange area describes the
region where the PS0 and NH0 modes trade dominance
and we show the mode with smallest |Im ω̂|.

III. FITTING FORMULAE FOR THE
NUMERICAL SOLUTIONS

In this section, after introducing our fitting algorithm
and testing it on previous Kerr results, we construct
analytical fits for the real and imaginary part of KN PS
QNM frequencies as a function of the BH charge and spin
parameters.

A. Bayesian fitting method

We formulate the problem in the language of Bayesian
inference, an extension of classical logic in the absence of
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complete information [72]. Our fitting templates will be
characterised by a set of coefficients, collectively labeled

by ~θ, possibly different for each analytical form chosen.
We infer the optimal (best-fit) values and related uncer-
tainties for the coefficients by computing their probability

distribution, the posterior distribution p(~θ|d,H, I), condi-
tioned on the available numerical data d. The distribution
is obtained through Bayes’ theorem:

p(~θ|d,H, I) =
p(~θ|H, I) · p(d|~θ,H, I)

p(d|H, I)
, (1)

where H constitutes the parametric model describing the
data (hypothesis), while I denotes all the available back-

ground information. The distribution p(~θ|H, I) is the
prior distribution, encoding all the available information
on the coefficients before the start of the inference process
(e.g., the bounds within which we allow the coefficients
to vary). If no a priori information is available, the prior

can be chosen to be uniform on ~θ within a given range of
interest. The last key ingredient in the numerator is the

likelihood function p(d|~θ,H, I), which is fixed by the error
distribution of the numerical data. For the numerical fits
discussed in this section, we assume a likelihood given by
a zero-mean gaussian distribution with a standard devi-
ation equal to the numerical uncertainty, together with
uniform priors on the template coefficients. The overall
normalisation Z := p(d|H, I), known as the evidence, en-
codes the probability that the data d can be described
by the chosen model. This approach allows one to com-
pute the full multi-dimensional probability distribution
of the coefficient set, improving upon uni-dimensional
error estimates on each of the coefficients, and avoiding
convergence issues in highly dimensional problems. To
explore the posterior probability distribution we use the
nested sampling [73] algorithm CPNest [74].

B. The Kerr case

Before constructing a QNM template to model the KN
case, we first test our fitting procedure by reproducing
known results from the literature. As test cases, we
choose the models of Berti et al. [75], Nagar et al. [76],
and London et al. [77]. We start from the widely used
analytical representation of Kerr BH spectra as a function
of the BH spin from Berti et al. [75]. It has the general
form:

X = c0 + c1 · (1− χ)c2 , (2)

where ci ∈ R and, defining the complex QNM frequency
ω̃ = ω + i/τ , X corresponds to ω or to the quality fac-
tor of each QNM mode, Q = ωτ/2. The second model,
employed in the construction of the effective one body
model from Nagar et al. [76], provides an improved rep-
resentation of the spectrum with respect to Eq. (2), by

assuming a rational function:

X = Y0

(
1 +

∑3
j=1 bj χ

j

1 +
∑3
j=1 cj χ

j

)
, (3)

where bk, ck ∈ R, X corresponds to ω or τ−1 and Y0 is the
Schwarzschild value of the parameter under consideration.
The last model considered, from London et al. [77], has
a precision comparable to the one of Eq. (3), with the
additional advantage of providing a smooth modeling
of the near-extremal behaviour. It models directly the
complex QNM frequency by first smoothing the spectrum
behaviour through a κ-transformation defined by:

κ := (log3(2− χ))
1

2+l−|m| , (4)

and subsequently modeling the QNM frequencies as:

ω + i/τ =

5∑
j=0

κj Aj e
ipj , (5)

for each (`,m, n) with Aj ∈ R, pj ∈ [0, 2π]. We apply our
fitting algorithm to the (`,m, n) = (2, 2, 0) ω numerical
data, publicly available from Ref. [78], assuming each
of the above templates, seeking to reproduce the results
obtained in the original studies [75–77]. Fig. 5 shows the
comparison of each template to the data both using the
coefficients given in the original work and the ones ob-
tained with our algorithm using the maximum a posteriori
values. The fractional error is computed as the residual
|ωdata − ωfit|/ωdata. As expected, Eqs. (3) and (5) pro-
vide a more accurate description of the QNM frequency,
with residuals around the 0.1% level. Eq. (5) proves to
be the most faithful to the numerical data, especially
in the extremal limit (a → 1). The overall agreement
of each result with the data set employed is quantified
by the L2 distance between the numerical data and the
analytical formula. In the Nagar et al. case, our fits per-
form an order of magnitude better in terms of residuals
and norm. However, it has to be noted3 that the fit of
Nagar et al. was calibrated on values of the remnant spin
corresponding to SXS catalog simulations employed in
Ref. [76]. These include also some negative spin values,
and only a subset of the data points for positive spin
values considered here. This dataset discrepancy might
explain some of the difference in the residuals we observe.
In the London et al. case, there is a general improvement
in the non-extremal region, while the original fit provides
a smoother behaviour around the extremality limit, al-
though our result still shows a faithful representation
below the 0.1% residual level for all the considered values
of spin. This can be explained by the fact that we choose
to not fix the extremal limit to minimise the global resid-
uals, contrary to what was done in the original fit. Since

3 Alessandro Nagar, private communication.
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our aim is simply to validate our numerical algorithm,
which is returning compatible results with the ones of
the original works, we do not try to resolve the small
differences we observe in the residuals of these last two
models, which are probably due to the aforementioned
discrepancies in training data sets or fitting choices.

C. The KN case

We now turn to the task of building a parametric func-
tion capable of modeling the spectrum of the gravitational
KN QNMs discussed in Sec. II, the ones reducing to the
Schwarzschild QNMs in the non-spinning, uncharged case.
We initially considered a generalization of the model used
in Refs. [65, 66] to fit the small-charge case, including
higher-order terms. However, we found that this is inef-
fective at modeling the spectrum in the large charge limit.
We instead choose to fit the numerical data presented in
Sec. II, using a generalisation of the Nagar et al. model,
Eq. (3):

X = Y0

(∑Nmax

k,j=0 bk,j χ
k q̄j∑Nmax

k,j=0 ck,j χ
k q̄j

)
. (6)

Here X corresponds to ω or τ−1, Y0 stands for the
Schwarzschild value of the corresponding fitted quantity,
and bk,j , ck,j ∈ R, with b0,0 = c0,0 = 1. This template
contains 2 · (Nmax + 1)2−2 free coefficients, implying that
already truncating the expression to the same order used
in the Kerr case, Nmax = 3, the number of coefficients
increases to 30, versus the 6 coefficients used in the un-
charged case. We apply the Nested Sampling algorithm
as described above, choosing uniform priors U(−10, 10)
for all the coefficients appearing in Eq. (6), and setting
Nmax = 3 to limit the number of free parameters. We re-
strict our attention to the QNMs of interest for analysing
observational data, hence we only consider data points
respecting the sub-extremality condition χ2 + q̄2 < 0.99.
In this region, the PS family is always dominant (longer
damping time) compared to the NH one. The NH family
has damping times comparable (or larger) to the PS one
only very close to the extremal regime. Thus, in what
follows, we only consider PS QNMs.

We split the data into a training set, which constitutes
90% of the full data set, and a validation set containing
the remainder of the data. During the fit, we only em-
ploy the training set to find the values of the templates
coefficients and use the validation set in a post-processing
phase, to evaluate the residuals on values which were not
used to construct the fit. Fig. 6 shows the maximum a
posteriori (which coincides with the maximum likelihood,
since all priors are uniform) fitting model against the vali-
dation data points for the fundamental (`,m, n) = (2, 2, 0)
QNM frequency. The residuals are centered around zero,
spanning the range ±0.2%, indicating the same level
of agreement of the best Kerr templates available. We

achieve comparable residuals on the frequencies and damp-
ing times of the other modes, except for the damping time
of the (`,m, n) = (2, 2, 1) mode which shows residuals as
high as 1% in the corners of the parameter space, though
the residuals drop below 0.5% for χ2 + q̄2 < 0.9. This
level of agreement is acceptable given the current and
expected measurement precision obtainable on the damp-
ing time [46]. The maximum of the posterior for both
the frequency and damping time coefficients of the fits
for the (`,m, n) = {(2, 2, 0), (2, 2, 1), (3, 3, 0)} modes, to-
gether with the median and 90% CL on these coefficients
are reported in the Appendix. As expected, residuals
on the training set are of the same order of magnitude,
although presenting smaller tails.

IV. ANALYSIS OF GW DATA

In this section, after reviewing previous constraints and
sensitivity predictions on BH charges from GW obser-
vations, we introduce our time-domain formalism and
GW emission model used to infer the remnant object
properties from GW data. This model is then applied
to high confidence detections of GW transients with a
sufficiently loud ringdown, presenting observational con-
straints on the maximum charge-to-mass ratio compatible
with gravitational-wave data.

A. Previous constraints on BH U(1) charges

Effects induced by the presence of a BH charge on GW
signals were previously investigated in Refs. [8, 14, 57, 58,
79–82] under different approximations. Ref. [79] consid-
ered modifications to the early inspiral phase, although
neglecting the effects of spins, and found no evidence
for the presence of a BH charge. The impact of charge
in the inspiral phase and the related PE were also anal-
ysed in Ref. [80] in simplified settings. Ref. [8] used the
observation of GW150914 to place constraints on the
dipolar emission, similarly to what was done in Ref. [81]
(for future prospects of constraining the dipolar emission
using GW observations, see Refs. [83, 84]). A Bayesian
study of the measurability of BH charges in the inspiral
phase, considering the effects of charge up to first post-
Newtonian order in the waveform phase was presented
in Ref. [82]. This model was applied to GWTC-2 low-
mass detections, providing the bound q̄ < 0.2 − 0.3 at
1-σ credibility. A recent study on how some of these con-
straints from the inspiral phase could be affected by the
presence of plasma surrounding the binary was presented
in Ref. [18]. The detectability of charge in the ringdown
emission was studied in Ref. [8] in the small charge limit,
while recently Ref. [57] analysed the ringdown signal of
GW150914 by including the effect of a BH charge using a
WKB approximation. The results we find are in contrast
with the bound obtained in this latter work. We attribute
this difference to the KN spectrum of this latter refer-
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FIG. 5. Test of the fitting method (with the maximum posterior point estimate for the fit parameters) against results from the
literature for the Kerr (`,m, n) = (2, 2, 0) frequency, using the same ansatzs as in the original works. The fractional error is
computed as the residual (ωdata − ωfit)/ωdata. The L2 norm quantifies the overall agreement with the data set. The open circles
representing the numerical data have been down-sampled for visualisation purposes.

ence being approximated using an ansatz based on the
eikonal limit. This ansatz was further calibrated only on
q̄ = χ numerical data, neglecting the full structure of the
two-dimensional parameter space. The limitations of the
eikonal approximation for low-` values (contributing to
our analyses) are discussed in our companion paper [59].

Finally, a major step towards the full characterisa-
tion of waveforms sourced by KN metrics was taken in
Refs. [14, 58, 85], where a set of complete numerical solu-
tions of the inspiral, merger and ringdown of two charged
non-spinning BHs in quasi-circular orbits was computed.
The accuracy of different analytical approximations was
evaluated against numerical results, pointing to a poor
agreement of quantities estimated from a quadrupolar
approximation in Newtonian models, while a much better
agreement was found on remnant quantities estimates
from the test particle limit. The simulations were used
to perform a mismatch analysis between charged and
uncharged numerical solutions, allowing them to predict
a constraint on the charge-to-mass-ratio of GW150914:
q̄ ≤ 0.3. This is the first prediction on the BH charge to
stem from a full IMR comparison, although it has not

been yet directly validated against observational data.
The prediction was also obtained for a fixed mass ratio
and neglecting the effect of spins, thus not taking into
account the full correlation structure of the BBHs pa-
rameter space, an important point in an observational
analysis, as will be discussed in the remainder of the pa-
per. The detectability predictions of Refs. [14, 58], where
applicable, are in good agreement with the results we
obtain.

B. Methods

pyRing – We investigate the KN hypothesis in LIGO-
Virgo data by employing the pyRing [50, 51, 86] software,
a python [87] package specifically tailored to the esti-
mation of ringdown parameters. pyRing implements a
Bayesian approach (see Sec. III), formulating the problem
completely in the time domain, both for the likelihood and
the waveform, in order to exclude any contribution from
the pre-merger emission. Similarly to the numerical fits,
the underlying stochastic sampling is performed by the
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encodes the corresponding residuals. The training dataset shows qualitatively identical behaviour, albeit with smaller residuals,
as expected.

CPNest [74] algorithm. A convenient feature supported by
the software is the possibility to generate synthetic data
streams obtained by adding – injecting, in LVK jargon
– simulated signals to real or simulated detector noise.
This functionality will be explored in the next section to
predict constraints on BH charges obtainable with future
detectors upgrades. The pyRing package has been used
to produce the first ringdown-only catalog of remnant
properties, together with constraints on deviations from
GR QNM spectra, using data from the first three observ-
ing runs of the LIGO-Virgo interferometers; see Tables
VIII-IX of Ref. [46]. Moreover, it has been employed
to explore possible signatures [88–90] of the area quan-
tisation on the BH ringdown emission in Ref. [91] and
to obtain bounds [86] on a possible new physics length
scale entering QNM spectra, in a linearized perturbative
scheme [92].

GW model – To construct our model for a charged BH,
we start from a standard Kerr template [75, 93]:

h+ − ih× =
Mf

DL

∞∑
`=2

+∑̀
m=−`

∞∑
n=0

(h+
`mn + h−`mn) (7)

with:

h+
`mn = A+

`mn S`mn(ι, ϕ) e−i(t−t`mn)ω̃`mn+iφ+
`mn (8a)

h−`mn = A−`mn S∗`mn(π − ι, ϕ) e+i(t−t`mn)ω̃∗`mn+iφ−`mn

(8b)

where ω̃`mn = ω`mn + i/τ`mn (a * denotes complex con-
jugation) is the complex ringdown frequency, determined
in the Kerr cases by the remnant BH mass Mf and spin

χf ,4 ω̃`mn = ω̃`mn(Mf , χf). The amplitudes A+/−
`mn and

4 The “f” subscript on BH parameters indicate these values refer
those of the remnant BH.
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phases φ
+/−
`mn characterise the excitation of each mode

and are inferred from the data. The inclination of the
BH final spin relative to the observer’s line of sight is
denoted by ι, while ϕ corresponds to the azimuthal angle
of the line of sight in the BH frame, which without loss of
generality we set to zero given the complete degeneracy
with the single-mode phases. S`mn are the spin-weighted
spheroidal harmonics [94] and t`mn = t0 is a reference
start time. In writing Eq. (7), we follow the convention of
Ref. [93] (see their Section III), for which m > 0 indices
denote co-rotating modes, while counter-rotating modes
are labeled by m < 0. In the remainder of this work,
we will only consider co-rotating modes, since counter-
rotating modes are predicted to be hardly excited in the
post-merger phase for the binaries analysed in this work.
For a discussion about the possible relevance of counter-
rotating modes see Refs. [93, 95, 96].

We restrict this template to a superposition of the
quadrupolar fundamental (longest-lived) mode and its
first corresponding overtone (` = m = 2, n = 0, 1), consid-
ering all the amplitudes and phases as independent num-
bers. We refer to the template constructed in this manner
using the Kerr QNM frequencies as Kerr221 [46, 51, 71].
The template is then modified by replacing Kerr QNM
complex frequencies as a function of the remnant mass
and spin ω̃`mn(Mf , χf), with the corresponding KN fre-
quencies ω̃`mn = ω̃`mn(Mf , χf , q̄f). In the following ap-
plications, we interpolate the numerical values obtained
in Sec. II. This modified template, used in the remainder
of this work, is labeled KN221. The assumption lying
behind the construction of our template is that the post-
merger signal of a BBH coalescence giving rise to a KN
BH can be described by the superposition of the funda-
mental QNM and its first overtone. We stress that the
amplitudes and phases of the modes considered in this
model do not assume the predictions for a Kerr BH arising
from a BBH coalescence, a key ingredient to avoid biases
in the remnant PE in alternative scenarios. Due to the
high flexibility of our template, our modeling hypothesis
appears robust. Nevertheless, in the future it would be
interesting to directly test this assumption by comparing
to numerical simulations [14, 58], which would also allow
to predict the values of the post-merger amplitudes and
phases as a function of the binary parameters, improving
the sensitivity of the model to charge effects. Due to
the coupling of EM fields to the gravitational field, in
principle also the coupling of the s = −1 modes to the
GW spectrum should be considered. However, as shown
in Ref. [8] for simplified settings, the contribution to the
gravitational emission of these modes is subdominant for
non-extremal cases. Thus, we will neglect the contribution
of such modes, leaving investigations of their contribution
to the GW signal to future work.

Analysis details – The event selection criteria (a pos-
itive Bayes factor for the hypothesis of a signal being
present in the data compared to the noise-only hypoth-
esis, and informative parameters distributions), strain
data, data conditioning methods, and sampler settings

are chosen to be identical to those of Ref. [46], which
are publicly available from the accompanying data re-
lease [97]. Additionally, for completeness we include in
our analysis GW170729 [98], which was included in the
testing GR analyses of the first LVC catalog [44], but did
not pass the stricter threshold imposed for the testing GR
analysis of the later GWTC-2 catalog [46]. The dataset
thus consists of 18 BBH events listed in Table I (out of
a total of 46, mainly due to the limited sensitivity of
GW detectors to high frequencies) detected by the LVC.5

The dataset is conservatively restricted to minimise the
effect of noise events, possibly mimicking a GW event and
contaminating our analysis. The time origin of the strain
for the analysis is set by the peak of h2

+ + h2
× in each

of the detectors, as computed a-posteriori from an IMR
analysis, and assuming the maximum likelihood value of
the event sky location [46]. The adopted prior distribu-
tions are also identical to the ones chosen in Ref. [46], in
particular uniform on the remnant mass and spin, the
latter spanning the range [0, 0.99]. The prior distribution
on the charge parameter is also uniform in the interval
[0, 0.99]. Finally, we impose an a priori joint limit on
the charge and spin parameters χ2

f + q̄2
f < 0.99, excluding

near-extremal BHs configurations consistently with the
numerical fits discussed in Sec. III.

C. Analysis of the GW transient catalog

Full analysis – We apply the KN waveform model de-
scribed above to the available LIGO-Virgo events selected
in the previous section. The results are presented in
Fig. 7, where we show the 90% CL of the two-dimensional
posterior distributions on remnant spin and charge-to-
mass ratio, for a representative set of four events show-
ing the strongest constraints on these parameters. Uni-
dimensional posteriors on the charge-to-mass ratio are
uninformative, while the ones on the spin parameter are
consistent with the result from the Kerr221 analysis, with
a corresponding broadening due to the increased number
of parameters included in the analysis presented here.
Remnant masses, showing very weak correlations with
the charge, are always consistent with the values inferred
without assuming the presence of a charge [46], with a
broadening analogous to the one of the spin. Current
events allow us to exclude a large portion of the spin-
charge parameter space, although a strong correlation is
present, due to the similar effect those two parameters
have on increasing QNM frequencies. In fact, the 90%
contour roughly corresponds to an iso-frequency region,
containing the inferred values of spin and charge-to-mass

5 The selection criterion should in principle be revised in light of
the new physics present in our model. Nevertheless, we checked
that none of the excluded events passes the Bayes factor threshold
applied in Ref. [46] or provides any significant constraint on the
presence of a BH charge.
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TABLE I. Summary of the signal-to-noise Bayes factors be-
tween the KN and Kerr models, for both the full and null
analyses, together with upper bounds at 90% credibility on
the remnant BH charge q̄f from the null analysis. The nu-
merical statistical error on each ln B is ± 0.1. No significant
evidence for or against charged black holes is present.

GWTC-2 ringdown events

Event ln BKN
Kerr ln BKN

Kerr (null) q̄f bound at 90% (null)

GW150914 −0.6 −0.7 0.33

GW170104 −0.2 −0.6 0.45

GW170729 −0.7 −0.3 0.44

GW170814 −0.1 −0.3 0.45

GW170823 −0.1 −0.6 0.45

GW190408 181802 −0.1 −0.6 0.48

GW190512 180714 0.5 −0.1 0.56

GW190513 205428 −0.5 −0.8 0.43

GW190519 153544 0.3 −0.8 0.37

GW190521 −0.2 −0.2 0.47

GW190521 074359 −0.2 −0.8 0.41

GW190602 175927 0.3 −0.4 0.51

GW190706 222641 −0.2 −0.8 0.43

GW190708 232457 0.2 −0.4 0.54

GW190727 060333 −0.2 −0.5 0.51

GW190828 063405 −0.3 −0.3 0.47

GW190910 112807 0.1 −0.6 0.43

GW190915 235702 −0.7 −0.9 0.47

ratio needed to reproduce the dominant – slowly evolving
– frequency content observed in the post-merger signal.
The typical value of the remnant spin χf generated by
the coalescence of close-to-equal-mass, mildly spinning
BHs on a quasi-circular orbit, when assuming the absence
of charge, is χf ∼ 0.7 [99, 100]. Around this value, the
results show consistency with q̄f ∼ 0, although the wide
distribution does not allow us to strongly constrain a
specific value of normalised charge and spin. We com-
pute a global figure of merit comparing the Kerr and KN
hypotheses against the GW data, the Bayes factor. In
the Kerr case we assume the same template, but now
using Kerr predictions for the QNM spectra as a function
of the remnant parameters. The results are reported in
the first column of Table I, indicating that current data
do not allow us to meaningfully distinguish between the
two hypotheses within current statistical uncertainties,
according to criteria such as the Jeffreys scale [101].
Null analysis – As a null test, we repeat the analysis

described above restricting the mass and spin uniform
prior values to the 90% CL obtained by the LVC collabo-
ration from a full IMR analysis [9], hence restricting them
to around O(10− 20%) of their median measured value.
The outcome of such analysis will be an upper bound
on the maximum allowed amount of charge compatible
with LIGO-Virgo observations. Such a test provides a
comparison of our analyses with the ones discussed in the
literature when ignoring the correlation of the charge with
the remnant spin [14]. Indeed, by restricting the available
parameter space, we neglect the full correlation structure
of the problem. Consequently, in the presence of an actual

violation of the Kerr hypothesis, the parameter estimation
resulting from this analysis could not be interpreted as
the correct value of the BH charge. Nevertheless, this
sort of analysis can still be used to detect a violation
of the Kerr hypothesis. In fact, if the Kerr metric is a
correct description of the BH remnant, the result would
yield charge values consistent with zero. By increasing
the amount of information present in our inference model,
this test acquires an increased accuracy on the detection
of a Kerr violation, compared to the full analysis. Results
on the charge-to-mass ratio obtained under these assump-
tions are presented in Fig. 8. In this case, the q̄f posterior
support is significantly reduced with respect to its prior
range, the latter taking into account the sub-extremality
condition χ2

f + q̄2
f < 0.99. For the most favorable case

of GW150914 (highlighted in the figure), we obtain an
upper bound of q̄f < 0.33 at 90% credibility, consistent
with the analysis presented in Ref. [14]. Upper bounds
for the other events are reported in the rightmost column
of Table I. We recompute the Bayes factors against a
Kerr hypothesis where the Mf , χf parameters are also re-
stricted to the same prior bounds. The results are shown
in the central column of Table I, again indicating that no
significant evidence is present in the data for or against
the KN hypothesis, as compared to the Kerr hypothesis.

V. FUTURE MEASUREMENT PROSPECTS

Given the limited information that can be extracted
from current observations, it is natural to ask whether
the LIGO-Virgo network at its design sensitivity can
allow us to distinguish a KN BH from a Kerr BH, using
the templates considered in this work. We explore this
question by addressing both the charge measurability
when assuming a charged BH remnant and the sensitivity
of current ringdown tests of GR when assuming uncharged
BHs.

A. Charge measurability

To address the value of charges that can be measured
by the current GW detector network, we simulate charged
ringdown signals, using the KN221 template,6 with increas-
ing charge-to-mass ratio q̄f = {10−4, 10−3, 10−2, 10−1, 3 ·
10−1, 5 · 10−1}, while the rest of the BH parameters are
fixed to fiducial values close to the ones estimated for
GW150914, listed in Table II. To reduce the number of free
parameters, in our set of injections we impose the conju-
gate symmetry, see Ref. [75], A−`mn = (−1)lA+

`mn, φ
−
`mn =

−φ+
`mn. The values of the amplitudes and phases are

6 Our model neglects the presence of additional overtones, which we
expect to be subdominant compared to the amplitude corrections
induced by charged progenitors.
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FIG. 7. Credible region (90% confidence) of the two-dimensional posterior probability density function of the spin and charge-
to-mass ratio, for the subset of GWTC-2 events showing the tightest constraints (GW190521 07 stands for GW190521 074359).
Crosses mark the median of the two-dimensional distribution. The gray region marks charge-spin values above the extremal
limit, excluded in the analysis. Most of the two-dimensional plane is excluded by the data, although the strong correlation
between the two parameters results in a iso-frequency contour, with one-dimensional projections extending over most of the
charge and spin ranges.

chosen from the corresponding uncharged case, by fit-
ting the post-merger waveform of an BBH coalescence
with the same intrinsic parameters, generated using the
TEOBResumS model [76]. We note that to obtain a
good agreement between the waveforms, it is necessary
to choose the relative phase ∆φ of the fundamental mode
and first overtone to be in opposition, ∆φ ' π. Such a

requirement can be deduced from the fact that extrapo-
lating the fundamental mode (whose amplitude is fixed
by the late-time signal) back to the peak of the waveform,
the corresponding peak amplitude exceeds that of a BBH
remnant. The additional modes thus have to be chosen
in such a way that the total amplitude is reduced.

Our ringdown-only reference signal has a signal-to-noise
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The distribution is obtained from a null analysis, breaking
the full correlation structure of the problem. We highlight
the event showing the tightest constraint (GW150914) and
the prior distribution on the charge, which incorporates the
sub-extremality condition.

ratio (SNR) of 36, computed by assuming the design sen-
sitivity power spectral density of the LIGO-Virgo detector
network [102]. Fig. 9 shows the h+ polarisation corre-
sponding to the KN221 template for different values of
charge, represented by the color scale, and the parameters
reported in Table II. For each value of the charge we
also indicate the ratio of the KN and Kerr fundamental
frequencies. For a given BH spin and moderate values of
the BH charge, Fig. 9 shows a KN waveform morphology
similar to Kerr, suggesting that a high SNR might be
needed to distinguish the modulation of the signal due
to the presence of the charge (apart from more extreme
cases). The differences between the two models are further
blurred by the strong correlation, which we fully account
for in the analysis, between the BH spin and charge.

We perform injections of the KN templates into zero-
noise, while the computation of the likelihood includes
the LIGO-Virgo design sensitivity curves [102]. This pro-
cedure is commonly adopted in the study of new physical
effects in simulated LIGO-Virgo data to avoid shifts in
the posteriors due to a specific noise realization. Each
of these simulated events is then recovered with different
templates, corresponding to the charge and uncharged
assumptions: KN221 and Kerr221. The first template re-
duces to the second in the limit of q̄f = 0. Analysing
a KN signal with a Kerr template has the purpose of
understanding the bias we would incur when ignoring a
priori the presence of the BH charge, as in standard GW

observational analyses. In fact, we expect to recover a
biased value of the BH spin for injections with sufficiently
large values of q̄f , given its strong correlation with the
charge parameter, as observed in the previous analysis.
This effect is illustrated in Fig. 10, where in the left panel
we report posteriors (90% CL) for mass and spin, inferred
assuming the KN221 (solid filled) and Kerr221 (dashed
line) templates for different injected values of q̄f , while
the right panel illustrates the posteriors (90% CL) for
the charge-to-mass ratio and spin assuming the KN221

template. Results for injections with q̄f below 0.1 are
very similar, so they are not shown.

Concerning the inference with the KN221 template, we
find that the one-dimensional (marginalised) posterior for
q̄f is in general uninformative even for high injected values
of q̄f , as one can also deduce from the right panel of Fig. 10,
where the 90% CL posterior extends over the whole range
of q̄f in the parameter space. Interestingly though, the left
panel of Fig. 10 suggests that the effect of a moderately
large (q̄ & 0.3) charge-to-mass ratio on the signal could
be indirectly detected: the assumption of the Kerr221

template, i.e., excluding the presence of charge, results
in a reconstructed final spin χf which gets increasingly
biased with the value of q̄f . This could potentially be
detected using the IMR consistency test [53, 54], one of
the standard tests performed by the LVC. However, the
Bayes factors are not informative enough to prefer either
of the two templates, making the unique identification of
such an effect (as compared to another modification of the
Kerr scenario) with a BH charge difficult to obtain. Thus,
we conclude that the strong degeneracy between spin and
charge does not allow for an independent measurement
of the BH charge from the LIGO-Virgo network with
the model considered. A similar spin-charge degeneracy
is observed in the (`,m, n) = (3, 3, 0) mode, suggesting
that an extension of the current model considering such
a mode would not strongly affect this conclusion.

As discussed in Ref. [58], such a correlation would in-
stead be broken when including information from the
previous stages of the coalescence, consistently modelling
also the progenitors as KN BHs. An analysis of the sig-
nal with an IMR waveform model for charged BBHs will
be able to give its own estimates of the remnant charge,
but an independent measurement from the ringdown will
be useful to check waveform systematics and to bolster
the evidence for a charged BBH detection being real and
not a noise artefact. To mimic this scenario, in Fig. 11
we report the marginalised posterior for q̄f assuming a
Gaussian prior constraining the final spin around its sim-
ulated value, p(χf |I) = N (0.67, 0.05), where the width
is estimated from the uncertainty associated to the 90%
CL of the final spin estimated from the IMR analysis of
GW150914 [44]. The posteriors show that for q̄f & 0.5 a
robust measurement of the charge can be achieved, while
for other values it will only be possible to place an upper
bound. Our result is in agreement with the analysis of
Ref. [58], pointing to a weak measurability up to q̄f ∼ 0.3
at the considered SNRs.
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FIG. 9. Plus polarisation of the post-merger KN221 model corresponding to the parameters reported in Table II for different
values of the charge up to q̄f = 0.6 (chosen for visualisation purposes), together with its uncharged limit, Kerr221. The color
scale is set by the charge or equivalently by the ratio of the corresponding (`,m, n) = (2, 2, 0) frequencies.

TABLE II. BH parameters of the KN BH ringdown signals employed in the simulation study. The table reports the injected
values of final mass Mf , final spin χf , real amplitudes A`mn and phases φ`mn, cosine of the inclination of the BH final spin
relative to the line of sight cos ι, global phase φ, polarization angle ψ, luminosity distance DL, right ascension α, declination δ
and the resulting signal-to-noise ratio, when assuming the LIGO-Virgo design sensitivity noise power spectrum.

Injected values

Mf (M�) χf A220 A221 φ220 φ221 cos ι φ ψ DL (Mpc) α δ SNR

67.0 0.67 1.1 0.95 -2.0 1.14 1.0 0.0 1.12 403 1.16 -1.19 36

B. Tests of GR

Another question that naturally arises is whether the
standard tests of GR routinely performed by the LVC [46]
would signal the presence of the additional BH parameter
(assuming the Kerr metric). To answer this question
for the pyRing analysis, we consider a Kerr221 template
where now the QNM parameters are allowed to deviate
with respect to the Kerr values. We consider parametric
deviations of the form:

X = XKerr · (1 + δX) , (9)

where X = ω221, τ221. We only consider deviations in the
overtone to reduce the strong degeneracy between devia-
tions and intrinsic parameters of the BH. The fundamental
mode, generally better constrained, determines the mass
and spin values, while the overtone degrees of freedom

are employed to constrain the deviation parameters. This
allows for a much less prior-dependent determination of
the deviation parameters [46, 49]. We define three differ-
ent modified Kerr221 templates by adding parametrised
deviations either to the frequency {δω221} or the damp-
ing time {δτ221}, or to both simultaneously {δω221, δτ221}.
Deviations on the frequency peak around the null value
for all the injected values of q̄f considered, and thus do not
signal any deviation from the Kerr scenario. Instead, for
the highest q̄f values considered, deviations on the damp-
ing times tend to be overestimated compared to the Kerr
value, albeit the Kerr case is always inside the 90% CL,
thus making the test not conclusive. Similarly, the Bayes
factors are uninformative, not allowing one to discriminate
between templates with or without deviation parameters.
We defer further investigations to future work, possibly
using more information from previous stages of the coa-
lescence, since this should help increase the sensitivity of
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dashed contours are KN221 and Kerr221 posteriors (90% CL), respectively, with plus symbols representing the median values
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sub-extremality condition.
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FIG. 11. Posterior distribution on the charge-to-mass ratio
recovered analysing KN221 signals with different values of
charge-to-mass ratio (vertical dashed lines) assuming a Gaus-
sian prior on the final spin (see the main text). For the highest
charge case, we also plot the bounds on the 90% CL as dotted
lines.

the test and hence its conclusiveness.

VI. CONCLUSIONS

In this work, we discussed extensive computations of
the QNM spectrum of a KN BH for the (`,m, n) =
{(2, 2, 0), (2, 2, 1), (3, 3, 0) modes, obtained in a companion
paper [59], characterising the spectrum’s dependence on
arbitrary values of the BH charge and spin. These results
were used to construct the first analytical fits of KN QNM
frequencies for arbitrary values of the BH charge and spin.
By extrapolating known results for the Kerr metric, we
then constructed an analytical template to model the
post-merger emission process of a BBH merger giving rise
to a KN remnant. We applied this model to all available
LIGO-Virgo observations, showing that current data do
not allow for a direct measurement of the BH charge from
the post-merger emission, mainly due to the strong corre-
lation of the charge with the remnant spin. A null test
showed that the maximum value of the charge-to-mass ra-
tio compatible with current LIGO-Virgo observations, for
the most favorable event GW150914, is q̄f < 0.33. This is
the first self-consistent observational analysis of charged
remnant BHs with GWs, employing a robust statistical
framework and taking the full correlation structure of the
problem into account.

Finally, we performed a study aimed at exploring the
sensitivity of current detectors to the remnant BH charge,
finding that unless information from previous stages of the
coalescence is introduced in the template, the LIGO-Virgo
network at its design sensitivity will be unable to measure
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the charge of the remnant BH from a post-merger analysis
alone. Also, current tests of GR using only the ringdown
emission, routinely performed by the LVK collaboration,
are unable to confidently point to a deviation from the
Kerr hypothesis. However, for sufficiently large charges
(q̄ & 0.3) a consistent overestimation of the remnant
damping time (with respect to the Kerr value) could signal
the presence of BH charges within the IMR consistency
test.

Our results have implications for tests of general relativ-
ity and beyond Standard Model physics, since charge ob-
servations constrain the presence of magnetic monopoles,
models of minicharged dark matter and alternative theo-
ries of gravity predicting the presence of an additional BH
charge (through either a topological coupling or the pres-
ence of additional gravitational vector fields) degenerate
with the electric charge at the scales of BH mergers. In
the future, the recent availability of full IMR simulations
of charged BBHs [14, 58] could allow us to characterise the
accuracy of the present template without relying on ex-
trapolations of the known Kerr behaviour. Our work also
provides one of the required elements for the construction
of analytical templates able to model the complete signal
coming from a charged BBH merger, along with the afore-
mentioned numerical simulations and the post-Newtonian
calculations in Refs. [25, 26].
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APPENDIX

We report the numerical coefficients obtained fitting
the data presented in Sec. II, using the template of Eq. (6)
with the Bayesian method described in Sec. III. Single
point estimates correspond to the maximum of the pos-
terior distribution (the same as the maximum of the
likelihood, since the priors on all coefficients are uniform),
which should be used in applications where a point esti-
mate is employed. We also report the median and 90%
CIs of the full probability distribution.

https://git.ligo.org/lscsoft/pyring
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TABLE III. Numerical results for the coefficients of the real QNM frequency, using as a template the rational expression
considered in Eq. (6) with Nmax = 3. The first column of each mode reports the maximum of the posterior, while the second
reports median and 90% CL from the full probability distribution. For applications in which a single point estimate is used,
the maximum of the posterior yields a more faithful representation of the numerical data. The Schwarzschild value is given
by: Y0 = {0.37367168, 0.34671099, 0.59944329} for the (`,m, n) = {(2, 2, 0), (2, 2, 1), (3, 3, 0)} modes respectively, while b0,0 =
c0,0 = 1 by definition.

ω

(`,m, n) (2, 2, 0) (2, 2, 1) (3, 3, 0)

maxP Prob maxP Prob maxP Prob

b0,1 0.537583 0.541+0.045
−0.050 −2.918987 −2.918+0.001

−0.001 −0.311963 −0.299+0.019
−0.017

b0,2 −2.990402 −2.997+0.084
−0.077 2.866252 2.865+0.002

−0.001 −1.457057 −1.478+0.028
−0.031

b0,3 1.503421 1.507+0.032
−0.035 −0.944554 −0.944+0.001

−0.001 0.825692 0.834+0.013
−0.012

b1,0 −1.899567 −1.895+0.005
−0.007 −1.850299 −1.853+0.004

−0.003 −1.928277 −1.926+0.003
−0.003

b1,1 −2.128633 −2.143+0.120
−0.109 7.321955 7.320+0.005

−0.008 −0.026433 −0.060+0.040
−0.048

b1,2 6.626680 6.649+0.163
−0.183 −8.783456 −8.775+0.020

−0.007 3.139427 3.190+0.071
−0.063

b1,3 −2.903790 −2.914+0.069
−0.064 3.292966 3.288+0.004

−0.011 −1.484557 −1.504+0.026
−0.026

b2,0 1.015454 1.009+0.010
−0.008 0.944088 0.948+0.005

−0.005 1.044039 1.041+0.004
−0.004

b2,1 2.147094 2.162+0.087
−0.094 −5.584876 −5.583+0.010

−0.009 0.545708 0.575+0.037
−0.034

b2,2 −4.672847 −4.692+0.129
−0.116 7.675096 7.666+0.010

−0.027 −2.188569 −2.229+0.048
−0.051

b2,3 1.891731 1.900+0.044
−0.046 −3.039132 −3.035+0.012

−0.005 0.940019 0.956+0.019
−0.018

b3,0 −0.111430 −0.109+0.003
−0.004 −0.088458 −0.089+0.001

−0.002 −0.112303 −0.111+0.002
−0.001

b3,1 −0.581706 −0.585+0.022
−0.020 1.198758 1.198+0.004

−0.003 −0.226402 −0.234+0.008
−0.009

b3,2 1.021061 1.025+0.028
−0.029 −1.973222 −1.971+0.009

−0.004 0.482482 0.493+0.012
−0.012

b3,3 −0.414517 −0.416+0.011
−0.011 0.838109 0.837+0.002

−0.004 −0.204299 −0.209+0.005
−0.004

c0,1 0.548651 0.552+0.046
−0.050 −2.941138 −2.940+0.001

−0.001 −0.299153 −0.286+0.019
−0.017

c0,2 −3.141145 −3.148+0.087
−0.079 2.907859 2.907+0.002

−0.001 −1.591595 −1.613+0.029
−0.033

c0,3 1.636377 1.640+0.034
−0.037 −0.964407 −0.964+0.001

−0.001 0.938987 0.948+0.014
−0.012

c1,0 −2.238461 −2.235+0.005
−0.006 −2.250169 −2.253+0.003

−0.003 −2.265230 −2.263+0.003
−0.003

c1,1 −2.291933 −2.307+0.134
−0.124 8.425183 8.423+0.005

−0.008 0.058508 0.022+0.045
−0.054

c1,2 7.695570 7.718+0.188
−0.208 −9.852886 −9.844+0.021

−0.007 3.772084 3.828+0.082
−0.071

c1,3 −3.458474 −3.470+0.082
−0.072 3.660289 3.655+0.004

−0.011 −1.852247 −1.874+0.030
−0.031

c2,0 1.581677 1.575+0.011
−0.009 1.611393 1.616+0.005

−0.006 1.624332 1.621+0.005
−0.005

c2,1 2.662938 2.682+0.115
−0.124 −7.869432 −7.867+0.013

−0.008 0.533096 0.569+0.050
−0.043

c2,2 −6.256090 −6.281+0.170
−0.157 9.999751 9.988+0.011

−0.032 −3.007197 −3.056+0.061
−0.067

c2,3 2.494264 2.506+0.055
−0.060 −3.737205 −3.731+0.014

−0.005 1.285026 1.303+0.024
−0.023

c3,0 −0.341455 −0.338+0.004
−0.005 −0.359285 −0.361+0.002

−0.002 −0.357651 −0.356+0.002
−0.002

c3,1 −0.930069 −0.937+0.037
−0.034 2.392321 2.391+0.003

−0.005 −0.300599 −0.311+0.012
−0.015

c3,2 1.688288 1.697+0.042
−0.046 −3.154979 −3.151+0.012

−0.005 0.810387 0.824+0.018
−0.017

c3,3 −0.612643 −0.616+0.015
−0.014 1.129776 1.128+0.002

−0.005 −0.314715 −0.320+0.006
−0.006
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TABLE IV. Numerical results for the coefficients of the QNM inverse damping time, using as a template the rational expression
considered in Eq. (6) with Nmax = 3. The first column of each mode reports the maximum of the posterior, while the second
reports median and 90% CL from the full probability distribution. For applications in which a single point estimate is used,
the maximum of the posterior yields a more faithful representation of the numerical data. The Schwarzschild value is given
by: Y0 = {0.08896232, 0.27391488, 0.09270305} for the (`,m, n) = {(2, 2, 0), (2, 2, 1), (3, 3, 0)} modes respectively, while b0,0 =
c0,0 = 1 by definition.

τ−1

(`,m, n) (2, 2, 0) (2, 2, 1) (3, 3, 0)

maxP Prob maxP Prob maxP Prob

b0,1 −2.721789 −2.723+0.016
−0.014 −3.074983 −3.073+0.005

−0.005 −2.813977 −2.817+0.018
−0.017

b0,2 2.472860 2.476+0.028
−0.031 3.182195 3.179+0.009

−0.009 2.666759 2.672+0.033
−0.033

b0,3 −0.750015 −0.752+0.015
−0.014 −1.105297 −1.103+0.005

−0.004 −0.850618 −0.853+0.016
−0.017

b1,0 −2.533958 −2.519+0.024
−0.022 0.366066 0.343+0.046

−0.048 −2.163575 −2.161+0.035
−0.035

b1,1 7.181110 7.173+0.062
−0.061 4.296285 4.328+0.067

−0.065 6.934304 6.969+0.095
−0.093

b1,2 −6.870324 −6.898+0.099
−0.109 −9.700146 −9.696+0.011

−0.012 −7.425335 −7.499+0.147
−0.160

b1,3 2.214689 2.236+0.053
−0.049 5.016955 5.004+0.026

−0.027 2.640936 2.679+0.077
−0.072

b2,0 2.102750 2.075+0.043
−0.047 −3.290350 −3.247+0.091

−0.088 1.405496 1.401+0.068
−0.067

b2,1 −6.317887 −6.300+0.092
−0.093 −0.844265 −0.904+0.119

−0.123 −5.678573 −5.739+0.149
−0.157

b2,2 6.206452 6.249+0.126
−0.117 9.999863 9.999+0.001

−0.002 6.621826 6.739+0.226
−0.204

b2,3 −1.980749 −2.007+0.052
−0.062 −5.818349 −5.802+0.034

−0.031 −2.345713 −2.401+0.092
−0.101

b3,0 −0.568636 −0.555+0.022
−0.021 1.927196 1.906+0.041

−0.043 −0.241561 −0.240+0.033
−0.032

b3,1 1.857404 1.851+0.040
−0.041 −0.401520 −0.376+0.054

−0.052 1.555843 1.584+0.072
−0.068

b3,2 −1.820547 −1.836+0.047
−0.050 −3.537667 −3.537+0.003

−0.003 −1.890365 −1.942+0.085
−0.087

b3,3 0.554722 0.564+0.021
−0.018 2.077991 2.072+0.012

−0.013 0.637480 0.659+0.035
−0.032

c0,1 −2.732346 −2.734+0.016
−0.014 −3.079686 −3.078+0.005

−0.005 −2.820763 −2.823+0.017
−0.016

c0,2 2.495049 2.498+0.027
−0.029 3.191889 3.188+0.009

−0.009 2.680557 2.686+0.031
−0.033

c0,3 −0.761581 −0.763+0.014
−0.013 −1.110140 −1.108+0.004

−0.004 −0.857462 −0.860+0.016
−0.016

c1,0 −2.498341 −2.484+0.024
−0.022 0.388928 0.366+0.046

−0.048 −2.130446 −2.128+0.035
−0.035

c1,1 7.089542 7.080+0.062
−0.060 4.159242 4.192+0.068

−0.066 6.825101 6.858+0.095
−0.091

c1,2 −6.781334 −6.807+0.096
−0.104 −9.474149 −9.472+0.010

−0.010 −7.291058 −7.361+0.142
−0.157

c1,3 2.181880 2.201+0.051
−0.046 4.904881 4.893+0.024

−0.025 2.583282 2.619+0.074
−0.070

c2,0 2.056918 2.030+0.041
−0.045 −3.119527 −3.077+0.087

−0.085 1.394144 1.390+0.065
−0.065

c2,1 −6.149334 −6.132+0.090
−0.089 −0.914668 −0.974+0.117

−0.119 −5.533669 −5.589+0.143
−0.151

c2,2 6.010021 6.048+0.120
−0.113 9.767356 9.768+0.005

−0.005 6.393699 6.504+0.213
−0.193

c2,3 −1.909275 −1.933+0.050
−0.058 −5.690517 −5.676+0.033

−0.030 −2.254239 −2.306+0.087
−0.097

c3,0 −0.557557 −0.545+0.021
−0.020 1.746957 1.728+0.038

−0.040 −0.261229 −0.260+0.030
−0.030

c3,1 1.786783 1.780+0.038
−0.039 −0.240680 −0.216+0.049

−0.050 1.517744 1.543+0.067
−0.064

c3,2 −1.734461 −1.749+0.046
−0.047 −3.505359 −3.505+0.004

−0.004 −1.810579 −1.857+0.079
−0.081

c3,3 0.524997 0.533+0.018
−0.018 2.049254 2.044+0.011

−0.013 0.608393 0.628+0.034
−0.030
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[56] Ó. J. C. Dias, M. Godazgar, and J. E. Santos, Phys.
Rev. Lett. 114, 151101 (2015), arXiv:1501.04625 [gr-qc].

[57] H.-T. Wang, S.-P. Tang, P.-C. Li, and Y.-Z. Fan, (2021),
arXiv:2104.07594 [gr-qc].

[58] G. Bozzola and V. Paschalidis, Phys. Rev. D 104, 044004
(2021), arXiv:2104.06978 [gr-qc].

[59] O. J. C. Dias, M. Godazgar, J. E. Santos, G. Carullo,
W. Del Pozzo, and D. Laghi, (2021), arXiv:2109.13949
[gr-qc].
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[68] Ó. J. C. Dias, J. E. Santos, and B. Way, Classical
Quantum Gravity 33, 133001 (2016), arXiv:1510.02804
[hep-th].

[69] M. Zilhão, V. Cardoso, C. Herdeiro, L. Lehner,
and U. Sperhake, Phys. Rev. D 90, 124088 (2014),
arXiv:1410.0694 [gr-qc].

[70] E. Leaver, Proc. R. Soc. A 402, 285 (1985).
[71] M. Giesler, M. Isi, M. A. Scheel, and S. Teukolsky, Phys.

Rev. X 9, 041060 (2019), arXiv:1903.08284 [gr-qc].
[72] E. T. Jaynes, Probability Theory: The Logic of Science

(Cambridge University Press, Cambridge, UK, 2003).
[73] J. Skilling, Bayesian Anal. 1, 833 (2006).
[74] W. Del Pozzo and J. Veitch, “CPNest: an efficient

python parallelizable nested sampling algorithm,” https:

//github.com/johnveitch/cpnest (2015).
[75] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,

064030 (2006), arXiv:gr-qc/0512160 [gr-qc].
[76] A. Nagar et al., Phys. Rev. D 98, 104052 (2018),

arXiv:1806.01772 [gr-qc].
[77] L. London and E. Fauchon-Jones, Classical Quantum

Gravity 36, 235015 (2019), arXiv:1810.03550 [gr-qc].
[78] E. Berti, (2005), https://pages.jh.edu/~eberti2/

ringdown/.
[79] H.-T. Wang, P.-C. Li, J.-L. Jiang, G.-W. Yuan, Y.-M.

Hu, and Y.-Z. Fan, Eur. Phys. J. C 81, 769 (2021),
arXiv:2004.12421 [gr-qc].

[80] Ø. Christiansen, J. Beltrán Jiménez, and D. F.
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