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Searches for gravitational-wave signals are often based on maximizing a detection statistic over a
bank of waveform templates, covering a given parameter space with a variable level of correlation.
Results are often evaluated using a noise-hypothesis test, where the background is characterized by
the sampling distribution of the loudest template. In the context of continuous gravitational-wave
searches, properly describing said distribution is an open problem: current approaches focus on a
particular detection statistic and neglect template-bank correlations. We introduce a new approach
using extreme value theory to describe the distribution of the loudest template’s detection statistic
in an arbitrary template bank. Our new proposal automatically generalizes to a wider class of
detection statistics, including (but not limited to) line-robust statistics and transient continuous-
wave signal hypotheses, and improves the estimation of the expected maximum detection statistic at
a negligible computing cost. The performance of our proposal is demonstrated on simulated data as
well as by applying it to different kinds of (transient) continuous-wave searches using O2 Advanced
LIGO data. We release an accompanying Python software package, distromax, implementing our
new developments.

I. INTRODUCTION

The search for gravitational-wave (GW) signals can
be formulated as a multi-hypothesis test between
a background-noise hypothesis and a set of signal
hypotheses, each asserting the presence of a signal
with a specific set of parameters [1]. Actual search
implementations, however, usually split this process into
three stages: a detection stage, which simply assesses
the presence of a feature in the datastream unlikely to be
caused by noise (null-hypothesis test); a validation stage,
in which candidates are sieved through a set of vetoes
to discard any instrumental causes; and a parameter-
estimation stage, in which a proper Bayesian hypothesis
test is carried out to infer the actual parameters of
any detected signal. This division is motivated by the
increasing computing cost of each stage [2, 3], as a simple
null-hypothesis test (usually assuming Gaussian noise)
is orders of magnitude more affordable than a single
parameter-estimation stage.

The standard detection stage consists in performing
a finite number of detection statistic evaluations
over the parameter-space region of interest, usually
using matched-filtering against a bank of waveform
templates [2, 4–11]. Loud templates, i.e. those scoring a
high detection statistic, are deemed “signal candidates”
and selected for the validation stage. The detection
statistic can be usually interpreted as a Bayes factor,
assessing the preference of the data for a particular signal
hypothesis (represented by the template at hand) versus
the background-noise hypothesis. Thus, the detection
stage is a multi-hypothesis test in disguise in which
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parameter-space marginalization has been approximated
to zeroth-order by maximization [12].

Loudest candidates from a template bank fall generally
into one of two categories: The strongest excursions away
from the background, such as an instrumental feature [13,
14] or a very clear GW signal (such as GW150914 [15]),
are usually comparatively simple to deal with, as
strong candidates tend to show characteristic signatures
according to their cause. But weaker outliers that are
in principle compatible with both a weak signal or an
extreme event of the general noise background require a
more careful analysis.

While much of the statistical framework used in
this work is generally applicable, we mainly focus
on the search for continuous gravitational-wave signals
(CWs) [16], produced by long-standing quadrupolar
deformations, such as in the case of non-axisymmetric
spinning neutron stars (NS) [17]. From the point of
view of the current generation of advanced detectors
(Advanced LIGO [18], Advanced Virgo [19], and
KAGRA [20]), they belong in the weak-signal regime,
meaning they are expected to blend into the background
distribution. Characterizing the expected distribution
of extreme background candidates is, thus, a simple
approach to identify interesting outliers in a search and
quantify their significance.

Pioneering work on describing the distribution of
the loudest candidate from a CW search using the F-
statistic [21, 22] was presented in [23] and later extended
in [24, 25]. Despite its wide applicability in the CW
literature (see e.g. [26–32]), basic assumptions of the
method make it insufficient for realistic template banks
with a certain degree of correlation between neighbouring
templates [33]. Latest developments on the subject
used extreme value theory (EVT) to propose a suitable
ansatz to circumvent the problems posed by template-
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bank correlations [34]; but the concrete method requires
re-evaluating full template banks many times (similar
in spirit to that in [24]) and is thus computationally
unsuitable for wide parameter-space searches.

This work proposes distromax, a new method to
describe the distribution of the loudest candidate
stemming from a generic GW search. The method
generalizes with respect to previous approaches presented
in [23, 25] in two main aspects. First, the method is
robust to typical degrees of template-bank correlations
arising either due to the overlap of nearby templates or
mild non-Gaussianities in the data. Second, the method
is applicable to a wider class of detection statistics,
including other F-statistic-based detection statistics such
as line-robust statistics [35, 36] or transient CW search
statistics [37], as well as detection statistics from other
search approaches. An implementation of distromax is
publicly available as a homonymous Python package [38].

The paper is structured as follows: Section II
introduces basic data-analysis tools for CW searches
and discusses the origin of parameter-space correlations.
Section III describes the quantitative effect of parameter-
space correlations on the distribution of the loudest
candidate, comparing standard approaches in the field
to extreme value theory results. Section IV introduces
distromax to estimate the distribution of the loudest
outlier of a search and discusses its basic phenomenology
on synthetic data. In Section V, we apply distromax to
the results of a search on O2 Advanced LIGO data for
(transient) CW signals. Appendix A collects basic results
in extreme value theory and provides further references
for the interested reader. Appendix B proposes a simple
method to deal with narrow-band noise disturbances,
common in realistic CW searches. The robustness
of distromax to the presence of weak CW signals is
discussed in Appendix C.

II. CONTINUOUS WAVE SEARCHES

In this section, we revisit the basics of CW searches
to frame our discussion of distromax. Section IIA
reintroduces the F-statistic and explicitly constructs its
distribution under the noise hypothesis; Sec. II B uses the
explicit construction to discuss the two possible origins of
parameter-space correlations affecting a template bank;
Sec. II C completes the analysis deriving the standard
result for the distribution of the F-statistic under the
signal hypothesis.

The response of a ground-based GW detector to a
passing CW or long-duration CW-like transient (tCW)
is given by the linear combination of four linear filters
[21, 37]

s(t;A, λ, T ) = w(t; T )

3∑
µ=0

Aµ hµ(t;λ) , (1)

where A represents the source’s amplitude parameters,
namely GW amplitude h0, inclination angle ι,

polarization angle ψ, and initial phase φ0, which can
be combined into the so-called JKS decomposition
{Aµ, µ = 0, 1, 2, 3}; and λ describes the phase-evolution
parameters, namely the GW frequency and spindown
{f0, f1, f2, . . . }, the sky position ~n, and possibly binary
orbital parameters if the source orbits a companion.
The time-dependent quadratures hµ(t;λ) encompass the
detector’s antenna pattern effects on the signal. The
window function w(t; T ) is a time-dependent amplitude
modulation parameterized by the transient parameters
T to account for tCW signals [37]. The standard CW
signal model is recovered for w(t; T ) = 1 ∀t.

Given a datastream x, the detection problem consists
in deciding between the background noise hypothesisHN,
under which the data stream contains only Gaussian
noise x = n, and the signal hypothesis HS, according
to which there is a (t)CW signal with a defined set
of parameters x = n + s(λ,A, T ). Further hypotheses
accounting for different non-Gaussian populations, such
as narrow instrumental artifacts in the data [13], can
be also included in the analysis [35, 36], although the
usual approach is to apply post-processing veto strategies
targeting specific types of disturbances [28, 39–41].

A. F-statistic under the noise hypothesis

A basic tool to conduct CW searches is the F-statistic,
first introduced in [21, 22] as a maximum-likelihood
estimator with respect to amplitude parameters A, and
later re-introduced in a Bayesian context [12, 42–44]. The
basic idea is to exploit the linear dependency of Eq. (1)
on A to analytically marginalize the matched-filtering
likelihood using a suitable set of priors. The result can
be readily expressed as a quadratic form [45]

2F(λ) =

3∑
µ,ν=0

xµ(λ)M−1µν (λ) xν(λ) , (2)

where xµ are the projections of the data stream x onto
the four quadrature functions

xµ(λ) = 〈hµ(λ), x〉 (3)

and M−1(λ) is the inverse Gram matrix associated to
the four quadrature functions

Mµν(λ) = 〈hµ(λ), hν(λ)〉 . (4)

The functional scalar product [46]

〈x, y〉 = 4 R

∫ ∞
0

df
x(f) y∗(f)

Sn(f)
(5)

accounts for the presence of correlated noise in the data
stream through the single-sided power spectral density
(PSD) Sn. Current implementations of Eq. (5) make use
of the so called F-statistic atoms [45], evaluated over
individual Short Fourier Transforms (SFTs) of the data.
These could be simply described as a set of complex-
valued spectrograms (from now on atomic spectrograms)
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containing both phase and amplitude information, whose
proper combination results in an efficient computation of
Eq. (2).

Under the noise hypothesis HN, the data stream is
composed of zero-mean Gaussian noise and Eq. (3)
implies the four projections {nµ(λ)} are drawn from
a 4-dimensional Gaussian distribution with covariance
matrixM(λ). Hence,

{nµ(λ)} ∼ Gauss(0,M(λ)) , (6)

and nµ(λ) values can be constructed as a linear
combination of four zero-mean unit-variance Gaussian
random variables

nµ(λ) =

3∑
ν=0

Lµν(λ)gν [λ] , (7)

where gν [λ] ∼ Gauss(0, 1) and L is a 4 × 4 matrix such
that LLT =M (e.g. Cholesky decomposition). Here the
square brackets indicate that Gaussian numbers are to
be drawn independently for each template λ, but their
distribution does not depend on λ; as opposed to round
brackets, which represent deterministic relations.

Introducing these results into Eq. (2),

2F(λ) =

3∑
µ=0

gν [λ]2 , (8)

we obtain 2F(λ) as the Euclidean norm of a
4-dimensional Gaussian vector. Consequently, the
probability distribution associated to 2F under the noise
hypothesis HN for a fixed template λ is given by a χ2

distribution with four degrees of freedom

p(2F|HN) = χ2
4(2F) . (9)

B. Template-bank correlations

The statistical properties of the right-hand side of
Eq. (14) are independent of the specific phase-evolution
template λ under consideration. This suggests that
evaluating 2F over a template bank using a single
noise realization could, under suitable conditions, be
equivalent to evaluating 2F for a single template over
an ensemble of noise realizations.

Gaussian vectors {gν [λ]} are constructed from a noise
stream as follows:

gν [λ] =

3∑
ν=0

L−1νµ (λ) 〈hµ(λ), n〉 . (10)

The noise stream is projected onto four different
deterministic functions of λ, {hµ(λ)}, and combined
using a set of weights L−1νµ (λ), also dependent on
λ. Such a projection is a weighted average of the
atomic spectrogram bins visited by the frequency-
evolution track associated to λ. Since the atomic

spectrograms are constructed using finite time and
frequency resolutions, the number of independent
Gaussian vectors constructable out of them is equivalent
to the number of templates with non-overlapping
frequency tracks over the spectrograms (i.e. crossing
different spectrogram bins). This result was stated in a
simpler fashion in [23] by arguing that the typical number
of bins in a narrow-banded atomic spectrogram is orders
of magnitude smaller than the number of templates in a
typical CW search crossing said spectrogram.

As discussed in [47], the average dissimilarity in
frequency-evolution tracks of nearby parameter-space
points is related to the fractional loss in detection
statistic, usually referred to as mismatch [48]

m = 1− 2F(λ+ ∆λ)

2F(λ)
'
∑
i,j

∆λi∆λjgij+O(∆λ3) , (11)

where ∆λi represents an offset in an arbitrary parameter-
space dimension and gij is the parameter-space metric
[48–53]. In the context of a grid-based CW search, the
parameter-space metric can be employed to set up a
template bank at a pre-specified maximum mismatch
value [7, 54, 55]: the higher the mismatch, the
coarser the template bank. An ensemble of templates
with non-overlapping frequency-evolution tracks, then,
corresponds to a coarse-enough template bank in the
sense of large parameter-space mismatch.

In a real search, template banks tend to be set up
using a moderate mismatch (e. g. m ∼ 0.2) in order to
produce dense-enough parameter-space coverings [7]. A
first kind of template-bank correlation arises, then, as a
result of the template-bank construction strategy. Latest
developments on the subject [10, 53, 55, 56], however,
suggest higher mismatch values (m ∼ 1) could actually
be compatible with a successful CW search, potentially
suppressing the effect of these correlations.

A second kind of template-bank correlations, briefly
discussed in [34], arises due to non-Gaussianities in the
data (e.g. narrow instrumental features [13] or transient
“pizza-slice” disturbances [29, 36, 57]). In this case, it
is not a matter of re-using the same data on different
templates; rather, a region of a priori independent
spectrogram bins gets correlated due to the presence
of a strong disturbance. As a result, non-overlapping
templates crossing said correlated spectrogram region
become correlated as well.

This same formalism applies to the search for tCWs, as
the standard strategy in such cases is either to maximize
or marginalize out any dependency on the transient
parameters [37], obtaining in the end a detection statistic
over an equivalent template bank to that of CW
searches. Discussion on specific tCW detection statistics
is postponed to Sec. V.

The presence of correlations in a template bank, thus,
is a generic property of (t)CW searches, and their
effects on any newly proposed method should be properly
understood before attempting to interpret results on a
real setup.
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C. F-statistic under the signal hypothesis

We conclude this summary of standard CW search
methods by considering the distribution of the F-statistic
when there is a signal in the data. To derive its
probability distribution under the signal hypothesis HS,
we simply apply n = x− s(λ,A) and repeat the same
reasoning up to Eq. (7), obtaining

xµ(λ) =

3∑
ν=0

Lµν(λ) (gν [λ] +mν(λ,A)) , (12)

where

mν(λ,A) =

3∑
κ=0

L−1νκ (λ)sκ(λ,A) (13)

and, consequently, gν [λ]+mν(λ,A) is a Gaussian random
number with mean mν and unit variance.

Introducing these results in Eq. (2),

2F(λ) =

3∑
ν=0

(gν [λ] +mν(λ,A))
2
, (14)

the 2F under the signal hypothesis corresponds to the
norm of a four-dimensional uncorrelated Gaussian vector
with identity covariance matrix and mean vector equal to
{mν(λ,A)}. The probability distribution is, as a result,
a non-central chi-squared distribution with four degrees
of freedom

p(2F|ρ2HS) = χ2
4(2F ; ρ2) , (15)

where the non-centrality parameter ρ2 is defined as

ρ2 =

3∑
ν=0

m2
ν =

3∑
µ,ν=0

AµMµνAν = 〈s, s〉 . (16)

This quantity is referred to as the (squared) signal-
to-noise ratio (SNR) in the literature. Concretely, ρ2
is the maximum attainable SNR corresponding to the
case where signal parameters are perfectly matched by a
phase-evolution template [45].

III. LOUDEST CANDIDATES,
THE “EFFECTIVE NUMBER OF TEMPLATES”,

AND EXTREME VALUE THEORY

The standard problem of estimating the distribution
of the loudest candidate in a search is posed as follows:
Let ξ = {ξi, i = 1, . . . ,N} be a set of detection statistic
values obtained by evaluating a template bank with
N templates in a noise-only data stream. Let f be
the probability distribution of such a detection statistic
under the noise hypothesis. Describe the probability
distribution of the loudest candidate maxi=1,...,N ξi.

We can easily construct said distribution using the
joint cumulative density function (CDF) of the entire
template bank

P(max
i
ξi ≤ ξ∗|N ) = P (ξ1 ≤ ξ∗ and . . . and ξN ≤ ξ∗) .

(17)
For the case of an uncorrelated template bank, each
template is independent and the joint CDF factors into
the product of individual CDFs:

P(max
i
ξi ≤ ξ∗|N ) =

N∏
i=1

P(ξi ≤ ξ∗) =

[∫ ξ∗

dξf(ξ)

]N
.

(18)
Consequently, the probability density function associated
to ξ∗ = maxi=1,...,N ξi is simply

p(ξ∗|N ) = N f(ξ∗)

[∫ ξ∗

dξf(ξ)

]N−1
. (19)

Template-bank correlations imply that we sample
fewer independent combinations of the data than with
an uncorrelated bank of the same N . In other
words, they reduce the “trials factor” of a search,
diminishing the expected detection statistic of the loudest
candidate in a similar fashion to evaluating a smaller
template bank. Given a fixed false-alarm probability,
neglecting template-bank correlations and naively using
Eq. (19) would overestimate the corresponding threshold,
potentially leading to missing interesting candidates.

Extensive analyses in [23, 58] concluded the effect
of template-bank correlations on Eq. (19) could be
reproduced to an acceptable level by adjusting N to
the “effective number of templates” in the template
bank at hand. Although in some cases an empirical
estimate was possible [26], most applications obtained
an effective number N ′ via numerical fits to search
results [24, 27, 28, 30–32]. Further studies on this topic
[33], however, exposed a systematic discrepancy between
the family of distributions spanned by Eq. (19) and
the actual distributions obtained due to template-bank
correlations.

An example of this discrepancy is illustrated in Fig. 1.
We evaluated a template bank containing 2.23× 106

CW templates over frequency and spindown parameters
(f0, f1) with a realistic mismatch of m = 0.2 on 7 days
of simulated Gaussian noise. We grouped the resulting
2F-statistic values into batches containing 223 templates
each, from which the loudest 2F-statistic value was
retrieved. The effect of parameter-space correlations was
tested by either grouping templates within contiguous
5 mHz frequency bands or pooling an equivalent number
of templates after randomly shuffling the results.

Shuffling the results before retrieving the loudest value
tends to break any contribution from parameter-space
correlations, as nearby templates are likely to end up
in different batches. The resulting distribution can be
properly fitted assuming an uncorrelated template bank.
The apparent mismatch between the obtained effective
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FIG. 1. Distribution of the loudest 2F values produced by
the evaluation of a template bank on a Gaussian-noise data
stream lasting for 7 days. The template bank was set up
using the gridType=8 option of ComputeFstatistic_v2 [59]
with mismatch m = 0.2, f0 = 49.5 Hz and f1 = −10 anoHz/s
covering bands of ∆f0 = 0.22 Hz and ∆f1 = 45 pHz/s. The
sky position was fixed to a fiducial value (α, δ) = (0, 0)
in equatorial coordinates. Loudest values were obtained by
selecting the loudest 2F over different segmentations of the
template bank. The upper panel corresponds to selecting the
loudest value within every 5 mHz subband. The lower panel
corresponds to shuffling the results and taking the loudest
values from batches of the same size as the subbands. The
stepped line is the histogram of the data; the dashed line is
the best fit value N ′ for N in Eq. (19); and the solid line is
the best fit of a Gumbel distribution.

number of templates N ′ = 218 and the actual number
of independent templates N = 223 is consistent with the
basic claim in [26] about the robustness of Eq. (19) with
respect to small changes in N .

Grouping contiguous frequency bins, on the other
hand, produces a distribution out of the scope of Eq. (19).
This was understood in [34] using extreme value theory
(EVT).1 In the limit of N →∞, Eq. (19) converges to a
max-stable distribution [62–66], whose functional form is
determined by the behaviour of the tail of the distribution

1 We acknowledge previous attempts to apply EVT to the search
for CWs [60, 61]. Ref. [34] is the first work presenting a practical
application of an EVT result improving over previous methods.

f of the detection statistic. We are primarily interested in
the cases when f is a χ2, Γ or Gaussian distribution, for
all of which p(ξ∗|N ) converges to a Gumbel distribution

Gumbel(x;µ, σ) =
1

σ
exp

[
−
(
x− µ
σ

)
− e−( x−µσ )

]
(20)

where µ and σ refer to the location and scale parameters,
respectively. Analytical expressions for µ(N ) and σ(N )
for different distributions f are widely available in the
literature [66–68]. As discussed in Sec. II, the individual
2F follow a χ2

4 distribution on Gaussian noise; the
scale parameter of the associated Gumbel distribution is,
consequently, fixed to σ = 2 regardless of the value of N
[68]. Naively fitting Eq. (19) corresponds then to simply
adjusting the location of the Gumbel distribution’s peak,
as clearly seen in the top panel of Fig. 1. The apparent
mismatch is resolved if one instead tries to fit both the
location and scale parameters of the Gumbel distribution
to the data.

This solution can be directly applied to
computationally cheap searches, such as narrow-
band searches [69, 70], directed searches using the
Viterbi method [71–73], or the follow-up of particular
outliers [34], using the “off-sourcing” method [74]. The
basic idea is that evaluating the same template bank
while shifting the sky position away from the outlier will
sample a subset of templates uncorrelated to the outlier
but with a consistent noise background. Each off-sourced
template bank is thus equivalent to a different noise
realization. To describe the distribution of the loudest
outlier, then, it suffices to evaluate 102 − 103 off-sourced
template banks retrieving the loudest outlier of each. A
Gumbel distribution can then be fitted to the resulting
distribution [34].

Figure 2 exemplifies this procedure using a template
bank constructed by MCMC sampling as implemented
in PyFstat [75, 76]. The template bank, containing
2.5 × 105 highly correlated templates across frequency,
spindown and sky positions, was shifted to 600 different
sky positions excluding a 90◦ wedge around the outlier’s
position. The resulting distribution is well described by
a Gumbel distribution, with parameters fitted using a
standard maximum-likelihood estimation.

Extreme value theory thus allows directly tackling the
actual problem posed at the start of this section, namely
estimating the distribution of the loudest candidate
under the noise hypothesis. The “effective number of
independent templates” does not play any major role,
as the parameters being fitted are the location and scale
of a well-described probability distribution.

IV. HOW TO ESTIMATE THE DISTRIBUTION
OF THE LOUDEST OUTLIER: AN EMPIRICAL

APPROACH

Estimating the loudest candidate’s distribution
typically entails fitting an ansatz to a set of samples
generated using a numerical procedure. As briefly
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FIG. 2. Distribution of the loudest 2F of a template bank
obtained using 600 off-sourcing evaluations. The template
bank corresponds to MCMC samples from a fully-coherent
follow-up of a simulated signal in Gaussian noise, in a similar
manner to Fig. 1 in [34]. Each histogram entry corresponds to
the loudest 2F retrieved from the template bank evaluated at
a different right ascension. The solid line represents the fit of a
Gumbel distribution using scipy.stats.gumbel_r.fit [77].

demonstrated in Sec. III, EVT provides sensible ansätze
for this purpose; generating samples, however, quickly
becomes a burden for wide parameter-space searches,
as template banks are orders of magnitude larger. In
such cases, the distribution of the loudest outlier can be
estimated using the search results themselves as a proxy
for background samples [23–25].

In this section, we combine the EVT ansatz described
in Sec. III [Eq. (20)] with the proposal from [25]. Our
new generalized method, distromax, covers any sort
of detection statistic whose noise-hypothesis distribution
falls into one of the three possible max-stable domains of
attraction, i.e. not only the standard F-statistic, but
also “line-robust” statistics [35, 36], generalizations of
the F-statistic to look for tCW [37]. Other detection
statistics used in the CW literature [16], such as Hough
number-count [78–82], cross-correlation [83], or power-
based statistics [84–86], could potentially benefit from
distromax as well.

A. Basic formulation

We are interested in describing p(ξ∗|HN) solely using
the available detection statistic samples from the search
ξ, that is, without any further evaluation of the template
bank (e.g. off-sourcing). Following the argument in
Sec. III, the evaluation of a detection statistic over a
generic template bank can be interpreted as equivalent
to the evaluation of said detection statistic over different
realizations of noise with a certain (and unknown) degree
of correlation. If correlations were negligible, a direct
application of Eq. (19) would give us the desired answer.

The key realization of [23, 25] is that the loudest
outlier from a template bank ξ∗ can be obtained in two
steps: estimate the distirbution of the loudest candidate

of a smaller template bank, then extrapolate such
distribution to account for the template bank reduction.
Dividing the initial template bank into smaller subsets
makes multiple loudest candidates available to properly
fit a distribution.

For the first step, one splits the dataset ξ, containing
N (possibly correlated) values, into B batches, each of
them with n = N/B elements. This partition can be
done such that each batch contains a similar subset of
the overall population so that the per-batch maxima
(batchmax samples) {ξ∗b , b = 1, . . . , B} are independent
draws from the same unknown distribution: ξ∗b ∼ pn. If
we choose a sufficiently high number of batches B, the
batchmax distribution pn can be obtained by fitting a
suitable ansatz to the data.

As the second step, the overall loudest value ξ∗ is then

ξ∗ = max
b=1,...,B

ξ∗b , (21)

which corresponds to the loudest of B pn-distributed
random variables. This operation was already
described in Eq. (19), which here we recast as an
operator in the space of probability distributions for
later convenience: given a probability distribution f ,
MaxPropBf corresponds to the distribution of the
loudest candidate over a set of B independent samples
of f :

MaxPropBf(x) = Bf(x)

[∫ x

dx′f(x′)

]B−1
. (22)

The distribution of the overall loudest value ξ∗ is then
simply2

p(ξ∗|HN) = MaxPropBpn(ξ∗) . (23)

The initial proposal in [25] described the batchmax
distribution pn using a Gaussian Kernel Density
Estimation (KDE) over the set of batchmax samples
{ξ∗b }. Eq. (23) was then implemented as a numerical
integration. The final decision threshold was based on
the support of the resulting distribution.

We find that the use of Gaussian KDEs introduces
inaccuracies into the estimation of p(ξ∗|HN). The
reason is twofold. First, KDEs are prone to overfitting
histogram artifacts which arise due to finite sample sizes.
This is illustrated in the upper panel of Fig. 3. As a
result, the propagated distribution in this case displays
an unintended bimodality, as shown in the lower panel
of Fig. 3. Second, for the detection statistics we consider
here, the batchmax distribution falls off exponentially
(see Appendix A), at a much slower pace than a Gaussian
tail. This tends to cause MaxPropB to underestimate

2 Note that [23], inserting an empirical histogram as the f in
Eq. (22) (to account for a bias due to implementation details in
the F-statistic, see also Sec. V), constitutes an earlier application
of this principle.
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FIG. 3. Upper panel: KDE fit to a set of B = 104 samples
drawn from the theoretical Gumbel distribution [68] of the
loudest sample out of an ensemble of n = 104 χ2

4 random
variables. The stepped line corresponds to the histogram of
samples. The blue dashed line corresponds to the Gaussian
KDE. The red solid line corresponds to the theoretical
distribution. Lower panel: Application of the numerical
MaxPropB operator with B = 104 to the KDE computed
from the upper panel (blue dashed line). We compare the
result to the theoretical distribution of the maximum sample
over N = n×B = 108 χ2

4 samples (red solid line). Shaded
regions correspond to the 68%, 95%, and 99% probability
intervals. KDE bandwidths are estimated using the default
method (“scott”) implemented in [77].

the variance of the resulting distribution, as shown in
the lower panel of Fig. 3.

Our main innovation with distromax is to propose
a cogent ansatz to circumvent the non-parametric
description of the batchmax distribution. Our specific
proposal, a max-stable distribution, corresponds to the
asymptotic behaviour of the batchmax distribution in
the limit of n → ∞. The max-stable property also
simplifies the MaxPropB operator into a simple algebraic
operation.

B. Introducing distromax

Batchmax samples in Eq. (21) are constructed so
that they correspond to independent and identically
distributed random variables from a certain underlying

distribution pn. In the case of a data stream free of loud
disturbances, this can be simply achieved by randomly
shuffling the results of a search before grouping them
into batches. (A discussion of the effects of shuffling
data with loud disturbances is deferred to Secs. IVE
and IVF and Appendix B.) The batchmax distribution
then corresponds to that of the loudest candidate over
n templates, which, as discussed in Sec. III, tends to a
Gumbel distribution as n → ∞. Hence, we propose the
following ansatz for the batchmax distribution:

pn(x) = Gumbel(x;µn, σn) , (24)

where µn, σn are obtained by direct fit to the batchmax
samples. This choice is similar to that of [87], which
directly fitted an exponential tail (upper tail of a Gumbel
distribution) to the batchmax distribution.

EVT distributions, such as Gumbel, are max-stable
distributions: the distribution of the loudest outlier from
a set of EVT distributions is itself an EVT distribution of
the same kind, albeit with different parameter values. As
a result, the MaxProp operator can be re-expressed in a
closed form in terms of the location and scale parameters
of the distribution. Concretely, it is straightforward to
show that

MaxPropBGumbel(x;µn, σn) = Gumbel(x;µ∗, σ∗)
(25)

where

µ∗ = µn + σn lnB , (26)

σ∗ = σn . (27)

Thus, the target distribution is readily obtainable
through a simple algebraic calculation after perfoming
a fit to the batch-max samples:

p(ξ∗|HN) = Gumbel(ξ∗;µ∗, σ∗) . (28)

Summarizing, distromax exploits the max-stability
of the Gumbel distribution to estimate the distribution
of the loudest candidate of a search, p(ξ∗|HN). To
do so, search results are shuffled into B disjoint
batches from which the loudest candidates are retrieved.
These B batchmax candidates, by construction, can be
interpreted as draws from an EVT distribution pn whose
parameters can be estimated using a standard maximum-
likelihood fit such as scipy.rv_continuous.fit [77].

In broad terms, the batch size n determines how close
the batchmax distribution is to an EVT one, whereas
the number of batches B determines how sharply the
parameters of pn can be determined. Real searches
usually contain a fixed number of templates N = nB,
meaning a trade-off is required: On the one hand,
choosing a large n (hence a small B) produces a small
number of samples, each well consistent with an EVT
distribution, but increases the variance of the pn fit. On
the other hand, a large B (hence a small n) produces a
big number of samples drawn from a distribution which
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FIG. 4. CDF comparison between the ground truth Gumbel
distribution and the MaxProp Gumbel distributions using
different numbers of batches B. Each line corresponds to
a propagated Gumbel distribution obtained by drawing B
samples from the batchmax distribution (as discussed in the
main text), fitting a Gumbel distribution, and applying the
MaxProp operator. This procedure is repeated 500 times for
each of the 48 selected values of B between 10 and 106.

has not fully converged to an EVT distribution, meaning
the estimated parameters may be biased with respect
to the actual distribution. We devote the following
subsections to further discuss the role played by each of
these parameters.

C. The MaxProp operator

We now characterize the phenomenology of the
MaxProp operator on a Gumbel distribution, which
corresponds to the asymptotic distribution followed by
standard (t)CW detection statistics.

Let us consider a template bank with N = 106

templates. Given a batch size n, we model a batchmax
distribution as a Gumbel distribution with σn = 2
and µn = σn lnn. This is equivalent to considering a
detection statistic following a χ2

4 distribution which has
already converged to its corresponding EVT distribution,
preventing finite sample-size effects from polluting the
analysis. The ground truth distribution of the loudest
candidate from the template bank then corresponds
to the propagation of said Gumbel distribution over
B = 106/n batches, i.e. a Gumbel distribution with
σ = σn and µ = σ lnN .

Batch sizes B ∈ [1, 106] are analyzed by drawing B
batchmax samples from the aforementioned batchmax
distribution with n = 106/B; µn and σn are fitted
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FIG. 5. Relative difference in Gumbel parameters obtained
by the application of MaxProp using different numbers of
batches B. Each marker shows the average relative deviation
over 500 realizations, corresponding to the distributions
shown in Fig. 4. The upper envelope represents sample
standard deviation. Lower envelopes are omitted due to the
logarithmic scale.

using scipy.stats.gumbel_r.fit and propagated using
Eq. (25). The resulting CDF is compared against the
ground truth CDF, shown in Figure 4. The relative error
in the estimated location and scale parameters is shown
in Fig. 5.

As previously anticipated, a low number of batches
B . 103 results in a greater dispersion of the estimated
parameters. As the number of batches reach the
103 . B . 104 range, batchmax histograms become
more robust and relative parameter deviations achieve
sub-percent levels.

D. Characterizing the batchmax distribution

On the other hand, to test convergence of batchmax
distributions, we take as an example the case of a χ2

distribution with 4 degrees of freedom (Γ distribution
with shape parameter k = 2 and scale parameter θ = 2),
deferring to Appendix A other generic distributions and
further references. For a χ2

4 distribution, the limit n→∞
corresponds to a Gumbel distribution [66], as shown in
Fig. 6.

Given a set of random variables following a specific
distribution f , the convergence of the loudest draw
towards an EVT distribution is driven by the behaviour
of f ’s tail (tail-equivalence [66]). More specifically, the
role of the batch size n is related to how likely it is to
draw a sample within the tail of the distribution: the
higher the number of samples n, the more likely it is to
retrieve a value from the upper tail, hence the lower the
dependency on other details of the distribution’s shape.
Using a low batch size causes batchmax samples to be
dominated by the bulk instead of the tail, keeping the
resulting distribution from properly converging to an
EVT distribution.
χ2 random variables are non-negative, as they are
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FIG. 6. Batchmax distribution of an ensemble of n χ2
4 random

variables for different choices of n. Shaded regions represent
histograms of 104 batchmax values obtained by drawing
104×n values and retrieving the loudest out of each group of n.
Each solid line shows a direct fit of a Gumbel distribution to
the data using scipy.stats.rv_continuous.fit [77]. Each
dashed line represents the corresponding Gumbel distribution
using Eqs. (32) and (33) of [68], implemented in the
distromax package [38].

the sum of the squares of standard Gaussian random
variables. Gumbel distributions, on the other hand,
present a double exponential decay in their lower tail
[Eq. (20)]. Consequently, as shown in the case n = 1 in
Fig. 6, batchmax distributions with low n tend not to
follow a Gumbel distribution. As the number of samples
n increases, the effects due to the distribution’s bulk
become milder and we find a better agreement to the
expected distribution.

E. Parameter estimation accuracy
and comparison to previous approaches

Finally, we present a more realistic set of
results evaluating the F-statistic over an actual
template bank on 7 days of Gaussian noise using
ComputeFstatistic_v2 [59]. The template bank
is constructed using the gridType=8 option with
maximum mismatch m = 0.2, for a fixed sky position
(0, 0) in equatorial coordinates around f0 = 50 Hz and
f1 = −10−8 Hz/s, containing N ' 8 × 106 templates.
A ground truth distribution is numerically constructed
by evaluating this template bank on 900 realizations
of Gaussian noise and retrieving the loudest 2F value
from each. distromax is then applied to the individual
realizations in order to test its accuracy.

We compare two different batching approaches:
batching contiguous frequency bins and shuffling the
results into random batches. To produce comparable
results, the shuffled batches contain the same number
of templates n as each contiguous batch. The motivation
behind these two approaches is related to the potential
presence of correlated outliers in real detector data:
instrumental artifacts tend to affect relatively well-
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FIG. 7. Comparison of methods to estimate the distribution
of the loudest F-statistic outlier from a template bank. The
data stream and template bank are constructed as explained
in the main text. In this figure, theN ' 8× 106 templates are
grouped together by joining 25 consecutive frequency bins or
shuffled into B = 7236 batches with a batch size of n = 1105.
Red circles and orange triangles represent distromax results
with and without shuffling, while blue crosses and light blue
plus signs represent the results obtained using a Gaussian
KDE again with and without shuffling. Solid lines show the
mean and standard deviation of the ground truth distribution.
Dotted lines represent one, two and three standard deviations
with respect to the ground truth mean.

localized frequency bands [13]. Frequency-wise batching
could thus prevent very loud outliers from polluting a
high number of batches and overestimating the expected
loudest outlier. Not shuffling the template bank,
however, could require an increase in the batch size to
obtain proper convergence to a Gumbel distribution, but
then the reduced number of batches would imply an
increase in the variance of the estimate.

Results are shown in Figs. 7, 8, and 9 in terms of
the estimated mean and standard deviation from each
method against those of the ground-truth distribution.
We also compare to the original proposal of [25] by using
a Gaussian KDE to approximate pn in Eq. (24).

We start by discussing the performance of the Gaussian
KDE. The first significant feature is the lack in precision
of the estimated parameters, which are over-dispersed
regardless of the choice of B and n. We also note that
the bulk of these results tend to underestimate both the
location and scale parameters of the Gumbel distribution
with respect to the ground truth. This is related to the
shape of the kernel function being used, as previously
discussed in Sec. IVA: the tails of a Gaussian distribution
fall off more rapidly than those of a Gumbel distribution,
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frequency bins or shuffled into B = 1801 batches with a batch
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FIG. 10. Summary of regimes in which distromax operates.
Shaded regions represent combinations of n and B for which
the distromax results suffer from low precision (high variance)
due to a low number of batches (Sec. IVC) or low accuracy
(high bias) due to a low batch size (Sec. IVD).

yielding a lower mean and standard deviation. The
insensitivity of these results to the choice of B and
n and to shuffling suggests that this particular KDE-
based ansatz does not return a reliable estimate of the
batchmax distribution.
distromax results, on the other hand, return a

more consistent picture. Sample variance increases
as the number of batches goes down both with
and without shuffling. Complementarily, the bias in
the estimated parameters reduces as n increases (B
decreases), although this effect is only significant for the
method without shuffling.

We observe a significant bias reduction by shuffling.
Randomly shuffling samples results in more homogeneous
batches with weaker inner correlations; as a result,
batchmax samples are closer to the expected Gumbel
distribution, improving the accuracy of the recovered
parameters. Also, as previously anticipated, using bigger
batches in the non-shuffling case does improve accuracy,
although with a significant increment in variance due to
the correspondingly lower number of batches.

These features are consistent with the basic
phenomenology discussed in Secs. IVC and IVD.
The different regimes in which distromax operates
depending on N , n, and B are summarized in Fig. 10.
These values are extracted from the general behaviour of
distromax observed throughout the tests performed in
this section. As a general working principle, distromax
requires at least N ' 106 in order to return a cogent
answer; for smaller template banks, on the other hand,
off-sourcing as described in Sec. III requires little
computational effort.

F. Discussion

The results above on simulated data demonstrate the
overall performance of distromax under Gaussian-noise
conditions. The concrete output of distromax is a simple
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estimation on the probability of the loudest candidate of
a search under the noise hypothesis p(ξ∗|HN). However,
the specific statement to be drawn from p(ξ∗|HN),
such as a threshold choice, is entirely dependent upon
the scope of the analysis at hand. For the sake of
completeness, we briefly review the assumptions on
which the distromax method relies, as well as possible
consequences of violating them.

First, the distribution of the detection statistic at
hand must belong to the domain of attraction of the
Gumbel distribution; roughly, this means its probability
distribution should be unbounded and decay at a slower
rate than a power-law [66]. Nonetheless, as discussed
in Appendix A, this method could be easily adapted
to detection statistics within a different domain of
attraction; in such cases, Eqs. (26) and (27) would have
to be adapted to the corresponding EVT distribution.

Second, the data at hand must be free of strong
disturbances. As discussed in Sec. II B, loud disturbances
in a data stream typically translate into parameter-
space regions returning enhanced detection statistics
with respect to a non-disturbed data stream. The
width of the affected region will depend on the
characteristics of the disturbance and the template
bank, but in general there can be an extended set of
templates with correlated response to the disturbance.
Attempting to construct a batchmax distribution by
shuffling the samples into different batches would result
in a distribution shifted towards the right-hand side of
the expected Gumbel distribution. Not using shuffling
would suppress the effect of disturbances if the resulting
associated population of templates was well localized in
frequency; the resulting distribution, however, would be
less accurate and in particular could still overestimate
the Gumbel parameters, as discussed in Figs. 7, 8,
and 9. The robustness of distromax results to the
effect of mild disturbances on the data can also be
tested by generating several sets of batchmax samples
and comparing the location and scale parameters of
the corresponding Gumbel distributions. The wider the
distribution over shuffling realizations, the bigger the
effect of noise disturbances.

Narrow spectral features (“lines”), in particular, are
common noise disturbances affecting (t)CW searches,
with excess power typically concentrated within a few
frequency bins [13]. CW signals themselves are another
typical example of well-localized “disturbances”: should
a (strong) CW signal be present in a datastream, a blind
application of distromax could result in overestimation
of the loudest candidate’s distribution, potentially
flagging the CW signal itself as a background-noise
fluctuation. The sensitivity of current interferometric
detectors, however, makes CW searches to operate in
the weak-signal regime (see Appendix C). As a result,
CW signals are unlikely to actually affect the estimations
provided by distromax.

Due to their crucial role in CW searches, we discuss
in Appendix B a simple proposal to reduce the effect
of narrow-band disturbances so that distromax results

can still provide a cogent answer. Whenever possible, we
recommend the application of informed veto strategies
against instrumental artifacts (see [16] and references
therein) before attempting to process the results using
distromax. The method discussed in Appendix B is
just a complementary algorithm to prevent a specific
type of strong disturbances from invalidating an analysis.
The characterization and improvement of this or similar
algorithms to deal with more generic disturbances is left
for future work.

Third, in principle distromax assumes the complete
set of detection statistic values from the full template
bank is available. Several wide parameter-space searches,
however, use toplists [78, 88, 89], meaning they only
keep a small fraction of detection statistic values
corresponding to the louder templates. The basic
requirement is to use a toplist such that the tail
of the distribution is properly represented. Falling
short (i. e. not reaching the bulk of the distribution)
could result in unaccurate fits to batchmax samples.
Incidentally, the results discussed in Appendix B clarify
the suitability of distromax to these searches.

Fourth, and closely related to the second point,
template banks must not be too strongly correlated.
EVT ensures distromax is robust to a certain degree
of template-bank correlations; more specifically, answers
provided by distromax will be cogent as long as the
dominant contribution to batchmax samples comes from
the tails of the involved distributions. As discussed in
e.g. [48], template bank setups using a small mismatch
return highly correlated samples in the vicinity of local
parameter-space maxima, adding additional features
to the results distribution (see e. g. Fig. 2 in [33]).
This may have similar effects to the presence of loud
disturbances, as a significant fraction of the resulting
batchmax samples would come from samples around
a few local maxima and not be representative of the
tail of the background distribution. Consequently,
the corresponding batchmax distribution will not be
fully converged to an EVT distribution and the final
Gumbel parameter estimation will be affected. No simple
amendment, other than using a higher mismatch [10,
53], is currently available to obtain robust results with
distromax in this situation.

This phenomenon was observed in [90, 91], where
distromax was applied to process the result of both a
search for CW signals and a search for long-duration
transient GWs from glitching pulsars. The CW search
used a mismatch of m ' 0.02 combined with a toplist,
which reduced the effect of such a dense parameter-space
coverging on the batchmax distribution. Preliminary
studies for the long-duration transient GW search using
m = 0.02 without a toplist, on the other hand, revealed
a poor performance of distromax; in that case, the
solution was to increase the mismatch to m = 0.2, using
a similar setup as in [32].

As we will discuss during Sec. V, distromax is suitable
to be applied in real-data searches with typical mismatch
setups. Moreover, further detection statistics beyond 2F ,
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such as “line-robust” ’ statistics [35, 36] or tCW search
statistics [37], can be processed using the same method.
This has the effect of improving the quality of distromax
results, as these statistics are designed to diminish the
effect of noise disturbances on (t)CW searches, providing
a cleaner set of batchmax samples.

V. APPLICATION TO O2 DATA

As a demonstration, we apply distromax to data
of the two advanced LIGO detectors [18] from the O2
observing run [92] in Hanford and Livingston. We study
the statistics of results obtained in [32] for narrow-band
searches targeting the Vela and Crab pulsars, which
experienced glitches on 12th December 2016 and on 27th
March 2017 respectively. The template bank for each
target was a grid in λ = (f0, f1) of size Nλ ≈ 1.15× 107.
This template bank was not constructed with a fixed
mismatch but an estimate of m ≈ 0.2 was given in [32].
Here we consider the results using various F-statistic
based detection statistics for both CWs and tCWs. For
both cases we choose a batch size n = 1000, and the
number of batches as B = Nλ/n. Since this is a narrow-
band search, the low number of templates places this
particular application of distromax at the border of the
suitable regime described in Fig. 10; the obtained results,
however, are not negatively affected by this.

A. CW detection statistics

We first consider results for CWs of duration four
months corresponding to the maximum observation time
in [32]. We begin with the standard 2F as its distribution
is well known. As we see from Fig. 11, the histogram
of the full 2F results matches well with a standard χ2

4

distribution. One can also fit Eq. (19) treating N as a
free parameter, obtaining N ′ ≈ 1. This is equivalent to
considering each 2F sample as the trivial maximum of a
single draw from a χ2

4 distribution. This χ2
4 distribution

can then be propagated using the total number of
templates Nλ as B in Eq. (22), yielding an estimated
distribution for the maximum of 2F , which assumes that
the template bank correlations are negligible.3 We then
compare the resulting distribution with the one obtained
by the distromax method in Fig. 11. The two resulting
distributions for the maximum agree well.

We also apply the distromax method on a different
statistic for the CW search, namely the line-robust

3 As discussed in detail in Sec. 8.7.1 of [23], the result of any fit of
Eq. (19) to F-statistic-based detection statistic samples cannot
be directly interpreted as an “effective number of templates”
even in the absence of template-bank correlations. This is
due to a small upwards implementation bias in the F-statistic
computation [45, 93]. For the N ′ ≈ 1 fit to the F-statistic
samples, this seems to approximately cancel with the effect of
template bank correlations.

statistic BS/GL [35]. This is a Bayes factor derived from
the likelihood ratio between the signal hypothesis and
the combined hypothesis noise hypothesis of Gaussian
noise and lines. The lines are modelled based on the
assumption that they look exactly line a signal, but are
present in only one detector. The results are shown in
Fig. 12. Since the underlying distribution of BS/GL is
unknown, one cannot do the equivalent of fitting Eq. (19).
Nevertheless, we can still apply the distromax method,
for which the only constraint is that said distribution falls
off faster than a power-law (for the case here discussed
involving a Gumbel distribution). The details of the
exact distribution are not needed. Indeed, the batchmax
distribution is well-fitted by a Gumbel distribution. In
previous studies using BS/GL on real data [24, 29–31, 94–
97], it was used only to improve the robustness of the
search against disturbances by using it as the toplist
ranking statistic, but the final significance statements
were made returning to 2F because no closed-form
distribution was known for BS/GL. Now with distromax
we can directly estimate thresholds from the samples
allowing for end-to-end analysis using BS/GL.

B. tCW detection statistics

We now investigate the case of tCWs, which was the
main focus of [32]. As briefly metioned in Sec. II,
such signals can be modelled as CWs modulated by a
window function dependent on the transient parameters
T , namely the start time of the transient signal t0 and
its duration τ . For this analysis a rectangular window
function was used. As a detection statistic for tCWs, the
F-statistic at fixed λ can be maximized over transient
parameters [37], thus obtaining 2Fmax = maxT 2F . (We
use this notation instead of simply max 2F to avoid
confusion with the maximum CW detection statistic 2F
over a full template bank.) We expect local correlations
to have a more severe impact when using this statistic
because it can pick up short-duration non-Gaussianities
or simple fluctuations that the CW F-statistic would not
be susceptible to.

When the distromax package shuffles the dataset in
the batchmax stage, several batches can be contaminated
by the same noise fluctuation, and therefore the
batchmax distribution reflects this contamination. The
result is a more ragged distribution with peak-like
features, as one can see in Fig. 13.

To estimate the distribution of the loudest candidate
for this dataset, [32] made several simplifying
assumptions. While there is no known distribution
for 2Fmax that could be directly inserted into Eq. (19),
its value at each template λ is the maximum of 2F values
over the transient parameters T , which individually
follow a χ2

4 distribution. However, there is a high degree
of correlations in the transient parameter space. Hence,
fitting Eq. (19) to the 2Fmax samples, the result is
an “effective number of transient templates” N ′ ≈ 55
(compared to a nominal number of NT ≈ 2× 106
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FIG. 11. 2F values obtained in [32] analysing LIGO O2 data after glitches in the Vela (left panel) and Crab (right panel)
pulsars. In each panel, the gray dotted line is the histogram of the samples obtained by the search. The blue dotted line is the
expected χ2

4 distribution for independent samples. This is propagated using the total number of templates Nλ ≈ 1.15 × 107

as B in Eq. (22), yielding an estimated distribution for the maximum of 2F shown by the dashed-dotted blue line. On the
other hand using distromax we plot the batchmax histogram (using n = 1000, black solid line) and we fit it with a Gumbel
distribution (dashed red line). The propagated distribution is obtained by applying Eq. (25) with B = Nλ/n (solid red line).
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FIG. 12. Values of the log10BS/GL statistic obtained in the same analysis [32] as in Fig. 11. Vela results are on the left panel,
Crab results are on the right panel. No closed-form expression for the distribution of BS/GL is known, so only the search samples
(dotted gray line), the batchmax histogram (black solid line), the Gumbel fit to it (dashed red line), and the propagated final
distribution (solid red line) from distromax are shown.

transient templates at each λ).4 It was then assumed
that Nλ ×N ′ could be interpreted as an “effective
number of templates” over the full, non-maximized,
parameter space (λ, T ). Consequently, the distribution
of the overall loudest was obtained by propagating a χ2

4

distribution using B = Nλ ×N ′ in Eq. (22).
The fits to the 2Fmax sample histograms

approximately catch the peak of the distribution,
but fail to correctly recover the overall shape. On the
other hand, with distromax, the Gumbel fits to the
batchmax samples are noticeably better aligned to both
the peaks and the tails of the batchmax histograms than

4 Here the difference between the fitted “effective” and nominal
number of templates is much larger than for the CW F-statistic
and hence the previously discussed bias is small enough to be
ignored.

the N ′ based fits are to the full samples histograms.
The propagated distributions from both methods still
overlap, but their differences are larger than in the CW
case.

Again, we apply distromax also on an alternative
detection statistic for the tCW search, namely the BtS/G
statistic, also derived in [37]. This statistic does not
deal with the transient parameters by maximizing over
the T space, but rather marginalizes over it using a
uniform prior. This results in less contamination from
disturbances and noise fluctuations. Despite its known
better detection efficiency [37], one reason why this
detection statistic has not been used in [32] is that its
distribution is not analyically known, hence no simple
fit of Eq. (19) could be done. With the distromax
method [38], this is no longer a problem. The results are
shown in Fig. 14. Using the same data sets as before, the
batchmax histograms are much smoother and better fit
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FIG. 13. Values of 2Fmax obtained in the tCW analysis of [32] on LIGO O2 data after glitches in the Vela (left panel) and
Crab (right panel) pulsars. The gray dotted line is the histogram of the samples obtained by the search. There is no known
distribution for 2Fmax, but it is a maximum over F-statistics over the transient parameters which individually follow a χ2

4

distribution. Due to the high degree of correlations in the transient parameter space, in [32] the “effective number of transient
templates” was obtained by fitting Eq. (19) to the 2Fmax samples, obtaining N ′ ≈ 55 (dotted blue line). The distribution of the
overall loudest was then obtained by propagating the χ2

4 distribution using B = Nλ ×N ′ in Eq. (22) (dash-dotted blue line).
This corresponds to treating each sample as a batch with a single element. On the other hand using distromax we plot the
batchmax histogram (n = 1000, black solid line) and we fit it with a Gumbel distribution (dashed red line). The propagated
distribution is obtained by applying Eq. (25) with B = Nλ/n (solid red line).
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FIG. 14. Values of log10BtS/G obtained in the same [32] tCW analysis as in Fig. 13. Vela results are on the left panel, Crab
results are on the right panel. Here there is no direct fit of Eq. (19) because no closed-form expression for the distribution of
BtS/G is known, and it cannot be easily related to the original F-statistic, so only the search samples (dotted gray line), the
batchmax histogram (black solid line), the Gumbel fit to it (dashed red line), and the propagated final distribution (solid red
line) from distromax are shown.

by a Gumbel distribution than their 2Fmax counterparts.
This indicates that BtS/G is a more robust detection
statistic than 2Fmax on real data. As for BS/GL for CWs,
with distromax it can now also be used as an end-to-end
detection statistic.

VI. CONCLUSION

We have introduced distromax, a new method to
estimate the distribution of the loudest candidate in a
gravitational-wave search. This method culminates a
series of developments in the continuous gravitational-
wave literature aimed at re-cycling wide parameter-

space search results into a proxy distribution for the
expectation over different background noise realizations.
An implementation of the method is freely available as a
Python package [38].

Our specific proposal uses max-stable distributions
from extreme value theory to provide a generic approach,
applicable to any detection statistic displaying a light-
tailed distribution under the noise hypothesis (that is,
unbounded and decaying faster than a power-law). This
is in contrast with previous approaches based on the
F-statistic, whose very specific assumptions prevented
a successful generalization.

Although we have focused on the case of detection
statistics with light-tailed distributions, as that is the
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standard encountered in CW searches, extensions to
other kinds of distributions are possible by using a
different family of max-stable distributions.

We have demonstrated the general applicability of
distromax using both synthetic Gaussian-noise data
and the results of a real search on Advanced LIGO
O2 data for (transient) continuous gravitational-wave
signals from the Vela and Crab pulsars. Results
show a significant improvement with respect to previous
estimation methods due to the robustness of distromax
to realistic template-bank correlations.

Additionally, the possibility of using further detection
statistics supressing the effect of lines (BS/GL, BS/GLtL)
or transient instrumental artifacts (BtS/G) presents
two further advantages for (transient) continuous
gravitational-wave searches: first, distromax allows us
to process the results directly in terms of these more
informative statistics; second, the built-in supression of
instrumental features in these statistics itself improves
the convergence of batchmax samples to a max-stable
distribution, improving the quality of the results provided
by distromax. This last point also makes plots of the
batchmax distribution a useful tool to diagnose the data
quality of a specific frequency band using its deviation
with respect to the expected max-stable distribution.
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Appendix A: Basic results of extreme value theory

Let us consider a set of n independent and identically
distributed random variables {x1, . . . , xn} each following
a probability distribution f . These variables can be
identified with a detection statistic evaluated on a set
of parameter-space templates, with f corresponding
to the detection statistic’s distribution under the
noise hypothesis. We are interested in describing
the probability distribution of the highest detection
statistic value (usually referred to as the largest order
statistic [62]) x∗ = max{x1, . . . , xn}, denoted as f∗, in
order to evaluate the significance of outliers resulting
from a CW search.

A first ansatz for f∗ can be constructed by considering
the probability of drawing xi = x∗ for a single i ∈ [1, n]
and xi < x∗ for the remaining n − 1 values, taking into
account all possible sortings:

f∗n(x) = n f(x)

[∫ x

dx′ f(x′)

]n−1
. (A1)

(An alternative derivation of this results is presented in
Sec. III.) This approach is sufficient if the probability
distribution f is well understood and different random
variables xi are independent from one another so
that the joint distribution factors into the product of
individual distributions. In the case of searches on real
data, however, parameter-space correlations cause f∗n to
deviate from Eq. (A1) [33, 34, 58].

Extreme Value Theory (EVT) provides asymptotic
closed forms for Eq. (A1) in the limit of n→∞

f∗n
n→∞−−−−→ GEV(γ) , (A2)

where GEV refers to the generalized extreme value
distribution and γ ∈ R is referred to as the extreme value
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FIG. 15. CDF comparison of the loudest sample out of n draws from a uniform (upper panel), exponential (middle panel), and
Cauchy (lower panel) distribution to their corresponding generalized extreme value distribution. Different line colors represent
different numbers of draws n over which the maximization was performed.
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FIG. 16. Comparison of the speed of convergence of the distribution of the loudest sample out of n draws from a standard
Gaussian distribution. The upper panel shows the classical result, derived in [98]. The lower panel shows an improvement later
presented in [67], which achieves a lower level of discrepancy than the previous one at the same number of draws. Different
line colors represent different numbers of draws n over which the maximization was performed.

index [62, 63, 65, 66]. According to the specific properties
of the random variables at hand, GEV distributions can
be shifted and rescaled by location and scale parameters,
µn and σn. The general dependency on the number of
random variables being drawn n is due to the increased
chances of drawing an extreme value as the number of
independent trials increases. This is usually referred to
as the trials factor.

In a practical case, assuming n so that the convergence
is suitable for the application at hand, Eq. (A3) can be
recast into a closed form

f∗n(x) = GEV(µn + x σn; γ) . (A3)

Typical prescriptions for µn and σn [67, 68] tend to
be valid for n & 104. The GEV distribution has the
specific property of being max-stable, meaning that the

distribution of the maximum sample out of n draws from
a GEV distribution is again a GEV of the same kind
(same γ).

The value of γ depends on the right-hand tail
behaviour of f , and determines the functional form of
f∗ out of three possibilities. We follow the definitions
given in [66] (where γ is referred to as ξ): finite
tails with power-law behaviour correspond to γ < 0
(Weibull distribution), light tails correspond to γ = 0
(Gumbel distribution), and power-law tails correspond
to γ > 0 (Fréchet distribution)5. Fig. 15 illustrates

5 The scipy Python package [77] implements these three
distributions under the statsmodule, although it uses a different
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FIG. 17. CDF comparison of the maximum sample out of n draws from a χ2
k-distributed random variable with different

number of degrees of freedom k to their asymptotic Gumbel distribution. Different line colors represent different numbers of
draws n over which the maximization was performed.

the convergence towards each of these families using
paradigmatic probability distributions, namely a uniform
distribution in [0, 1], a standard exponential distribution,
and a standard Cauchy distribution.

We focus our attention on the location and scale
parameters, as they are relevant in terms of convergence
speed. EVT imposes very loose conditions on them, so
the choice of µn and σn as functions of n is not unique
for a given distribution, and the main difference across

sign criterion for the extreme value index, therein referred to
as c. Setting c = γ, the Gumbel distribution is gumbel_r, the
Fréchet distribution is invweibull, and the Weibull distribution
is weibull_max.

different choices is the speed with which the resulting
distribution will approach the GEV one. We illustrate
this using a Gaussian distribution, which is in the domain
of attraction of the Gumbel distribution and is famous
for being quite slow to converge. Figure 16 compares the
prescription of location and scale parameters originally
proposed by Hall [98] to the improvement proposed by
Gasull [67].

However, in this paper we are mainly interested in χ2
k

distributions, where k ∈ N denotes the degrees of freedom
of the distribution, as CW statistics are quite frequently
constructed as the norm of a Gaussian vector and hence
follow χ2

k distributions. A significant improvement over
the classical literature was presented in [68], where closed
expressions for µ and σ for a generic Γ distribution were



18

obtained. Figure 17 shows the convergence of different
χ2
k distributions towards a Gumbel distribution.
We provide an implementation of the corresponding

expressions discussed in [68] within the distromax
Python package [38]: Although the distromax method
itself does not use any of these results (since µ and σ
are estimated from the data), they can still be used to
produce theoretical estimates.

Appendix B: Addressing disturbed data

The intended output of distromax is an empirical
estimation of the distribution of the loudest candidate
produced by noise-only data in a CW search p(ξ∗|HN).
To do so, the basic assumption is that the output of a
search ξ corresponds mostly to samples of the detection
statistic from a single well-behaved distribution. In
practice, this generally means Gaussian noise, plus only a
small number of samples coming from another population
such as a non-Gaussianity in the data or a CW signal.
If the number of such samples is negligible compared to
the number of batches used in distromax, so would be
their effect in the batchmax distribution.

CW searches in real data, however, are populated
by various kinds of noise disturbances. Concretely, a
prominent type are narrow-band instrumental features
(“lines”), which tend to concentrate their effect within
a few frequency bins, but especially for higher-
dimensional searches (several spin-down terms and/or
all-sky searches) can still affect a large number of
templates. Probability theory provides the right tools
to deal with this situation. Specifically, as discussed
in Chapter 21 of [1], one should describe the results
of a search ξ as a mixture of two populations, namely
a population of samples belonging to the background
and another one belonging to the noise disturbance.
Further populations describing additional effects, such
as the presence of a CW signal, can also be included in
the analysis. The distribution of the loudest candidate
produced by the background, p(ξ∗|HN), would then be
obtained by marginalizing out all but the background
component of the mixture. Part of the idea of using
multiple candidate populations was implemented in [99].
In this Appendix, however, we concentrate on the
typical case of loud noise disturbances polluting a small
number of frequency bins, for which the ad hoc approach
of excising or notching the disturbed frequency band
returns a similar result to a proper Bayesian analysis.
A full treatment of the mixture model problem is left for
future work.

As previously discussed in Sec. IV, this approach
is conceived to deal with a specific set of common
noise disturbances so that distromax can be applied
on a larger range of real-data results. However, users
are encouraged to understand and curate their search
results using standard CW vetoes (see [16] and references
therein) before falling back to this specific notching
algorithm.
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FIG. 18. Simulated samples corresponding to 106 templates
in a square grid across (f0, f1). 2F background samples
correspond to draws from a χ2

4 distribution. 2F outlier
samples are drawn from a non-central χ2

4 distribution with
non-centrality parameter ρ2 = 25. This figure shows the
third notching iteration. Orange diamonds correspond to the
loudest outlier per frequency bin ξ∗(f0). Cyan dots mark
samples notched in a previous iteration. Red crosses and
the corresponding vertical lines denote the frequency bins
being notched in the present iteration. The solid horizontal
line corresponds to the threshold computed on the maximum
samples using skimage.filters.threshold_minimum.

Leveraging thresholding algorithms from the image-
processing literature [100] we propose a simple algorithm
capable of notching frequency bands containing
prominent disturbances. Since we focus on noise
disturbances within well-localized frequency bands, we
attempt to flag their corresponding candidates focusing
on the loudest detection statistic in each frequency bin
f0

ξ∗(f0) = max
/λ
ξ(f0, /λ) , (B1)

where /λ contains any other relevant parameter-space
dimension. The resulting envelope can be thought of
as a one-dimensional gray-scale image in which we are
interested to discern the background from an object
(the polluted band); the distinction is made by properly
selecting a gray-value (detection-statistic) threshold such
that object pixels (polluted-band samples) lie above it,
leaving nothing but background below.

We illustrate the effects of our notching algorithm
using a synthetic template bank containing a narrow-
band disturbance. The template bank contains
1000 × 1000 templates spanning the (f0, f1) parameter
space over the [100, 100.1] Hz frequency band. The
corresponding 2F is drawn from a χ2

4 distribution for
each template in the bank. We refer to this χ2

4-drawn set
of samples as the ground truth. An outlier is introduced
by replacing samples in the [100.04, 100.05] Hz sub-band
with an equal amount of samples drawn from a non-
central χ2

4 distribution with non-centrality parameter
ρ2 = 25. The sample projection over the f0 subspace
is shown in Fig. 18.
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FIG. 19. Effects of notching disturbed frequency bins on the
background distribution. Each histogram shows a set of 2F
samples akin to that in Fig. 18. The black dashed histogram
represents ground truth samples in which no disturbance has
been included. The blue histogram represents the ground
truth samples plus a loud narrow-band disturbance. The red
histogram represents the result of notching the blue histogram
as discussed in the main text and the caption of Fig. 18.

We tested different thresholding techniques, including
standard approaches such as the Otsu threshold [101],
the minimum cross-entropy threshold [102, 103],
and the minimum method threshold [104], using
the implementations available in the skimage
package [105]. We find the minimum method
threshold skimage.filters.threshold_minimum
performs best in our specific study, noting that the
implementation of the notching procedure in [38] allows
for a flexible selection of thresholding strategies.

Once an appropiate threshold ξT has been established,
we proceed to notch any frequency bin containing at
least one sample above threshold. Specifically, we
remove all the samples from the frequency bins f0
where ξ∗(f0) > ξT. This step can be applied multiple
times in order to take care of multiple lines in a band
with very different amplitudes, “shoulders” of broad
lines, or features such as spectral leakage. The specific
implementation provided in [38] implements a simple
stopping criterion: notching iterations stop whenever the
threshold ξT falls below a pre-specified quantile of ξ∗(f0).
The default value, which performs well for our specific
example, stops whenever ξT is lower than the top 20%
values of ξ∗(f0).

The result of notching, as opposed to simply removing
samples over threshold, is illustrated in Fig. 19, where
the distribution being notched is shown as a blue
histogram. Simply removing samples above threshold
would be equivalent to cutting the tail of the histogram
while leaving the bulk untouched. While such an
approach would be relatively harmless in the case of a
disturbance strong enough to be cleanly separated from
the background, it is rendered ineffective in the case
of a relatively mild disturbance, as the polluted-band
samples tend to overpopulate the tail of the distribution
itself. Completely notching the band, on the other hand
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FIG. 20. Distribution of batchmax samples. Each histogram
contains the maxima of 5000 batches genereted by randomly
shuffling samples from Fig. 19. Numbers in the legend
indicate the location and scale parameters of a Gumbel
distribution fitted to each histogram.

(red histogram), properly deals with the overpulation
of outliers and returns a distribution consistent with an
undisturbed background.

After notching disturbed bands, we can simply
apply the shuffling and batching procedure described
in Sec. IVB. The resulting batchmax distributions,
including the unnotched and ground truth distributions,
are shown in Fig. 20. Location and scale parameters of
the best fitting Gumbel distributions are shown in the
legend and compared to the ground truth distribution in
Fig. 21.

In this example, the estimated parameters using
notching show only 1% relative difference with respect
to ground truth parameters, as opposed to the strong
bias suffered by the unnotched estimates. Moreover,
we remark the robustness of the method to a mild
overnotching of non-polluted frequency bins: the
convergence to a Gumbel distribution is mainly related
to the properties of the “bulk of the tail”; trimming the
most extreme events from the background distribution
does not affect significantly the fitting of a Gumbel
distribution. This is clearly seen in Fig. 19, where
the notched distribution differs from the ground truth
by a few samples. These samples correspond to the
background samples over threshold in Fig. 18, which
belong to the tail of the non-disturbed distribution. As
briefly commented in Sec. IVF, this result justifies the
extent up to which distromax is applicable to toplist-
based searches: so long as the toplist reaches the bulk
of the distribution, distromax should be capable of
returning a cogent answer.

The application of more notching iterations
than strictly required, however, could result in an
underestimation of the Gumbel parameters due to
the removal of too many samples in the tail of the
distribution. This is particularly important for the
scale parameter: underestimations around 5% are often
obtained across several realizations of the example setup
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notching to the ground truth CDF. Each line compares the
corresponding CDF of the distribution shown in Fig. 20 to
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discussed here when using the notching procedure with
the stopping criterion as described above. For a typical
batch size of B ' 103 − 104 (lnB ' 10) and fiducial
values of µ∗ = 50 and σn = 2 [Eq. (26)] (similar to
the values encountered in a CW search using the 2F
statistic), a 5% underestimation in σn implies about
20% of underestimation in µ∗. The main consequence
of this is a shift of the resulting p(ξ∗|HN) towards lower
values, potentially resulting in an increased number of
candidates scoring over the specified threshold.

Appendix C: Robustness against injections

As discussed in Sec. IVF, (t)CW signals themselves
can be considered as disturbances when trying to
estimate a background distribution. We therefore need
to test that the distromax method is robust to the
presence of (t)CW signals and will not be biased upwards,
which would lead to picking too high a threshold and
missing those signal-related candidates. Such a bias is
not entirely avoidable, but should ideally only appear for
signals stronger than expected in any practical real-data
search situation.

To test this, we re-use the upper limits injections
in O2 data from the same analysis [32] as in Sec. V.
Simulated signals of increasing amplitude h0 were added
to the original short Fourier Transform (SFT) data
(“injections”). For each chosen h0, there are 50 data sets

with parameters {f0, f1, t0} uniformly distributed over
their respective search ranges (see [32]) and the remaining
amplitude parameters {cos ι, ψ, φ0} randomized over
their natural ranges. ComputeFstatistic_v2 [59] was
used to reanalyze a small range around the injection
point and we combine these results with the original
detection statistic samples for the rest of the search
band. We then apply distromax as in Sec. V, checking
the resulting propagated distribution for the maximum
of each detection statistic. We also test the notching
procedure introduced in Appendix B by gradually
increasing the num_iterations option, from 0 to 5.
The means and standard deviations of the propagated
distributions for the four statistics discussed in Sec. V
are shown in Fig. 22, Fig. 23, Fig. 24 and Fig. 25.

As one increases the amplitude h0 of the injected
signal, an increasing number of templates will produce
elevated values of the detection statistic. In Sec. IVE,
we found that shuffling of batches in the batchmax
step is generally preferred. However, with a strong
signal present that affects multiple templates, the
shuffled batchmax distribution will inevitably become
contaminated, leading to an overestimation of the final
distribution parameters. Such a trend is indeed visible
in the results for all detection statistics, more clearly
for the Vela analyses (left-side panels). However, the
effect is small compared to the actual increase of the
detection statistic at the templates with injections. For
the highest amplitudes tested, the detection statistic can
reach values ∼ 20 times above the expected loudest
background sample. Furthermore, the upwards shift in
the estimated distribution is generally mild, with the
mean shifting by less than one standard deviation of the
original injection-free mean, at least as long as h0 does
not reach significantly above the 90% upper limits set in
[32].

In addition, the notching feature can be useful in
limiting the rise of the estimated means in the presence
of signals with large h0, by treating the templates
with elevated detection statistic as disturbances for the
purpose of background estimation and removing them
before applying the batchmax procedure. Generally
1–2 iterations of notching have little influence on the
estimated Gumbel distribution mean of the original data
without injections while helping to reduce the rise of
the estimated distribution mean with injection h0. With
more iterations of notching, results become more robust
towards strong injections, while for the original data the
means in some cases are estimated lower. This would
always be conservative in the sense that one would retain
more candidates for follow-up even when “over-notching”
clean data, however it would lead to additional human
and computing effort to follow up candidates that are
clearly noise fluctuations.

Hence, as already discussed in Appendix B, we
recommend using the notching feature only if required.
If data is clean – i.e. no unusual features in the batchmax
histograms – notching is not necessary, and more
likely leads to underestimated distribution parameters
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FIG. 22. Results of testing distromax on 2F values from simulated signal injections for the Vela (left) and Crab (right) O2
search parameter spaces, matching the setup from [32], plotted as a function of injected amplitude h0. The black data points
corresponding to h0 = 0 are the means of the estimated Gumbel distribution on the original data without injected signals and
their dashed vertical lines correspond to the standard deviation of the same distribution. The different markers correspond
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which would correspond to an overly conservative
threshold choice. If, on the other hand, data exhibits
strong and numerous spikes in the statistic, the
plain distromax method may lead to overestimated
distribution parameters, and notching can be a useful
tool in such situations. Regarding the potential presence

of (t)CW signals in the data, distromax seems robust
to these, with or even without notching, for the typical
target signals of current (t)CW searches (not standing
out far above the noise background); and if in doubt,
notching can still help to provide more conservative
thresholds.
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