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The Blandford–Znajek process, which uses a magnetized plasma to extract energy from a rotating
black hole, is one of the leading candidates for powering relativistic jets. In this work, we investigate
the Blandford–Znajek process in two well-motivated quadratic gravity theories: scalar Gauss–Bonnet
and dynamical Chern–Simons gravity. We solve analytically for a split-monopole magnetosphere
to first order in the small-coupling approximation and second relative order in the slow-rotation
approximation. The extracted power at fixed spin and magnetic flux is enhanced in scalar Gauss–
Bonnet and reduced in dynamical Chern–Simons gravity, compared to general relativity. We find
that there is a degeneracy between spin and the coupling constants of the theories at leading order
in the slow rotation approximation that is broken at higher orders.

I. INTRODUCTION

Direct electromagnetic extraction of the rotational en-
ergy of supermassive black holes (BH) via the Blandford-
Znajek (BZ) process [1] is a plausible power source for
relativistic jets in many active galactic nuclei (AGN) [2–
5]. In the BZ process, the ergosphere of a rotating BH
is threaded by a poloidal magnetic field embedded in a
highly conducting plasma. As the magnetic field lines
are frame-dragged, a toroidal field forms, and the work
done by the BH on the field lines leads to the extraction
of its rotational energy. This theoretical framework for
relativistic jets is supported by modeling of Event Hori-
zon Telescope (EHT) observations [6–8]. Comparison
of models with EHT observations of M87* favors those
models in which M87’s jet originates in a low-density,
magnetically-dominated region (the “funnel”) over the
poles of the black hole.

Over the past three decades, the BZ process has been
extensively studied in general relativity (GR). The an-
alytical studies (e.g. [1, 9–15]) compute the fields per-
turbatively, and the associated energy flux is therefore
found, under certain assumptions, to a particular or-
der in the BH’s spin. For example, [15] recently cal-
culated the field configuration to third relative order1 in
the spin parameter using matched asymptotic expansions
and abandoning the assumption that the field variables
are smooth in the BH’s spin. GR magnetohydrodynamic

1 In this work, the term “relative order in spin” refers to the scal-
ing with spin, relative to the leading-order expression in a slow-
rotation expansion. For example, the third relative order field
configuration includes the poloidal magnetic field at the third
order (which is the leading-order contribution), plus both the
toroidal magnetic field at the fourth order, and the BZ power at
the fifth order.

(GRMHD) simulations have also shown that, for slowly
rotating BHs, the structure of the time-averaged funnel
magnetic field matches the analytic solution of Blandford
and Znajek [10, 12, 16–18]. Simulations also enable the
study of rapidly rotating black holes, but there are no
analytical models to compare these results, and they are
computationally expensive [19].

Since the BZ process depends on astrophysics (through
the magnetosphere) and the theory of gravity (through
the exterior BH spacetime metric) [17, 20, 21], studying
the process and its observational consequences may probe
gravity in the strong-field regime. In modified gravity,
however, the BZ mechanism has been much less studied
than in GR, and when considered, it has been studied
only analytically. For instance, in [22–25], the BZ power
was computed to leading order in the BH’s spin, either
for an agnostic, parametrically deformed (“bumpy” [26])
BH metric [22–24] or for a theory-specific (Kerr-Sen) BH
metric [25].

Moreover, previous studies in modified gravity have
all considered a magnetosphere in which the rotation fre-
quency of the EM field maximizes the power output of the
BZ process and followed the procedure devised in [12] for
the Kerr metric. Using a magnetosphere that maximizes
the BZ power is a good approximation for the magne-
tosphere dynamics around Kerr BHs [9]. However, it is
unknown whether that assumption applies generically to
other spacetimes, and a careful investigation of magneto-
spheric structure in non-Kerr BH spacetimes is needed.
In this paper, we address these difficulties by studying in
great detail the BZ process in two quadratic gravity the-
ories: scalar Gauss–Bonnet (sGB) gravity [27–30] and
dynamical Chern–Simons (dCS) gravity [31–33]. Both
theories are well-motivated extensions of GR from the
effective theory standpoint [28] and arise in low-energy
expansions of quantum gravity theories [27, 31, 34–37].

We solve the governing equations of the magnetosphere

https://orcid.org/0000-0002-8172-577X
https://orcid.org/0000-0001-9528-1826
https://orcid.org/0000-0001-6147-1736


2

around BHs described by these quadratic theories analyt-
ically (to first order in the small-coupling approximation
and second relative order in the small-rotation approx-
imation) by combining the solution strategies presented
in [1, 10, 15] for a split-monopole configuration. Our re-
sults suggest that using a magnetosphere that maximizes
the BZ power remains a good approximation for the mag-
netosphere dynamics around modified gravity. We also
find that the power of energy extraction from the BH,
compared to the predictions of GR, is enhanced in sGB
gravity and quenched in dCS gravity. At leading order,
we find that there is a degeneracy between the BH’s pa-
rameters, namely the spin and the parameter (coupling
constant) that controls the modification from GR. This
degeneracy makes it difficult to use the BZ mechanism
to place limits on the coupling parameters of the theory,
even in the presence of high-quality data. We then show
that this degeneracy is broken at higher orders in the
perturbative scheme.

This paper is organized as follows: Section II reviews
the mathematical formulation of the BZ process. Sec-
tion III presents the solution to the BZ process in GR
following a simplified strategy based on [1, 10, 15] and
discusses its advantages and limitations. Section IV re-
views the BH solutions in sGB and dCS gravity, solves
the BZ process in these theories, compares the result with
the prediction of GR, and ends with a detailed explana-
tion of the differences found. Section V describes in detail
a degeneracy between the BH parameters that appears at
leading order and discuss its implications to future stud-
ies of the BZ process in modified theories of gravity. Sec-
tion VI summarizes and discusses future work. Through-
out the paper, we use geometric units with GN = 1 = c
and the metric signature (−,+,+,+).

II. THE BLANDFORD–ZNAJEK PROCESS

The BZ process assumes a stationary, axisymmetric
magnetosphere – composed of an electromagnetic field
and a highly conducting plasma – around a rotating
BH [1]. The EM field energy is large compared to the
plasma rest-mass density everywhere except close to the
equatorial plane, where matter accretes in a high-density
disk. We assume the split-monopole configuration, where
the disk is considered as a thin current sheet, and the
magnetic field lines are considered to be asymptotically
radial as they cross 2-spheres far from the BH. Off the
disk, the dominance of the EM field implies the force-free
condition (e.g., see [38]):

FµνJ
ν = 0, (1)

where Fµν is the Faraday tensor of the EM field, and
Jν = ∇µFµν is the 4-current. The disk appears as a dis-
continuity to the EM field, and the magnetic field lines
cross the equatorial plane only through the central BH.
This split-monopole configuration in GR has been ex-
tensively used for the analytical study of the BZ pro-

cess [1, 10–15], and its analytic solution has been shown
to agree with numerical simulations [10, 16, 17]. In the
following, we adopt Gralla and Jacobson’s notation [39]
as it can be easily applied to theories beyond GR.

In Boyer–Lindquist (BL) coordinates (t, r, θ, φ), a sta-
tionary and axisymmetric metric can be decomposed in
the following form

ds2 = gµνdx
µdxν = gTABdx

AdxB + gPabdx
adxb, (2)

where gTAB is referred to as the “toroidal metric,” and
gPab is referred to as the “poloidal metric;” in other words,
the toroidal coordinates (t, φ) are indexed with uppercase
letters, and the poloidal coordinates (r, θ) with lowercase
letters. This particular decomposition is not unique to
GR and can be performed for rotating BHs in several
theories of gravity [40], including the quadratic gravity
theories of interest here. Gralla and Jacobson [39] showed
that a stationary, axisymmetric, and force-free EM field
can always be represented by

Ftr =− Frt = Ω ∂rψ, (3)
Ftθ =− Fθt = Ω ∂θψ, (4)
Frφ =− Fφr = ∂rψ, (5)
Fθφ =− Fφθ = ∂θψ, (6)

Frθ =− Fθr =
I

2π

√
gP

−gT
, (7)

with all other components zero. Here ψ, I, and Ω are
functions of (r, θ), and gT and gP are the determinants
of the toroidal metric and the poloidal metric, respec-
tively. The quantities 2πψ and I measure the magnetic
flux and the electric current through a surface bounded
by the loop of revolution at (r, θ), respectively, and Ω
(which is constant along field lines) measures the rota-
tion frequency of magnetic field lines being dragged by
the rotation of the BH. We refer to ψ as the “poloidal
flux function,” I as the “poloidal current function,” and
Ω as the “rotation frequency.” A similar description (e.g.,
see [1, 10, 11, 13]) can be made in terms of a toroidal vec-
tor potential Aφ and a toroidal magnetic field BT or Bφ,
instead of the flux function ψ and the current function I,
respectively. These descriptions are related by dψ = dAφ
and I = 2πBT = −2πgTBφ.

Inserting Eqs. (3)–(7) into the force-free condition of
Eq. (1), the t and φ components become

∂rI ∂θψ =∂θI ∂rψ, (8)
∂rΩ ∂θψ =∂θΩ ∂rψ, (9)

which may also be interpreted as I and Ω being functions
of ψ. On the other hand, the r and θ components of
Eq. (1) can be combined into the stream equation [39]:

∇µ(|η|2∇µψ) + Ω′(η · dt)|∇ψ|2 − II ′

4π2gT
= 0, (10)

where the prime denotes a ψ derivative, and η ≡ dφ −
Ω dt. Due to parity, finding a solution in the northern
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hemisphere (0 < θ < π/2) would be sufficient, as ψ, I,
and Ω in the southern hemisphere mirror the northern
hemisphere solution.

The total EM energy flux extracted from the BH, also
known as the BZ power, is [1, 39]

P =−
∫
IΩ dψ

=4π

∫ π/2

0

[
Ω (ΩH − Ω) (∂θψ)2

√
gφφ
gθθ

] ∣∣∣∣
r=rH

dθ, (11)

where rH is the horizon radius which can be found as the
outermost solution to gT = 0, and

ΩH ≡ −
gtφ
gφφ

∣∣∣∣
r=rH

(12)

is the horizon angular frequency. The functional form of
Eq. (11) indicates that the energy flux is directed outward
on the horizon when 0 < Ω < ΩH, and it is sometimes as-
sumed that the field rotation frequency equals half of the
horizon angular frequency, i.e. Ω = ΩH/2 (for instance,
see [12, 41]). We will not make that assumption in this
work. The importance of not making this assumption
will become explicit when we study the BZ mechanism
in sGB and dCS gravity in Sec. IV.

Prescribing the boundary conditions for Eqs. (8)–(10)
turns out to be a delicate job. Here we adopt the bound-
ary conditions from a recent work by Armas et al. [15]:

ψ = 0, θ = 0, (13)
ψ = ψ0, θ = π/2, (14)
ψ finite, r = rH, (15)

I = 2π(Ω− ΩH) ∂θψ

√
gφφ
gθθ

, r = rH, (16)

I = −2πΩ ∂θψ sin θ, r →∞, (17)
ψ finite, r →∞, (18)

where ψ0 is a constant. The condition stipulated by
Eq. (13) is required by the physical interpretation of ψ:
at the north pole, the surface over which the magnetic
flux is measured shrinks to a zero size, so the flux func-
tion there should be set to zero. The condition (14) is
a restatement of the split-monopole assumption that no
magnetic field line crosses the disk, and therefore ψ0 de-
termines the magnetic flux through the horizon. Equa-
tions (15) and (16) come from the requirement that the
EM field strength, Fµν , be finite when measured by a
timelike observer traveling across the horizon.

Equation (16) is the Znajek condition [42], which is
equivalent to requiring a finite toroidal magnetic field,
Bφ, in horizon-penetrating coordinates [10]. Gralla and
Jacobson [39] have extended this condition so that it
holds as long as the horizon is a Killing horizon gen-
erated by ∂t + ΩH∂φ. The Znajek condition mapped to
null future infinity becomes Eq. (17) [15, 43]. There is no
need to adapt Eq. (17) to a generic metric since we are

considering spacetimes that are asymptotically flat. The
conditions given by Eqs. (16) and (17) can be derived, up
to a sign, by directly solving Eq. (10) on the horizon and
at the infinity with the assumption that ψ, I, and Ω are
all finite there. The sign is fixed by assuming that the en-
ergy flow is outwardly directed on the horizon and at the
infinity [39, 44, 45]. Finally, Eq. (18) matches the field at
infinity with Michel’s flat-space monopole solution [46].

Together with these boundary conditions, Eqs. (8)–
(10), first derived by Blandford and Znajek [1], are there-
fore all one needs to solve for the fields (either analyti-
cally or numerically). However, the only known exact
solution to these equations is a generalization of Michel’s
monopole solution [46] in the Schwarzschild spacetime [1],
which lacks astrophysical interest as no energy can be ex-
tracted. Therefore, perturbation methods are typically
applied to study this process analytically.

III. THE BLANDFORD–ZNAJEK PROCESS IN
GENERAL RELATIVITY

In this section, we revisit the BZ process in GR and
present a simplified self-contained rederivation of the
known solutions [1, 15]. We start by writing the Kerr
metric in BL coordinates:

ds2 =−
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σ dθ2

+
1

Σ

[
(r2 + a2)2 − a2∆ sin2 θ

]
sin2 θ dφ2

− 4Mar sin2 θ

Σ
dt dφ, (19)

where ∆ ≡ r2 − 2Mr + a2, Σ ≡ r2 + a2 cos2 θ, and a
andM denote the BH’s spin and mass, respectively. The
event horizon is located at

rH = M +
√
M2 − a2, (20)

where the angular frequency is

ΩH =
a

2MrH
. (21)

The ergosphere is located at

rergo = M +
√
M2 − a2 cos2 θ. (22)

Let us now consider a slowly-rotating Kerr BH with
dimensionless spin parameter χ ≡ a/M � 1, and expand
the field variables in powers of χ. Let us assume that the
field variables are smooth functions of χ at χ = 0, and
the following functional form for the expansions

ψ =ψ(0)(x, θ) + χ2ψ(2)(x, θ) +O(χ4), (23)

I =χI(1)(x, θ) + χ3I(3)(x, θ) +O(χ5), (24)

Ω =χΩ(1)(x, θ) + χ3Ω(3)(x, θ) +O(χ5), (25)
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where we have introduced x ≡ r/M as a dimensionless
radial coordinate.

Following [15], let us now define what we mean by “rel-
ative order in spin” formally. When expanding in small
spins, some functions will have some χ dependence to
leading order. A term of Nth relative spin order then
means a term that is χN smaller than the leading-order
term. With this in mind then, ψ(0), I(1) and Ω(1) are
zeroth relative order (leading order), ψ(1), I(2), and Ω(2)

are first relative order, and the terms shown in Eqs. (23)–
(25) are the field expansion up to second relative order.

At leading order, the stream Eq. (10) reads

Lψ(0) = 0, (26)

where L is a separable differential operator defined by [47]

L =
∂

∂x

[(
1− 2

x

)
∂

∂x

]
+

sin θ

x2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (27)

Imposing the boundary conditions of Eqs. (13)–(18), one
obtains

ψ(0) = ψ0(1− cos θ), (28)

which is the exact monopole solution in the northern
hemisphere. Note that here we imposed the horizon con-
dition of Eq. (15) at x = 2, instead of at x = rH/M .
Clearly, this will not affect the solution at O(χ0) because
the difference between x = 2 and x = rH/M is of O(χ2);
such correction will be accounted for when we study the
solution at higher order in χ. In the following, we will
always impose the horizon conditions, i.e. Eqs. (15) and
(16), at x = 2 instead of x = rH/M . By inserting Eq. (28)
into Eqs. (8) and (9), one finds that I(1) and Ω(1) depend
solely on θ and can be determined by the Znajek condi-
tions of Eqs. (16) and (17) to obtain

I(1) = −2πψ0Ω(1) sin2 θ, Ω(1) =
1

8M
. (29)

Note that when x → ∞, Eqs. (28)–(29) match Michel’s
flat-space solution [46].

Given that ΩH = χ/(4M) + O(χ3) for Kerr BHs, by
comparing it to Eq. (29), one finds

Ω =
1

2
ΩH +O(χ3). (30)

In fact, Ω ≈ ΩH/2 is a common feature of the BZ pro-
cess around a slowly-rotating Kerr BH [9, 10, 12, 17, 48].
As a consequence, Tchekhovskoy et al. [12] suggested to
take Ω = ΩH/2 as the solution to the field rotation fre-
quency at leading order, and referred to it as the “energy
argument,” given that the BZ power is maximized by this
rotation frequency at leading order. Recent studies of the
BZ process in modified gravity theories (e.g. [23, 25, 41])
adopted this suggestion and gave estimates of the BZ
power in the slow-rotation limit without solving for the
fields. This treatment, however, is not justified since

Ω ≈ ΩH/2 may not hold in general, i.e., for other theo-
ries of gravity. In addition, if higher orders in the spin
parameter are considered, the approximation displayed
in Eq. (30) is insufficient, as we will show later.

We now go to next order in the perturbative scheme.
Similar to the leading order treatment, the second rela-
tive order stream Eq. (10) takes the form

Lψ(2) = −ψ0
x+ 2

x4
cos θ sin2 θ, (31)

and by requiring that ψ satisfy Eqs. (13)–(18), the solu-
tion is simply

ψ(2) = ψ0 f(x) cos θ sin2 θ, (32)

where [10]

f(x) =
1

8
x2(2x− 3)

[
Li2

(
2

x

)
+ ln

(
2

x

)
ln

(
1− 2

x

)]
+

1

12
(6x2 − 3x− 1) ln

(
2

x

)
− 1

6
x2(x− 1)

+
11

72
+

1

3x
, (33)

and Li2(x) ≡ −
∫ 1

0
(1/t) log(1− xt) dt is the second poly-

logarithm function. At the boundaries,

f(2) =
−49 + 6π2

72
, f(x)

∣∣∣
x→∞

∼ 1

4x
. (34)

Solving Eqs. (8)–(9) with the conditions given by
Eqs. (16)–(17), we find

I(3) =− 2πψ0 sin2 θ

[
Ω(3) +

cos2 θ

4M
f(x)

]
, (35)

Ω(3) =
1

32M

(
1 +

67− 6π2

36
sin2 θ

)
. (36)

As mentioned above, at this order Ω deviates from ΩH/2.
Therefore, the assumption that the rotation frequency
takes the value which maximizes the power is not true
at higher order in spin. To second relative order, the BZ
power, Eq. (11), is

P =
π

24

ψ2
0

M2
χ2 +

π(56− 3π2)

1080

ψ2
0

M2
χ4 +O(χ6), (37)

which agrees with the results first presented in [11].
Blandford and Znajek [1] first solved the field variables
up to ψ(2), I(1), and Ω(1), and they evaluated the BZ
power to leading order. The next-to-leading-order BZ
power was obtained by Tanabe and Nagataki [11] with-
out the solutions for I(3) and Ω(3), which were recently
found by Armas et al. [15].

The above perturbative procedure, however, cannot be
extended to higher orders. In particular, the O(χ4) flux
function ψ(4) will not satisfy the boundary condition in
Eq. (18), and instead, it will diverge at large r [11]. In
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addition, terms of the form O(|χ|3) and O(χ4 log |χ|) will
appear in the expansion of ψ [15], meaning that the field
will not be a smooth function of χ any longer. We will
now comment on these two issues.

A consistent treatment to the slowly-rotating, split-
monopole BZ process was first attempted by Grignani et
al. [14] and was recently resolved by Armas et al. [15]
using three distinct slow-rotation expansions connected
by matched asymptotics. These expansions are referred
to as “near,” “mid,” and “far” with respect to distance
between the horizon and where the expansion applies.
These regions also represent the three spatial regimes
separated by the inner and outer light surfaces [17, 49].
Under this scheme, the derivation we presented earlier
should be thought of as the solution of the mid expansion,
except that our boundary conditions for the horizon and
infinity should be imposed to the near expansion and the
far expansion, respectively. As a consequence, the mid
expansion no longer requires a finite field at the bound-
aries, and the divergence of ψ(4) at large r can now be
buffered by some well-behaved term in the far expansion.

Regarding the problem of the smoothness of the fields,
Armas et al. suggested to consider all powers of χ in the
first place and check whether other forms of dependence
(e.g., χ4 log |χ|) should be included every time the solu-
tion at an order is found [15]. In GR, up to the second
relative order, Armas et al. found that the smoothness
assumption holds true, and the near and far solutions can
be extended from the mid solution by taking r = rH and
r → ∞, respectively. In the next section, we will show
that this argument holds in quadratic gravity theories
as well, such that the derivation presented above holds,
and it is not necessary to use the procedure presented by
Armas et al. [15].

We have shown that including the boundary condition
Eq. (17) correctly solves for the fields. Consider, for ex-
ample, the step we took from Eq. (28) to Eq. (29), where
the conditions given by Eqs. (16) and (17) were used to
determine I(1) and Ω(1). If Eq. (17) was not provided,
then one could only determine I(1) as a function of Ω(1)

(or the opposite, i.e., Ω(1) as a function of I(1)). When
going to next order in the stream equation [Eq. (31)],
one finds that the source term would also be a function
of Ω(1). In general, this new Eq. (31) would no longer
be compatible with the boundary condition of Eq. (18)
unless some constraint was put on the source term. Once
this required constraint was found, one could combine it
with the requirement that Ω and I be finite to solve Ω(1)

and I(1), and eventually ψ(2). The solution to higher
orders would be similar, with the feature of needing to
determine Ω(n) and I(n) with the next order stream equa-
tion, as presented in [10, 11, 13, 14] for example. Under
such a scheme, since we work to the second relative order,
solving for I(3) and Ω(3) would require the problematic
ψ(4).

In the seminal derivation of this process [1], Blandford
and Znajek used Eq. (17) as a shortcut to match Michel’s
solution [46] at leading order in the spin expansion, with-

out necessarily implying that it would hold at all orders.
However, in subsequent works (e.g. [10, 11, 13, 14]) the
condition that Ω and I are finite at infinity was used in-
stead of Eq. (17). Following [15] we adopted Eq. (17), as
this boundary condition is equivalent to requiring finite
field variables and no incoming energy from the infinity
(i.e., an isolated magnetosphere).

In quadratic gravity theories, not using the condition
of Eq. (17) would lead to the same issues that appear in
GR. As we will explain later in Sec. IVC and with great
detail in Appendix B, for the quadratic theories consid-
ered in this work, we cannot apply the scheme proposed
by Armas et al. [15]. Therefore, we choose to use the
condition of Eq. (17) to avoid these problems and keep
our derivations simple.

IV. THE BLANDFORD–ZNAJEK PROCESS IN
QUADRATIC GRAVITY

A. Rotating Black Holes in Quadratic Gravity

Perhaps the most well-studied cases of theories that
correct GR through higher curvature terms are scalar
Gauss Bonnet (sGB) gravity [50] and dCS gravity [31,
51]. Quadratic gravity theories result as extensions of GR
from the effective field theory standpoint [28] and arise in
the low-energy expansions of quantum gravity theories,
in which scalar fields and higher-order curvature terms
appear as corrections to GR [27, 31, 34–37].

In sGB and dCS gravity, a dynamical massless scalar
ϑsGB and pseudo-scalar ϑdCS, respectively, are coupled
to the gravitational field through quadratic-in-curvature
scalar invariants. These theories are defined in vacuum
by adding to the Einstein-Hilbert action a scalar field
coupled to the metric as follows [52]:

SsGB =

∫
d4x
√
−g
[
− 1

2
(∇µϑsGB)(∇µϑsGB)

+ αsGBϑsGB(R2 − 4RµνR
µν +RµνρσR

µνρσ)

]
,

(38)

SdCS =

∫
d4x
√
−g
[
− 1

2
(∇µϑdCS)(∇µϑdCS)

− αdCS

4
ϑdCS

∗RµνρσR
µνρσ

]
, (39)

where the quadratic scalar invariants R2, RµνRµν , the
Kretschmann scalar RµνρσR

µνρσ, and the Pontryagin
density ∗RµνρσRµνρσ, where ∗Rµνρσ = 1

2ε
αβ
ρσRµναβ is

the dual of the Riemann, are coupled through the cou-
pling constants αsGB and αdCS, respectively. The most
stringent constraints to date from gravitational-wave ob-
servations are (to 90% confidence): α1/2

sGB ≤ 5.6 km [53]
and α1/2

dCS ≤ 8.5 km [54].
In sGB, the scalar field is coupled to a quadratic cur-

vature invariant, which is parity even, and therefore,
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the spherical solutions in this theory are different from
Schwarzschild. On the other hand, in dCS, the curva-
ture invariant is parity odd, and therefore, any spheri-
cally symmetric solution in GR is also a solution in dCS
gravity, e.g. the Schwarzschild solution [55].

Currently, exact closed-form solutions that represent
rotating BHs in sGB and dCS gravity do not exist.
Therefore, in this work, we use the small-coupling and
slow-rotation approximate solutions found in sGB [28–
30, 56] and in dCS gravity [32, 33, 55, 56]. The small-
coupling approximation treats the metric solutions in
both theories as deformed from the Kerr solution by de-
viations proportional to the dimensionless coupling pa-
rameter

ζq ≡
α2
q

κM4
� 1, (40)

where q ∈ {sGB,dCS} refers to either theory, κ =
(16π)−1, and M is the mass of the compact object. We
will use the approximate solutions up to O(ζq, χ

5), which
are presented in Appendix A 1 for completeness2. We
note that both solutions in BL coordinates follow the de-
composition presented in Eq. (2).

Now, let us summarize some of the BH characteristics
in these solutions that we will use later, up to O(ζq, χ

3).
First, the horizon radial locations are

rH,sGB =rH,GR −
49

40
ζsGBM −

277

960
ζsGBχ

2M, (41)

rH,dCS =rH,GR −
915

28672
ζdCSχ

2M, (42)

where rH,GR is the horizon radius of the Kerr metric as
given in Eq. (20). As in GR, the horizons are generated
by the Killing vector ∂t + ΩH∂φ, where the horizon an-
gular frequencies are

ΩH,sGB =ΩH,GR +
ζsGBχ

M

(
21

80
− 21103

201600
χ2

)
, (43)

ΩH,dCS =ΩH,GR −
ζsGBχ

M

(
709

28672
+

169

24576
χ2

)
, (44)

where ΩH,GR is the horizon angular frequency of the Kerr
metric as given in Eq. (21). Finally, the ergospheres are
also modified, with radii now given by

rergo,sGB =rergo,GR −
49

40
ζsGBM

+
277

960
ζsGBχ

2M

(
1− 850

277
sin2 θ

)
, (45)

rergo,dCS =rergo,GR

− 915

28672
ζdCSχ

2M

(
1 +

2836

915
sin2 θ

)
, (46)

2 These solutions are different from those in [33] because that paper
used Hartle-Thorne coordinates, and we use BL coordinates.

where rergo,GR is the ergosphere radius of the Kerr metric
as given in Eq. (22). Using the modified location of the
horizon and the ergosphere, we develop a resummed ver-
sion of the approximated metric solutions that recovers
the exact Kerr solution as ζq → 0 and shifts the coor-
dinate singularity to the respective value of the horizon.
The details are presented in Appendix A.

B. The Blandford–Znajek Process in Quadratic
Gravity to Leading Order in Spin

Let us consider the BZ process around BHs in sGB and
dCS gravity. As in GR, we solve the force-free conditions
in Eqs. (8)–(9) constrained by the boundary conditions of
Eqs (13)–(18) and evaluate the BZ power using Eq. (11).
The field expansions are now

ψq =ψ(0,0)
q + χ2ψ(0,2)

q

+ ζqψ
(1,0)
q + ζqχ

2ψ(1,2)
q +O(ζ2

q , χ
4), (47)

Iq =χI(0,1)
q + χ3I(0,3)

q

+ ζqχI
(1,1)
q + ζqχ

3I(1,3)
q +O(ζ2

q , χ
5), (48)

Ωq =χΩ(0,1)
q + χ3Ω(0,3)

q

+ ζqχΩ(1,1)
q + ζqχ

3Ω(1,3)
q +O(ζ2

q , χ
5), (49)

where the integer pair (m,n) stands for the mth order
in each coupling constant ζq and the nth order in the
spin χ. As GR is recovered when these couplings vanish,
ψ

(0,n)
q , I(0,n)

q , and Ω
(0,n)
q are the same as ψ(n), I(n), and

Ω(n) in Sec. III. Thus, we only need to solve for ψ(1,n)
q ,

I
(1,n)
q , and Ω

(1,n)
q for each theory.

Let us first consider the solutions at leading order in
spin. The stream Eq. (10) reads

Lψ(1,0)
q = 0, (50)

and by imposing the boundary conditions of Eqs. (13)–
(15) and (18), the solution is

ψ(1,0)
q = 0. (51)

Note that although Eq. (50) is the same as the leading
order GR stream equation in Eq. (26), the resulting so-
lution is different. This is because the GR solution ψ(0,0)

q

has already accounted for all the monopole charge ψ0, so
the charge condition Eq. (14) cancels any further correc-
tions taking the same form of ψ(0,0)

q . From Eqs. (8) and
(9), together with the conditions in Eqs. (16) and (17),
we obtain

I
(1,1)
sGB = −2πψ0Ω

(1,1)
sGB sin2 θ, Ω

(1,1)
sGB =

21

160M
, (52)

I
(1,1)
dCS = −2πψ0Ω

(1,1)
dCS sin2 θ, Ω

(1,1)
dCS = − 709

57344M
. (53)

The corrections to the BZ power, according to Eq. (11),
are therefore

P
(1,2)
sGB =

7π

80

ψ2
0

M2
, (54)
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P
(1,2)
dCS =− 709π

86016

ψ2
0

M2
. (55)

Combining Eqs. (29), (52)–(53), and (43)–(44), we find
that

Ωq =
1

2
ΩH,q +O(ζ2

q , χ
3). (56)

This result is analogous to Eq. (30) but extended to
quadratic gravity, and it indicates that the field rotation
frequency takes the value that maximizes the BZ power
at leading order in spin, as in the GR case to the same
order. From Eqs. (54)–(55), together with Eq. (37) and
(43)–(44), the BZ power can then be written as

Pq =
π

6
ψ2

0Ω2
H,q +O(ζ2

q , χ
4). (57)

This expression coincides with the result presented
in [24] for the maximal BZ power when using generic
parametrized BH metrics to O(Ω2

H). The above deriva-
tion provides a proof and shows that the value of the rota-
tion frequency does not have to be assumed, as it is a con-
sequence of the magnetosphere dynamics. Furthermore,
as mentioned in [24], from Eq. (57) and the corrections to
the Kerr horizon angular frequency, i.e., Eqs. (43)–(44),
one can phenomenologically infer the main contributions
from the metric coefficients to the BZ power.

The derivation shown above suggests that Eq. (30)
should hold as a consequence of the magnetosphere dy-
namics in all modified theories of gravity that admit BH
solutions that can be described as continuous deforma-
tions of the Schwarzschild metric. Generically, at leading
order in spin the stream Eq. (10) should take the form of
Eq. (26):

Lmodψ
(0)
mod = 0 , (58)

where the subscript mod stands for “modified theory,”
and the superscript (n) stands for a term of O(χn), fol-
lowing the notation introduced in Sec. III. Both Lmod

and ψ(0)
mod contain a GR part and a non-GR part that de-

pends on the coupling constants of the modified theory.
Regardless of the details of the modified theory, Lmod

is of O(χ0), so the metric that one uses to calculate it
must be spherically symmetric. In BL coordinates, such
a metric is diagonal, and its angular sector is just the
metric of the two-sphere, i.e.

g
(0)
θθ,mod = r2, g

(0)
φφ,mod = r2 sin2 θ. (59)

Therefore, Eq. (58) should still be separable, and its
angular sector should still be the same as that of L in
Eq. (27). As a result, the leading order in spin stream
equation should still accept the solution

ψ
(0)
mod = ψ0(1− cos θ) . (60)

As shown above, solving Eqs. (8) and (9), together
with the conditions in Eqs. (16) and (17), and inserting
the angular metric components in Eq. (59), one obtains

Ω
(1)
mod =

1

2
ΩH,mod. (61)

Thus,

Ωmod =
1

2
ΩH,mod +O(χ3), (62)

for a generic theory of gravity that describes continuous
deformations of the Schwarzschild metric. The argument
presented above, however, is not a proof because a rigor-
ous statement would require that we understand the be-
havior of the metric in the near horizon and the far field,
or alternatively that we can develop a resummation of
the metric and show that this behavior is unimportant.
Without specifying a particular modified theory of grav-
ity, it is not clear how to establish those results, but this,
in any case, is outside the scope of this paper.

According to Eqs. (54)–(55) and (37), given a BH of
fixed mass and spin, the relative corrections to the BZ
power, with respect to GR, by sGB and dCS are

PsGB − PGR

PGR
≈ 2ζsGB, (63)

PdCS − PGR

PGR
≈− 0.2ζdCS. (64)

Thus, the correction is one order of magnitude larger in
sGB than in dCS gravity. In addition, there is a sign dif-
ference so that the power is enhanced in sGB gravity and
quenched in dCS gravity, with respect to the prediction
of GR.

The difference in the corrections found, both in mag-
nitude and in sign, can be traced back to the different
corrections to the BH metric in the vicinity of the hori-
zon. At leading order, the toroidal metric components of
BHs in both theories can be written as

gtt,q =1− 2M/r + ζqkq(r/M) +O(ζ2
q , χ

2), (65)

gφφ,q =r2 sin2 θ +O(ζ2
q , χ

2), (66)

gtφ,q =− χ
[
2M/r + ζqlq(r/M)

]
sin2 θ +O(ζ2

q , χ
3),

(67)

where kq(r) and lq(r) are different functions for sGB and
dCS that can be obtained by comparing Eqs. (65)–(67)
with the BH solutions provided in Appendix A 1. Given
that ΩH ≡ −gtφ/gφφ|r=rH , and rH is the solution to gT =
0, we find

rH,q =2M
[
1− ζqkq(2)

]
+O(ζ2, χ2), (68)

ΩH,q =
χ

4M
[1 + 3ζqkq(2) + ζqlq(2)] +O(ζ2

q , χ
3). (69)

Then using Eq. (57), we can write

Pq − PGR

PGR
= 2ζq[3kq(2) + lq(2)] +O(ζ2

q , χ
2). (70)
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To proceed, we need the values of kq and lq on the hori-
zon. According to Appendix A 1, they are

ksGB(2) =
49

80
≈ 0.6, lsGB(2) = −63

80
≈ −0.8, (71)

kdCS(2) = 0, ldCS(2) = − 709

7168
≈ −0.1. (72)

Thus, the difference in the magnitude of the relative cor-
rection to the BZ power can be explained by the greater
correction to the BH metric in the vicinity of the horizon
in sGB than in dCS gravity. In fact, from Eqs. (70)–(72),
one recovers Eqs. (63)–(64).

With an expression of the BZ power in these quadratic
theories, i.e., Eq. (57), one may wonder if measurements
may be used to distinguish GR from these theories. As
we will see, ζq and χ are degenerate to this order, so it is
necessary to go to higher order, which we do next.

C. The Blandford–Znajek Process in Quadratic
Gravity to Second Relative Order in Spin

We will now proceed to find the solution to the second
relative order in spin. To this order, the stream Eq. (10)
now takes the form

Lψ(1,2)
q = ψ0 sq(x) cos θ sin2 θ, (73)

where sq(x) is the radial source function, which is differ-
ent for each theory. Considering the boundary conditions
in Eqs. (13)–(15) and (18), the solution then takes the
form

ψ(1,2)
q = ψ0 hq(x) cos θ sin2 θ, (74)

where hq(x) is the solution to the following inhomoge-
neous radial equation:

d

dx

[(
1− 2

x

)
dhq(x)

dx

]
− 6hq(x)

x2
= sq(x), (75)

with the boundary conditions such that hq(x) is finite
at x = 2 and when x → ∞. We have derived sq(x)
and solved for hq(x) in closed-form. The expressions are
rather long, and not illustrative, so we present them in

Appendix B (see Eqs. (B71)–(B74)). Here, we only sum-
marize the behavior of the radial functions at the bound-
aries:

hsGB(2) =− 1865759261

9408000
+

11497π2

960
+

49π4

60
, (76)

hdCS(2) =
5562399

40140800
− 709π2

86016
(77)

and

hsGB(x)
∣∣∣
x→∞

∼ 21

80x
, (78)

hdCS(x)
∣∣∣
x→∞

∼− 709

28672x
. (79)

Solving Eqs. (8)–(9) with the conditions of Eqs. (16)–
(17), we find

I(1,3)
q =− 2πψ0

[
Ω(1,3)
q sin2 θ + Ω(1)hq(x) sin2 θ cos2 θ

+ Ω(1,1)
q f(x) sin2 θ cos2 θ

]
, (80)

and

Ω
(1,3)
sGB =− 21103

403200M
+

(
626184387

50176000

− 11581π2

15360
− 49π4

960

)
sin2 θ

M
, (81)

Ω
(1,3)
dCS =− 169

49152M
−
(

83313691

5780275200

− 709π2

688128

)
sin2 θ

M
. (82)

The corrections to the BZ power of Eq. (11) at second
relative order in spin are therefore

P
(1,4)
sGB =π

(
5652214483

846720000
− 2333π2

5760
− 49π4

1800

)
ψ2

0

M2
, (83)

P
(1,4)
dCS =− π

(
163742291

10838016000
− 709π2

860160

)
ψ2

0

M2
. (84)

Collecting all results so far, we have

PsGB =

[
π

24
+

7π

80
ζsGB

]
ψ2

0χ
2

M2
+

[
π(56− 3π2)

1080
+ π

(
5652214483

846720000
− 2333π2

5760
− 49π4

1800

)
ζsGB

]
ψ2

0χ
4

M2
+O(ζ2

sGB, χ
6),

(85)

PdCS =

[
π

24
− 709π

86016
ζdCS

]
ψ2

0χ
2

M2
+

[
π(56− 3π2)

1080
− π

(
163742291

10838016000
− 709π2

860160

)
ζdCS

]
ψ2

0χ
4

M2
+O(ζ2

dCS, χ
6). (86)

For comparison, the horizon angular frequencies up to the same relative order are

ΩH,sGB =

(
1

4
+

21

80
ζsGB

)
χ

M
+

(
1

16
− 21103

201600
ζsGB

)
χ3

M
+O(ζ2

sGB, χ
5), (87)
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ΩH,dCS =

(
1

4
− 709

28672
ζdCS

)
χ

M
+

(
1

16
− 169

24576
ζdCS

)
χ3

M
+O(ζ2

dCS, χ
5). (88)

We see from these expressions that although Pq ∝ Ω2
H,q

at leading order in χ, this approximation breaks down
at next-to-leading order. This is true in GR and in both
sGB and dCS gravity.

Figure 1 shows the equatorial rotation frequency Ωeq ≡
Ω(θ = π/2) and the BZ power P as functions of the BH
spin χ, up to second relative order. As found to leading
order in the previous section, the BZ power is enhanced in
sGB and quenched in dCS, with respect to the prediction
of GR. As these solutions are only valid in the small-
coupling approximation, we have fixed the dimensionless
coupling constants ζq = 0.2 to qualitatively show the
different behaviors of the BZ power.

FIG. 1. The rotation frequency of the EM field in the equa-
torial plane, Ωeq, (top) and the BZ power, P , (bottom) as
functions of the BH spin χ for GR (solid line), sGB (dashed
lines), and dCS gravity (dotted lines), respectively. These
quantities are computed up to second relative order in the
small rotation approximation, i.e., O(χ3) for Ωeq and O(χ4)
for P . In sGB and dCS gravity, the coupling constants ζsGB

and ζdCS are both set to 0.2 for illustrative purposes, and their
modifications to GR are considered to first order in their cou-
pling constants. Deviations from the GR result are larger in
sGB than in dCS gravity, as expected.

As we have only considered solutions up to second
relative order in spin, it was unnecessary to follow the

procedure presented by Armas et al. [15], i.e., matched
asymptotics plus smoothness checks. Even though the
results presented in [15] were derived within GR, we ex-
pected a similar behaviour of the BZ solution in these
modified theories. However, as the BH metrics in sGB
and dCS gravity are only known in the mid-region, a
rigorous proof of this behaviour cannot be provided, as
we explain in detail in Appendix B. Despite that, we
have applied the method proposed by Armas et al. us-
ing resummed metrics for sGB and dCS and found the
field solutions in the near and far expansions are trivial,
and that the smoothness assumption holds up to second
relative order in the spin. Since our resummation re-
covers the exact Kerr metric and shifts the coordinate
singularity to the modified horizon, we argue that this
resummation is likely to work in the entire domain. A
detailed presentation of these calculations is presented in
Appendix B.

V. ASTROPHYSICAL IMPLICATIONS

The BZ process has three free parameters3: the angu-
lar velocity of the event horizon (ΩH, which only depends
on the BH’s parameters), the rotation frequency of mag-
netic field lines (Ω, which is dictated by the dynamics
of the system), and the magnetic flux through the hori-
zon (ψ0). Therefore, measurements of only the jet power
cannot be used to learn about the underlying physics
of the process. Within GR, it is customary to assume
Ω = ΩH/2 or to check for a square proportionality of the
jet power with ΩH when fitting data [3–5]. Even within
GR, a clear observational signature of the BZ mechanism
is still missing, although it may be possible that future
observations may provide the quality and type of data
necessary.

Pei et al., [23], assuming Ω = ΩH/2, combined esti-
mates of the jet power with independent measurements
of the black hole spin and found that current data cannot
place informative constraints on the metric deformation
parameters. However, in the presence of better measure-
ments, they conjectured that such types of tests may be
possible. Given this, let us now hypothesize about tests
of gravity in the future, i.e., if, for example, Ω can be
measured and independent high quality measurements of

3 There will naturally be more degrees of freedom when consider-
ing other configurations or symmetries of the disk and jet than
those considered in this work (for instance, see [1, 45, 57]). For
example, state-of-the-art GRMHD models can display a jet–disk
boundary layer that fluctuates strongly, and therefore more pa-
rameters may be needed to describe the jet power [58].
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the BH’s spin become possible. Would high quality data
be able to distinguish GR from other theories of gravity
using the BZ power? As we will show below, in addition
to precise future measurements, a magnetospheric solu-
tion that goes beyond second order will also be required.

Let us assume Ω ≈ ΩH/2 to write Eq. (57) as

Pq(ζq, χ) =
2π

3
ψ2

0 [Ωq(ζq, χ)]
2

+O(ζ2
q , χ

4). (89)

From this expression, one can see that Pq is a function
that only depends on Ωq at leading order in spin. This
implies that, to this order, ζq and χ are degenerate. In
other words, we will not be able to determine both the
coupling constant ζq and the spin χ even if both the BZ
power Pq and the field rotation frequency Ωq are mea-
sured. Note that Eq. (89) holds as long as the magneto-
sphere dynamics maximizes the BZ power, and therefore,
this degeneracy is a general issue under such a condition.

To higher order in spin, however, this is not the case.
To see whether the degeneracy breaks between ζq and χ,
we vary ζq → ζq + δζq and χ → χ + δχ and study the
following Jacobian determinant:∣∣∣∣δ ln(P,Ω)

δ ln(ζ, χ)

∣∣∣∣
q

≡
∣∣∣∣δ lnPq/δ ln ζq δ lnPq/δ lnχ
δ ln Ωq/δ ln ζq δ ln Ωq/δ lnχ

∣∣∣∣ . (90)

Evaluating Eq. (90) with Pq and Ωq to leading order in
spin, this Jacobian vanishes, and thus ζq and χ are degen-
erate at leading order in spin as mentioned above. Now
if we add the corrections at second relative order in spin,
as given in Eqs. (36)–(37) and Eqs. (81)–(84), one finds∣∣∣∣δ ln(P,Ω)

δ ln(ζ, χ)

∣∣∣∣
sGB

=

(
−616991987

31360000
+

11329π2

9600
+

49π4

600

)
× (3 + 5 cos 2θ) ζsGBχ

2

+O(ζ2
sGB, χ

4), (91)∣∣∣∣δ ln(P,Ω)

δ ln(ζ, χ)

∣∣∣∣
dCS

=

(
− 16442609

3612672000
+

709π2

860160

)
× (3 + 5 cos 2θ) ζdCSχ

2

+O(ζ2
dCS, χ

4). (92)

Therefore the degeneracy between ζq and χ breaks when
the BZ power to second relative order in spin is consid-
ered. Given that the degeneracy only breaks at higher or-
ders in the slow-rotation approximation, we expect that a
determination of or constraint on ζq and χ by measuring
Pq and Ωq will only be possible for rapidly-rotating BHs,
provided that both quantities are computed accurately.

VI. DISCUSSION

We have studied the BZ process in two well-motivated
quadratic gravity theories: sGB and dCS gravity. We
solved the BH magnetosphere analytically to first order
in the small-coupling approximation and to second rela-
tive order in the slow-rotation approximation, assuming

a split-monopole configuration. We found that the power
of energy extraction from the BH, compared to the pre-
dictions of GR, is enhanced in sGB gravity and quenched
in dCS gravity.

We have further shown that, for these quadratic BH
solutions, the strategy to solve for the fields proposed
by Armas et al. [15] cannot be applied, as the approxi-
mated BH solutions do not fit into a matched asymptotics
framework. However, as shown by Armas et al. [15], in
GR, the inclusion of the condition in Eq. (17) is suffi-
cient for solving the BZ process up to second relative or-
der in the slow-rotation approximation, and the matched
asymptotics and the smoothness issue can be neglected.
By studying a resummed version of the quadratic gravity
BH solutions, we have argued that the same holds true
in quadratic gravity.

Previous studies of the BZ mechanism outside GR [23–
25] have only been considered to first relative order in
the small-spin expansion, where a degeneracy occurs that
hinders our ability to use this mechanism to distinguish
GR from other theories of gravity. Furthermore, [23, 24]
have used parametrically deformed metrics with only one
deformation parameter. However, most of the known
modified solutions cannot be mapped to such metrics
(with only one deformation parameter), and when mul-
tiple parameters are included in the analyses of observ-
ables, the degeneracies between the astrophysical and BH
parameters are enhanced, making theory-agnostic stud-
ies very challenging [59, 60]. Therefore studies of specific
theories, as the one presented here or in [25], should be
seen as complementary.

Our results motivate further analytical and numerical
studies of the BZ process in modified theories of grav-
ity and continue to pave the road towards addressing
whether the phenomena related to the BZ mechanism
can be used to learn about fundamental physics from
BH observations.
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Appendix A: Slow-Rotation, Small-Coupling Black
Hole Solutions in Quadratic Gravity

This Appendix explicitly shows the transformation of
coordinates from Hartle–Thorne to Boyer–Lindquist co-
ordinates and the resummed metrics used in the main
text.
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1. Coordinate transformation from Hartle–Thorne
to Boyer–Lindquist coordinates

The BH solutions used in this work were derived in
Hartle–Thorne (HT) coordinates in [30, 33] for sGB and
dCS gravity, respectively. Below we show explicitly, up to
O(ζq, χ

5), the transformation from HT coordinates, i.e.,
(t, rHT, θHT, φ), to BL coordinates, i.e., (t, r, θ, φ). The
transformation is assumed to be of the form

rHT,q =

n∑(
r

(n)
HT + ζqr

(n)
HT,q [rBL, θBL]

)
χn, (A1)

θHT,q =

n∑(
θ

(n)
HT + ζqθ

(n)
HT,q [rBL, θBL]

)
χn, (A2)

where the integer (n) stands for the nth order in the
spin χ. Using this ansatz, the transformation gBL

µν =

ΛαµΛβνg
HT
αβ , with Λαµ = ∂xαHT/∂x

µ
BL, is solved order by or-

der. Starting with the GR terms, the transformation
requires only to solve algebraic equations because the
Kerr solution is known in both coordinate systems. In
particular, it is enough to apply the transformation and
simultaneously solve for r(n)

HT [rBL, θBL] and θ(n)
HT [rBL, θBL]

in gBL
tt − gHT

tt = 0 and gBL
φφ − gHT

φφ = 0, order by order.

This exact procedure also applies to both sGB and
dCS, but the equations start to be coupled partial dif-
ferential equations,instead of algebraic, for n ≥ 3, as the
solutions were only previously known in BL up to second
order in the spin [32, 61]. Thus, one solves, order by or-
der, for r(n)

q,HT [rBL, θBL] and θ(n)
q,HT [rBL, θBL] in the result-

ing coupled partial differential equations. For simplicity,
we require that our transformation satisfies grθ = 0. The
explicit resulting coordinate transformation we used in
this work is:

rHT,sGB =rHT,GR − ζsGBχ
2 M

4

12r3

(
1 +

4M

r
+

61M2

3r2
+

54M3

r3
+

46M4

5r4
− 1696M5

15r5
− 368M6

r6

)
(1 + 3 cos 2θ)

+ ζsGBχ
4M

4

8r3

[(
1 +

4M

r
+

34606M2

2625r2
+

19556M3

525r3
+

8017663M4

55125r4
+

322582M5

875r5
+

194692M6

525r6

− 290140M7

441r7
− 515756M8

105r8
+

4608M9

5r9
− 11552M10

r10

)
cos 2θ − 3019M2

1750r2

(
1 +

14220M

3019r
− 2811413M2

63399r2

− 101488M3

9057r3
+

372990M4

3019r4
− 18494900M5

63399r5
− 639400M6

9057r6
− 10197600M7

3019r7
+

25816000M8

3019r8

)
cos2 2θ

]
,

(A3)
θHT,sGB =θHT,GR, (A4)

and

rHT,dCS =rHT,GR − ζdCSχ
4 661M6

43000r5

[(
1 +

4005M

661r
+

215826M2

4627r2
+

175636M3

661r3
+

343404M4

661r4
− 829404M5

4627r5

− 1532520M6

661r6
− 2467584M7

661r7

)
cos 2θ − 117

1322

(
1 +

5M

r
+

143834M2

273r2
− 12676M3

39r3
− 78380M4

13r4

− 690876M5

91r5
+

20952M6

13r6
+

822528M7

13r7

)
cos2 2θ

]
, (A5)

θHT,dCS =θHT,GR, (A6)

where the transformations in GR are given by

rHT,GR =r − χ2M
2

4r

(
1 +

M

r
− 6M2

r2

)
cos 2θ − χ4M

4

8r3

[
1 +

3M

r
− 36M2

5r2
− 72M3

5r3
+

8M4

5r4

− 2

(
1 +

3M

r
− 18M2

r2
− 42M3

r3
+

36M4

r4

)
cos2 θ +

(
1 +

3M

r
− 28M2

r2
− 60M3

r3
+

192M4

r4

)
cos4 θ

]
, (A7)

θHT,GR =θ + χ2M
2

4r2

(
1 +

2M

r

)
sin 2θ

− χ4M
4

8r4

[(
1 +

4M

r
+

5M2

r2
+

6M3

r3

)
sin 2θ − 1

4

(
1 +

4M

r
+

2M2

r2
− 12M3

r3

)
sin 4θ

]
. (A8)
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The resulting metric expressions in BL coordinates are
available in a Mathematica notebook provided in the
Supplemental Material.

2. Resummation of Slow-Rotation, Small-Coupling
Black Hole Solutions

As discussed in the main text, it is suitable to re-
express the metric solutions as a resummation such
that analytic calculations, like the one presented in Ap-
pendix B, can be performed. In particular, our resumma-
tion will provide a metric with the following properties:

(i) differs from the series-expanded metric only by
terms of O(ζ2

q , χ
6),

(ii) recovers the exact Kerr metric when taking ζq → 0,

(iii) encodes the location of the corrected horizon r =
rH,q (not at r = 2M) through a redefinition of the
∆ function of the Kerr metric,

(iv) encodes the location of the corrected ergosphere r =
rergo,q through a redefinition of the Σ function of the
Kerr metric,

(v) avoids introducing naked singularities or closed
time-like curves.

Indeed, item (i) must hold for any resummation proce-
dure (almost by definition of what we mean by resum-
mation). Items (ii)–(v), however, are additional require-
ments we impose to refine our resummation procedure,
but even then, this scheme is still not unique.

Given a series-expanded solution to higher order than
O(ζq, χ

5), one can repeat this procedure to get more ac-
curate representations of the solution.

Let us first consider the coordinate singularity. Yagi et
al. [32] have proposed a resummation strategy that shifts
the coordinate singularity in the approximate dCS BH
solution from r = 2M to r = rH,dCS. This resummation
strategy works by taking ∆ → ∆dCS in the Kerr piece
of gdCS

rr and taking (r − 2M)→ (r − rH,dCS) in the dCS
modification piece of grr. Here, ∆dCS deviates from ∆ in
a way such that ∆dCS = 0 occurs for r = rH,dCS. Ayzen-
berg and Yunes [62] (there is a typo in their expressions
that we correct here) have computed ∆dCS to O(ζq, χ

5) :

∆dCS = ∆ +M2ζdCS

(
915

14336
χ2 +

131879

6881280
χ4

)
. (A9)

Using this transformation, g̃dCS
rr ≡ gdCS

rr ∆dCS does not
become singular at r = 2M when evaluated up to
O(ζdCS, χ

5). Therefore, we can apply a simpler resumma-
tion strategy by just computing g̃dCS

rr up to O(ζdCS, χ
5)

and replacing

gdCS
rr → g̃dCS

rr /∆dCS. (A10)

The same procedure also applies in sGB, and therefore

∆sGB = ∆ +M2ζsGB

(
49

20
− 311

480
χ2 − 813569

1612800
χ4

)
.

(A11)

The next step is to make sure that we recover the ex-
act Kerr metric when taking ζq → 0. Here, we con-
sider replacing terms that appear as 1/rn (n > 0) with
(r/Σq)

n, where Σq deviates from Σ in a way such that
Σq − 2Mr = 0 gives the correct value of the ergosphere
rergo,q(θ). The results are

ΣsGB =Σ +M2ζsGB

[
49

20
−
(

191

160
+

131

240
cos2 θ

)
χ2

+

(
14370073

56448000
+

4829219

1764000
cos2 θ

− 16448333

4704000
cos4 θ

)
χ4

]
, (A12)

ΣdCS =Σ +M2ζdCS

[(
3751

14336
− 709

3584
cos2 θ

)
χ2

−
(

1922747

48168960
+

34351

150528
cos2 θ

− 230637

802816
cos4 θ

)
χ4

]
. (A13)

We note that we do not replace all 1/rn terms at the
same time; otherwise, the exact Kerr metric cannot be
recovered in the GR sector. Instead, we order the re-
placement as follows. Given a metric component gqµν in
the original BH solution, we calculate its Laurent expan-
sion about r = 0. The result should take the following
form:

gqµν =

N+∑
n=0

Cnr
n +

N−∑
n=1

D(0)
n /rn, (A14)

where N+ and N− are finite non-negative integers, and
Cn and Dn are precise up to O(ζq, χ

5). The first sum is
non-diverging, while the second sum contains all diverg-
ing terms that has to be replaced. We first take

D
(0)
1 /r → D

(0)
1 r/Σq. (A15)

Now D
(0)
1 r/Σq is non-diverging. We can then rewrite gqµν

as follows:

gqµν =

N+∑
n=0

Cnr
n +D

(0)
1 r/Σq

+

N−∑
n=2

D(1)
n /rn, (A16)

where we have put all non-diverging terms in the bracket
and adjusted the diverging terms to keep gqµν precise up
to O(ζq, χ

5). At the ith step, we replace

D
(i−1)
i /ri → D

(i−1)
i (r/Σq)

i, (A17)
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and rewrite

gqµν =

N+∑
n=0

Cnr
n +

i∑
n=1

D(n−1)
n (r/Σq)

n


+

N−∑
n=i+1

D(i)
n /rn, (A18)

where eachD(i)
n is adjusted fromD

(i−1)
n so that the above

expression holds up to O(ζq, χ
5). By the N−th step,

there should be nothing left for the diverging part, and
the whole replacement is completed. We have checked
that the obtained resummed metrics recover the exact
Kerr metric when taking ζq → 0, and they recover the
series-expanded metrics when replacing ∆q and Σq using
Eqs. (A9), (A11), and (A12)–(A12) and re-expanding to
O(ζq, χ

5).
The result of this procedure gives the following re-

summed BH solutions, which we only show here up to
O(ζq, χ

2):

gsGB
tt =

(
−1 +

2Mr

ΣsGB

)[
1− ζsGB

137M3r3

30Σ3
sGB

(
1 +

14Mr

137ΣsGB
− 104M2r2

137Σ2
sGB

− 400M3r3

137Σ3
sGB

)]
, (A19)

gsGB
rr =

1

∆sGB

[
r2 + χ2M2 cos2 θ + ζsGB

29M2

20

(
1 +

38Mr

29ΣsGB
− 28M2r2

3Σ2
sGB

− 1744M3r3

87Σ3
sGB

− 3680M4r4

87Σ4
sGB

)]
, (A20)

gsGB
θθ =r2 + χ2M2 cos2 θ, (A21)

gsGB
φφ =r2 sin2 θ + χ2M2

(
1 +

2Mr

ΣsGB
sin2 θ

)
sin2 θ, (A22)

gsGB
tφ =− χ 2Mr

ΣsGB
sin2 θ − ζsGB

43M4r3

10Σ3
sGB

(
1− 280Mr

129ΣsGB
− 60M2r2

43Σ2
sGB

− 96M3r3

43Σ3
sGB

+
800M4r4

129Σ4
sGB

)
sin2 θ. (A23)

gdCS
tt =− 1 +

2Mr

ΣdCS
, (A24)

gdCS
rr =

1

∆dCS

(
r2 + χ2M2 cos2 θ

)
, (A25)

gdCS
θθ =r2 + χ2M2 cos2 θ, (A26)

gdCS
φφ =r2 sin2 θ + χ2M2

(
1 +

2Mr

ΣdCS
sin2 θ

)
sin2 θ, (A27)

gdCS
tφ =− χ 2Mr

ΣdCS
sin2 θ + ζdCSχ

5M5r4

Σ4
dCS

(
1 +

12Mr

7ΣdCS
+

27M2r2

10Σ2
dCS

)
sin2 θ, (A28)

The complete expressions of the resummed metric up to
O(ζq, χ

5) are available in a Mathematica notebook pro-
vided in the Supplemental Material.

Appendix B: Blandford–Znajek Solution in
Quadratic Gravity Using Matched Asymptotics

In Sec. IVB–IVC, we derived the BZ process follow-
ing a similar procedure as shown in e.g., [1, 10], but we
adopted the boundary conditions presented by Armas et
al. [15]. In this appendix, we present the solutions to the
BZ mechanism in quadratic gravity following the proce-
dure presented by Armas et al. [15] and show that the
results coincide.

We start by defining three distinctive slow-rotation ex-
pansions, namely “near,” “mid” and “far,” by their length

scales, Rnear � Rmid � Rfar, where:

Rnear =a2/M, (B1)
Rmid =M, (B2)

Rfar =M2/a. (B3)

The mass and the spin are, accordingly, now expressed
as:

M =Rnearχ
−2 = Rmid = Rfarχ, (B4)

a =Rnearχ
−1 = Rmidχ = Rfarχ

2. (B5)

Analogously, the r coordinate should also be replaced by
the following dimensionless radii:

y =(r − rH)/Rnear, (B6)
x =r/Rmid, (B7)
x̄ =r/Rfar. (B8)
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Let Qnear(y), Qmid(x), and Qfar(x̄) be some field vari-
ables in the three different expansions. The boundary
conditions on the horizon and at infinity should apply
to Qnear|y=0 and Qfar|x̄→∞, respectively. In addition,
matched asymptotics requires that

Qnear

∣∣
y→∞ ∼Qmid

∣∣
x̄→2

, (B9)

Qmid

∣∣
x→∞ ∼Qfar

∣∣
x̄→0

. (B10)

For example, consider a term in the mid expansion that
has the following dependence on x in the vicinity of x→
∞:

Q
(4)
mid

∣∣
x→∞ = Rmid

(
x+

1

x

)
+ · · · , (B11)

where “ · · · ” means there could be other dependencies on
x. In the vicinity of x̄ → 0, using Rmid = χRfar and
x = x̄/χ, one finds that

Q
(4)
far

∣∣
x̄→0

=Rfarx̄+ · · · , (B12)

Q
(6)
far

∣∣
x̄→0

=
Rfar

x̄
+ · · · . (B13)

Given the characteristics of the three expansions in
Eqs. (B1)–(B8), we recognize that the mid expansion co-
incides with the slow-rotation approximation presented
above. As expected, the quadratic gravity metric solu-
tions presented in Appendix A 1 are given as mid expan-
sions. In order to conduct the full procedure by Armas
et al., we also need the metric solutions in the near and
far expansions.

We note that the far-expansion metric can be con-
verted from the mid-expansion metric by replacingM →
Rfarχ, a → Rfarχ

2, and r → Rfarx̄. On the other hand,
for the near expansion, the same strategy is not guar-
anteed to work because negative powers will be involved
when taking M → Rnearχ

−2 and a → Rnearχ
−1. In ad-

dition, the r → rH +Rneary replacement also requires the
metric to be well-defined near the horizon. This is why we
have resummed the metric solutions in Appendix A such
that the exact Kerr solution is recovered when ζ → 0,
and the coordinate singularity at r = 2M is shifted to
the horizon radius rH,q.

Like in the main text, we consider up to second relative
order in spin. We start by writing the GR solution found
in [15]. To leading order, it is

ψ(0)
near =ψ

(0)
mid = ψ

(0)
far = ψ0(1− cos θ), (B14)

χ3I(3)
near =χI

(1)
mid = I

(0)
far = −2πψ0a

M2
ω0 sin2 θ, (B15)

χ3Ω(3)
near =χΩ

(1)
mid = Ω

(0)
far =

a

M2
ω0, (B16)

where

ω0 =
1

8
. (B17)

Note that because I and Ω are proportional to a/M2,
their scaling behavior with respect to χ varies in different
expansions according to Eqs. (B4)–(B5).

At first relative order,

ψ(1)
near =ψ

(1)
mid = ψ

(1)
far = 0, (B18)

χ3I(4)
near =χI

(2)
mid = I

(1)
far = 0, (B19)

χ3Ω(4)
near =χΩ

(2)
mid = Ω

(1)
far = 0, (B20)

while to second relative order, the mid expansion is

ψ
(2)
mid =ψ0f(x) sin2 θ cos θ, (B21)

I
(3)
mid =− 2πψ0

M
sin2 θ

[
ω2(θ) +

1

4
f(x) cos2 θ

]
, (B22)

Ω
(3)
mid =

1

M
ω2(θ), (B23)

where f(x) is the same as defined in Eq. (33), and

ω2(θ) =
1

32
− 4f(2)− 1

64
sin2 θ. (B24)

Finally, the near and far expansions are

ψ(2)
near = ψ

(2)
mid

∣∣
x=2

, ψ
(2)
far = ψ

(2)
mid

∣∣
x→∞, (B25)

χ3I(5)
near = χI

(3)
mid

∣∣
x=2

, I
(2)
far = χI

(3)
mid

∣∣
x→∞, (B26)

χ3Ω(5)
near = χΩ

(3)
mid

∣∣
x=2

, Ω
(2)
far = χΩ

(3)
mid

∣∣
x→∞. (B27)

Note that the first relative order solution vanishes, which
supports the argument that the field variables should be
smooth functions of χ. From Eqs. (B14)–(B27), it is
clear that the near solutions are nothing but the mid
solutions when taking x = 2, as expected. Similarly,
the far solutions are nothing but the mid solutions when
taking x → ∞. Therefore, the near and far expansions
appear to be trivial up to the second relative order. In the
following, we will solve the quadratic gravity corrections
to the field variables, and we will show that the solutions
have the same qualitative behavior as in GR.

1. Leading Order in Spin

Let us first consider the mid expansion. The stream
Eq. (10) reads

Lψ
(1,0)
mid,q = 0, (B28)

where L has been defined in Eq. (27). We then require
Eqs. (13) and (14) as the boundary conditions in the
angular direction. In the radial direction, matching the
near and far expansions requires that ψ(1,0)

mid be finite at
both boundaries. The reason is the following: Suppose
ψ

(1,0)
mid had some diverging dependence on x as x → ∞

which, for example, behaved like xn (n > 0). Then due
to x = x̄/χ, there would have to be a corresponding
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ψ
(1,−n)
far in the far expansion. Given that ψ = O(1), there

is no such ψ
(1,−n)
far . Therefore, ψ(1,0)

mid must be finite as
x → ∞. Similarly, one can also argue that ψ(1,0)

mid must
be finite as x→ 2. In the end, the solution has to be

ψ
(1,0)
mid,q = 0. (B29)

The other two force-free conditions, Eqs. (8) and (9),
provide the following solutions:

I
(1,1)
mid,q =

ψ0

Rmid
i0,q(θ), (B30)

Ω
(1,1)
mid,q =

1

Rmid
ω0,q(θ), (B31)

where i0,q and ω0,q are to be determined later.
Next, we consider the near expansion. The stream

Eq. (10) reads

Lnearψ
(1,0)
near,q = 0, (B32)

where Lnear is defined as [15]

Lnear = 16∂y + (−1 + cos 2θ + 16y)∂2
y . (B33)

The angular boundary conditions are again Eqs. (13) and
(14). On the horizon (i.e, y = 0), the solution must
follow Eq. (15). As y →∞, the solution must match the
mid expansion; consequently, ψ(1,0)

near,q must be finite, and
therefore

ψ(1,0)
near,q = 0. (B34)

Considering the other two force-free conditions, Eqs. (8)
and (9), together with the requirement that the solutions
match the mid expansion, we obtain

I(1,3)
near,q =

ψ0

Rnear
i0,q(θ), (B35)

Ω(1,3)
near,q =

1

Rnear
ω0,q(θ). (B36)

We can now use the horizon Znajek condition and derive

i0,sGB(θ) =2π

[
ω0,sGB(θ)− 21

80

]
sin2 θ, (B37)

i0,dCS(θ) =2π

[
ω0,dCS(θ) +

709

28672

]
sin2 θ. (B38)

Finally, we consider the far expansion. The stream
equation [Eq. (10)] reads:

Lfarψ
(1,0)
far,q −

1

32 sin θ
∂θ

(
ψ

(1,0)
far,q cos θ

)
=

Rfar

16π sin θ
∂θ

(
I

(1,0)
far,q + 2πΩ

(1,0)
far,q sin2 θ

)
, (B39)

where Lfar is defined as [15]

Lfar = sin θ∂θ

[
sin θ

(
1

x̄2 sin2 θ
− 1

64

)
∂θ

]

+ sin2 θ∂x̄

[
x̄2

(
1

x̄2 sin2 θ
− 1

64

)
∂x̄

]
+

1

32
(2− 3 sin2 θ). (B40)

Because ψfar, Ifar, and Ωfar are coupled, it is not easy
to solve this equation directly. We propose the following
ansatz:

ψ
(1,0)
far,q = 0, (B41)

I
(1,0)
far,q =

ψ0

Rfar
i0,q(θ), (B42)

Ω
(1,0)
far,q =

1

Rfar
ω0,q(θ), (B43)

which satisfies the two force-free conditions Eqs. (8)–(9),
the boundary conditions Eqs. (13)–(14) and (18), and the
condition that they match with the mid expansion.

We are now left with Eq. (B39) and the condition given
by Eq. (17). The latter requires

i0,q(θ) = −2π ω0,q(θ) sin2 θ. (B44)

Inserting Eqs. (B41)–(B44) into Eq. (B39), we find that
Eq. (B39) is also satisfied. Therefore, the proposed
ansatz is indeed the solution.

Now combining the conditions in Eqs. (B37)–(B38)
and (B44), we determine ω0:

ω0,sGB(θ) =
21

160
, (B45)

ω0,dCS(θ) =− 709

57344
. (B46)

Then, i0 is given by Eq. (B44).
To summarize, at leading order in spin, we find

ψ(1,0)
near,q = ψ

(1,0)
mid,q = ψ

(1,0)
far,q = 0, (B47)

χ3I(1,3)
near,q = χI

(1,1)
mid,q = I

(1,0)
far,q = −2πψ0a

M2
ω0,q(θ), (B48)

χ3Ω(1,3)
near,q = χΩ

(1,1)
mid,q = Ω

(1,0)
far,q =

a

M2
ω0,q(θ), (B49)

where ω0 is given in Eqs. (B45) and (B46) in sGB and
dCS gravity, respectively.

2. First Relative Order in Spin

We now go to next order. At first relative order, the
mid-expansion stream equation [Eq. (10)] reads

Lψ
(1,1)
mid,q = 0. (B50)

We then require the boundary conditions in Eqs. (13)–
(14) and that they match with the other two expansions.
The resulting solution is

ψ
(1,1)
mid,q = 0, (B51)
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while Eqs. (8) and (9) give

I
(1,2)
mid,q =

ψ0

Rmid
i1,q(θ), (B52)

Ω
(1,2)
mid,q =

1

Rmid
ω1,q(θ). (B53)

The near-expansion stream equation [Eq. (10)] reads

Lnearψ
(1,1)
near,q = 0. (B54)

By requiring the boundary conditions in Eqs. (13)–(15)
and that ψnear match with ψmid, we get

ψ(1,1)
near,q = 0, (B55)

while Eqs. (8) and (9) give

I(1,4)
near,q =

ψ0

Rnear
i1,q(θ), (B56)

Ω(1,4)
near,q =

1

Rnear
ω1,q(θ). (B57)

The condition in Eq. (16) can now be evaluated:

i1,q(θ) =2π ω1,q(θ) sin2 θ. (B58)

The far expansion can be computed by starting from
Eqs. (8) and (9). The solutions are

I
(1,1)
far,q =

ψ0

Rfar
i1,q −

π

2Rfar
ψ

(1,1)
far,q cos θ, (B59)

Ω
(1,1)
far,q =

1

Rfar
ω1,q. (B60)

Then, the stream equation [Eq. (10)] reads

Lfarψ
(1,1)
far,q =

ψ0

16π sin θ
∂θ
(
i1,q + 2π sin2 θ ω1,q

)
. (B61)

We propose the solution to be

ψ
(1,1)
far,q = 0, (B62)

such that the condition in Eq. (B44) becomes

i1,q(θ) =− 2π ω1,q(θ) sin2 θ. (B63)

Therefore, we can verify that Eq. (B61) is satisfied. Com-
bining Eqs. (B58) and (B63), we have

i1,q(θ) = 0 = ω1,q(θ). (B64)

To summarize, at first relative order we find

ψ(1,1)
near,q = ψ

(1,1)
mid,q = ψ

(1,1)
far,q = 0, (B65)

I(1,4)
near,q = I

(1,2)
mid,q = I

(1,1)
far,q = 0, (B66)

Ω(1,4)
near,q = Ω

(1,2)
mid,q = Ω

(1,1)
far,q = 0. (B67)

As these quadratic gravity corrections vanish, the field
variables are still smooth functions of χ up to second
relative order.

3. Second Relative Order in Spin

At second relative order, the mid-expansion stream
equation [Eq. (10)] reads

Lψ
(1,2)
mid,q = ψ0sq(x) cos θ sin2 θ. (B68)

Considering the boundary conditions in Eqs. (13)–(14)
and the matches with the other two expansions, the result
takes the form

ψ
(1,2)
mid,q = ψ0hq(x) cos θ sin2 θ, (B69)

where hq(x) is the solution to the radial equation

d

dx

[(
1− 2

x

)
dhq(x)

dx

]
− 6hq(x)

x2
= sq(x), (B70)

with the boundary conditions such that hq(x) is finite at
x = 2 and when x→∞. The results are

ssGB(x) =− 3

4x

(
1 +

1

x
− 44

3x2
+

34

x3
+

16

5x4
+

976

3x5
− 448

x6

)[
Li2

(
2

x

)
+ ln

(
2

x

)
ln

(
1− 2

x

)]
− 3

2(x− 2)2

(
1− 2

x
− 49

3x2
+

80

x3
− 5296

45x4
+

15808

45x5
− 7092

5x6
+

80096

45x7
− 3424

9x8

)
ln

(
2

x

)
+

3

2x(x− 2)

(
1− 6

5x
− 301

18x2
+

484756

7875x3
− 764041

23625x4
+

50442368

165375x5
− 44345362

55125x6

+
1993576

33075x7
+

688420

1323x8
− 70712

35x9
+

13856

3x10
− 3520

x11

)
, (B71)

hsGB(x) =− 8389x2

60
+

9649x

60
+

74099

2160
+

12017

720x
− 5331127

1008000x2
− 541351

75600x3
− 2652689

176400x4
+

125249

36750x5
+

451

270x6
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− 73

441x7
+

32

5x8
− 40

3x9
+

1

2520(x− 2)

(
352338x3 − 986685x2 + 488285x+ 129416 +

52143

x
+

1036

x2

+
10438

x3
− 69804

x4
+

10272

x5

)
ln

(
2

x

)
+

1

240

(
16778x3 − 35247x2 + 10110x+ 3120 +

1020

x
+

474

x2

+
1168

x3
− 1680

x4

)[
− Li2

(
1− 2

x

)
+
π2

6

]
− 7(6x2 − 3x− 1)

[
Li2

(
2

x

)
ln

(
2

x

)
− 2Li3

(
2

x

)
+ 2Z(3)

]
+ 21x2(2x− 3)

{
π4

90
+
π2

12
ln

(
1− 2

x

)[
ln

(
1− 2

x

)
− 2 ln

(
2

x

)]
+

1

24
ln2

(
1− 2

x

)[
6 ln2

(
2

x

)

+ ln2

(
1− 2

x

)
− 4 ln

(
2

x

)
ln

(
1− 2

x

)]
+

1

4

[
Li2

(
2

x

)
+ ln

(
2

x

)
ln

(
1− 2

x

)]2

+ ln

(
2

x

)[
Li3

(
1− 2

x

)
− 2Z(3)

]
+

[
Li4

(
2

x

)
− Li4

(
1− 2

x

)
+ Li4

(
2

2− x

)]}
, (B72)

sdCS(x) =
709

7168x3
+

709

3584x4
− 71

256x5
− 303

448x6
− 3301

3136x7
+

1539

112x8
− 32763

1568x9
− 10341

224x10
− 270

x11
, (B73)

hdCS(x) =
709x2

14336
− 709x

14336
− 7799

516096
− 709

21504x
+

221699

4300800x2
+

147149

1612800x3
+

2261

15360x4
+

7857

31360x5

+
1557

1792x6
+

3921

3136x7
+

27

16x8
+ ln

(
2

x

)(
−709x2

14336
+

709x

28672
+

709

86016

)
+

[
Li2
(

2

x

)
+ ln

(
2

x

)
ln

(
x− 2

x

)](
−709x3

28672
+

2127x2

57344

)
, (B74)

where Lin(x) ≡
∑∞
k=1 x

k/kn is the polylogarithm func-
tion of order n, and Z(x) ≡

∑∞
k=1 1/kx is the Riemann

zeta function. At the boundaries,

hsGB(2) =− 1865759261

9408000
+

11497π2

960
+

49π4

60
, (B75)

hdCS(2) =
5562399

40140800
− 709π2

86016
, (B76)

and

hsGB(x)
∣∣∣
x→∞

∼ 21

80x
, (B77)

hdCS(x)
∣∣∣
x→∞

∼− 709

28672x
. (B78)

Having ψ(1,2)
mid solved, Eqs. (8) and (9) then give

I
(1,3)
mid,q =

ψ0

Rmid

[
i2,q(θ)

− 4πω0hq(x) sin2 θ cos2 θ

− 4πω0,qf(x) sin2 θ cos2 θ
]
, (B79)

Ω
(1,3)
mid,q =

1

Rmid
ω2,q(θ), (B80)

where ω0 = 1/8 as given in Eq. (B17), and ω0 has been
solved in Eqs. (B45)–(B46).

The near-expansion stream equation [Eq. (10)] reads

Lnearψ
(1,2)
near,q = 0. (B81)

Requiring as boundary conditions Eqs. (13)–(15) and the
match with the mid expansion, we get

ψ(1,2)
near,q = ψ0hq(2) cos θ sin2 θ, (B82)

while Eqs. (8) and (9) give

I
(1,5)
near,GB =

ψ0

Rnear

[
i2,q(θ)

− 4πω0hq(2) sin2 θ cos2 θ

− 4πω0,qf(2) sin2 θ cos2 θ
]
, (B83)

Ω(1,5)
near,q =

1

Rnear
ω2,q(θ). (B84)

The horizon Znajek condition can now be evaluated:

i2,sGB =2π

{
ω2,sGB +

21103

201600

+ ω0

[
hsGB(2)− 49

128

]
sin2 θ

+ ω0,sGB

[
f(2)− 1

4

]
sin2 θ

}
sin2 θ. (B85)

i2,dCS =2π

{
ω2,dCS +

169

24576
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+ ω0hdCS(2) sin2 θ

+ ω0,dCS

[
f(2)− 1

4

]
sin2 θ

}
sin2 θ. (B86)

In the far expansion, solutions to Eqs. (8) and (9) are

I
(1,2)
far,q =

ψ0

Rfar
i2,q −

π

2Rfar
ψ

(1,2)
far,q cos θ, (B87)

Ω
(1,2)
far,q =

1

Rfar
ω2,q. (B88)

Then, the stream Eq. (10) reads

Lfarψ
(1,2)
far,q =

ψ0

16π sin θ
∂θ
(
i2,q + 2π ω2,q sin2 θ

)
. (B89)

We may guess that the solution is

ψ
(1,2)
far,q = 0. (B90)

This way the condition (B44) becomes

i2,q =− 2π ω2,q sin2 θ. (B91)

Therefore, we can verify that Eq. (B89) is satisfied. Com-
bining Eqs. (B85)–(B86) and (B91), we have

ω2,sGB =− 21103

403200
− 1

2
ω0

[
hsGB(2)− 49

128

]
sin2 θ

− 1

2
ω0,sGB

[
f(2)− 1

4

]
sin2 θ, (B92)

ω2,dCS =− 169

49152
− 1

2
ω0hdCS(2) sin2 θ

− 1

2
ω0,dCS

[
f(2)− 1

4

]
sin2 θ, (B93)

Then, i2 is given by Eq. (B91).

To summarize, at second relative order, we have

ψ
(1,2)
mid,q =ψ0hq(x) cos θ sin2 θ, (B94)

I
(1,3)
mid,q =

ψ0

M

[
i2,q(θ)

− 4πω0hq(x) sin2 θ cos2 θ

− 4πω0,qf(x) sin2 θ cos2 θ

]
, (B95)

Ω
(1,3)
mid,q =

1

M
ω2,q(θ), (B96)

in the mid expansion, where ω2 is given in Eqs. (B92)–
(B93), and i2 is related to ω2 by Eq. (B91).

The solutions in the near and far expansions are just

ψ(1,2)
near,q = ψ

(1,2)
mid,q

∣∣
x=2

, ψ
(1,2)
far,q = ψ

(1,2)
mid,q

∣∣
x→∞, (B97)

χ2I(1,5)
near,q = I

(1,3)
mid,q

∣∣
x=2

, I
(1,2)
far,q = χI

(1,3)
mid,q

∣∣
x→∞, (B98)

χ2Ω(1,5)
near,q = Ω

(1,3)
mid,q

∣∣
x=2

, Ω
(1,2)
far,q = χΩ

(1,3)
mid,q

∣∣
x→∞. (B99)

Therefore, the near and far solutions are nothing but the
mid solutions when taking x = 2 and x → ∞, respec-
tively. Therefore, the near and far expansions are still
trivial up to second relative order, allowing us to use the
simpler method described in the main text to second rel-
ative order. The solutions presented in this appendix for
the mid expansion coincide with the solutions presented
in Sec. IVB–IVC.
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