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The next decade is expected to see the launch of one or more space based gravitational wave
detectors: the European lead Laser Interferometer Space Antenna (LISA); and one or more Chinese
mission concepts, Taiji and TianQin. One of the primary scientific targets for these missions are
the mergers of black holes with masses between 103M� and 108M�. These systems may produce
detectable electromagnetic signatures in additional to gravitational waves due to the presence of
gas in mini-disks around each black hole, and a circumbinary disk surrounding the system. The
electromagnetic emission may occur before, during and after the merger. In order to have the best
chance of capturing all phases of the emission it is imperative that the gravitational wave signals can
be detected in low latency, and used to produce reliable estimates for the sky location and distance
to help guide the search for counterparts. The low latency detection also provides a starting point
for the “global fit” of the myriad signals that are simultaneously present in the data. Here a low
latency analysis pipeline is presented that is capable of analyzing months of data in just a few hours
using a laptop from the last decade. The problem of performing a global fit is avoided by whitening
out the bright foreground produced by nearby galactic binaries. The performance of the pipeline is
illustrated using simulated data from the LISA Data Challenge.

I. INTRODUCTION

One of the primary science goals for a future space
based gravitational wave interferometer such as LISA [1]
Taiji [2], and TianQin [3], is detecting the signals from
massive black hole mergers with masses in the range
103M�−108M�. In contrast with the stellar origin black
holes detected by ground based interferometers, where
the mergers are thought to occur in a matter-free en-
vironments (though see Ref. [4] for a possible counter
example), massive black hole mergers are expected to
occur in gas rich environments that can result in the
production of electromagnetic counterpart signals: for
a recent review see Ref. [5]. Low latency detection of
these signals is crucial for finding electromagnetic coun-
terparts [6]. Low latency detection will also form the
first stage of the Global Fit [7, 8] of the many thousands
of overlapping signals expected to be found in the low
frequency band probed by space based interferometers.
For concreteness, the discussion will focus on the LISA
detector, and use simulated data from the LISA Data
Challenge (https://lisa-ldc.lal.in2p3.fr), but the
approach would work equally well for the Taiji detector.
Some modifications would need to be made for the search
to be used for the TianQin detector due to its faster or-
bital motion.

Massive black hole binaries are relatively easy to de-
tect due to their often large signal-to-noise ratios (SNRs)
and short duration within the sensitive frequency band
of a LISA-like detector. Binary merger signals evolve
through a long inspiral phase followed by a relatively brief
merger and ringdown phase. The time spent in-band de-
pends on the mass of the system, in particular on the
combination of component masses m1,m2 that is known
as the chirp mass, M = (m1m2)3/5/(m1 + m2)1/3. Low
chirp mass systems, such as stellar origin black hole bina-
ries with component masses in the tens of solar masses,

and extreme mass ratio inspirals (EMRIs), made up of
a stellar remnant and a massive black hole, stay in-band
for years or decades, slowly accumulating signal-to-noise.
In contrast, massive black hole binaries have large chirp
masses, and accumulate most of their signal-to-noise in
a matter of weeks or days. Consequently, the major-
ity of massive black hole binaries can be detecting using
short data segments. The low latency search described
here takes advantage of the short duration of the massive
black hole binary signals by working with short (roughly
month long) segments of data.

In contrast to the grid-based searches used in LIGO-
Virgo analyses [9], the low latency search described here
uses a multi-stage stochastic search based on a popula-
tion Markov Chain Monte Carlo algorithm. The first step
is to produce an estimate for the power spectral density
of the noise. This is done using a variant of the wavelet
de-noising and spline-line model that has been developed
for low latency analyses of LIGO-Virgo data [10]. The
search then proceeds in three stages, using a sequence
of likelihood functions. In the first two stages some of
the system parameters are maximized over, rather than
marginalized over. Because the LISA detector is effec-
tively stationary during the short data segments being
analyzed, the first stage of the search uses the familiar
time, phase and amplitude maximized likelihood func-
tion from the LIGO-Virgo grid searches (see section 8.2
of Ref. [9]). The second stage of the analysis incorporates
the detector motion and searches over sky location using
a generalized F-statistic likelihood function [11, 12]. The
final stage of the analysis is fully Bayesian, and uses the
heterodyning approach [13, 14] to speed-up the calcula-
tion of the full likelihood by a factor of ten thousand.

The paper begins with a description of the simulated
data used in the analysis. This is followed by a step-
by-step description of the low latency analysis pipeline,
illustrated with examples from analyzing the simulated
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data. The paper concludes with a discussion of the steps
needed to handle more realistic data sets, and eventually,
the real data.

II. OVERVIEW OF THE SIMULATED DATA

The milli-Hertz gravitational wave sky is expected to
be populated by myriad sources, including millions of
compact galactic binaries (predominantly detached white
dwarf binaries); hundreds of massive black hole binaries
with component masses in the range 103M� → 108M�;
thousands of extreme mass ratio binaries made up of stel-
lar remnants and massive black holes; and thousands of
stellar mass black hole binaries that will eventually merge
in the frequency band covered by ground based interfer-
ometers. More exotic signals, such as burst from hith-
erto unknown astrophysical systems, and stochastic sig-
nals from the early Universe may also be present in the
data. The signals from these systems will be long lived,
resulting in millions of signals being simultaneously being
present in the data collected by space based interferom-
eters. To properly account for the overlap between the
signals a Global Fit [7, 8] is required that simultaneously
models all the resolvable signals, in addition to modeling
the instrument noise and accounting for gaps and distur-
bances in the data. Because of the large dimensionality
of the models used in the Global Fit, the full analysis will
be computationally intensive.

FIG. 1: Simulated X-Channel TDI data produced for the
Sangria round of the LISA Data Challenge. The simulated
data covers a little over one year, and includes colored in-
strument noise, signals from millions of galactic binaries, and
fifteen massive black hole binary mergers. Figure courtesy of
Stanislav Babak.

To help prepare for the rich data sets expected from
the LISA mission, a series of data challenges have been
carried out, starting with the Mock LISA Data Chal-
lenges [15–17] in the 2000’s, and resumed more recently
as the LISA Data Challenge. The plan is to start with
relatively simple challenges and to eventually build up
to more realistic challenges that cover a full range of
sources and instrumental complications. The challenges
are rather whimsically named after adult beverages, with

the perceived difficulty of the challenge indicated by the
proof level of the libation. In this study the Sangria
data set is used to demonstrate the performance of a pro-
totype low latency search and characterization pipeline
for massive black hole binaries. The Sangria data set
includes millions of signals from a population synthesis
model for galactic binaries, in addition to signals from
fifteen massive black hole binaries drawn from an astro-
physical population model. The data covers a roughly
one year span, and includes simulated stationary and
Gaussian noise. The Sangria data is free of gaps or other
disturbances (the Spritz data set is the first to include
gaps and glitches, but includes far fewer signals).

Figure 1 shows the X-Channel Time Delay Interferom-
etry data broken out into its various contributions. The
galactic binary signals are modulated by the motion of
the detector during the year, and from the perspective of
a low latency search for massive black hole binaries, the
galactic binaries can be thought of as a source of non-
stationary and non-Gaussian noise. The massive black
hole binary signals span a range of amplitudes, includ-
ing some very loud signals that are clearly visible in the
raw time domain data, and others that are buried in the
instrumental and galactic foreground noise. The black
hole binaries were simulated using the IMRPhenomD [18]
waveform model, which covers just the dominant har-
monic of spin-aligned (non-precessing) systems. The
waveforms are parameterized by the Barycenter merger
time tc, component masses (m1,m2), aligned dimension-
less component spins (χ1, χ2), sky location (θ, φ), lumi-
nosity distance DL, merger phase φc, polarization angle
ψ and inclination angle ι. Future challenges will employ
more sophisticated waveform models that allow for spin-
precession and multiple harmonics.

III. LOW LATENCY SEARCH PIPELINE

Low latency means something different in the milli-
Hertz frequency range covered by the LISA detector, as
opposed to the kilo-Hertz range covered by the LIGO,
Virgo, GEO and Kagra detectors. The timescales in-
volved scale inversely with the frequencies, so while low-
latency for ground based detectors is measured in sec-
onds [19, 20], low latency for space based detectors is
measured in days. Indeed, the expectation is that the
LISA data will only be transmitted to Earth every few
days, with the possibility of more frequent transmissions
if an interesting merger is imminent. The latter scenario
depends on the system having been picked up days or
weeks prior to merger.

Here we will take low-latency to imply the ability to
analyze several months of data in a few hours with mod-
est computing resources. The algorithm described here
handily beats that goal. The search combines an im-
proved version of the algorithm developed for the earlier
Radler data challenge [21], with elements of the QuickCBC
algorithm [10] that was developed to perform rapid pa-
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rameter inference ground based interferometers.

FIG. 2: Periodograms

The analysis starts with short segments of data, typi-
cally of order one month. The segments are overlapped
by half their duration to provide robustness against edge
effects that can occur due to window functions that are
applied before Fourier transforming the data. Power
spectra for each segment are estimated using the wavelet
based algorithm from QuickCBC [10]. A key element of
this approach is wavelet de-noising, which removes loud
non-Gaussian and non-stationary features from the data
that would otherwise distort the spectral estimate. In
the case of LIGO/Virgo, the loud transients are mostly
instrumental in origin, but with Sangria data set, it is the
massive black holes. Figure 2 shows periodograms of the
A-channel TDI data for month 2 of the Sangria training
data, both before and after the wavelet de-noising. The
presence of a very loud binary black hole merger during
that month significantly distorts the raw periodogram.

FIG. 3: Wavelet de-noising applied to the A-channel TDI
data for month 2 of the Sangria training data.

Wavelet de-nosing for the month 2 data segment is il-
lustrated in Figure 3. Here the data has been whitened by
the final spectral estimate and shown as a time-frequency
map. While the wavelet de-noising does not remove all of
the black hole signal, it removes enough to yield a reliable
spectral estimate. Note that the color scale is clipped at
maximum of nine, corresponding to a three-sigma excess
in amplitude. The majority of the pixels that are re-
moved by the wavelet denoising are orders of magnitude
louder than that.
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FIG. 4: PSD model

The power spectrum is modeled using the fixed dimen-
sion version of the BayesLine model [22] employed in
the QuickCBC pipeline. A cubic spline is used to model
the smooth part of the spectrum, and Lorentzians are
uses to model sharp spectral features. In contrast to
the LIGO/Virgo application, where the lines are due to
instrumental effects such as the suspension system, the
lines seen in the spectral model shown in Figure 4 are
caused by bright white dwarf binaries. In other words,
rather than solving for and subtracting the bright galac-
tic binaries, as is done in the Global Fit, here the fore-
ground is simply whitened away. Quieter galactic bi-
naries, which will form the galactic confusion noise, are
taken care of by the smooth spline component.

With a model for the power spectrum in place, the next
step is to perform a Parallel Tempered Markov Chain
Monte Carlo (PTMCMC) based search of the data. Dur-
ing the search phase, 48 parallel chains were used with a
geometric temperature spacing, with the ith chain hav-
ing temperature Ti = Tαi−1, where T0 = 1 and α = 1.1.
As described in Ref. [21] the search works through a se-
quence of steps, each using a different likelihood function.
The initial stage of the search uses a likelihood function
that maximizes over merger time, and the overall am-
plitude and phase in each data channel. This likelihood
ignores the sky location, distance and orientation of the
source (inclination, polarization). It is very similar to
the likelihoods used in grid-based searches of LIGO-Virgo
data. The justification for being able to use such a simple
likelihood is as follows: The LISA instrument response
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can be written as [21]

h(f) = (F+A+ + iF×A×)A(f)eiΦ(f) , (1)

where A(f) and Φ(f) are the intrinsic amplitude
and phase of the signal (given here by the IMRPhe-
nomD [18] waveform model), and F+(θ, φ, ψ, t(f), f),
F×(θ, φ, ψ, t(f), f) are the complex antenna patterns for
a given channel. In the low frequency or long wavelength
limit, where the wavelength of the gravitational wave
is larger than the detector arms, the antenna patterns
are real, and assume the familiar form used in LIGO-
Virgo analyses [9]. The quantities A+ = (1 + cos2 ι)/2,
A× = cos ι depend on the inclination of the binary orbit
with respect to the line of sight. For a precessing binary,
both the polarization angle ψ, and inclination angle ι,
will vary with time (and hence frequency via the time-
frequency mapping t(f)). We can define the polarization
amplitude and phase as [23]

Ap = |F+A+ + iF×A×|
φp = arg (F+A+ + iF×A×) , (2)

and write

h(f) = Ap(f)A(f)ei(Φ(f)+φp(f)) . (3)

So far no approximations have been made. The approx-
imation comes in treating these phases as constant over
the segment. The maximized likelihood used in the first
stage of the analysis returns a best fit value for Ap and
φp is each channel.
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FIG. 5: Evolution of the amplitude and polarization phase
for Source 4 (Source parameters given in Table 1).

Figure 5 shows the time evolution of the polarization
amplitude Ap(t) and phase φp(t) for source 4 from the

Sangria data set (the source numbering follows the or-
der in which the systems merge). In most one month
segments, both the polarization phase and amplitude are
slowly varying, and approximating them as constant in
the first stage of the search does not result in a large loss
of signal-to-noise. Note that the rapid evolution seen
right around merger is not due to the motion of the de-
tector, but rather, is due to the frequency dependence
of the antenna response functions as the signal moves
rapidly from the low frequency regime to the high fre-
quency regime where finite armlength effects become im-
portant.

The first stage of the search quickly locks in on the
signal from any massive black hole binary that might be
present in the data segment. If there are multiple de-
tectable signals, the search typically locks onto the loud-
est signal first. Following the first stage of the search the
detector frame masses and merger time are well deter-
mined and the search moves to the second stage, which
uses a F-statistic [11, 12] likelihood to further refine the
solution and to find the sky location and distance to the
source. The F-statistic likelihood uses the full instrument
response, and divides the waveform template into four
non-orthogonal filters that are used to simultaneously
maximize over distance DL, inclination ι, polarization
ψ and the merger phase φc. The F-statistic likelihood
references the merger time to the time at the guiding
center of the LISA constellation, which also corresponds
to the time returned by the maximization routine in the
first stage of the search. The detector frame time is then
mapped to the Barycenter merger time, tc, using the sky
location of the source and the position of the detector at
merger.

Figure 6 shows time-frequency spectrograms of the
whitened TDI A-channel data for months 4 and 5 of the
LDC Sangria training data. Merger signals from four
massive black holes are clearly visible in month 5. The
merger signal from one binary is visible in month 4, along
with fainter tracks from the inspiral phase of two systems
that go on to merge in month 5. The search picked up all
the mergers, and in addition, picked up the inspiral sig-
nal from two of the four systems that went on to merge
in month 5. The signal from the other two systems that
merge in month 5 were not picked up due to a combina-
tion of their higher mass (less time in band) and lower
amplitude.

Figure 7 illustrates the sequential detection and re-
moval of the binary black hole signals from month 5 of
the LDC Sangria training data set. A sequential solu-
tion, rather than a simultaneous solution, is justified here
since the overlap, or match, between any pair of signals is
tiny. Evaluating the standard expression for the match
between signals hi, hj , Mij = (hi|hj)/

√
(hi|hi)(hj |hj),

where (a|b) is the standard noise weighted inner prod-
uct of signals a, b, we find that the largest match be-
tween sources that merge in month 5 occurs for sources
4 and 5, and equals M45 = 8.6 × 10−5. One can also
consider the phase maximized match, the maximum of
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FIG. 6: Spectrograms of the whitened TDI A-channel data
from month 4 (upper panel) and month 5 (lower panel) of
the LDC Sangria training data. The black lines indicate the
time-frequency tracks of signals found by the search in each
segment. Note that two of the sources that merge in month
5 were also picked up prior to merger in month 4.

FIG. 7: Spectrograms of the whitened TDI A-channel data
from month 5 of the LDC Sangria training data showing the
sequential detection and removal of the binary black hole sig-
nals.

which occurs between sources three and four and is equal
to Mmax

34 = 4.9×10−3. These small match values support
using a sequential solution for massive black hole signals,
at least for the purposes of low latency analysis.
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FIG. 8: The chirp masses and merger times for all the sources
found by the search of the Sangria training data. The circles
denote the true values, while the colored dots denote the re-
covered values. The dots are color coded by the SNR. All the
simulated sources were accurately recovered.

More generally, the match between two chirping signals
can be approximated using the stationary phase approx-
imation, evaluated around the time/frequency where the
time frequency tracks t(f) cross:

(hi|hj) '
4
√

2πAi(f∗)Aj(f∗)

S(f∗)
cos(Ψi(f∗)−Ψj(f∗))σf∗ ,

(4)
where the critical point f∗ is given by the condition
ti(f∗) = tj(f∗), where t(f) = Ψ′/(2π), and σf∗ defines
the frequency band over which the signals overlap:

σf∗ = |Ψ
′′

i (f∗)−Ψ
′′

j (f∗)|−1/2 . (5)

Here Ψ(f) = Φ(f) +φp(f) is the total phase and A(f) =
Ap(f)A(f) is the total amplitude. During the inspiral
phase, and to leading post-Newtonian order, we have

σ2
f∗ =

48

5
π5/3f

11/3
∗

(MiMj)
5/3

|M5/3
j −M5/3

i |
, (6)

where M = (m1m2)3/5/(m1 +m2)1/5 is the chirp mass.
Only sources with very similar chirp masses and merger
times will have significant overlaps.
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FIG. 9: Posterior distributions for source 5 using the full
one year data set (in red) and just the month 4 data (in blue)
where the inspiral signal was first picked up by the search.
The dashed lines indicate the true values of the parameters
used to simulated the data. Here the masses are in the source
frame, with most of the uncertainty coming from the distance
estimate, which is then mapped to a redshift estimate that
is used to convert between detector fame and source frame
masses.

Figure 8 summarizes the output of the initial search
of the Sangria training data set. Many of the sources
were found in several of the overlapping one-month data
segments. Unique solutions were identified by eliminat-
ing solutions with very similar chirp masses and merger

times and keeping the solution with the largest signal-to-
noise ratio (SNR). The search in each data segment was
repeated until the SNR of the candidate signal dropped
below a pre-set threshold, in this case SNR∗ = 12. The
threshold was chosen based on the SNR distribution
when running on source-free data. Later, when decid-
ing which candidate solutions to keep, a mass dependent
threshold was used: SNR∗(M) = 12 + ln(M/105M�),
where M = m1 + m2 is the total mass. The functional
form of the threshold was motivated by looking at the
SNR distribution of the solutions found when all the true
signals had been removed from a segment.

The final stage of the analysis uses a PTMCMC al-
gorithm to map out the posterior distributions for all
the source parameters. The temperature ladder for the
chains was set such that samples were collected from 4
T = 1 chains that were coupled to 44 “hot” chains with a
geometric temperature spacing Ti = Tαi−1, with α chosen
so that the hottest chain has an effective signal-to-noise
ratio SNReff = SNR/

√
T = 10. For this stage of the

analysis no maximization is applied to the likelihood. To
provide results in low latency, a heterodyned likelihood is
used [13, 14], which for the sources found in the Sangria
data set is typically of order ten thousand times faster
than the direct evaluation of the likelihood. The final
stage of the analysis is done source-by-source, rather than
simultaneously as demanded by the Global Fit, however
all the competing black hole signals are first removed us-
ing the best-fit solution from the search, which stops the
analysis from wandering off to fit louder signals. To illus-
trate this phase of the analysis we focus on Sources 4 and
5 from the Sangria training data, which were simulated
using the parameters listed in Table 1.

Figure 9 shows marginalized posterior distributions for
the parameters of Source 5 using both the full one-year
data set, and just the data from month 4 where this
sources was first detected. The parameter uncertainties
shrink dramatically when the full data set is used. One of
the features of the heterodyned likelihood is that its com-
putational cost is independent of the observation time, so
the analysis using 12 months of data is just as fast as for
1 month on data. In this case, both took three hours on
a five-year-old 2.9 Ghz Quad-Core MacBook Pro. Note
that the parameter uncertainties, especially the sky lo-
cation and distance, are misleadingly large due to the
simplicity of the waveform model being used. More real-
istic analyses including the effects of additional waveform
harmonics and spin precession will significantly improve
the parameter resolution [24–28].

While the small overlaps between individual massive
black hole signals allow us to get away with a sequen-
tial search and source-by-source parameter estimation,
the overlaps between the massive black hole signals and
the galactic binaries do need to be taken into account.
While the overlap between a black hole binary and any
one galactic binary is small, there are millions of galac-
tic binaries, and the overlaps combine to have a signif-
icant impact. For the numerous quiet galactic binaries,
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Source tc/s m1/M� m2/M� χ1 χ2 θ φ DL/Gpc ψ ι φc

#4 1.125857 × 107 9.1599 × 105 7.0175 × 105 -0.450 0.397 -0.879 4.550 7.706 1.900 2.688 1.150

#5 1.152694 × 107 1.3233 × 106 6.1249 × 105 0.269 -0.422 -0.303 1.293 13.471 2.692 1.808 1.220

TABLE I: Parameters used to simulate sources 4 and 5 in the Sangria training data. The parameters are the Barycenter
merger time tc, detector frame component masses (m1,m2), aligned dimensionless component spins (χ1, χ2), ecliptic latitude
and longitude (θ, φ), luminosity distance DL, polarization angle ψ, inclination angle ι and merger phase φc.

FIG. 10: Posterior distributions for the detector frame
masses and dimensionless spins for source 4 using the full
PSD model (in blue) and the smooth component of the PSD
model (in red). The dashed lines indicate the true parameter
values used to generate the data. The full PSD model whitens
away the loud galactic binaries and returns an unbiased es-
timate for the masses and spins. The smooth component of
the PSD allows the loud galactic binaries to overlap with the
black hole signal and cause significant biases in the parameter
estimates.

the central limit theorem comes into play and the over-
lap behaves like Gaussian noise [29], but for the more
sparse population of loud galactic binaries the interac-
tion is non-Gaussian, and can lead to significant biases.
In the low latency analysis described here this potential
bias is removed by whitening out the signals from the
loud binaries. In the Global Fit the bias is removed by
simultaneously analyzing the black hole and galactic bi-
nary signals. Figure 10 compares the parameter recovery
for source 4 using the full PSD estimate, which whitens
out the loud galactic binaries, and the smooth PSD es-
timate, which does not. When the loud galactic binaries
are not whitened out the estimates for the component
masses and spins are significantly biased.

IV. SUMMARY AND NEXT STEPS

By combining spectral estimation techniques adapted
from the analysis of ground based interferometers with
a multi-stage stochastic search algorithm, it is possible
to perform a robust low latency analysis of simulated
LISA data containing multiple overlapping signals. The
method is able to provide pre-merger notifications for
signals that accumulate sufficient signal-to-noise during
the inspiral stage. The search is able to quickly lock
onto signals using analytic maximization over extrinsic
parameters. The parameter estimates are then refined
using a heterodyning technique that dramatically speeds
up the calculation of the full likelihood.

The analysis described here was applied to highly sim-
plified simulated data. In reality there will be many ad-
ditional complications that need to be dealt with, in-
cluding gaps in the data, non-Gaussian noise transients,
non-stationary noise, and more complicated and lower
signal-to-noise signals with multiple harmonics, orbital
eccentricity and mis-aligned spins. Each of these compli-
cations can be dealt with, and will be addressed through
future rounds of the LISA Data Challenges. Some ideas
about how the complications can be addressed are out-
lined below.

Systems with unequal masses and/or orbital eccentric-
ity will have multiple harmonics. Since the harmonics
are, to a good approximation, orthogonal, they can, for
the most part, be dealt with by repeating what was done
here for the dominant (` = 2,m = 2) harmonic. For ex-
ample, each harmonic can be treated separately in the
heterodyning procedure. The maximization during the
first stage of the search will introduce a separate am-
plitude and phase for each harmonic in each detector,
while the time maximization will be done jointly. The F-
statistic likelihood used in the second stage of the search
is readily generalize to cover multiple harmonics. Indeed,
the F-statistic can be further generalized to cover spin-
precessing systems with time evolving inclination and po-
larization angles [30]. All of this comes at greater compu-
tational cost. For example, the F-statistic for precessing
systems introduces 4(2`+ 1) filters at multipole order `.

The detection of low signal-to-noise signals, including
from systems that are yet to merge, would benefit from
an improved maximization scheme during the first stage
of the search. In the current implementation a single,
roughly month long, segment of data is analyzed, us-
ing a constant polarization phase and amplitude. As
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seen in Figure 5, it is not always a good approxima-
tion to treat these quantities as constant for such long
durations. Moreover, for low SNR systems it might be
necessary to integrate for several months in order to ac-
cumulate sufficient SNR to make a detection. One way
to overcome both of these problems is to apply the maxi-
mization to multiple shorter data segments (say one week
in length). But rather than allowing the amplitude and
phase to be maximized independently in each segment,
which would significantly increase the likelihood even ab-
sent a signal, a joint maximization can be applied that
enforces a smooth evolution of the polarization amplitude
and phase in each TDI channel. The same approach can
also be used to detect other low SNR, long lived signals,
such as those from stellar original black hole binaries and
EMRIs.

The LISA data will suffer from planned and unplanned
data gaps [31] that will impact detection and parame-
ter estimation of massive black hole binaries [32]. At
a practical level, data gaps complicate noise spectral
estimation due to spectral leakage in the Fourier do-
main [31] and Discrete Wavelet domain [33]. Various gap-
filling techniques have been proposed to mitigate these
issues [31, 34]. Sparse, constrained in-painting in the
wavelet domain [35] is a promising technique that can be
incorporated in the wavelet de-noising stage of the low
latency analysis described here.

The LISA data will likely suffer from non-Gaussian
noise transients (glitches), and longer term non-
stationarity due to effects such as thermal variations and
fluctuations in the solar wind. In the unlikely event that

the instrument noise is stationary, the effective noise will
be non-stationary due to annual variations in the re-
sponse to un-resolved galactic binaries, which are modu-
lated by the sweep of the LISA antenna pattern [36, 37].
In the full Global Fit, noise transients can be mod-
eled using a variant of the BayesWave algorithm [38, 39]
from ground based gravitational wave astronomy, suit-
ably adapted for space based interferometry [40]. Joint
Bayesian analysis of binary black hole signals and in-
strument glitches has been demonstrated for LIGO-Virgo
analyses [41], but the computational cost may be too
high for low latency applications. A LISA specific vari-
ant of the glitch-robust QuickCBC [10] algorithm is more
appropriate for low latency detection and parameter es-
timation. For longer term non-stationarity, such as from
unresolved galactic binaries, wavelet based methods [33]
can be used to infer the dynamic noise spectrum, S(f, t).
The heterodyned likelihood naturally incorporates dy-
namic spectra [14].

The prototype pipeline described here, enhanced with
the developments outlined above, will be ready to analyze
real data when they becomes available next decade.
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