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To a good approximation, on large scales the evolved two-point correlation function of biased
tracers is related to the initial one by a convolution with a smearing kernel. For Gaussian initial
conditions, the smearing kernel is Gaussian, so if the initial correlation function is parametrized using
simple polynomials then the evolved correlation function is a sum of generalized Laguerre functions
of half-integer order. This motivates an analytic ‘Laguerre reconstruction’ algorithm which previous
work has shown is fast and accurate. This reconstruction requires as input the width of the smearing
kernel. We show that the method can be extended to estimate the width of the smearing kernel
from the same dataset. This estimate, and associated uncertainties, can then be used to marginalize
over the distribution of reconstructed shapes, and hence provide error estimates on the value of
the distance scale. This procedure is not tied to a particular cosmological model. We also show
that if, instead, we parametrize the evolved correlation function using simple polynomials, then the
initial one is a sum of Hermite polynomials, again enabling fast and accurate deconvolution. If one
is willing to use constraints on the smearing scale from other datasets, then marginalizing over its
value is simpler for this latter, ‘Hermite’ reconstruction, potentially providing further speed-ups in
cosmological analyses.

I. INTRODUCTION

On large (∼100h−1Mpc) cosmological scales, the
evolved two-point correlation function, even of unbiased
tracers of the density field, differs in shape from the
unbiased linear theory correlation function [1, 2]. To
leading order, this change in shape is due to a (three-
dimensional) convolution [3]. For Gaussian initial condi-
tions, the convolution kernel is very well approximated
by a Gaussian. Convolving a polynomial of order n with
a Gaussian yields a generalized Laguerre function of or-
der n/2, and [4] used this to motivate an algorithm for
estimating the initial shape from measurements of the
evolved one. Essentially, fitting a series of half-integer
Laguerre functions to the two-point correlation function
of biased tracers of the cosmological density field allows
one to perform the deconvolution analytically 1, even in
the presence of redshift space distortions [7].

This ‘Laguerre’ reconstruction of the initial shape re-
quires as input a guess for the width of the Gaussian
smearing kernel Σ. In CDM models, the physics that
gives rise to the convolution relates the smearing scale to
the background cosmological model:

Σ2 =
1

3π2

∫
dk PL(k, z), (1)

∗Electronic address: farnik@sas.upenn.edu
1 In this respect, the philosophy of the approach is similar to that

which motivates the use of Gaussian Mixture models to approxi-
mate distributions which have been broadened by Gaussian mea-
surement errors [5], and the Sinc function representation for eval-
uating the propagator in Feynman diagrams [6].

where PL(k, z) is the linear theory power spectrum [1] at
redshift z. So, if the model parameters are sufficiently
well-known, then they can be used to provide an esti-
mate of the smearing scale. However, it is interesting to
ask if the data constrain this scale independently, i.e.,
without having to assume a fiducial cosmological model.
This is particularly interesting because the uncertainties
on this estimate can be propagated into uncertainties on
the shape of the reconstructed correlation function. In
turn, this allows one to marginalize over the value of the
smearing scale when estimating cosmological parameters,
such as the cosmological distance scale at the redshift of
the survey, that is not tied to a fiducial model. This is in
contrast to almost all other reconstruction algorithms [8–
10], for which a fiducial model must be specified [11, 12],
although there has been recent progress in accelerating
the process of marginalizing over this fiducial choice [13].

In Section II, we show that this is indeed possible in
principle, but whether or not the constraint that results
is sufficiently tight to be interesting (better than ∼ 10%
precision) will depend on the data set (volume and tracer
number density). We illustrate the method using the
real-space dark matter correlation function, before ap-
plying it to the monopole of the redshift-space distorted
correlation function measured in mock galaxy catalogs.

Section III shows how this fiducial model-free determi-
nation of the smearing scale can be used to estimate the
cosmological distance scale and, in particular, to provide
realistic estimates of the precision of this determination.
If the smearing scale is not well-constrained, then this
decreases the precision of the distance scale constraint.
Therefore, especially for small surveys, it may be that
other datasets provide more useful determinations of the
smearing. We argue that this motivates consideration
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of other parametrizations of the reconstruction problem.
E.g., even if useful constraints on the smearing scale must
come from independent datasets, some parametrizations
of the reconstruction problem may allow one to marginal-
ize over the value of the smearing scale more easily than
others. This is the subject of Section IV, where we de-
velop what we call ‘Hermite reconstruction’. A final sec-
tion summarizes our results.

We illustrate our arguments using the dark matter
correlation functions measured in the z = 1 outputs
of the Quijote simulations [14], as well as mock galaxy
catalogs in the z = 0 outputs of these same simula-
tions. Each of these 15000 simulations followed the
evolution of 5123 particles in a periodic box of side
L = 1h−1Gpc (comoving). The fiducial cosmology
of this set is flat ΛCDM with (Ωm,Ωb, h, ns, σ8) =
(0.3175, 0.049, 0.6711, 0.9624, 0.834), for which Σ of equa-
tion (1) equals 5.1h−1Mpc at z = 1 and 8.5h−1Mpc at
z = 0.

To explore how our results scale with effective volume,
we average together the correlation functions measured in
10, 50, and 100 boxes at a time to crudely mimic effective
volumes of 10, 50, and 100 (h−1Gpc)3 each. These corre-
spond approximately to survey volumes that are between
that of BOSS and Euclid, DESI and larger a futuristic
survey. By never reusing a box, this gives us 1500, 300
and 150 independent realizations with which to study
cosmic variance associated with our three effective vol-
ume choices. In all cases, the correlation functions in
these boxes are measured in bins of width 1h−1Mpc, and
all our analyses only make use of the scales between 70
and 110h−1Mpc. On these scales, the covariance between
the different bins is well described by a simple ‘smeared
linear theory plus Poisson shot-noise model’ [4, 15, 16].

II. SMEARING SCALE FROM DATA

Our starting point is that the evolved pair correlation
function ξNL is related to that predicted by linear theory
(i.e. the initial one multiplied by a growth factor) ξL, by
a (three-dimensional) convolution:

ξNL(s) = ξL ⊗G+ ξMC(s) ≈
∫
dr ξL(r)G(s− r|Σ), (2)

e.g., [1], where G is a three-dimensional isotropic Gaus-
sian smoothing kernel of width Σ in each direction, and
the final expression assumes that the ‘mode-coupling
term’ ξMC of Ref.[1] can be ignored. We will ignore ξMC

in all of the analysis which follows, since none of the main
points we make are changed if we include it.

A. ‘Optimal’ estimate

We begin with an exploration of the precision with
which the smearing scale can be estimated if the shape

FIG. 1: Estimated Σ when we use exactly the correct shape
and amplitude of ξL when fitting the right-hand side of equa-
tion (2) to the measured ξNL but Σ is determined from the
fit, as well as a measure of the goodness of fit, χ2

min/d.o.f.
Main panel shows this joint distribution from 1500 realiza-
tions, each of an effective volume 10h−3Gpc3. Histograms
in bottom panel show the distribution of Σ for three differ-
ent effective volumes as indicated (10, 50 and 100h−3Gpc):
as expected, larger volumes return a narrower distribution,
hence a tighter constraint on the smearing scale. Histograms
in the panel on the left show the associated distributions of
χ2

min/dof; as expected, the goodness of fit does not depend on
the effective volueme.

and amplitude of the linear theory power spectrum are
known. This means that we simply fit the right-hand
side of equation (2) to the measured ξNL to determine
the value of Σ. The fitting uses measurements in bins of
width 1h−1Mpc over the range 70-110h−1Mpc, and uses
the covariance matrix described in [4] to account for the
fact that bins in ξNL are correlated.

The two-dimensional histogram in Figure 1 shows the
joint distribution of the best-fitting Σ and the associated
value of χ2

min/dof constructed from the 1500 realizations
of an effective volume of 10h−3Gpc3. The red curve in
the left-hand panel shows the distribution of χ2

min/d.o.f.
values obtained by projecting out the Σ values. It peaks
close to unity, indicating that the fits are generally ac-
ceptable. The red curve in the bottom panel show the dis-
tribution of best-fit Σ values, obtained by projecting out
the χ2

min values. It peaks at about 5.2h−1Mpc, which is
slightly higher than the linear theory value of 5.1h−1Mpc,
consistent with previous work [1]. The rms of this dis-
tribution is 0.33h−1Mpc, which is about a 7% precision
estimate of the smearing scale.

The other curves show similar projections of the his-
tograms (not shown) made from 300 and 150 realiza-
tions of effective volumes of size 50 and 100h−3Gpc3.
Clearly, larger volumes are more constraining: the rms
on Σ is 0.14 and 0.1h−1Mpc, scaling approximately
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with the inverse of the square root of the effective vol-
ume (Appendix A discusses why). Thus, Figure 1 sug-
gests that, if the shape and amplitude of ξL are known,
then the expected precision on the estimated Σ is about

3
√

50h−3Gpc3/Veff percent. Allowing for the amplitude

of the power spectrum to be a free parameter when fit-
ting only slightly degrades the precision of the Σ esti-
mate. (There is a slight degeneracy between the am-
plitude and the smearing scale – a higher initial peak
must be smeared more to produce the same observed
amplitude – but because the smearing matters little at
scales ∼60h−1Mpc, the degeneracy is reduced by includ-
ing scales that are far from the peak when fitting.)

That said, in practice, the biased tracers will be less
abundant than the dark matter, so although the shape of
the correlation function of biased tracers should not be
too different from that of the dark matter, the measure-
ment errors will be larger. This will degrade the preci-
sion of the constraint on Σ, which will propagate to other
analyses which use its value. For example, in the context
of reconstructing the shape of ξL, the distribution shown
in Figure 1 could be used as a prior on the value of the
smearing scale when averaging over distributions such as
those shown in Figure 8 of Ref.[4]. Nevertheless, we think
further analysis of this estimator of Σ is potentially in-
teresting. In particular, the next subsection explores the
accuracy and precision of estimated Σ if neither the shape
nor the amplitude of ξL are known a priori.

B. Laguerre-based estimate

If ξL is a function of |r| and the three-dimensional
Gaussian smearing kernel is isotropic with rms Σ in each
direction, then the angular integral can be done analyti-
cally, making

ξNL(s) =

∫ ∞
0

dr r2

Σ3

e−(r2+s2)/(2Σ2)

√
2π

2
sinh(rs/Σ2)

rs/Σ2
ξL(r).

(3)
The terms other than ξL in the integral define a
noncentral-Chi distribution in r/Σ with 3 degrees of free-
dom and noncentrality parameter s/Σ. So, if ξL is writ-
ten as a sum of polynomials, then ξNL is a sum over mo-
ments of the χ3 distribution: generalized Laguerre func-
tions. I.e., if

ξL(r) =

n∑
k=0

ak (r/R)k (4)

for some set of coefficients ak (R merely serves to make
the ak dimensionless, it plays no fundamental role), then

ξNL(s) =

n∑
k=0

ak (s/R)k (Σ/s)k µk(s/Σ), (5)

where

µ2n = 2n!!L(1/2)
n (−x2/2)

µ2n−1 = (2n− 1)!!

√
π

2
L

(1/2)
n−1/2(−x2/2), (6)

and the L
(α)
β (x) are generalized Laguerre functions. This

shows that the shape of ξNL differs from ξL because
µk(x)/xk 6= 1.

Ref.[4] made the point that, if the ak are determined by
fitting equation (5) to the observed ξNL(s), then the ‘La-
guerre reconstructed/deconvolved’ shape ξLag(r), is given
by inserting the fitted ak in equation (4). If Σ is known,
then the fitting reduces to a simple linear least squares
problem. In equation (5), the terms that involve Σ mul-
tiply the ak, so if Σ must also be determined from the
fitting process, then the problem to be solved is nonlin-
ear, but there is no other complication.

To illustrate, we have fit equation (5), with n = 9, to
the same ξNL measurements we show in Figure 1 for a
number if choices of Σ: i.e. for each Σ, we solve a linear
least squares problem. We then compare the χ2

min values
and choose that Σ for which χ2

min is smallest. (We have
checked that the values of χ2

min/dof are consistent with
unity, indicating the fits are acceptable.) The histograms
show the distribution of estimated Σ values for effective
volumes of 10, 50, and 100 (h−1Gpc)3 (red, black, and
blue, respectively). In all three cases, the mean values are
slightly larger than the linear theory value of 5.1h−1Mpc,
by about the same amount as in the bottom panel of
Figure 1. The rms values of the distributions are 0.46,
0.21 and 0.15h−1Mpc: They are about 50 percent larger
than in the bottom panel of Figure 1 when the shape
and amplitude were fixed to their correct values. This is
not surprising: the Laguerre-based approach must deter-
mine the amplitude and shape of ξL as well as the value
Σ. Viewed from this perspective, the Laguerre-based ap-
proach does rather well.

Since the Laguerre-based estimate of Σ could be arti-
ficially broadened if there are no parameter choices for
which equation (4) can provide a good description of the
linear theory shape, it is interesting to search for other
parameterizations of ξL which may constrain Σ better.
We study this in Section IV.

C. Illustration using biased tracers

So far, we have focussed on the dark matter correlation
function in configuration space. Real data of rare, biased
tracers will include redshift-space distortions and shot-
noise. To study how our constraints degrade in a more
realistic setting, we have explored the following extreme
scenario: We work with ξ0, the monopole of the redshift-
space distorted correlation function of mock galaxies
from the same Quijote simulation set (the Molino suite
of mock galaxy catalogs [17]), but now at z = 0. These
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FIG. 2: Distribution of Σ (histograms) estimated from our
Laguerre-based analysis (fit equation 5 to the measured ξNL)
of the 1500, 300 and 150 realizations of the three different
effective volumes indicated (10, 50 and 100h−3Gpc3): larger
volumes return a narrower distribution, hence a tighter con-
straint on the smearing scale.

mock catalogs use the standard [18] Halo Occupation Dis-
tribution (HOD) model. The number density of the mock
galaxies is 1.63× 10−4h−3Mpc3, so the shot-noise is sig-
nificantly larger than for the dark matter, and the bias
factor b = 2.4. In addition, the lower redshift means that
the smearing scale is larger: Σ = 8.5h−1Mpc. Moreover,
the fact that we are working in redshift-space means that
the smearing scale and the bias factor are modified to

b2eff ≈ b2
[
1 + 2β/3 + β2/5

]
(7)

and

Σ2
eff = Σ2

[
1 +

f(2 + f)

3

1 + 6β/5 + 3β2/7

1 + 2β/3 + β2/5

]
, (8)

where f ≡ d lnD/d ln a = 0.53 and β ≡ f/b = 0.22 (see
Ref.[7] for a derivation). In our mocks, beff = 2.6 and
Σeff = 10.34h−1Mpc.

In practice, the Laguerre method assumes that equa-
tion (3) still applies with ξL → b2effξL and Σ → Σeff . So
the question is: How well does the method recover Σeff ,
while also recovering the shape and amplitude of b2effξL?2

Figure 3 shows the result of estimating Σeff by fitting
9th order Laguerres to the 1500, 300 and 150 realizations
of ξ0 (each realization has an effective volume of 10, 50 or
100h−3Gpc3). The method returns distributions that are
centered at Σeff = 10.50, 10.41, and 10.42h−1Mpc for the
smallest to largest volumes. These are all close to the
theory value of Σeff = 10.34h−1Mpc. The rms scatter

2 This ‘scale-independent bias’ model is only an approximation.
In Ref. [4] we noted that ‘higher-order’ and/or ‘derivative’ bias
schemes are easily incorporated into the Laguerre reconstruction
methodology, but we ignore these complications here for the same
reason we ignore the mode-coupling contribution ξMC to Eq. (2):
none of our main points are changed by including them.

FIG. 3: Distribution of estimated Σeff from our Laguerre-
based analysis (fit equation 5 to the measured redshift-space
correlation function). Three histograms show results from
1500, 300 and 150 realizations of the three different effective
volumes as indicated (10, 50 and 100h−3Gpc3). Vertical bars
near the bottom mark the mean values of the distributions;
horizontal error bars show the mean plus and minus the rms.
Dashed curve shows the constraint on Σeff from propagating
the error on a single realization of the ξ50 ensemble (the one
shown in Figure 4); it is slightly narrower than the actual dis-
tribution of measurements in the ensemble (black histogram).

around the mean is about 20, 8.5, and 6% of the mean
value; while this is significantly worse than for the dark
matter at z = 1, it is still a sub-ten percent determination
for DESI-like volumes (∼ 50h−3Gpc3).

Perhaps more importantly, these values for the rms are
similar to (though slightly larger than) those returned
by the fitting procedure when fitting a single simulation.
Since the distribution of Σ shown in Figure 3 is approxi-
mately Gaussian, one can approximate p(Σ) by assuming
it is Gaussian and treating the uncertainty on Σ deter-
mined from a single realization as its rms. The dashed
curve in Figure 3 shows an example: it was obtained by
propagating the errors on the fit, shown as a black dashed
curve, to the symbols in Figure 4 (which show one mem-
ber of the ξ50 ensemble). It is worth emphasizing that,
because the Laguerre methodology is agnostic about the
shape or amplitude of ξL, the p(Σ) that it returns – essen-
tially the shape shown in Figure 3 – is obtained without
assuming anything about the linear theory power spec-
trum.

III. APPLICATIONS

The previous section showed that the Laguerre
methodology is able to provide useful estimates of the
smearing scale that are not tied to a fiducial cosmology.
We now discuss what additional science such estimates
enable.
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FIG. 4: Measured redshift-space monopole for a mock galaxy
catalog in an effective volume of 50h−1Gpc (symbols with
error-bars), the 9th-order Laguerre fit to it (black dashed
curve, which shows equation 5), and associated reconstruc-
tion (red curve, which shows equation 4 with the ak deter-
mined by the black dashed curve). This particular realization
happens to have Σeff = 10.3h−1Mpc. Grey bands show the
68% and 95% range covered by 300 such realizations of the
observed redshift-space monopole, and pink band shows the
68% range covered by the 300 associated reconstructed shapes
ξLag. Solid black curve shows the linear theory b2effξL.

A. Accuracy and precision of reconstructed
distance scale

Figure 3 shows the distribution of Σeff values at which
equation (5) best fits the measured ξ0. However, the best-
fit also determines a set of coefficients ak which, when in-
serted in equation (4), determine the reconstructed shape
ξLag. To illustrate, the black symbols (with error bars) in
Figure 4 show a single realization of ξ0 in a 50h−3Gpc3

volume, and the dashed black curve shows the best-fit
of equation (5) to it. This fit determines the coeffi-
cients ak as well as Σeff . This particular realization has
Σeff = 10.3h−1Mpc. The grey bands show the regions
that enclose 68% and 95% of 300 realizations of ξ0 in
the same effective volume. Notice that the measurement
(symbols) shows almost no peak or dip because, by z = 0,
particles have moved far from their initial positions, and
their speeds (which give rise to redshift-space distortions)
are also large. This is also true of the ensemble average
bracketed by the grey regions; in fact, in about 8% of the
simulations, there is no discernable peak or dip.

Despite this extreme smearing, the Laguerre recon-
structed shape ξLag (red curve shows equation 4 with the
best fit ak) is reasonably close to that of linear theory
ξL (black solid).3 The pink bands show the region that
encompasses 68% of the 300 reconstructed ξLag curves:

3 Note that because we are ignoring both mode-coupling and scale-
dependent bias the reconstructed shape is not as good as it could
possibly be. However, because our main concern here is to illus-
trate the qualitative effects of Σ, we will continue to ignore them.

FIG. 5: Distribution of reconstructed rLP from our Laguerre-
based analysis (fit equation 5 to ξ0, the monopole of the mea-
sured redshift-space correlation function; then insert the ak
coefficients of the best fit in equation 4 to define ξLag; finally,
determine rLP from the peak and dip scales of ξLag). Three
histograms show results for three different effective volumes as
indicated. Vertical bars near the bottom mark the mean val-
ues of the distributions; horizontal error bars show the mean
± the rms. Smooth black dashed curve shows a Gaussian
distribution with mean and rms determined from the single
ξLag shown in Figure 4. Vertical solid line shows the mean
rLP scale measured in ξ0 prior to reconstruction (it is similar
for all three effective volumes), and dot-dashed line shows the
scale in linear theory.

i.e. the reconstructions of the curves which resulted in
the grey bands.

To turn each of these reconstructed shapes into an es-
timate of the cosmological distance scale (at the survey
redshift) we use the ‘linear point’ rLP, which is defined
as the midpoint between the peak and dip scales in the
correlation function:

rLP ≡
rpeak + rdip

2
. (9)

For the background cosmology of our mock catalogs,
rLP = 92.7h−1Mpc in linear theory. Ref. [19] show that
this scale is interesting because rLP in the evolved corre-
lation function is approximately the same as in ξL. Dis-
tance scale estimates boil down to estimating rLP in each
z = 0 mock and providing a realistic error bar for it.

Although rLP evolves less than either the peak or dip
scales [4, 19], it does shift to slightly smaller scales at
later times. In the z = 0 mocks we are studying here,
the smearing is so large that there is no discernable peak
or dip in about 8% of the simulations having effective
volumes of 50h−3Gpc3. (For the 10 and 100h−3Gpc3

volumes, this fraction is 9% and 6% and they are not
used in the reconstruction process.) But in the others,
the values of rLP estimated from the Laguerre fit (i.e.
by finding the maximum and minimum of equation 5 us-
ing the best-fitting values of ak and Σ) are centered on
90.7h−1Mpc, with an rms scatter of about ±1.3h−1Mpc.
This is a significant offset from its linear theory value, so
the question is if the rLP estimates from reconstructed
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ξLag are closer to the linear theory value of 92.7h−1Mpc,
and what is the associated uncertainty on this ‘recon-
structed’ value.

The solid black curve in Figure 5 shows the distribu-
tion of reconstructed rLP values determined from the ξLag

that were reconstructed from the same ∼ 300 ξ50 mea-
surements which led to Figure 3. The black vertical bar
near the bottom marks the mean value of the distribution
and the horizontal error bar shows the mean ± the rms.
The smooth dashed curve shows a Gaussian distribution
with mean and variance determined from propagating the
errors on rLP for a single member of this ensemble – the
one shown by the symbols in Figure 4, that is best fit by
the black dashed curve there, and whose reconstructed
ξLag is the dashed red curve there. (Whereas the mean
and variance come from standard error analysis, using a
Gaussian shape is an extra assumption; this is reason-
able as the distribution defined by the ensemble is not
too non-Gaussian.) The mean of this single realization is
consistent with the ensemble mean reconstructed value
which is centered on ∼ 92.1h−1 with an rms scatter of
±0.85h−1Mpc. Evidently, even though the reconstructed
ξLag is not as close to ξL as in Refs.[4] and [7] – presum-
ably because the smearing scale at z = 0 is so large –
Laguerre reconstruction improves the accuracy and pre-
cision of the distance scale estimate.4

The other histograms in Figure 5 show that, for the
other effective volumes as well, the reconstructed values
are centered on ∼ 92.1h−1 with an rms scatter that is
slightly smaller for the larger volumes. In all cases, ac-
curacy and precision are both improved compared to rLP

in the original ξ0 (i.e. prior to Laguerre reconstruction).

It is interesting to contrast this with the accuracy and
precision that result from fixing Σ to a fiducial value
(in this case, 10.34h−1Mpc) and only determining the ak
from the fits. Doing so does not change the mean rLP, but
the error bar is about 30% smaller (±0.6h−1Mpc rather
than ±0.85h−1Mpc). This is not surprising: as Ref.[4]
discuss, fixing Σ to a fiducial value in this way is a little
like performing the reconstruction step with a prior on
the background cosmological model, and this artificially
reduces the estimated error bar. In effect, determining Σ
(in addition to the ak) from the fit and using the best-
fit Σ to reconstruct frees one from this dependence on
a fiducial model. In this sense, the estimate of rLP that
results (the one shown in Figure 5) has been marginalized
over the a priori unknown value of Σ.

Evidently, even in this extreme smearing scenario, the
Laguerre reconstruction methodology – which makes no
assumption about the expected shape of the BAO sig-
nal – returns a distance scale estimate that is accurate
to sub-percent precision for volumes that are larger than

4 Figure 6 in [7] suggests that ignoring the mode-coupling term as
we have done here leads to a slight underestimate of rLP, so this
may be why our reconstructed value is still biased slightly low.

∼ 10h−3Gpc3. Since future surveys target similar co-
moving volumes but at higher redshifts where the smear-
ing is smaller, we expect our methodology to return sub-
percent precision on the estimated distance scale. Of
course, for smaller survey volumes, other datasets may
provide better constraints on Σ, and hence on the prior
distribution one should use when marginalizing. We dis-
cuss how one might proceed in such cases in Section IV.

B. Other uses of the estimated smearing scale

Our Laguerre-based estimate of the smearing scale is
particularly interesting as Σ potentially provides an esti-
mate of the amplitude of PL(k, z), and hence the linear
theory growth factor, that is not degenerate with the bias
of the tracers (but see Ref.[20] for why this may not be
exactly true). Crudely speaking, this is because on the
scales which dominate the integrand in equation (1), the
power spectrum has approximately the same shape as
PL, only its amplitude is different: Pobs(k) ≈ b2 PL(k).
Therefore, if one defines Σ2

obs by inserting Pobs in place
of PL in equation (1), then the ratio Σobs/Σ ≈ b.

In practice, we must apply this methodology to the
monopole of the redshift space clustering signal, for which

Σobs

Σeff
≈ beff

[
1 +

f(2 + f)

3

1 + 6β/5 + 3β2/7

1 + 2β/3 + β2/5

]−1/2

(10)

depends on both f and β rather than b alone. If β is de-
termined from the angular dependence of the clustering
signal (e.g. the ratio of the monopole to the quadrupole)
then this can be combined with equation (10) to estimate
f . We intend to explore this estimate of f in future work.

IV. THE HERMITE LIMIT

The previous section noted that it may be interesting
to search for other parameterizations of ξL which return
tighter constraints on the smearing scale. However, if
the tracers are sufficiently sparse that the uncertainties
on Σ become large, then the constraint on Σ may not be
sharp enough to be interesting (either for constraining b
or for reconstructing the shape of ξL). If one must use
constraints on the smearing scale from other datasets to
perform BAO reconstruction, then it is interesting to ask
if alternative parametrizations (to Laguerre) simplify the
process of marginalizing over the value of the smearing
scale when reconstructing ξL. As the Introduction notes,
this provides additional motivation for exploring other
parametrizations of ξL.

To address this, we begin with equation (3), and con-
sider the limit in which r � Σ and s � Σ (Fig-
ures 1 and 2 show that the smearing scale is indeed
much smaller than the BAO scales of interest). Then
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2 sinh(rs/Σ2) ≈ ers/Σ
2

making

ξNL(s) ≈
∫ ∞

0

dr r2

Σ3

e−(r−s)2/(2Σ2)

√
2π rs/Σ2

ξL(r), (11)

so

s ξNL(s) ≈
∫ ∞
−∞

dr
e−(r−s)2/(2Σ2)

√
2πΣ

r ξL(r). (12)

Note that we can extend the lower limit of integration
down to −∞ only if r−s� Σ. If we parametrize ξL using
a simple polynomial (i.e. equation 4), then the integral
above can be done analytically. It is easy to check that
each ak multiplies (Σ/R)k times a polynomial in s/Σ.
This polynomial is the same as that which appears in the
Laguerre expansion µk(s/Σ), when one takes the s� Σ
limit (E1 → 1 and E2 → 0 in equation A3 of Ref.[4]).

There is no a priori reason for parametrizing ξL with
a simple polynomial. If we parametrize rξL(r) using the
probabilist’s Hermite polynomials instead,

rξL(r) =

n∑
k=0

akHk

(
r − rfid

R

)
, (13)

then Appendix B shows that the integral in equation (12)
can still be done analytically. For each k, the result is
(s− rfid)k/Rk plus additional terms which are lower or-
der polynomials in s multiplied by terms proportional
to (R/Σ)2. By carefully grouping these other terms it is
possible to find that rξL(r) which, when inserted in equa-
tion (12), produces a simple polynomial in s. Namely, if

rξL(r) =

n∑
k=0

akHk
(
r − rfid

R
,

Σ

R

)
, (14)

where the Hk are given in Appendix B, then

sξNL(s) =

n∑
k=0

ak

(
s− rfid

R

)k
. (15)

Therefore, if we determine the ak by fitting the simple
polynomial of equation (15) to the observed s ξNL(s),
then the reconstructed/deconvolved r ξL(r) is given by
equation (14), provided we first assume a value for Σ/R
(which we discuss shortly). Note that whereas ‘Laguerre
reconstruction’ has a simple polynomial as the recon-
structed shape of ξL(r), this ‘Hermite reconstruction’ of
rξL(r) has a simple polynomial as the nonlinear shape of
sξNL(s).

A. Dependence on smearing scale

In practice, we will not know the correct value of Σ,
so it is interesting to study the sensitivity of Hermite re-
construction to incorrect choices of Σ. In this regard,
the structure of this Hermite reconstruction problem has

two surprising consequences. First, because Σ does not
appear in equation (15), fitting it to the measurements
yields no information about Σ. I.e., if we fit sξNL(s) to
a simple polynomial, then we cannot make a plot like
Figure 2! Second, for the same fitted ak, varying Σ only
changes the reconstructed shape (equation 14). In con-
trast, for Laguerre reconstruction, each choice of Σ re-
quires a new fit (Σ appears in equation 5 for ξNL). In
this sense, Hermite reconstruction is more efficient than
Laguerre: one only need determine the ak once.

Although sξNL(s) does not depend on Σ, the Hermite
reconstruction of ξL, which we will refer to as ξHer, does.
So we now turn to the value of Σ. There are two nat-
ural choices. One is to treat the Laguerre-based anal-
ysis (e.g. Figure 2) as providing a prior on the value
of Σ. But if this is rather broad (e.g. for sparse trac-
ers), it may be that an alternative approach is more con-
straining. Following [7], this second approach exploits
the fact that, for all biased tracers, the smearing scale is
expected to be well approximated by equation (1). Sup-
pose we use Σ2

obs to denote the result of inserting the
observed Pobs(k) in equation (1). On the large scales
(small k) which dominate the integral (in ΛCDM mod-
els), Pobs(k) ≈ b210 PL(k), making Σ ≈ Σobs/b10. In this
approximation, the uncertainty in what to use for Σ boils
down to what to use for b10.

We will use bfid to denote our best guess for this value,
and so we define Σfid ≡ Σobs/bfid. This suggests that if
we fit the observed correlation function to equation (15),
with R = Σfid, then the effect of varying b from its fidu-
cial value yields reconstructed

r ξHer(r) =

n∑
k=0

akHk
(
r − rfid

Σfid
,
bfid

b10

)
. (16)

Note that when b10 = bfid then Hk → Hk: the recon-
structed shape is a simple sum of Hermite polynomials.
(Of course, this is only true if Σ ≈ Σobs/b10.) This al-
lows a straightforward estimate of the uncertainty on the
reconstructed ξHer: fitting to ξNL yields the covariance
matrix of the fitted ak. For a given choice of bfid/b10,
this can be used to produce uncertainty bands around
the shape given by equation (16), and further marginal-
izing over the value of bfid/b10 gives the full uncertainty
on the reconstructed shape (see [4] for a detailed discus-
sion).

We must also decide what to use for rfid. We are par-
ticularly interested in the BAO scale, around which the
correlation function exhibits a peak and a dip. Therefore
a reasonable way to determine rfid is as follows. Initially
choose rfid arbitrarily – a reasonable choice would use the
expected value of rLP of equation (9) in the current best-
fitting cosmological model. Then fit equation (15), with
R = Σfid, to the observed sξNL(s). Find those scales
rpeak and rdip where dξNL/ds = 0. In practice, since
d[sξ]/d ln s = sξ + s dξ/d ln s, the peak and dip scales in
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FIG. 6: Comparison of Hermite reconstruction (equation 14)
of the shape of the z = 1 dark matter correlation function
(solid red curve; pink bands show 1- and 2-standard deviation
uncertainties) with the linear theory shape (solid black) when
Σ = 5.1h−1Mpc, the linear theory value, is used. Dashed grey
curves show reconstructions when Σ is assumed to be larger or
smaller by 10%. Symbols with error bars show the measured
(i.e. evolved) dark matter correlation function; dashed black
curve shows the best fit of equation (15) to these measure-
ments, which was used to determine the ak coefficients used
in the reconstruction; grey bands show the 1- and 2-standard
deviation uncertainties.

the evolved correlation function are at those s where

n∑
k=0

ak

(
s− rfid

Σfid

)k−1 [
ks− (s− rfid)

Σfid

]
= 0. (17)

Now set rfid equal to (speak + sdip)/2 and re-fit. Doing
this ensures that the higher order polynomials contribute
less and less in the vicinity of rLP (see Figure 10 in [4] for
an explicit demonstration). The ak which result can then
be inserted in equation (16). The peak and dip scales in
the reconstruction are where d[rξHer]/d ln r = rξHer:

n∑
k=0

ak

[
kr

Σfid
Hk−1(

r − rfid

Σfid
,
bfid

b10
)

−Hk(
r − rfid

Σfid
,
bfid

b10
)

]
= 0, (18)

where we have used the fact that dHj(x)/dx = jHj−1(x).
This can be used to determine how the value of rLP in the
reconstruction depends on b. One can, of course, weight
each of these values by a prior on the value of b.

B. The Hermite-reconstructed shape

Figure 6 illustrates the various steps associated with
Hermite reconstruction. The symbols with error bars
show the measured dark matter correlation function at
z = 1 in an effective volume of 50h−3Gpc3. The dashed
black curve shows the best fit of equation (15) with n = 9,

(i.e., a ninth order simple polynomial), to these measure-
ments; associated grey bands are the 1- and 2-standard
deviation uncertainties. This best fit determines the co-
efficients ak. The solid red curve with pink error bands
shows the associated Hermite reconstruction (equation 14
with the ak determined from the fit to the symbols,
and Σ = 5.1h−1Mpc or, equivalently, equation 16 with
bfid = b10 = 1) and corresponding uncertainties. This red
curve should be compared with the solid black one, which
shows linear theory. Evidently, when the correct smear-
ing scale is assumed, then Hermite reconstruction works
quite well. (It appears to work much better than the
Laguerre reconstructions shown in Figure 4 only because
here we are working with the dark matter at z = 1 rather
than redshift space distorted mock galaxies at z = 0. In
fact, for the z = 1 dark matter, the reconstructed shapes,
ξLag and ξHer, are very similar.)

Dashed grey curves show the Hermite reconstructions
when the smearing scale is assumed to be larger or
smaller by 10% (the ak are the same, of course). Compar-
ison with Figure 4 in Ref. [4] shows that, in all cases, the
linear theory shape is recovered at least as well as it is for
Laguerre reconstruction. We have also checked that rLP

of equation (9) in the Hermite reconstructions depends
on smearing scale similarly to the Laguerre reconstruc-
tions: weakly (see, e.g., Figure 6 of Ref. [4]). Therefore,
reconstructed distance scale estimates and their uncer-
tainties from the Hermite reconstructions are comparable
to those from Laguerre reconstruction. This is reassuring
because Laguerre reconstruction of the distance scale is
accurate, precise and fast [4, 7]. Moreover, as we noted
above, Hermite reconstruction is even more efficient, re-
quiring only a single determination of the coefficients ak.

C. Discussion

One might have thought that how one chooses to
parametrize the nonlinear correlation function is of lit-
tle consequence – provided the goodness of fit is accept-
able. Our analysis has shown that some parametrizations
are more useful than others. The Laguerre parametriza-
tion of ξNL (equation 5) has smearing scale Σ dependence
in ξNL but none in ξL, whereas our modified-Hermites
(equation 13) have no Σ dependence in sξNL(s) but some
in rξL(r). As a result, the Laguerre-based parametriza-
tion of ξNL constrains Σ (Figure 2) whereas the simple
polynomial parametrization of sξNL(s) associated with
equation (13) does not. (Some of this is a consequence
of ignoring the mode-coupling term. Had we included
it, then the Laguerre approach would have no additional
Σ dependence in ξNL whereas the modified-Hermites ap-
proach would. However, in practice, the mode-coupling
contribution is too small to matter.)

This raises the question of whether or not there is
a parametrization of ξNL that yields tighter constraints
on Σ. While one is allowed to fit data with a model
whether or not the model makes good physical sense,
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our results suggest that a parametrization that is closer
to the physics will fare better: the modified-Hermites
have the shape of the linear theory correlation function
depending on time (because Σ depends on time), which
is unphysical. In contrast, the Laguerre parametrization
is consistent with the physics.

While a detailed investigation of physically reasonable
parametrizations is beyond the scope of this work, we
have performed the following test. We parametrize ξL
using equation (13), for which the associated ξNL is an-
alytic and depends on R/Σ. This is similar to the La-
guerre case, for which ξL is a simple polynomial that
depends on R but not Σ – so it is as physically rea-
sonable. Because of this similarity, we can study how
this parametrization constrains Σ. We have found that
the analogue of Figure 2 is almost identical: there is no
significant difference between parameterizing ξL(r) using
simple polynomials or rξL(r) using Hermites. Of course,
this does not exclude the possibility that there are other
parametrizations which will better constrain Σ.

Finally, in the context of parametrizations, it is worth
noting that BAO analyses which assume a fiducial (typi-
cally ΛCDM-motivated) model when estimating the dis-
tance scale attempt to account for the fact that the
fiducial model – either for the background cosmology or
for the bias between observed tracer and the underly-
ing dark matter field – may not be correct by adding
A1r

−1 + A2r
−2 and then marginalizing over the values

of A1 and A2 [21]. Since such terms are not present in
our approach, one might wonder if their inclusion would
bias our results. We checked this by explicitly adding
A1/s + A2/s

2 to equation (5), or A1 + A2/s to equa-
tion (15) prior to fitting. We found that these extra terms
have almost no impact on our analysis.

V. CONCLUSIONS

To a good approximation on BAO scales, the evolved
correlation function ξNL is related to the initial one, ξL,
by a convolution (equation 3). Fitting a series of half-
integer Laguerre polynomials (equation 5) to the evolved
two-point correlation function allows one to constrain the
smearing scale Σ of the convolution kernel (Figure 2) even
when neither the amplitude nor shape of ξL are known. In
addition, when applied to ξNL at different redshifts, the
method correctly returns the fact that the smearing scale
is larger at later times (compare Figures 2 and 3). Our
Laguerre approach shows that to constrain the value of Σ,
it is enough to endow the parametrization of the ξNL−ξL
relation with the correct structure (i.e. one that reflects
the fact that the two are related by a convolution).

In configuration space, the smearing is expected to
be approximately independent of the nature of the ob-
served tracers – i.e. of halo or galaxy bias. However,
in redshift space, the effective smearing is expected to
depend weakly on bias (equation 8); our Laguerre-based
estimates of Σeff in redshift-space distorted mock galaxy

catalogs are consistent with this expectation (Figure 3).
In the Laguerre framework, knowledge of the smear-

ing scale allows one to deconvolve and hence reconstruct
the shape of ξL from measurements of ξNL, without any
prior assumptions about the shape or amplitude of ξL.
As the shape and amplitude of the reconstructed cor-
relation function can be used to constrain cosmological
parameters, the Laguerre methodology can be used to
provide more realistic estimates of the precision of the
constraints. In particular, the estimated accuracy and
precision of the Laguerre-reconstructed contraints do not
depend on choosing a fiducial cosmological model (also
see discussion at the end of Section IV C). We demon-
strated this for the linear point feature (equation 9) in
the reconstructed ξL (Figures 4 and 5).

In practice, such constraints will depend on the nature
of the biased tracers and the volume of the survey. For
small survey volumes (e.g. BOSS), the constraint on the
smearing scale is not tight, so marginalizing over its value
can significantly weaken constraints on cosmological pa-
rameters. When this occurs, it may be preferable to use
tighter constraints on Σ which come from other datasets,
and then, we argued that the full Laguerre-based anal-
ysis (which may be justified in a DESI-like survey) may
not be necessary. Provided that Σ is a small fraction
of the scales of interest, the simple polynomial - modi-
fied Hermites (equation 16 with Appendix B) combina-
tion for sξNL(s) and rξL(r) provides a more efficient way
of marginalizing over the value of Σ when quantifying
the accuracy and precision on the distance scale estimate
(Figure 6 and associated discussion).

We illustrated many of our points using mock galaxy
catalogs at z = 0, where the smearing is so large that the
BAO feature in ξNL is nearly completely smeared out. As
our Laguerre-based results were promising nevertheless,
we are in the process of implementing the ideas presented
here in realistic mock galaxy catalogs which are more
relevant to the next generation of cosmological surveys.

Finally, although we have focussed on the BAO smear-
ing scale, recent work has highlighted the benefits of com-
bining full-shape analyses of galaxy power spectra with
BAO distance scale estimates to constrain cosmological
parameters [22]. Since both Hermite and Laguerre re-
constructions reproduce the full shape of ξL over a rather
broad range of scales, their speed and simplicity enable
the development of a similar program in configuration
rather than Fourier space. We hope this feature of our
reconstructions is exploited in future work.
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Appendix A: Dependence of χ2 on effective volume

Sufficiently close to the best fit (the minimum of the
χ2), we expect the χ2 curve to be approximated by a
quadratic function. We can expand it around the best-
fit coefficients â as

χ2(a) = χ2(â)+D·(a− â)+
1

2
(a− â)T ·M·(a− â), (A1)

where Di = ∂χ2/∂ai is the first derivative vector and
Mij = ∂2χ2/∂ai∂aj is the Hessian matrix. The best
fit coefficients â will be determined from the fact that
the first order derivatives ∂χ2/∂ai are zero for all ai at
the minimum χ2

min = χ2(â), so we can write the above
equation as

∆χ2 ≡ χ2(a)− χ2
min = (a− â)T · (M/2) · (a− â). (A2)

The χ2 function can be expressed as the following
weighted inner product

χ2 = (ξ − ξ̂)T · C−1 · (ξ − ξ̂), (A3)

where C−1 is the inverse of the covariance matrix, ξ is

the measurement, and ξ̂ is our best fit. As we dis-
cussed in the text, if the value of the smearing scale
Σ is known, then our fitting model is linear in coeffi-
cients. For a linear model, the best fit can be written

in matrix form as ξ̂ = A · â, where A is the design ma-
trix. In our case, the elements of the design matrix are
Aij = Hj ([ri − rfid]/Σfid, bfid/b10). Inserting this linear
model in equation (A3) and calculating the associated
Hessian matrix yields

∆χ2 = (a− â)T · (ATC−1A) · (a− â). (A4)

The covariance matrix C scales as the inverse of the effec-
tive survey volume, so C−1 and consequently χ2(a)−χ2

min

scale as the effective volume.
Let δa = a − â be a change in the fitting coefficients

whose first element is arbitrary δa1, but the rest of whose
elements are selected to minimize the ∆χ2 = χ2(a) −
χ2

min. Then δa1, the uncertainty on the value of a1 is

δa1 = ±

√
∆χ2

[C−1
]11

, (A5)

which scales as the inverse of the square root of the ef-
fective volume.

For the nonlinear case (when Σ is not known) equa-
tion (A3) is still valid. By calculating the second deriva-
tives in the general form, ∆χ2 of the nonlinear model can
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be written as

∆χ2 = δak

[∂ξ̂Ti
∂ak

[C−1]ij
∂ξ̂j
∂al
−(ξ−ξ̂)Ti [C−1]ij

∂2ξ̂j
∂ak∂al

]
kl
δal,

(A6)
where all the derivatives are evaluated at the best fit
values of the fitting parameters.

In the linear model, the second derivatives are all zero,
and this expression reduces to equation (A4). In a non-

linear model, finding the best fit ξ̂ must proceed itera-
tively, and then we only need to insert the solution into
equation (A6). Since the inverse of the covariance matrix
appears in both the first and second terms in the square
brackets above, the scaling with effective volume for the
nonlinear case is the same as for the linear one.

As noted in the main text, to estimate the best-fitting
Σ, we solve a linear least square problem for a number
of choices of Σ. We then compute the χ2 values and
choose the Σ that minimizes the χ2. For this step and
measuring the uncertainty on the best-fitting Σ for each
realization, we fit a quadratic function A0(Σ − A1)2 to
the χ2 values as a function of Σ. The A1 parameter gives
us the best-fitting Σ, and then by setting the confidence
level of ∆χ2 = 1, the uncertainty on Σ can be determined
by 1/

√
A0.

For the error bar on rLP, we need to propagate the
uncertainty from the fitted parameters of the correlation
function to the positions of the peak and the dip, and
finally to the linear point. In this nonlinear case that Σ
is unknown, we should write the linear point position as
a function of the polynomial coefficients {ak} and Σ, and
then expand the result around the best-fit parameters.
The error bar on rLP can be written as

σLP =

∑
i,j

∂rLP

∂βi
[Cov(β)]ij

∂rLP

∂βj


1/2

, (A7)

where β = {a0, a1, . . . , ak,Σ} and β denotes the best
fitting values.

Appendix B: Modified Hermite polynomials

We are interested in integrals of the form

Ik(y, β) ≡
∫
dx

e−(y−x)2/2

√
2π

Hk(βx) (B1)

= (1− β2)k/2Hk

(
yβ√

1− β2

)
, (B2)

where the Hk(x) are the probabilist’s Hermite polynomi-
als and β > 0. We could use this to write the sξNL(s)
that is associated with equation (13) of the main text.
This expression would depend on β, making it the Her-
mite analog of the Laguerre reconstruction we discussed

in the main text. However, one of our goals in the main
text was to show that, with the right combination of Her-
mite polynomials, it is possible to write ξNL as a simple
polynomial in s/R = yβ.

To achieve this, start with the fact that when β = 1
then

Ik(y, 1) =

∫
dx

e−(y−x)2/2

√
2π

Hk(x) = yk. (B3)

We then note that

Hn(βx) = n!

[n/2]∑
i=0

βn−2i (β2 − 1)i

2i
Hn−2i(x)

i! (n− 2i)!
. (B4)

This with the definition of Ik(y, 1) show that when β 6=
1, then Ik(y, β) is a sum of polynomials that are each
multiplied by different powers of β. E.g., the term of
highest order in y is (βy)k. We can remove all the other
terms by subtracting appropriate combinations of β and
Hj(βx). Doing so defines the functions called Hk(x, β)
in the main text. Explicitly, they are:

H0(βx) = H0(βx),

H1(βx) = H1(βx),

H2(βx) = H2(βx)−AH0(βx),

H3(βx) = H3(βx)− 3AH1(βx),

H4(βx) = H4(βx)− 6AH2(βx) + 3A2H0(βx), (B5)

H5(βx) = H5(βx)− 10AH3(βx) + 15A2H1(βx),

H6(βx) = H6(βx)− 15AH4(βx) + 45A2H2(βx)

− 15A3H0(βx),

H7(βx) = H7(βx)− 21AH5(βx) + 105A2H3(βx)

− 105A3H1(βx),

H8(βx) = H8(βx)− 28AH6(βx) + 210A2H4(βx)

− 420A3H2(βx) + 105A4H0(βx),

H9(βx) = H9(βx)− 36AH7(βx) + 378A2H5(βx)

− 1260A3H3(βx) + 945A4H1(βx),

where A ≡ β2 − 1. This shows that Hk → Hk as β → 1.
Moreover, note the similarity of the structure to that
for the Hk themselves: the numerical coefficients are the
same as for Hk, with xj → Hj and with each extra term
receiving an additional power of A. I.e.,

Hn(βx) ≡ n!

[n/2]∑
m=0

Hn−2m(βx)

m!(n− 2m)!

(1− β2)m

2m
. (B6)

This, with equation (B2) for Ik(y, β), makes it is easy
to check that equation (14) leads to equation (15). This
also makes it easy to see that dHj(y)/dy = jHj−1(y),
which mirrors the fact that dHj(x)/dx = jHj−1(x).
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