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Newton, entanglement, and the graviton

Daniel Carney∗
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Many experiments have recently been proposed to test whether non-relativistic gravitational in-
teractions can generate entanglement. In this note, I consider the extent to which these experiments
can test if the graviton exists. Assuming unitarity and Lorentz invariance of the S-matrix, I demon-
strate that this “Newtonian entanglement” requires the existence of massless bosons, universally
coupled to mass, in the Hilbert space of low-energy scattering states. These bosons could be the
usual spin-2 gravitons, but in principle there are other possibilities like spin-0 scalar gravitons. I
suggest a concept for a more refined experiment to rule these out. The special role of d = 3 + 1
spacetime dimensions and the possibility that unitarity is violated by gravity are highlighted.

Dyson and others have pointed out that detection of
individual gravitons is likely to be impossible [1–3]. Ex-
perimental proof of the existence of the graviton may
thus require a more subtle methodology.

Bell’s theorem provides a method to prove that a state
of nature does not admit a local, classical description [4–
6]. There have been a plethora of experimental proposals
to determine if gravitational interactions can generate
such a non-classical, entangled state [7–25]. A minimal
realization is depicted in Fig. 1.

These are non-relativistic tabletop experiments. If
we assume that gravity generates a unitary channel on
the objects, then observation of entanglement generation
consistent with a 1/r law would tell us that the Hamil-
tonian must be

H = H1 +H2 + VN , VN = −GNm1m2

|x1 − x2|
. (1)

It is natural to ask [26–31] what we learn about any grav-
itational degrees of freedom themselves, which do not ap-
pear in (1). Of course, quantizing metric fluctuations into
gravitons produces a perfectly good effective quantum
field theory, and this model reproduces the Newton po-
tential operator [32–34]. The question these experiments
probe is whether this is the correct model of nature.

In this paper, I study the implications if we further
assume that (1) is the non-relativistic limit of some
Lorentz-invariant model. A minimal S-matrix theory
framework is sufficient to encode unitarity and Lorentz
invariance without assuming that the fundamental de-
grees of freedom are quantum fields [35–38]. These as-
sumptions are enough to prove that one needs massless
bosonic degrees of freedom in the Hilbert space of scatter-
ing states to be consistent with (1). These bosons must
have a universal coupling to mass with strength

√
GNm.

They can however have any integer spin, not only s = 2
like the usual graviton. Ruling out these other possibil-
ities requires a more refined experiment, as discussed in
section II.
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FIG. 1. (Top) Two masses m1, m2 are prepared in an initial
product state, interact gravitationally for a time �t, and are
read out to check for entanglement. Left: unitary Newto-
nian interaction. Right: an e↵ective Newtonian channel LN

emerges from environmental interactions. (Bottom) Minimal
experimental realization with free-falling masses. The New-
ton interaction would squeeze the relative position x� while
preserving total momentum p+, leading to a violation of the
Duan inequality [46, 47] for separable states h�x2

��p2
+i � ~2.

This can be read out with local interferometers.

Perhaps the more interesting possibility is that gravity
does not generate a unitary interaction. For example,
gravity could emerge from interactions mediated by un-
observed microscopic degrees of freedom [39–45]. Models
of this type in which gravity emerges in a semi-classical
fashion like Gµ⌫ = 8⇡GN hTµ⌫i would be ruled out, since
there gravity cannot entangle objects [7]. However, it
may be possible that gravity could form an open system
in a di↵erent manner, in which it can produce entangle-
ment observables consistent with (1). Making a precise
statement about gravitons in this context is a di�cult
problem left to future work.

Before moving on, we note some previous results in
this direction [27, 28]. In particular, Belenchia et al. [27]
study a gedankanexperiment in which Newtonian entan-
glement enables superluminal signaling, and resolve the
paradox by introducing quantized metric fluctuations.
The arguments presented here are related, but precise
enough to demonstrate an exhaustive list of possibilities:
the only way to resolve these types of paradoxes within a
unitary and Lorentz-invariant model is to include radia-
tive graviton, or very graviton-like, degrees of freedom.

FIG. 1. (Top) Two masses m1,m2 are prepared in an initial
product state, interact gravitationally for a time ∆t, and are
read out to check for entanglement. Left: unitary Newto-
nian interaction. Right: an effective Newtonian channel LN
emerges from environmental interactions. (Bottom) Minimal
experimental realization with free-falling masses. The New-
ton interaction would squeeze the relative position x− while
preserving total momentum p+, leading to a violation of the
Duan inequality [46, 47] for separable states 〈∆x2−∆p2+〉 ≥ ~2.
This can be read out with local interferometers.

Perhaps the more interesting possibility is that gravity
does not generate a unitary interaction. For example,
gravity could emerge from interactions mediated by un-
observed microscopic degrees of freedom [39–45]. Models
of this type in which gravity emerges in a semi-classical
fashion like Gµν = 8πGN 〈Tµν〉 would be ruled out, since
there gravity cannot entangle objects [7]. However, it
may be possible that gravity could form an open system
in a different manner, in which it can produce entangle-
ment observables consistent with (1). Making a precise
statement about gravitons in this context is a difficult
problem left to future work.

Before moving on, we note some previous results in
this direction [27, 28]. In particular, Belenchia et al. [27]
study a gedankanexperiment in which Newtonian entan-
glement enables superluminal signaling, and resolve the
paradox by introducing quantized metric fluctuations.
The arguments presented here are related, but precise
enough to demonstrate an exhaustive list of possibilities:
the only way to resolve these types of paradoxes within a
unitary and Lorentz-invariant model is to include radia-
tive graviton, or very graviton-like, degrees of freedom.
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I. UNITARY NEWTONIAN GRAVITY
REQUIRES QUANTIZED RADIATION

Our core assumption is unitarity. Specifically, we as-
sume that the gravitational interaction between massive
objects operates as a closed system. Within a unitary
framework, a demonstration of entanglement between
masses, with the right parametric dependences, means
that we must have a two-body potential of the form

VN = −GNm
2e−µ|x1−x2|

|x1 − x2|
. (2)

Here µ is a small parameter with dimensions of inverse
length which is useful as a regulator; we will take the
µ → 0 limit to recover the Newton potential.1 The real
input from the experiments is that this is a two-body
operator in the full sense of the term: the xi are local
operators on a bipartite Hilbert space. This is different
from, for example, models where gravity acts “semiclas-
sically” through expectation values (see appendix A).

We will consider scattering processes with the Hamil-
tonian (2). Using the non-relativistic matrix elements
as input to Lorentz-invariant extensions of this model,
we will find violations of unitarity in a variety of simple
scattering processes. Moreover, the precise form of this
unitarity violation is enough to conclude that the only
solution is to add radiative states of bosons with mass µ
which couple to massive matter with strength

√
GNm.

Unitarity and Lorentz invariance can be defined in a
manner which is independent of the way we realize the in-
teractions, i.e., does not depend on the use of field theory.
Consider scattering processes described by S-matrix ele-
ments Sα→β = 〈β|S|α〉. The S-matrix elements are the
transition amplitudes for an initial state |α〉 prepared in
the asymptotic past t→ −∞ to evolve to a definite state
|β〉 in the asymptotic future t→ +∞. To begin, we will
only need the minimal postulates:

(A) Unitarity. S is a unitary operator, S†S = 1.

(B) Lorentz invariance. For Λ an element of the
Lorentz group, the scattering states transform in
a unitary representation U(Λ). Furthermore, the
S-matrix is invariant: U(Λ)SU†(Λ) = S.

Our implementation of (2) to compute S-matrix elements
non-relativistically will be based on a Schrödinger equa-
tion with past boundary conditions, and thus automati-
cally assumes the usual non-relativistic notion of causal-
ity.

1 The experiments are done within some finite length scale, typ-
ically a laboratory scale 10−6 m . ` . 1 m. Thus beyond its
regulatory benefits, this kind of potential would be a perfectly
viable explanation for the observed entanglement as long as we
assume a sufficiently small value µ � `−1. For extensive dis-
cussion on the S-matrix in the µ → 0 limit, see for example
[48–52].

Gravity is a weak interaction, so that we can expand
S = 1+ iT , where the 1 reflects the possibility of no scat-
tering occurring. Assumption (B) means in particular
that a spinless particle of momentum p transforms like
U(Λ) |p〉 =

√
(Λp)0/p0 |Λp〉 under a boost.2 Multiple-

particle states |α〉 = |p1p2 · · ·〉 are described by lists of
such momenta (as well as spins and any other internal
quantum numbers). Furthermore, spacetime translation
invariance implies that total four-momentum is conserved
in every process. Thus we will define the usual “Feynman
amplitudes” M by

Sα→β = δαβ − i(2π)4δ4(pα − pβ)BαBβMα→β , (3)

where pα, pβ are the total incoming and outgoing four-
momenta, respectively. We will only deal with spinless
massive objects, and so have factored out the Lorentz-
transformation factors Bα =

∏
i∈α[2(2π)3Ei]

−1/2, with

Ei = p0
i the energy of the ith particle. Defined this way,

Mα→β should be invariant under the Lorentz group.
The main workhorse in what follows will be the unitar-

ity condition on the S matrix. We have S†S = 1, which
implies i(T−T †) = T †T . Inserting a complete set of final
states |X〉 and comparing to (3), we have

M∗β→α−Mα→β = i(2π)4
∑

X

B2
XMα→XM

∗
β→Xδ

4(pα−pX).

(4)
This is known as the optical theorem. In the special case
of forward scattering α = β, this reduces to the usual op-
tical theorem Im f(0) = σtotal. This is a reflection of the
fact that the scattered wavefunction must have a specific
interference pattern with the unscattered wavefunction.
For a model to be unitary, equation (4) must be satisfied
for all initial and final states |α〉, |β〉.

A. Lorentzian bootstrap strategy

The strategy we will follow is to begin with a non-
relativistic expression for the scattering amplitude, then
bootstrap the answer into something Lorentz-invariant.3

Scattering theory is the study of solutions to the
Schrödinger equation combined with boundary condi-
tions as t → −∞. Our starting point will thus be the

2 This is our definition of a single-particle state; it could be a field
quanta, or a closed string mode, or whatever else, as long as
it transforms correctly. Following [53], we define single-particle
states to satisfy the non-relativistic normalization 〈p′|p〉 =
δ3(p′ − p), and use (−,+,+,+) signature.

3 The “bootstrap” terminology is inspired from the modern S-
matrix bootstrap program, where one derives constraints on low-
energy models by demanding that they are low-energy limits of
some high-energy model with certain restrictions [54]. Usually
this is used to relate a pair of relativistic field theories, but for a
few examples with non-relativistic models, see [55–57].
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FIG. 2. (a) Depiction of an S-matrix element for the process |↵i ! |�i. The blob represents a sum over all possible intermediate
processes. (b) Diagram describing the gravitational, non-relativistic scattering amplitude at lowest order in perturbation theory.
The interaction is given by the instantaneous potential matrix element ⇠ [(p0

1 �p1)
2 +µ2]�1. (c) Lorentzian bootstrap version

of the same amplitude. The dashed line represents a factor [(p0
1 � p1)

2 + µ2]�1, which at this stage in the argument has no
interpretation in terms of an intermediate particle.

time-dependent perturbation series solution for this sys-
tem. Although the Born series is perhaps more familiar,
consider instead the Dyson series [58]

S↵!� =
1X

n=0

(�i)n

n!

Z 1

�1
dt1 · · · dtn h�|TV (t1) · · · V (tn)|↵i .

(5)

Here T is the time-ordering operator, and the potential
is written in the interaction picture. To illustrate the
Lorentzian bootstrap idea, consider 2 ! 2 scattering, so
|↵i = |p1p2i and |�i = |p0

1p
0
2i. We will write the interac-

tion picture potential operator (2) explicitly in two-body
notation, in the lab frame:

VN (t) =
�1

(2⇡)3

Z
d3k1d

3k2d
3k0

1d
3k0

2 |k0
1k

0
2i hk1k2|

�3(k1 + k2 � k0
1 � k0

2)e
�i(Ek0

1
+Ek0

2
�Ek1

�Ek2
)t
Vk0

1k
0
2,k1k2

,

(6)

where the Schrödinger-picture matrix elements are

Vk0
1k

0
2,k1k2

=
4⇡GNm2

q2 + µ2
, q =

k0
1 � k0

2

2
� k1 � k2

2
, (7)

and q is the change in the relative momentum. The ze-
roth order term n = 0 in (5) is just the identity operator
in the expansion S = 1 + iT . The first-order term gives
the same result as the first Born approximation:

S
(1)
p1p2!p0

1p
0
2

=
2⇡i

(2⇡)3
�(Ep1 + Ep2 � Ep0

1
� Ep0

2
)

⇥ �3(p1 + p2 � p0
1 � p0

2)
4⇡GNm2

�p2 + µ2
,

(8)

with �p = p0
1 � p1 the momentum transfer.

Now we impose the requirement that (8) is the non-
relativistic limit of some Lorentz-invariant model. Thus

we need to write this as Lorentz-invariant function of
the external momenta p1,p2,p

0
1,p

0
2. Specifically, we

want a Feynman amplitude M with the property that
S(1) = limp0!m �i(2⇡)4M�4(

P
p). There are 10 Lorentz

generators and 12 independent variables in these four
momenta, leaving only two free variables. A conve-
nient choice for these are the invariant momentum trans-
fer t = �(p01 � p1)

2 and total incoming mass-squared
s = �(p1 + p2)

2. Clearly the only Lorentz-invariant
option is to replace the momentum transfer �p2 with
t, and combine the two delta functions into a factor
�4(p1 + p2 � p01 � p02). Comparing to (3), we have the
bootstrapped amplitude

Mp1p2!p0
1p

0
2

= �16⇡GNm4

�t + µ2
f(s, t). (9)

We had to rescale the coupling GNm2 ! GNm4 in or-
der to cancel the relativistic wavefunction normalizations
⇠ 1/

p
p0 ! 1/

p
m in (3). The dimensionless function

f(s, t) must have the property that f ! 1 in the non-
relativistic limit s ! 4m2, t ! ��p2. The two expres-
sions for the amplitude are depicted in Fig. 2. We have
assumed that the two massive particles are distinguish-
able so that we can ignore the exchange channel p0

1 $ p0
2,

and will continue to do this in what follows.
Unitarity is trivially satisfied in (9). The amplitude

is manifestly real, so the left-hand side of (4) vanishes.
Similarly, there is no amplitude at order

p
GN , so to

order GN the right hand side also vanishes. Notice that
for physical momenta p2

1 = p2
2 = p021 = p022 = �m2, we

have t  0, so the denominator is always non-zero.
To see how the unitarity condition can become non-

trivial, we have to go to higher order in perturbation
theory. We next show an example of how this works.
We consider a 3 ! 3 process which includes two non-
gravitational interactions with coupling strength �. This
is modeled directly after the kind of Alice and Bob ex-
periments of [27]. In this example, the unitarity violation

FIG. 2. (a) Depiction of an S-matrix element for the process |α〉 → |β〉. The blob represents a sum over all possible intermediate
processes. (b) Diagram describing the gravitational, non-relativistic scattering amplitude at lowest order in perturbation theory.
The interaction is given by the instantaneous potential matrix element ∼ [(p′1−p1)2 +µ2]−1. (c) Lorentzian bootstrap version
of the same amplitude. The dashed line represents a factor [(p′1 − p1)2 + µ2]−1, which at this stage in the argument has no
interpretation in terms of an intermediate particle.

time-dependent perturbation series solution for this sys-
tem. Although the Born series is perhaps more familiar,
consider instead the Dyson series [58]

Sα→β =

∞∑

n=0

(−i)n
n!

∫ ∞

−∞
dt1 · · · dtn 〈β|TV (t1) · · ·V (tn)|α〉 .

(5)

Here T is the time-ordering operator, and the potential
is written in the interaction picture. To illustrate the
Lorentzian bootstrap idea, consider 2→ 2 scattering, so
|α〉 = |p1p2〉 and |β〉 = |p′1p′2〉. We will write the interac-
tion picture potential operator (2) explicitly in two-body
notation, in the lab frame:

VN (t) =
−1

(2π)3

∫
d3k1d

3k2d
3k′1d

3k′2 |k′1k′2〉 〈k1k2|

δ3(k1 + k2 − k′1 − k′2)e
−i(Ek′

1
+Ek′

2
−Ek1

−Ek2
)t
Vk′

1k
′
2,k1k2

,

(6)

where the Schrödinger-picture matrix elements are

Vk′
1k

′
2,k1k2

=
4πGNm

2

q2 + µ2
, q =

k′1 − k′2
2

− k1 − k2

2
, (7)

and q is the change in the relative momentum. The ze-
roth order term n = 0 in (5) is just the identity operator
in the expansion S = 1 + iT . The first-order term gives
the same result as the first Born approximation:

S
(1)
p1p2→p′

1p
′
2

=
2πi

(2π)3
δ(Ep1 + Ep2 − Ep′

1
− Ep′

2
)

× δ3(p1 + p2 − p′1 − p′2)
4πGNm

2

∆p2 + µ2
,

(8)

with ∆p = p′1 − p1 the momentum transfer.
Now we impose the requirement that (8) is the non-

relativistic limit of some Lorentz-invariant model. Thus

we need to write this as Lorentz-invariant function of
the external momenta p1,p2,p

′
1,p
′
2. Specifically, we

want a Feynman amplitude M with the property that
S(1) = limp0→m−i(2π)4Mδ4(

∑
p). There are 10 Lorentz

generators and 12 independent variables in these four
momenta, leaving only two free variables. A conve-
nient choice for these are the invariant momentum trans-
fer t = −(p′1 − p1)2 and total incoming mass-squared
s = −(p1 + p2)2. Clearly the only Lorentz-invariant
option is to replace the momentum transfer ∆p2 with
t, and combine the two delta functions into a factor
δ4(p1 + p2 − p′1 − p′2). Comparing to (3), we have the
bootstrapped amplitude

Mp1p2→p′
1p

′
2

= −16πGNm
4

−t+ µ2
f(s, t). (9)

We had to rescale the coupling GNm
2 → GNm

4 in or-
der to cancel the relativistic wavefunction normalizations
∼ 1/

√
p0 → 1/

√
m in (3). The dimensionless function

f(s, t) must have the property that f → 1 in the non-
relativistic limit s → 4m2, t → −∆p2. The two expres-
sions for the amplitude are depicted in Fig. 2. We have
assumed that the two massive particles are distinguish-
able so that we can ignore the exchange channel p′1 ↔ p′2,
and will continue to do this in what follows.

Unitarity is trivially satisfied in (9). The amplitude
is manifestly real, so the left-hand side of (4) vanishes.
Similarly, there is no amplitude at order

√
GN , so to

order GN the right hand side also vanishes. Notice that
for physical momenta p2

1 = p2
2 = p′21 = p′22 = −m2, we

have t ≤ 0, so the denominator is always non-zero.
To see how the unitarity condition can become non-

trivial, we have to go to higher order in perturbation
theory. We next show an example of how this works.
We consider a 3 → 3 process which includes two non-
gravitational interactions with coupling strength λ. This
is modeled directly after the kind of Alice and Bob ex-
periments of [27]. In this example, the unitarity violation
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FIG. 3. Scattering amplitude for the 3 ! 3 process with
external photons, in the same notation as Fig. 2. (a) is the
non-relativistic amplitude and (b) is its relativistic extension.

shows up at order GN�
2. To emphasize the generality of

the core idea, we also show a purely gravitational exam-
ple in appendix C. There we consider a 2 ! 2 process
with an incoming particle-antiparticle pair, in which uni-
tarity violations arise at order G2

N .

B. Tree-level unitarity

Consider a process where two experimentalists Alice
and Bob each have a massive particle. At some early
time Bob interacts with his particle, say by hitting it
with a photon. The two particles proceed to scatter via
the Newton interaction. Long after this scattering event,
Alice then performs a measurement of her particle, say
again by hitting it with a photon. Let us model the
photon interactions with an interaction strength � (pro-
portional to the charge of Alice and Bob’s particles). Fol-
lowing the logic of the Lorentzian bootstrap given above,
one obtains an amplitude

Mkp1p2!k0p0
1p

0
2

=

✓
�

(p1 + k)2 + m2 � i✏

◆

⇥
✓

GNm4

k̃2 + µ2 � i✏

◆✓
�

(p02 + k0)2 + m2 � i✏

◆
.

(10)

This is depicted diagrammatically in Fig. 3. The pho-
ton momenta are k,k0 respectively. The four-momentum
transfer between Alice and Bob’s massive particles is now
k̃ = p01� (p1 +k). See appendix B for some details of this
calculation.

Crucially, it is now possible that k̃2 = �µ2. This
happens when the photon momentum |k| & µ. This is
why we have inserted the i✏ factors in the denomina-
tors: the poles are now accessible to the experimentalist.
When we use the S-matrix to describe an actual scatter-
ing experiment, it needs to be integrated against some
momentum-space wavepackets describing the incoming
and outgoing particles. To make these integrals well-
defined, we have to say what happens on the poles. The
specific prescription used here (the “Feynman prescrip-
tion”) is the only possibility consistent with our unitarity
and Lorentz-invariance assumptions, as explained in ap-
pendix B.

At points in phase space where k̃2 = �µ2, the pole in
the middle term has an imaginary residue, because

lim
✏!0

1

x � i✏
=

1

x
� i⇡�(x) (11)

in the sense of distributions (for x real). Therefore, uni-
tarity is no longer trivial: the left-hand side of the optical
theorem (4) is now non-zero. Specifically, it has a pole

singularity at k̃2 = �µ2 with residue of order �2GN .
Therefore, if unitarity were to hold, we would need to
have an amplitude M ⇠ O(�

p
GN ) to use in the right-

hand side of (4). But if the full set of scattering states
is only massive particles and photons, it is easy to see
that there simply is no such amplitude!4 Therefore the
optical theorem fails and we have a violation of unitarity.

What happened? The unitarity violation means that
an incoming 3-body state | i = |kp1p2i will evolve
to some state | 0i = S | i with a deficit in its norm
| h 0| 0i | < 1. Inspecting the form of (4), and remem-
bering that the dynamics are fixed by assumption of (2),
we see that there is only one possible resolution: mod-
ify the sum over final states |Xi. In more detail, notice

that near the pole k̃2 = �µ2, the imaginary part of the
amplitude behaves like

Im Mkp1p2!k0p0
1p

0
2
! GNm4

✓
�

(p1 + k)2 + m2

◆

⇥ �(k̃2 + µ2)

✓
�

(p02 + k0)2 + m2

◆
.

(12)

But this is essentially just the product of two ampli-
tudes with final state |Xi = |k̃p0

1p2i, where the k̃ repre-
sents a radiated particle of mass µ coupled with strengthp

GNm. See Fig. 4. To be precise, if we include such
final states, the optical theorem (4) will be satisfied

i(Mkp1p2!k0p0
1p

0
2
� M⇤

k0p0
1p

0
2!kp1p2

)

⇠ Mkp1p2!k̃p0
1p2

M⇤
k0p0

1p
0
2!k̃p0

1p2
,

(13)

where the sum on final states |Xi has collapsed into a
single outgoing state which includes this gravitationally-
coupled radiation. (The ⇠ represents some awkward fac-
tors arising from the disconnected propagators; see ap-
pendix B for the detailed equality). Thus we conclude
that we need to include such states in the Hilbert space
of scattering states. In the limit µ ! 0 this radiated
particle is essentially a graviton in terms of its massless-
ness and

p
GN coupling to matter. It must be a boson,

otherwise the diagrams on the right-hand side would vio-
late angular momentum conservation. However, nothing

4 One could distribute the coupling factors di↵erently between the
two amplitudes on the right-hand side of (4). In fact there are
some disconnected diagrams like this with the correct scalings
of the couplings, but they have the wrong detailed momentum
dependence.

FIG. 3. Scattering amplitude for the 3 → 3 process with
external photons, in the same notation as Fig. 2. (a) is the
non-relativistic amplitude and (b) is its relativistic extension.

shows up at order GNλ
2. To emphasize the generality of

the core idea, we also show a purely gravitational exam-
ple in appendix C. There we consider a 2 → 2 process
with an incoming particle-antiparticle pair, in which uni-
tarity violations arise at order G2

N .

B. Tree-level unitarity

Consider a process where two experimentalists Alice
and Bob each have a massive particle. At some early
time Bob interacts with his particle, say by hitting it
with a photon. The two particles proceed to scatter via
the Newton interaction. Long after this scattering event,
Alice then performs a measurement of her particle, say
again by hitting it with a photon. Let us model the
photon interactions with an interaction strength λ (pro-
portional to the charge of Alice and Bob’s particles). Fol-
lowing the logic of the Lorentzian bootstrap given above,
one obtains an amplitude

Mkp1p2→k′p′
1p

′
2

=

(
λ

(p1 + k)2 +m2 − iε

)

×
(

GNm
4

k̃2 + µ2 − iε

)(
λ

(p′2 + k′)2 +m2 − iε

)
.

(10)

This is depicted diagrammatically in Fig. 3. The pho-
ton momenta are k,k′ respectively. The four-momentum
transfer between Alice and Bob’s massive particles is now
k̃ = p′1− (p1 +k). See appendix B for some details of this
calculation.

Crucially, it is now possible that k̃2 = −µ2. This
happens when the photon momentum |k| & µ. This is
why we have inserted the iε factors in the denomina-
tors: the poles are now accessible to the experimentalist.
When we use the S-matrix to describe an actual scatter-
ing experiment, it needs to be integrated against some
momentum-space wavepackets describing the incoming
and outgoing particles. To make these integrals well-
defined, we have to say what happens on the poles. The
specific prescription used here (the “Feynman prescrip-
tion”) is the only possibility consistent with our unitarity
and Lorentz-invariance assumptions, as explained in ap-
pendix B.

At points in phase space where k̃2 = −µ2, the pole in
the middle term has an imaginary residue, because

lim
ε→0

1

x− iε =
1

x
− iπδ(x) (11)

in the sense of distributions (for x real). Therefore, uni-
tarity is no longer trivial: the left-hand side of the optical
theorem (4) is now non-zero. Specifically, it has a pole

singularity at k̃2 = −µ2 with residue of order λ2GN .
Therefore, if unitarity were to hold, we would need to
have an amplitude M ∼ O(λ

√
GN ) to use in the right-

hand side of (4). But if the full set of scattering states
is only massive particles and photons, it is easy to see
that there simply is no such amplitude!4 Therefore the
optical theorem fails and we have a violation of unitarity.

What happened? The unitarity violation means that
an incoming 3-body state |ψ〉 = |kp1p2〉 will evolve
to some state |ψ′〉 = S |ψ〉 with a deficit in its norm
| 〈ψ′|ψ′〉 | < 1. Inspecting the form of (4), and remem-
bering that the dynamics are fixed by assumption of (2),
we see that there is only one possible resolution: mod-
ify the sum over final states |X〉. In more detail, notice

that near the pole k̃2 = −µ2, the imaginary part of the
amplitude behaves like

Im Mkp1p2→k′p′
1p

′
2
→ GNm

4

(
λ

(p1 + k)2 +m2

)

× δ(k̃2 + µ2)

(
λ

(p′2 + k′)2 +m2

)
.

(12)

But this is essentially just the product of two ampli-
tudes with final state |X〉 = |k̃p′1p2〉, where the k̃ repre-
sents a radiated particle of mass µ coupled with strength√
GNm. See Fig. 4. To be precise, if we include such

final states, the optical theorem (4) will be satisfied

i(Mkp1p2→k′p′
1p

′
2
−M∗k′p′

1p
′
2→kp1p2

)

∼Mkp1p2→k̃p′
1p2

M∗
k′p′

1p
′
2→k̃p′

1p2
,

(13)

where the sum on final states |X〉 has collapsed into a
single outgoing state which includes this gravitationally-
coupled radiation. (The ∼ represents some awkward fac-
tors arising from the disconnected propagators; see ap-
pendix B for the detailed equality). Thus we conclude
that we need to include such states in the Hilbert space
of scattering states. In the limit µ → 0 this radiated
particle is essentially a graviton in terms of its massless-
ness and

√
GN coupling to matter. It must be a boson,

otherwise the diagrams on the right-hand side would vio-
late angular momentum conservation. However, nothing

4 One could distribute the coupling factors differently between the
two amplitudes on the right-hand side of (4). In fact there are
some disconnected diagrams like this with the correct scalings
of the couplings, but they have the wrong detailed momentum
dependence.
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FIG. 4. Unitarity in the tree-level, six-point amplitude. The pole at k̃2 = �µ2 has an imaginary residue. The form of this
residue is exactly equal to the product of a pair of amplitudes where the “graviton” line (dashed) is emitted into the final state.
The disconnected lines represent trivial propagators.

in this argument is sensitive to which integer spin this
boson carries.

The fact that we get a unitarity violation precisely
when k̃2 = �µ2 has a simple physical interpretation. In
the language of field theory, k̃2 = �µ2 occurs when the
momentum transfer k̃ = p01�(p1 +k) is tuned so that the
“virtual graviton” mediating the interaction satisfies its
relativistic dispersion relation, i.e., “goes on shell”. This
is why we need the external photon to see the e↵ect: if
k = 0 then k̃2 � 0, but including the photon allows us to
reach the pole at k̃2 = �µ2.

This example bears some important similarities to
the Alice and Bob gedankenexperiment of [27]. There,
causality (or rather faster-than-light signaling) was used
as a primary diagnosis of the issues arising if one neglects
to include final-state graviton radiation. Here we have in-
stead focused on a scattering calculation, in which bound-
ary conditions are imposed on both the past and future,
which obscures the causal properties of the process. We
found a unitarity violation instead of a causality viola-
tion. This reflects the fact that unitarity and causality
are intimately linked in a relativistic model. Very sim-
ilar considerations have long been discussed in the con-
text of a classic paradox of Fermi [59], who incorrectly
argued that perturbation theory predicted superluminal
communications. As is now well-known, the solution is
that Fermi forgot to include final-state radiation (see [60]
for a review).

It is interesting to note that the arguments given
here for the necessity of a graviton-like particle depend
strongly on the dimensionality of space-time. Consider
general relativity in d = 2 + 1 dimensions, defined as
usual by the action

S =

Z
d3x

p�g


R

16⇡GN
+ Lmatter

�
. (14)

This model is “topological” in the sense that is has no
propagating gravitational waves [61]. However, particles
can pick up braiding phases while scattering [62, 63], and
thus can become entangled. The discrepancy with the
argument above is that the Newton potential, or rather
its logarithmic cousin in two spatial dimensions, is not
the non-relativistic limit d = 2 + 1 Einstein gravity [61].
This exemplifies the fact that entanglement generation

alone does not require a mediator—the key is the local
form of the non-relativistic potential.

II. IMPLICATIONS AND INTERPRETATION

The bottom-up argument given above says that New-
tonian entanglement can only be explained within a uni-
tary, Lorentz-invariant model if that model includes ra-
diative graviton-like degrees of freedom. Here I empha-
size the fact that this does not uniquely pick out the spin-
2 graviton by constructing some top-down counterexam-
ples. A refined, non-Newtonian experiment is then out-
lined which could distinguish the spin of the gravitational
mediator.

A. Models which can explain the observation of
entanglement

We can certainly show that the graviton reproduces
the necessary entangling operation on the masses. To
see this, assume the metric is perturbatively expanded
gµ⌫ = ⌘µ⌫ +

p
32⇡GNhµ⌫ where ⌘µ⌫ is flat spacetime.

We have scaled out a factor of the Planck mass mpl ⇠
1/
p

GN to give h dimensions of mass. The graviton hµ⌫

couples to matter in the usual way

Lint =
p

8⇡GNhµ⌫Tµ⌫ + O(h2) (15)

with T the stress-energy tensor. We will not need the
terms quadratic and higher order in the gravitons. The
Feynman rules for calculating amplitudes in this model
are given in appendix B. One finds the lowest-order S-
matrix element [32–34]

Mp0
1p

0
2,p1p2

= 4⇡GN
N2

(p01 � p1)2 � i✏
(16)

where the numerator

N2 =4[(p1 · p02)(p
0
1 · p2) � m2(p1 · p01)

� m2(p2 · p02) � 2m4].
(17)

This amplitude is depicted in Fig. 5 (a). In the non-
relativistic limit p0 ! m,p ! 0 (so p2 ! �m2), we have

FIG. 4. Unitarity in the tree-level, six-point amplitude. The pole at k̃2 = −µ2 has an imaginary residue. The form of this
residue is exactly equal to the product of a pair of amplitudes where the “graviton” line (dashed) is emitted into the final state.
The disconnected lines represent trivial propagators.

in this argument is sensitive to which integer spin this
boson carries.

The fact that we get a unitarity violation precisely
when k̃2 = −µ2 has a simple physical interpretation. In
the language of field theory, k̃2 = −µ2 occurs when the
momentum transfer k̃ = p′1−(p1 +k) is tuned so that the
“virtual graviton” mediating the interaction satisfies its
relativistic dispersion relation, i.e., “goes on shell”. This
is why we need the external photon to see the effect: if
k = 0 then k̃2 ≥ 0, but including the photon allows us to
reach the pole at k̃2 = −µ2.

This example bears some important similarities to
the Alice and Bob gedankenexperiment of [27]. There,
causality (or rather faster-than-light signaling) was used
as a primary diagnosis of the issues arising if one neglects
to include final-state graviton radiation. Here we have in-
stead focused on a scattering calculation, in which bound-
ary conditions are imposed on both the past and future,
which obscures the causal properties of the process. We
found a unitarity violation instead of a causality viola-
tion. This reflects the fact that unitarity and causality
are intimately linked in a relativistic model. Very sim-
ilar considerations have long been discussed in the con-
text of a classic paradox of Fermi [59], who incorrectly
argued that perturbation theory predicted superluminal
communications. As is now well-known, the solution is
that Fermi forgot to include final-state radiation (see [60]
for a review).

It is interesting to note that the arguments given
here for the necessity of a graviton-like particle depend
strongly on the dimensionality of space-time. Consider
general relativity in d = 2 + 1 dimensions, defined as
usual by the action

S =

∫
d3x
√−g

[
R

16πGN
+ Lmatter

]
. (14)

This model is “topological” in the sense that is has no
propagating gravitational waves [61]. However, particles
can pick up braiding phases while scattering [62, 63], and
thus can become entangled. The discrepancy with the
argument above is that the Newton potential, or rather
its logarithmic cousin in two spatial dimensions, is not
the non-relativistic limit d = 2 + 1 Einstein gravity [61].
This exemplifies the fact that entanglement generation

alone does not require a mediator—the key is the local
form of the non-relativistic potential.

II. IMPLICATIONS AND INTERPRETATION

The bottom-up argument given above says that New-
tonian entanglement can only be explained within a uni-
tary, Lorentz-invariant model if that model includes ra-
diative graviton-like degrees of freedom. Here I empha-
size the fact that this does not uniquely pick out the spin-
2 graviton by constructing some top-down counterexam-
ples. A refined, non-Newtonian experiment is then out-
lined which could distinguish the spin of the gravitational
mediator.

A. Models which can explain the observation of
entanglement

We can certainly show that the graviton reproduces
the necessary entangling operation on the masses. To
see this, assume the metric is perturbatively expanded
gµν = ηµν +

√
32πGNhµν where ηµν is flat spacetime.

We have scaled out a factor of the Planck mass mpl ∼
1/
√
GN to give h dimensions of mass. The graviton hµν

couples to matter in the usual way

Lint =
√

8πGNh
µνTµν + O(h2) (15)

with T the stress-energy tensor. We will not need the
terms quadratic and higher order in the gravitons. The
Feynman rules for calculating amplitudes in this model
are given in appendix B. One finds the lowest-order S-
matrix element [32–34]

Mp′
1p

′
2,p1p2

= 4πGN
N2

(p′1 − p1)2 − iε (16)

where the numerator

N2 =4[(p1 · p′2)(p′1 · p2)−m2(p1 · p′1)

−m2(p2 · p′2)− 2m4].
(17)

This amplitude is depicted in Fig. 5 (a). In the non-
relativistic limit p0 → m,p→ 0 (so p2 → −m2), we have
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FIG. 5. Some tree-level scattering processes which can repro-
duce the Newton potential operator: (a) represents standard
spin-2 graviton exchange, and (b) represents exchange of a
spin-0 “scalar graviton”.

N2 ! 4m2. This recovers the Newtonian result for the
scattering amplitude (9). In other words, virtual graviton
exchange leads to the Newtonian potential operator.

However, this is not the only field theory model which
reproduces the Newtonian interaction. To make this
clear, let us study a simple model of scalar gravity [64].
Variants on this model go back to the days before gen-
eral relativity [65]. Consider a scalar field � coupled to
matter through the trace of the stress tensor:

Lint =
p

8⇡GN�Tµ
µ . (18)

This coupling is Lorentz invariant and has the same mass
dimensions as the usual graviton coupling. One way to
obtain this would be to write the usual metric interaction
but constrain the metric to be of the form gµ⌫ = �⌘µ⌫

(“conformally flat”). This model is equivalent to Einstein
gravity in the non-relativistic limit. To see this, consider
the same 2 ! 2 scattering matrix element:

Mp0
1p

0
2,p1p2

= 4⇡GN
N0

(p01 � p1)2 � i✏
. (19)

The di↵erence is the numerator,

N0 = 4(p1 · p01 + 2m2)(p2 · p02 + 2m2) ! 4m4 (20)

which is in exact agreement with the spin-2 model in the
non-relativistic limit. In other words, this spin-0 model
produces the exact same e↵ective Newtonian potential as
the spin-2 model.

While this spin-0 mediator is a simple example, it is
not the only possibility. In fact, one could construct a
model like this using any integer spin. Even fermions
are possible, in some sense. The force mediator could be
condensed fermion pairs (like supercurrent fluctuations in
a BCS superconductor), if one could think of a palatable
way to violate the assumptions of the Weinberg-Witten
theorem [66, 67].

B. Measuring the mediator spin

This brings up the question: what would be needed to
further pin down the spin? Of course, one could try to

|Li |Ri

|0i

|`i |ri

FIG. 6. Entanglement from the bending of light around a
superposed mass. A heavy mass (shaded) is prepared in a
spatial superposition |Li + |Ri, and a light beam prepared
in some initial wavepacket |0i is scattered. This produces an
entangled state through evolution of the form (|Li + |Ri) ⌦
|0i ! |L`i + |Rri.

appeal to various classical observations, like the tensorial
nature of gravitational waves detected by LIGO. It may
be hard to imagine that the world has spin-2 classical ra-
diation at astrophysical wavelengths but spin-0 radiation
at tabletop scales. However, precisely this kind of situa-
tion could arise in a modified gravity scenario [68, 69] or
a variety of dark matter models [70]. More to the point,
we are discussing experimental tests of quantum gravity,
so one should be careful.

In principle, the spin of the gravitational mediator can
be measured by a straightforward extension of currently
proposed experiments. However, in practice, this appears
to be exceedingly di�cult. Consider for example gener-
ating entanglement through the bending of light, as in
Fig. 6. In general relativity, the deflection angle of the
light depends on both the g00 and gij components of the
metric. In a scalar gravity model, one would typically
get an incorrect deflection angle (e.g., the famous “factor
of 2” di↵erence with light bending in the m ! 0 limit
of Newtonian gravity).5 More generally, di↵erent ten-
sor structures in the interaction will give rise to di↵erent
dependence on the momenta in the numerators of these
scattering amplitudes, as seen in comparing N2 with N0.

To understand why this is so hard in practice, let us
estimate the size of the entanglement in an experiment
like that depicted in Fig. 6. To detect the entanglement,
one would need at least to be able to di↵erentiate between
these two light trajectories. The deflection angle of the
light is classically given by ✓ = GNM/c2b where b is the
impact parameter and M is the heavy source mass, so the
di↵erential bending along the two paths shown in Fig. 6

5 In the specific dilaton-type model considered here where gµ⌫ =
�⌘µ⌫ , light actually doesn’t bend at all, because it is coupled to
gravity through L =

p�det gg↵�g��F↵�F�� = ⌘↵�⌘��F↵�F��

[64]. In other scalar gravity examples, for example Brans-Dicke
gravity [71], the answer may not be so simple but will still gener-
ically di↵er from general relativity.

FIG. 5. Some tree-level scattering processes which can repro-
duce the Newton potential operator: (a) represents standard
spin-2 graviton exchange, and (b) represents exchange of a
spin-0 “scalar graviton”.

N2 → 4m2. This recovers the Newtonian result for the
scattering amplitude (9). In other words, virtual graviton
exchange leads to the Newtonian potential operator.

However, this is not the only field theory model which
reproduces the Newtonian interaction. To make this
clear, let us study a simple model of scalar gravity [64].
Variants on this model go back to the days before gen-
eral relativity [65]. Consider a scalar field φ coupled to
matter through the trace of the stress tensor:

Lint =
√

8πGNφT
µ
µ . (18)

This coupling is Lorentz invariant and has the same mass
dimensions as the usual graviton coupling. One way to
obtain this would be to write the usual metric interaction
but constrain the metric to be of the form gµν = φηµν
(“conformally flat”). This model is equivalent to Einstein
gravity in the non-relativistic limit. To see this, consider
the same 2→ 2 scattering matrix element:

Mp′
1p

′
2,p1p2

= 4πGN
N0

(p′1 − p1)2 − iε . (19)

The difference is the numerator,

N0 = 4(p1 · p′1 + 2m2)(p2 · p′2 + 2m2)→ 4m4 (20)

which is in exact agreement with the spin-2 model in the
non-relativistic limit. In other words, this spin-0 model
produces the exact same effective Newtonian potential as
the spin-2 model.

While this spin-0 mediator is a simple example, it is
not the only possibility. In fact, one could construct a
model like this using any integer spin. Even fermions
are possible, in some sense. The force mediator could be
condensed fermion pairs (like supercurrent fluctuations in
a BCS superconductor), if one could think of a palatable
way to violate the assumptions of the Weinberg-Witten
theorem [66, 67].

B. Measuring the mediator spin

This brings up the question: what would be needed to
further pin down the spin? Of course, one could try to
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FIG. 5. Some tree-level scattering processes which can repro-
duce the Newton potential operator: (a) represents standard
spin-2 graviton exchange, and (b) represents exchange of a
spin-0 “scalar graviton”.

N2 ! 4m2. This recovers the Newtonian result for the
scattering amplitude (9). In other words, virtual graviton
exchange leads to the Newtonian potential operator.

However, this is not the only field theory model which
reproduces the Newtonian interaction. To make this
clear, let us study a simple model of scalar gravity [64].
Variants on this model go back to the days before gen-
eral relativity [65]. Consider a scalar field � coupled to
matter through the trace of the stress tensor:

Lint =
p

8⇡GN�Tµ
µ . (18)

This coupling is Lorentz invariant and has the same mass
dimensions as the usual graviton coupling. One way to
obtain this would be to write the usual metric interaction
but constrain the metric to be of the form gµ⌫ = �⌘µ⌫

(“conformally flat”). This model is equivalent to Einstein
gravity in the non-relativistic limit. To see this, consider
the same 2 ! 2 scattering matrix element:

Mp0
1p

0
2,p1p2

= 4⇡GN
N0

(p01 � p1)2 � i✏
. (19)

The di↵erence is the numerator,

N0 = 4(p1 · p01 + 2m2)(p2 · p02 + 2m2) ! 4m4 (20)

which is in exact agreement with the spin-2 model in the
non-relativistic limit. In other words, this spin-0 model
produces the exact same e↵ective Newtonian potential as
the spin-2 model.

While this spin-0 mediator is a simple example, it is
not the only possibility. In fact, one could construct a
model like this using any integer spin. Even fermions
are possible, in some sense. The force mediator could be
condensed fermion pairs (like supercurrent fluctuations in
a BCS superconductor), if one could think of a palatable
way to violate the assumptions of the Weinberg-Witten
theorem [66, 67].

B. Measuring the mediator spin

This brings up the question: what would be needed to
further pin down the spin? Of course, one could try to
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FIG. 6. Entanglement from the bending of light around a
superposed mass. A heavy mass (shaded) is prepared in a
spatial superposition |Li + |Ri, and a light beam prepared
in some initial wavepacket |0i is scattered. This produces an
entangled state through evolution of the form (|Li + |Ri) ⌦
|0i ! |L`i + |Rri.

appeal to various classical observations, like the tensorial
nature of gravitational waves detected by LIGO. It may
be hard to imagine that the world has spin-2 classical ra-
diation at astrophysical wavelengths but spin-0 radiation
at tabletop scales. However, precisely this kind of situa-
tion could arise in a modified gravity scenario [68, 69] or
a variety of dark matter models [70]. More to the point,
we are discussing experimental tests of quantum gravity,
so one should be careful.

In principle, the spin of the gravitational mediator can
be measured by a straightforward extension of currently
proposed experiments. However, in practice, this appears
to be exceedingly di�cult. Consider for example gener-
ating entanglement through the bending of light, as in
Fig. 6. In general relativity, the deflection angle of the
light depends on both the g00 and gij components of the
metric. In a scalar gravity model, one would typically
get an incorrect deflection angle (e.g., the famous “factor
of 2” di↵erence with light bending in the m ! 0 limit
of Newtonian gravity).5 More generally, di↵erent ten-
sor structures in the interaction will give rise to di↵erent
dependence on the momenta in the numerators of these
scattering amplitudes, as seen in comparing N2 with N0.

To understand why this is so hard in practice, let us
estimate the size of the entanglement in an experiment
like that depicted in Fig. 6. To detect the entanglement,
one would need at least to be able to di↵erentiate between
these two light trajectories. The deflection angle of the
light is classically given by ✓ = GNM/c2b where b is the
impact parameter and M is the heavy source mass, so the
di↵erential bending along the two paths shown in Fig. 6

5 In the specific dilaton-type model considered here where gµ⌫ =
�⌘µ⌫ , light actually doesn’t bend at all, because it is coupled to
gravity through L =

p�det gg↵�g��F↵�F�� = ⌘↵�⌘��F↵�F��

[64]. In other scalar gravity examples, for example Brans-Dicke
gravity [71], the answer may not be so simple but will still gener-
ically di↵er from general relativity.

FIG. 6. Entanglement from the bending of light around a
superposed mass. A heavy mass (shaded) is prepared in a
spatial superposition |L〉 + |R〉, and a light beam prepared
in some initial wavepacket |0〉 is scattered. This produces an
entangled state through evolution of the form (|L〉 + |R〉) ⊗
|0〉 → |L`〉+ |Rr〉.

appeal to various classical observations, like the tensorial
nature of gravitational waves detected by LIGO. It may
be hard to imagine that the world has spin-2 classical ra-
diation at astrophysical wavelengths but spin-0 radiation
at tabletop scales. However, precisely this kind of situa-
tion could arise in a modified gravity scenario [68, 69] or
a variety of dark matter models [70]. More to the point,
we are discussing experimental tests of quantum gravity,
so one should be careful.

In principle, the spin of the gravitational mediator can
be measured by a straightforward extension of currently
proposed experiments. However, in practice, this appears
to be exceedingly difficult. Consider for example gener-
ating entanglement through the bending of light, as in
Fig. 6. In general relativity, the deflection angle of the
light depends on both the g00 and gij components of the
metric. In a scalar gravity model, one would typically
get an incorrect deflection angle (e.g., the famous “factor
of 2” difference with light bending in the m → 0 limit
of Newtonian gravity).5 More generally, different ten-
sor structures in the interaction will give rise to different
dependence on the momenta in the numerators of these
scattering amplitudes, as seen in comparing N2 with N0.

To understand why this is so hard in practice, let us
estimate the size of the entanglement in an experiment
like that depicted in Fig. 6. To detect the entanglement,
one would need at least to be able to differentiate between
these two light trajectories. The deflection angle of the
light is classically given by θ = GNM/c2b where b is the
impact parameter and M is the heavy source mass, so the
differential bending along the two paths shown in Fig. 6

5 In the specific dilaton-type model considered here where gµν =
φηµν , light actually doesn’t bend at all, because it is coupled to
gravity through L =

√−det ggαβgγδF
αγFβδ = ηαβηγδF

αγFβδ

[64]. In other scalar gravity examples, for example Brans-Dicke
gravity [71], the answer may not be so simple but will still gener-
ically differ from general relativity.
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is of order

∆θ =
GNM

c2b

∆b

b

≈ 7.4× 10−27 ×
(
M

1 g

)(
∆b

10 µm

)(
100 µm

b

)2

(21)

where ∆b is the distance over which the source mass M
is superposed. This would be impossible to detect. One
could improve the situation by having the light reflect
back and forth within a cavity N times. For a cavity
of length L, the differential movement of the two for-
ward peaks during one crossing would be ∆` = L∆θ.
To get the two peaks separated by of order one laser
wavelength λ then requires N∆` = NL∆θ = λ, meaning
N = λ/L∆θ, or a total integration time

T = N
L

c
=

b2λc

GNM∆b
≈ 1016 s (22)

with the same parameters given above. This can be im-
proved by a factor

√
nγ with nγ photons in the cavity.

Amusingly, allowing for a one second integration time,
this works out to the requirement of ∼ 1032 laser pho-
tons, each of energy (1000 nm)−1 = 0.2 eV. In terms of
mass, this is m = 1032 × 0.2 eV ≈ 104 mpl.

This differential bending would be incredibly difficult
to detect. In particular, it would be substantially more
difficult than detecting the static Newtonian interaction
between a pair of macroscopic mechanical bodies, as used
in most of the current experimental proposals. (see how-
ever [72] for somewhat optimistic estimates of an analo-
gous technique using an ultra-relativistic particle beam
like the LHC). Nevertheless, if one wanted to be sure
that the Newtonian entanglement is generated by the
true spin-2 graviton, some experiment sensitive to the
spin would have to be done. It would be extremely inter-
esting if a method could be found to look for entangle-
ment with macroscopic masses that was sensitive to the
mediator spin.

III. CONCLUSIONS

Experiments in the reasonably near future will be able
to test whether or not gravity can entangle pairs of non-
relativistic masses. Observation of this Newtonian en-
tanglement would provide compelling but incomplete ev-
idence for the existence of the graviton. These exper-
iments would definitely rule out models where gravity
emerges in something like a semi-classical sense. Such a
model is a logical possibility consistent with all classical
gravitational phenomena observed to date.

However, to make a definitive statement about the
graviton itself, two key loopholes need to be closed. The
simplest is that the Newtonian experiments are insensi-
tive to the spin of the graviton. A more sophisticated
experiment, like the one described in section II B, could

resolve this, if one could figure out a practical implemen-
tation. It should be emphasized, however, that under the
unitarity assumption, Newtonian entanglement would
still require some quantized, gravitationally-coupled de-
gree of freedom. The spin is perhaps a secondary concern.

The more difficult issue is that the specific unitarity
assumptions used in this paper could be too strong. It
is important to understand that we have imposed uni-
tarity and Lorentz invariance as conditions on arbitrary
scattering processes. It may be that an emergent grav-
itational interaction can still generate the appropriate
entanglement signatures these experiments seek without
admitting a unitary, Hamiltonian description like (1).
Construction of or no-go statements about such a model
would be extremely valuable. But even if a graviton
were not required in such a model, observation of New-
tonian entanglement would teach us something remark-
able about the detailed way in which gravity emerges: it
would have to be able to coherently communicate quan-
tum information between spatially disjoint systems.
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Appendix A: Classical and semiclassical gravity
models

In this appendix we briefly review the idea that gravity
could be “classical”. The quotes represent the fact that
this could mean a variety of things in detail. There is
a large literature on these ideas, see for example [7, 73]
for much more extensive discussion. Here I want to just
highlight why it is possible to formulate some kind of
classical gravity coupled to quantum matter in a way
that can avoid the classic no-go statements of Weinberg
and Polchinski [74, 75].

The naive starting point for a classical gravity model
would be to source the Einstein equation with the ex-
pectation value of the stress tensor Gµν = 8πGN 〈Tµν〉.
This does not specify the full dynamics because we need
an equation of motion for the matter state |ψ〉. Closing
the system with a simple Schrödinger equation leads to
fundamental problems. The Newtonian limit is sufficient
to see the basic issue. Imagine trying to define a model
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FIG. 7. Adversarial measurement-and-feedback gravity, fol-
lowing [43]. The figure is taken from [7].

to see the basic issue. Imagine trying to define a model
like6

i@t | i =

"
Ĥmatter +

X

i

Vi(x̂i)

#
| i (A1)

with the indices i, j = 1, . . . , N running over some set
of N particles, Ĥmatter describing any non-gravitational
evolution, and a “semiclassical” gravitational potential

Vi(x̂i) = �
X

j 6=i

GNm

|x̂i � hx̂ji | . (A2)

In a limit where all the particle wavefunctions are
strongly peaked on classical trajectories, we can approxi-
mate x̂i ⇡ xi as c-numbers, and the system (A1) exactly
reproduces classical Newton gravity. However, the inter-
action in general is a direct sum, and thus cannot gener-
ate entanglement. In this sense, the model is “classical”.

The trouble is that this is a non-linear modification of
the Schrödinger dynamics, since V depends quadratically
on | i. It was noted long ago that generic such modifi-
cations lead to fundamental problems when applied to
states where the classical approximation fails. For exam-
ple, one can use Schrödinger-cat type states to superlu-
minally signal [75–77].

However, we can construct a model designed to evade
these di�culties [43]. The basic strategy is to realize
the non-linearity in the Schrödinger equation as arising
from a normal quantum mechanical process. We might
call this approach “adversarial gravity”. We imagine that
the universe is a quantum simulation designed specifically
to make it look like a classical gravitational force exists.
See Fig. 7 for a circuit diagram of one timestep of the
simulation, with two masses for simplicity.

The computer begins by using some ancillae degrees of
freedom to weakly measure the positions of the masses,
allowing it to make estimates for hx̂ii with i = 1, 2. The
computer uses this information to compute a semiclassi-
cal Newton potential (A2). This information is then used

6 In this section, and only this section, operators are written with
hats for clarity.

to evolve the state of the masses through a feedback uni-
tary

Ufb = exp

(
�i

X

i

Vi(x̂i)dt

)
. (A3)

It is clear that this unitary is a product U = U1 ⌦ U2,
so it cannot generate any entanglement between the two
masses. This model produces a Schrödinger-like evolu-
tion for the matter state of the form

d | i = � iHmatdt | i � i
X

i

Vi(x̂i)dt | i

+
X

i

p
�⇠idW | i +

X

i,j

⇠i⇠jdt | i .
(A4)

This is like (A1), except with the addition of the two final
terms. These represent noise due to the weak measure-
ment step. The di↵erential dW is a classical stochastic
process satisfying the usual Itô rule dW 2 = dt, and �, ⇠
represent the strength of the noise. We have replaced the
deterministic equations (A1), (A2) with a stochastic evo-
lution law. There are still non-linear terms in (A4), but
their origin comes from quantum measurements via an-
cilla degrees of freedom which are traced out [78]. Such
non-linear terms are hardly pathological; they arise for
example in any experiment which uses a measurement-
and-feedback protocol. The description here was non-
relativistic, but similar relativistic models of non-linear
quantum mechanics also exist [79–81].

This model is a kind of emergent gravity scenario. In
this example the emergent gravitational force cannot en-
tangle objects. It is not at all clear that this is a general
property of emergent interactions. Indeed, one can con-
struct models of entropic forces which produce quantum
coherent interactions [82]. Moreover, in AdS/CFT, the
bulk graviton exists by construction, at least in the tra-
ditional sense of AdS/CFT as a string duality [83], since
the closed string has a massless spin-2 excitation. This
suggests an interesting question as to whether one can
realize emergent gravity in the sense of Jacobson [39] or
Verlinde [41] in such a way that gravity can communicate
quantum information but remains a fundamentally open
system.

Appendix B: Details of amplitude calculations

External probe interaction

The 3 ! 3 process of section IB used an external
probe system (a “photon”) to model the e↵ect the exper-
imentalists interacting with the massive, gravitationally-
coupled objects. Before moving to the detailed calcula-
tion of the 3 ! 3 amplitude we thus need to provide some
details about this interaction. This will also provide an
excellent warmup to the 3 ! 3 amplitude itself.

In our non-relativistic language, we will model the ex-
ternal probe as a massless scalar (i.e., a photon in the

FIG. 7. Adversarial measurement-and-feedback gravity, fol-
lowing [43]. The figure is taken from [7].

like6

i∂t |ψ〉 =

[
Ĥmatter +

∑

i

Vi(x̂i)

]
|ψ〉 (A1)

with the indices i, j = 1, . . . , N running over some set
of N particles, Ĥmatter describing any non-gravitational
evolution, and a “semiclassical” gravitational potential

Vi(x̂i) = −
∑

j 6=i

GNm

|x̂i − 〈x̂j〉 |
. (A2)

In a limit where all the particle wavefunctions are
strongly peaked on classical trajectories, we can approxi-
mate x̂i ≈ xi as c-numbers, and the system (A1) exactly
reproduces classical Newton gravity. However, the inter-
action in general is a direct sum, and thus cannot gener-
ate entanglement. In this sense, the model is “classical”.

The trouble is that this is a non-linear modification of
the Schrödinger dynamics, since V depends quadratically
on |ψ〉. It was noted long ago that generic such modifi-
cations lead to fundamental problems when applied to
states where the classical approximation fails. For exam-
ple, one can use Schrödinger-cat type states to superlu-
minally signal [75–77].

However, we can construct a model designed to evade
these difficulties [43]. The basic strategy is to realize
the non-linearity in the Schrödinger equation as arising
from a normal quantum mechanical process. We might
call this approach “adversarial gravity”. We imagine that
the universe is a quantum simulation designed specifically
to make it look like a classical gravitational force exists.
See Fig. 7 for a circuit diagram of one timestep of the
simulation, with two masses for simplicity.

The computer begins by using some ancillae degrees of
freedom to weakly measure the positions of the masses,
allowing it to make estimates for 〈x̂i〉 with i = 1, 2. The
computer uses this information to compute a semiclassi-
cal Newton potential (A2). This information is then used

6 In this section, and only this section, operators are written with
hats for clarity.

to evolve the state of the masses through a feedback uni-
tary

Ufb = exp

{
−i
∑

i

Vi(x̂i)dt

}
. (A3)

It is clear that this unitary is a product U = U1 ⊗ U2,
so it cannot generate any entanglement between the two
masses. This model produces a Schrödinger-like evolu-
tion for the matter state of the form

d |ψ〉 =− iHmatdt |ψ〉 − i
∑

i

Vi(x̂i)dt |ψ〉

+
∑

i

√
γξidW |ψ〉+

∑

i,j

ξiξjdt |ψ〉 .
(A4)

This is like (A1), except with the addition of the two final
terms. These represent noise due to the weak measure-
ment step. The differential dW is a classical stochastic
process satisfying the usual Itô rule dW 2 = dt, and γ, ξ
represent the strength of the noise. We have replaced the
deterministic equations (A1), (A2) with a stochastic evo-
lution law. There are still non-linear terms in (A4), but
their origin comes from quantum measurements via an-
cilla degrees of freedom which are traced out [78]. Such
non-linear terms are hardly pathological; they arise for
example in any experiment which uses a measurement-
and-feedback protocol. The description here was non-
relativistic, but similar relativistic models of non-linear
quantum mechanics also exist [79–81].

This model is a kind of emergent gravity scenario. In
this example the emergent gravitational force cannot en-
tangle objects. It is not at all clear that this is a general
property of emergent interactions. Indeed, one can con-
struct models of entropic forces which produce quantum
coherent interactions [82]. Moreover, in AdS/CFT, the
bulk graviton exists by construction, at least in the tra-
ditional sense of AdS/CFT as a string duality [83], since
the closed string has a massless spin-2 excitation. This
suggests an interesting question as to whether one can
realize emergent gravity in the sense of Jacobson [39] or
Verlinde [41] in such a way that gravity can communicate
quantum information but remains a fundamentally open
system.

Appendix B: Details of amplitude calculations

External probe interaction

The 3 → 3 process of section I B used an external
probe system (a “photon”) to model the effect the exper-
imentalists interacting with the massive, gravitationally-
coupled objects. Before moving to the detailed calcula-
tion of the 3→ 3 amplitude we thus need to provide some
details about this interaction. This will also provide an
excellent warmup to the 3→ 3 amplitude itself.

In our non-relativistic language, we will model the ex-
ternal probe as a massless scalar (i.e., a photon in the
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FIG. 8. Diagrams for the probe-system interactions, one for
each term in (B4).

limit that we can ignore the polarizations). In abuse of
language I will refer to these probe particles as photons
throughout. The coupling is, in the interaction picture,

Ve(t) =�

Z
d3kd3pd3p0�3(k + p � p0)

⇥
h
Wkp,p0ei(Ek+Ep�Ep0 )t |kpi hp0| + h.c.

i
.

(B1)

The coupling � has mass dimension one and the matrix
elements W are given by

Wkp,p0 =
1p

[2(2⇡)3]3EkEpEp0
, (B2)

thus carrying dimension mass�3/2. I will use k for the
probe momentum and p,p0 for the massive object. The
form of this matrix element can be derived for example
by considering the massive object as a scalar particle and
quantizing the interaction Ve = �

R
d3x�2� with � the

probe and � the massive object.

To get a feel for this interaction, consider a process
with a single mass which absorbs and emits a probe pho-
ton. This means we need to go to second order in the
Dyson series

S(2) =
(�i)2

2!

Z 1

�1
dt1dt2 h�|TVe(t1)Ve(t2)|↵i , (B3)

with initial state |↵i = |kpi and final state |�i = |k0p0i.
There are two contributions to this due to the time-
ordering

TVe(t1)Ve(t2) =Ve(t1)Ve(t2)⇥(t1 � t2)

+ Ve(t2)Ve(t1)⇥(t2 � t1).
(B4)

Each of these terms will further contribute two terms,
one for each ordering of the emission and absorption [i.e.
one each for either the W or W ⇤ term in (B1)]. Using
the explicit matrix element (B1), the two terms which
contribute to the first diagram in Fig. 8, representing

absorption followed by emission, are

SA = ��
2

2

Z 1

�1
dt1dt2d

3q

⇥ Wk0p0,qei(Ek0+Ep0�Eq)t2�3(k0 + p0 � q)

⇥ W ⇤
q,kpei(Eq�Ek�Ep)t1�3(q � k � p)⇥(t2 � t1)

+ (t1 $ t2),

(B5)

where the last line just means a copy of the previous
term but with the time variables switched. To do the
time integrals, we can re-write the step function using
the identity

⇥(t)e�iEt =
1

2⇡i

Z 1

�1
d!

ei!t

! � E + i✏
(B6)

which can be easily checked by contour integration. Here
and throughout, the limit ✏! 0 is taken at the end of all
computations. Using this on the phase e�iEq(t2�t1) and
evaluating the time integrals we obtain

SA = �2(2⇡)2�2

4⇡i

Z
d!d3q

⇥ Wk0p0,q�(Ek0 + Ep0 � !)�3(k0 + p0 � q)

⇥ 1

! � Eq + i✏
W ⇤

q,kp�(! � Ek � Ep)�3(q � k � p).

(B7)

The overall factor of 2 appears because the (t1 $ t2)
term contributes identically. The physical interpretation
of the i✏ here can be understood from (B6). This says
that the intermediate positive-energy state of energy Eq

has energy flowing forward in time.
Now we would like to apply the Lorentzian bootstrap

idea to this expression. In other words, we want this to
be a Lorentz-invariant function times the overall wave-
function re-scaling ⇠ 1/

p
EpEkEp0Ek0 as in (9). This

re-scaling is already taken care of in the matrix elements
(B2), which also produce an additional factor 1/Eq.
Identifying ! = q0, the delta-functions can be combined
in the obvious way to produce a pair of four-dimensional
delta functions.

The tricky part is the non-relativistic propagator ⇠
1/(! � Eq + i✏). To get something Lorentz-invariant we
will need to make a quadratic function out of the denom-
inator, and the only option is to use q2. The function
q2 + m2 has precisely the same pole ! = q0 = +Eq

(once we move to the relativistic dispersion relation

Eq =
p

m2 + q2). Specifically, we have

1

q2 + m2
=

�1

2Eq


1

q0 � Eq
� 1

q0 + Eq

�
. (B8)

The remaining question is the prescription for handling
integration of the two poles q0 = ±Eq. In the non-
relativistic propagator above, we saw that the positive-
energy pole was displaced Eq ! Eq � i✏, so the only

FIG. 8. Diagrams for the probe-system interactions, one for
each term in (B4).

limit that we can ignore the polarizations). In abuse of
language I will refer to these probe particles as photons
throughout. The coupling is, in the interaction picture,

Ve(t) =λ

∫
d3kd3pd3p′δ3(k + p− p′)

×
[
Wkp,p′ei(Ek+Ep−Ep′ )t |kp〉 〈p′|+ h.c.

]
.

(B1)

The coupling λ has mass dimension one and the matrix
elements W are given by

Wkp,p′ =
1√

[2(2π)3]3EkEpEp′
, (B2)

thus carrying dimension mass−3/2. I will use k for the
probe momentum and p,p′ for the massive object. The
form of this matrix element can be derived for example
by considering the massive object as a scalar particle and
quantizing the interaction Ve = λ

∫
d3xχ2φ with φ the

probe and χ the massive object.

To get a feel for this interaction, consider a process
with a single mass which absorbs and emits a probe pho-
ton. This means we need to go to second order in the
Dyson series

S(2) =
(−i)2

2!

∫ ∞

−∞
dt1dt2 〈β|TVe(t1)Ve(t2)|α〉 , (B3)

with initial state |α〉 = |kp〉 and final state |β〉 = |k′p′〉.
There are two contributions to this due to the time-
ordering

TVe(t1)Ve(t2) =Ve(t1)Ve(t2)Θ(t1 − t2)

+ Ve(t2)Ve(t1)Θ(t2 − t1).
(B4)

Each of these terms will further contribute two terms,
one for each ordering of the emission and absorption [i.e.
one each for either the W or W ∗ term in (B1)]. Using
the explicit matrix element (B1), the two terms which
contribute to the first diagram in Fig. 8, representing

absorption followed by emission, are

SA = −λ
2

2

∫ ∞

−∞
dt1dt2d

3q

×Wk′p′,qe
i(Ek′+Ep′−Eq)t2δ3(k′ + p′ − q)

×W ∗q,kpei(Eq−Ek−Ep)t1δ3(q− k− p)Θ(t2 − t1)

+ (t1 ↔ t2),

(B5)

where the last line just means a copy of the previous
term but with the time variables switched. To do the
time integrals, we can re-write the step function using
the identity

Θ(t)e−iEt =
1

2πi

∫ ∞

−∞
dω

eiωt

ω − E + iε
(B6)

which can be easily checked by contour integration. Here
and throughout, the limit ε→ 0 is taken at the end of all
computations. Using this on the phase e−iEq(t2−t1) and
evaluating the time integrals we obtain

SA = −2(2π)2λ2

4πi

∫
dωd3q

×Wk′p′,qδ(Ek′ + Ep′ − ω)δ3(k′ + p′ − q)

× 1

ω − Eq + iε
W ∗q,kpδ(ω − Ek − Ep)δ3(q− k− p).

(B7)

The overall factor of 2 appears because the (t1 ↔ t2)
term contributes identically. The physical interpretation
of the iε here can be understood from (B6). This says
that the intermediate positive-energy state of energy Eq

has energy flowing forward in time.
Now we would like to apply the Lorentzian bootstrap

idea to this expression. In other words, we want this to
be a Lorentz-invariant function times the overall wave-
function re-scaling ∼ 1/

√
EpEkEp′Ek′ as in (9). This

re-scaling is already taken care of in the matrix elements
(B2), which also produce an additional factor 1/Eq.
Identifying ω = q0, the delta-functions can be combined
in the obvious way to produce a pair of four-dimensional
delta functions.

The tricky part is the non-relativistic propagator ∼
1/(ω − Eq + iε). To get something Lorentz-invariant we
will need to make a quadratic function out of the denom-
inator, and the only option is to use q2. The function
q2 + m2 has precisely the same pole ω = q0 = +Eq

(once we move to the relativistic dispersion relation

Eq =
√
m2 + q2). Specifically, we have

1

q2 +m2
=
−1

2Eq

[
1

q0 − Eq
− 1

q0 + Eq

]
. (B8)

The remaining question is the prescription for handling
integration of the two poles q0 = ±Eq. In the non-
relativistic propagator above, we saw that the positive-
energy pole was displaced Eq → Eq − iε, so the only
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issue is what to do with this new negative-energy pole.
We will see in the next section that the only answer con-
sistent with Lorentz invariance and the optical theorem
is to displace this pole −Eq → −(Eq− iε).7 We will thus
identify

1

ω − Eq + iε
→ − 2Eq

q2 +m2 − iε . (B9)

This is not Lorentz-invariant, but the numerator cancels
the extra factor of 1/Eq we picked up from the interaction
vertices, leaving an overall Lorentz-invariant expression.

With this identification, we can do the integral in (B7)
using one set of the delta-functions, and obtain

SA =
δ4(p+ k − p′ − k′)√
[2(2π)3]4EkEpEk′Ep′

iλ2

(2π)2

1

(p+ k)2 +m2 − iε .

(B10)

By the exact same logic, the other two terms (absorption
followed by emission, the second part of Fig. 8) produce
a contribution SB identical to SA except with the denom-
inator (p + k)2 → (p − k′)2. In terms of our Feynman
amplitudes, this means we would identify

Mkp→k′p′ =
λ2

(2π)3

[ 1

(p+ k)2 +m2 − iε

+
1

(p− k′)2 +m2 − iε
]
.

(B11)

This argument contains all the same pieces we will need
to evaluate the 3→ 3 amplitude of section I B, to which
we now turn.

Six-point amplitude derivation

Consider the process involving two gravitationally cou-
pled masses m1,m2 and some external “photons” de-
picted in Fig. 3. For simplicity we will assume that

there are two distinguishable probes,

Vi(t) = λ

∫
d3kd3pid

3p′iδ
3(k + pi − p′i)

×
[
Wkpi,p′

i
e
i(Ek+Epi

−Ep′
i
)t |kpi〉 〈p′i|+ h.c.

]
⊗ 1j 6=i

(B12)

which will simplify some combinatoric factors.
Starting from the Dyson series (5) we need to go to

third order in the couplings. More specifically we need to
go to order λ2GN and consider the S-matrix contribution

S(3) =

∫ ∞

−∞
dt1dt2dtN 〈β|TV1(t1)V2(t2)VN (tN )|α〉 .

(B13)
This gives six independent terms from the time-ordering
symbol

TV1V2VN = V1VNV2Θ(t1 − tN )Θ(tN − t2) + · · · ,
(B14)

which can be represented by a sum of four Feynman di-
agrams, as in Fig. 9. We will now proceed to compute
one of these in detail in terms of our Lorentzian boot-
strap. After we are done it will be clear that the others
just add essentially identical factors. Alternatively, one
could integrate against localized-in-time wavepackets for
the probes, which would suppress the contributions from
the other diagrams.

Let’s study a particular term corresponding to the first
diagram of Fig. 9, namely the S-matrix contribution

S1N2 =

∫ ∞

−∞
dt1dt2dtN 〈β|V2(t2)VN (tN )V1(t1)|α〉

×Θ(t2 − tN )Θ(tN − t1).

(B15)

Inserting the explicit forms of the interactions (6), (B12)
and using the states |α〉 = |kp1p2〉, |β〉 = |k′p′1p′2〉, we
have

S1N2 = λ2

∫
dt2dtNdt1d

3p
1
d3p

2
d3p

1
d3p

2
Θ(t2 − tN )Θ(tN − t1)Wk′p′

2,p
2

e
i(Ek′+Ep′

2
−Ep

2
)t2δ3(k′ + p′2 − p

2
)δ3(p′1 − p

1
)

× Vp
1
p

2
,p

1
p

2
e
i(Ep

2
+Ep

1
−Ep

2
−Ep

1
)tN δ3(p

1
+ p

2
− p

1
− p

2
)×Wp

1
,kp1e

i(Ep
1
−Ek−Ep1 )t1δ3(p

1
− k− p1)δ3(p

2
− p2).

(B16)

Using the step function identity (B6) in much the same way as before, the time integrals may be evaluated in terms

7 This is not quite true. What is inconsistent would be to use
the retarded or advanced prescriptions, in which both poles are
shifted above the real axis or both are shifted below the real axis.
One could, however, use the prescription q2 + m2 + iε instead
of the usual Feynman q2 + m2 − iε. This would correspond

to an overall time-reversal, i.e., a model in which the definition
of positive and negative energies are reversed. One can make
interesting models in which both conventions are used [84, 85].
In what follows we will use the standard Feynman prescription.
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FIG. 9. Contributions to the scattering amplitude for the 3 ! 3 process with external photons.

of some frequency integrals,

Z 1

�1
dt2dtNdt1⇥(t2 � tN )⇥(tN � t1)e

i(Ek0+Ep0
2
�Ep

2
)t2 ⇥ e

i(Ep
2
+Ep

1
�Ep

2
�Ep

1
)tN ei(Ep

1
�Ek�Ep1

)t1

=

Z
d!2

!2 � Ep
2

+ i✏

d!1

!1 � Ep
1
+ i✏

�(Ek0 + Ep0
2
� !2) ⇥ �(Ep

1

+ !2 � !1 � Ep
2
)�(!1 � Ep1 � Ek).

(B17)

Performing the d3p
1
d3p

2
momentum integrals with the

simple delta functions then leaves free integrals over
d!1d!2d

3p
1
d3p

2
. Identifying !1 = p0

1
, !2 = p0

2
and form-

ing four-vectors we then obtain

S1N2 = �2

Z
d4p

1
d4p

2
Wk0p0

2,p
2

�4(k0 + p02 � p
2
)

⇥ 1

!2 � Ep
2

+ i✏
Vp0

1p
2
,p

1
p2
�4(p01 + p

2
� p

1
� p2)

⇥ 1

!1 � Ep
1
+ i✏

Wp
1
,kp1�

4(p
1
� k � p1).

(B18)

Again, everything in the above is simply a formal manip-
ulation of the non-relativistic amplitude.

Finally, we now make the same “bootstrap” identifica-
tions as in earlier sections. The energy denominators are
replaced according to (B9), while the Newton interaction
matrix elements are replaced in line with the discussion
of section IA. We include the various 1/

p
E factors ap-

propriately. Performing the two remaining momentum
integrals, we then identify the resulting S-matrix contri-
bution:

S1N2 ! �2GNm4 �4(k0 + p01 + p02 � k � p1 � p2)q
[2(2⇡)3]6EkEp1

Ep2
Ek0Ep0

1
Ep0

2

⇥
✓

1

(p1 + k)2 + m2 � i✏

◆✓
1

k̃2 + µ2 � i✏

◆

⇥
✓

1

(p02 + k0)2 + m2 � i✏

◆
,

(B19)

where k̃ = p01 � (p1 + k). Comparing to our S-matrix
conventions (3) then leads to the identification of the

Feynman amplitude

M =�2GNm4

✓
1

(p1 + k)2 + m2 � i✏

◆✓
1

k̃2 + µ2 � i✏

◆

⇥
✓

1

(p02 + k0)2 + m2 � i✏

◆
,

(B20)

precisely as in (10).
At this stage, we can close the loop and explain the

need for the specific i✏ pole prescription used here. In
the previous section, I claimed that this (or its �i✏ time-
reversed version) is the only prescription consistent with
Lorentz invariance and unitarity. To see this, consider
what would happen if we used instead a prescription like

1

q0 � Eq � i✏
� 1

q0 + Eq � i✏
, (B21)

in the notation of (B8), in which both poles are shifted
above the real q0 axis. When we compute the left-
hand side of the optical theorem (4), we would pick
up a term proportional to the imaginary part of this
factor, which is �(q0 � Eq) � �(q0 + Eq). This is not
Lorentz invariant. In contrast, the usual Feynman pre-
scription produces an imaginary part proportional to
�(q0 � Eq) + �(q0 + Eq) / �(q2 + m2), as used in the
main text. Thus the retarded prescription (B21) or the
advanced prescription where both poles are shifted below
the real axis would be incapable of satisfying the opti-
cal theorem (4), since the right-hand side is manifestly
Lorentz-invariant.

Optical theorem for the six-point amplitude

Finally, we spell out the details of the new amplitudes
on the right-hand side of (13). Everything is almost iden-
tical to the 2 ! 2 process of the previous subsection. The

FIG. 9. Contributions to the scattering amplitude for the 3→ 3 process with external photons.

of some frequency integrals,

∫ ∞
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(B17)

Performing the d3p
1
d3p

2
momentum integrals with the

simple delta functions then leaves free integrals over
dω1dω2d

3p
1
d3p

2
. Identifying ω1 = p0

1
, ω2 = p0

2
and form-

ing four-vectors we then obtain

S1N2 = λ2

∫
d4p

1
d4p

2
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2,p
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δ4(k′ + p′2 − p
2
)

× 1

ω2 − Ep
2

+ iε
Vp′

1p
2
,p

1
p2
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δ4(p
1
− k − p1).

(B18)

Again, everything in the above is simply a formal manip-
ulation of the non-relativistic amplitude.

Finally, we now make the same “bootstrap” identifica-
tions as in earlier sections. The energy denominators are
replaced according to (B9), while the Newton interaction
matrix elements are replaced in line with the discussion
of section I A. We include the various 1/

√
E factors ap-

propriately. Performing the two remaining momentum
integrals, we then identify the resulting S-matrix contri-
bution:

S1N2 → λ2GNm
4 δ4(k′ + p′1 + p′2 − k − p1 − p2)√

[2(2π)3]6EkEp1
Ep2

Ek′Ep′
1
Ep′

2

×
(

1

(p1 + k)2 +m2 − iε

)(
1

k̃2 + µ2 − iε

)

×
(

1

(p′2 + k′)2 +m2 − iε

)
,

(B19)

where k̃ = p′1 − (p1 + k). Comparing to our S-matrix
conventions (3) then leads to the identification of the

Feynman amplitude

M =λ2GNm
4

(
1

(p1 + k)2 +m2 − iε

)(
1

k̃2 + µ2 − iε

)

×
(

1

(p′2 + k′)2 +m2 − iε

)
,

(B20)

precisely as in (10).
At this stage, we can close the loop and explain the

need for the specific iε pole prescription used here. In
the previous section, I claimed that this (or its −iε time-
reversed version) is the only prescription consistent with
Lorentz invariance and unitarity. To see this, consider
what would happen if we used instead a prescription like

1

q0 − Eq − iε
− 1

q0 + Eq − iε
, (B21)

in the notation of (B8), in which both poles are shifted
above the real q0 axis. When we compute the left-
hand side of the optical theorem (4), we would pick
up a term proportional to the imaginary part of this
factor, which is δ(q0 − Eq) − δ(q0 + Eq). This is not
Lorentz invariant. In contrast, the usual Feynman pre-
scription produces an imaginary part proportional to
δ(q0 − Eq) + δ(q0 + Eq) ∝ δ(q2 + m2), as used in the
main text. Thus the retarded prescription (B21) or the
advanced prescription where both poles are shifted below
the real axis would be incapable of satisfying the opti-
cal theorem (4), since the right-hand side is manifestly
Lorentz-invariant.

Optical theorem for the six-point amplitude

Finally, we spell out the details of the new amplitudes
on the right-hand side of (13). Everything is almost iden-
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FIG. 10. Disconnected diagram for equation (B22).

only change is the
p

GNm coupling, and an additional
factor for the disconnected part:

Mkp1p2!kp
1
p

2
=

p
GNm2�

(p1 + k)2 + m2 � i✏

⇥ 2Ep2
(2⇡)3�3(p

2
� p2).

(B22)

The final factor 2Ep2
(2⇡)3 is needed to cancel out the

Lorentzian phase-space factors of equation (3) for the
disconnected particle. See Fig. 10. To apply this ampli-
tude in the optical theorem (4) to reproduce the unitarity
condition (13), the non-trivial part of the sum over |Xi
(the sum over final three-body states) can be written ex-
plicitly

X

|Xi
B2

X�
4(pX � p↵) =

Z
d3kd3p

1
d3p

2

[2(2⇡)3]3EkEp
1
Ep

2

�4(k + p
1

+ p
2
� k � p1 � p2),

(B23)

where |↵i = |kp1p2i. Using (B22) and (B23) on the
right-hand side of (4), with |�i = |k0p0

1p
0
2i, one finds

X

|Xi
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X�
4(pX � p↵)M↵!XM⇤
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2
� p2)2Ep
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GNm2�
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�3(p

1
� p0

1)2Ep
1
(2⇡)3

�

= GNm4�2

Z
d3k

[2(2⇡)3]Ek
�4(k + p01 � k � p1)

1

(p1 + k)2 + m2 � i✏

1

(p02 + k0)2 + m2 � i✏

= GNm4�2�(k2 + µ2)
1

(p1 + k)2 + m2 � i✏

1

(p02 + k0)2 + m2 � i✏

���
k=k+p1�p0

1

(B24)

where we used the usual Lorentz phase space identityR
d3k/((2⇡)32Ek) =

R
d4k�2(k2 + µ2)⇥(k0) before doing

the integral to obtain the last line. Identifying k = k̃ in
the notation of the main text, this verifies the optical the-
orem (4), as described in (13). The sum over final states
has collapsed to a discrete point in phase space, namely
the specific final state |Xi = |k̃p1p

0
2i with a radiated

“graviton”.

Graviton and scalar graviton Feynman rules

I record here the Feynman rules used in section II. We
will use a scalar field for the matter for simplicity. In
transverse-traceless gauge, the graviton-matter interac-

tions lead to the Feynman rules [32–34]

p

p0

↵� =
p

8⇡GN

⇥
p↵p0� + p0↵p� � ⌘↵�(p · p0 + m2)

⇤

↵� ��

q
=

i

q2 � i✏

⇥
⌘↵�⌘�� + ⌘↵�⌘�� � ⌘↵�⌘��

⇤
.

(B25)

The Feynman rules for the scalar graviton model used in
the main text can be obtained by simply tracing over the
Lorentz indices in the spin-2 model. Specifically, one has

p

p0

= �2
p

8⇡GN

⇥
p · p0 + 2m2

⇤

q =
i

q2 � i✏
.

(B26)

FIG. 10. Disconnected diagram for equation (B22).

tical to the 2→ 2 process of the previous subsection. The
only change is the

√
GNm coupling, and an additional

factor for the disconnected part:

Mkp1p2→kp
1
p

2
=

√
GNm

2λ

(p1 + k)2 +m2 − iε
× 2Ep2(2π)3δ3(p

2
− p2).

(B22)

The final factor 2Ep2
(2π)3 is needed to cancel out the

Lorentzian phase-space factors of equation (3) for the
disconnected particle. See Fig. 10. To apply this ampli-
tude in the optical theorem (4) to reproduce the unitarity
condition (13), the non-trivial part of the sum over |X〉
(the sum over final three-body states) can be written ex-
plicitly

∑

|X〉
B2
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∫
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2
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(B23)

where |α〉 = |kp1p2〉. Using (B22) and (B23) on the
right-hand side of (4), with |β〉 = |k′p′1p′2〉, one finds
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3(p

1
− p′1)2Ep

1
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]

= GNm
4λ2

∫
d3k

[2(2π)3]Ek
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1
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1
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= GNm
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1
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(B24)

where we used the usual Lorentz phase space identity∫
d3k/((2π)32Ek) =

∫
d4kδ2(k2 +µ2)Θ(k0) before doing

the integral to obtain the last line. Identifying k = k̃ in
the notation of the main text, this verifies the optical the-
orem (4), as described in (13). The sum over final states
has collapsed to a discrete point in phase space, namely
the specific final state |X〉 = |k̃p1p

′
2〉 with a radiated

“graviton”.

Graviton and scalar graviton Feynman rules

Finally, we record in Fig. 11 the Feynman rules used
in section II. We will use a scalar field for the matter for
simplicity. In transverse-traceless gauge, the graviton-
matter interactions lead to the Feynman rules given by
curly lines, as derived in e.g. [32–34]. The Feynman rules
for the scalar graviton model can be obtained by simply
tracing over the Lorentz indices in the spin-2 model.

Appendix C: Unitarity violation in
particle-antiparticle scattering

In the example of section I, we stayed very close to the
basic premise of the actual experiments. The massive
“particles” there can be viewed directly as the massive,
composite objects used to demonstrate Newtonian entan-
glement in concrete experimental proposals. However, to
emphasize the generality of this argument, we now turn
to a more sophisticated example, in which we use the
crossing symmetry property of relativistic S-matrices to
study gravitational particle-antiparticle scattering.

We thus add another postulate to our S-matrix rules:

(C) Crossing symmetry. The matrix element for a
process A+B → C +D is given by the same func-
tion as that for a process, like A + B + C̄ → D,
where an incoming/outgoing particle is exchanged
with an outgoing/incoming antiparticle (and mo-
menta switched accordingly).

For example, the amplitude for electron-electron scatter-
ing e−e− → e−e− determines the amplitude for e−e+ →
e−e+. In quantum field theory, crossing is a consequence
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only change is the
p

GNm coupling, and an additional
factor for the disconnected part:
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The final factor 2Ep2
(2⇡)3 is needed to cancel out the

Lorentzian phase-space factors of equation (3) for the
disconnected particle. See Fig. 10. To apply this ampli-
tude in the optical theorem (4) to reproduce the unitarity
condition (13), the non-trivial part of the sum over |Xi
(the sum over final three-body states) can be written ex-
plicitly
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where |↵i = |kp1p2i. Using (B22) and (B23) on the
right-hand side of (4), with |�i = |k0p0

1p
0
2i, one finds
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where we used the usual Lorentz phase space identityR
d3k/((2⇡)32Ek) =

R
d4k�2(k2 + µ2)⇥(k0) before doing

the integral to obtain the last line. Identifying k = k̃ in
the notation of the main text, this verifies the optical the-
orem (4), as described in (13). The sum over final states
has collapsed to a discrete point in phase space, namely
the specific final state |Xi = |k̃p1p

0
2i with a radiated

“graviton”.

Graviton and scalar graviton Feynman rules

I record here the Feynman rules used in section II. We
will use a scalar field for the matter for simplicity. In
transverse-traceless gauge, the graviton-matter interac-

tions lead to the Feynman rules [32–34]
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↵� =
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(B25)

Appendix C: Unitarity violation in
particle-antiparticle scattering

In the example of section I, we stayed very close to the
basic premise of the actual experiments. The massive
“particles” there can be viewed directly as the massive,

FIG. 11. Feynman rules used in section II. Curly lines de-
note the usual spin-2 gravitons, dotted lines represent a spin-
0 scalar graviton, and the solid black lines represent massive
external particles.

of micro-causality, the requirement that field operators
satisfy [φ(x), φ(x′)] = 0 for x, x′ space-like separated [86].
It is rigorously satisfied in 2→ 2 scattering [87, 88]. The
same property holds in string theory despite the absence
of microscopic local fields [88]. Following the analytic S-
matrix program [38] we thus will simply assume it as a
postulate of scattering processes.

Consider the 2 → 2, purely gravitational scattering
amplitude for two particles. I will refer to the massive
particles as χ and antiparticles as χ̄. From the second-
order term of (5), we have

S
(2)
p1p2→p′

1p
′
2

= −
∫
dt1dt2d

3k1d
3k2Vp′

1p
′
2,k1k2

Θ(t1 − t2)

× δ3(p′1 + p′2 − k1 − k2)Vk1k2,p1p2
δ3(k1 + k2 − p1 − p2)

× e−i(Ep′
1
+Ep′

2
)t1ei(Ek1

+Ek2
)(t1−t2)e−i(Ep1+Ep2 )t2

+ (t1 ↔ t2).

(C1)

To get the second line, we inserted a complete set of
states |k1k2〉. Now we insert an additional step function
by noting that Θ(t) = Θ2(t), and use the same Fourier
transform Θ(t)e−iEt = (2πi)−1

∫
dωe−iωt/(ω − E + iε)

on each of the internal-line phase factors. Performing
the time integrals, we obtain

S
(2)
p1p2→p′

1p
′
2

=

∫
dω1d

3k1dω2d
3k2Vp′

1p
′
2,k1k2

× δ(ω1 + ω2 − Ep′
1
− Ep′

2
)δ3(p′1 + p′2 − k1 − k2)

× 1

ω1 − Ek1
+ iε

1

ω2 − Ek2
+ iε

Vk1k2,p1p2

× δ(ω1 + ω2 − Ep1 − Ep2)δ3(k1 + k2 − p1 − p2)

+ p1p2 ↔ p′1p
′
2.

(C2)

One can interpret this as the amplitude for the initial
state to transition to an intermediate state of two parti-
cles with momenta k1,k2 while conserving total energy

and momentum, followed by free propagation of the two
intermediate particles, followed by the transition to the
final state |p′1p′2〉. See the first panel of Fig. 12. The term
labeled p1p2 ↔ p′1p

′
2, which comes from the V (t2)V (t1)

part of (C1), is the same up to complex-conjugating the
V matrix elements.

Following the same logic as in previous sections, we
promote this to a Lorentz-invariant amplitude:

Mp1p2→p′
1p

′
2

= α̃4

∫
d4k1d

4k2δ
4(k1 + k2 − p1 − p2)

× 1

k2
1 +m2 − iε

1

k2
2 +m2 − iε

× 1

(k1 − p1)2 + µ2 − iε
1

(p′1 − k1)2 + µ2 − iε .
(C3)

We could have done one of the integrals with the remain-
ing delta-function to leave a single unconstrained loop
integral, but it will become clear shortly why we write
things this way. In the language of field theory, this
is a box diagram with four scalars running in the loop.
See Fig. 12. This brings up an important point: this
expression is correct only in the very low-energy limit,
i.e., the momentum integrals should have a “UV” cutoff
Λ . m. Above Λ, we cannot know the detailed spectrum
of the model (the intermediate states, non-relativistically
included by inserting 1 =

∑ |k1k2〉 〈k1k2| above). How-
ever, we will only need the infrared part of this diagram
in what follows, where the expression (C3) is reliable.

It is easy to check that (C3) satisfies the optical the-
orem. The imaginary part of the amplitude, which is of
order G2

N , is determined precisely by the square of the
elastic tree-level χχ→ χχ amplitude of order GN . How-
ever, there will be a problem when we now extend these
results to χχ̄ scattering. By crossing symmetry, the am-
plitude for χχ̄ → χχ̄ should be given by the χχ → χχ
amplitude, but with the roles of some outgoing momenta
switched with incoming momenta (see Fig. 12). At low-
est order in perturbation theory, we simply get (9), but
with the momentum transfer t = −(p′1−p1)2 replaced by
the total incoming energy-momentum s = −(p1 + p2)2:

Mχχ̄→χχ̄
p1p2→p′

1p
′
2

=
4πα̃2

−s+ µ2
. (C4)

For physical momenta p2
1 = p2

2 = p′21 = p′22 = −m2, we
have s ≥ 4m2. Thus the pole in the denominator cannot
be reached, so the amplitude is purely real. Much like the
t-channel χχ amplitude, the optical theorem is therefore
trivial at this order since Im M = 0 + O(α̃4).

However, at the next order in perturbation theory
O(α̃4), we will have unitarity problems. In particular,
the amplitude will contain a term given by (C3) but with



1413

VN (t1)

VN (t2)

k1 k2

p0
1 p0

2

p1 p2

Lorentz
k1 k2

p0
1 p0

2

p1 p2

crossing

k1 k2

p0
1 p0

2

p1 p2

FIG. 11. Basic procedure to compute the elastic ��̄ scattering amplitude. The left diagram represents the non-relativistic
�� ! �� scattering ampitude, computed to second order in perturbation theory. Its relativistic extension is depicted in
the middle panel. Finally, by crossing symmetry, the same mathematical expression can be used to compute the ��̄ ! ��̄
amplitude to the same order, depicted in the third panel.

composite objects used to demonstrate Newtonian entan-
glement in concrete experimental proposals. However, to
emphasize the generality of this argument, we now turn
to a more sophisticated example, in which we use the
crossing symmetry property of relativistic S-matrices to
study gravitational particle-antiparticle scattering.

We thus add another postulate to our S-matrix rules:

(C) Crossing symmetry. The matrix element for a
process A + B ! C + D is given by the same func-
tion as that for a process, like A + B + C̄ ! D,
where an incoming/outgoing particle is exchanged
with an outgoing/incoming antiparticle (and mo-
menta switched accordingly).

For example, the amplitude for electron-electron scatter-
ing e�e� ! e�e� determines the amplitude for e�e+ !
e�e+. In quantum field theory, crossing is a consequence
of micro-causality, the requirement that field operators
satisfy [�(x), �(x0)] = 0 for x, x0 space-like separated [86].
It is rigorously satisfied in 2 ! 2 scattering [87, 88]. The
same property holds in string theory despite the absence
of microscopic local fields [88]. Following the analytic S-
matrix program [38] we thus will simply assume it as a
postulate of scattering processes.

Consider the 2 ! 2, purely gravitational scattering
amplitude for two particles. I will refer to the massive
particles as � and antiparticles as �̄. From the second-
order term of (5), we have

S
(2)
p1p2!p0

1p
0
2

= �
Z

dt1dt2d
3k1d

3k2Vp0
1p

0
2,k1k2

⇥(t1 � t2)

⇥ �3(p0
1 + p0

2 � k1 � k2)Vk1k2,p1p2
�3(k1 + k2 � p1 � p2)

⇥ e
�i(Ep0

1
+Ep0

2
)t1ei(Ek1

+Ek2
)(t1�t2)e�i(Ep1+Ep2 )t2

+ (t1 $ t2).

(C1)

To get the second line, we inserted a complete set of
states |k1k2i. Now we insert an additional step function
by noting that ⇥(t) = ⇥2(t), and use the same Fourier
transform ⇥(t)e�iEt = (2⇡i)�1

R
d!e�i!t/(! � E + i✏)

on each of the internal-line phase factors. Performing
the time integrals, we obtain

S
(2)
p1p2!p0

1p
0
2

=

Z
d!1d

3k1d!2d
3k2Vp0

1p
0
2,k1k2

⇥ �(!1 + !2 � Ep0
1
� Ep0

2
)�3(p0

1 + p0
2 � k1 � k2)

⇥ 1

!1 � Ek1
+ i✏

1

!2 � Ek2
+ i✏

Vk1k2,p1p2

⇥ �(!1 + !2 � Ep1
� Ep2

)�3(k1 + k2 � p1 � p2)

+ p1p2 $ p0
1p

0
2.

(C2)

One can interpret this as the amplitude for the initial
state to transition to an intermediate state of two parti-
cles with momenta k1,k2 while conserving total energy
and momentum, followed by free propagation of the two
intermediate particles, followed by the transition to the
final state |p0

1p
0
2i. See the first panel of Fig. 11. The term

labeled p1p2 $ p0
1p

0
2, which comes from the V (t2)V (t1)

part of (C1), is the same up to complex-conjugating the
V matrix elements.

Following the same logic as in previous sections, we
promote this to a Lorentz-invariant amplitude:

Mp1p2!p0
1p

0
2

= ↵̃4

Z
d4k1d

4k2�
4(k1 + k2 � p1 � p2)

⇥ 1

k2
1 + m2 � i✏

1

k2
2 + m2 � i✏

⇥ 1

(k1 � p1)2 + µ2 � i✏

1

(p01 � k1)2 + µ2 � i✏
.

(C3)

We could have done one of the integrals with the remain-
ing delta-function to leave a single unconstrained loop
integral, but it will become clear shortly why we write
things this way. In the language of field theory, this
is a box diagram with four scalars running in the loop.
See Fig. 11. This brings up an important point: this
expression is correct only in the very low-energy limit,
i.e., the momentum integrals should have a “UV” cuto↵
⇤ . m. Above ⇤, we cannot know the detailed spectrum
of the model (the intermediate states, non-relativistically

FIG. 12. Basic procedure to compute the elastic χχ̄ scattering amplitude. The left diagram represents the non-relativistic
χχ → χχ scattering ampitude, computed to second order in perturbation theory. Its relativistic extension is depicted in
the middle panel. Finally, by crossing symmetry, the same mathematical expression can be used to compute the χχ̄ → χχ̄
amplitude to the same order, depicted in the third panel.

external momenta crossed:

Mχχ̄→χχ̄
p1p2→p′

1p
′
2

= O(α̃2)

+ α̃4

∫
d4k1d

4k2δ
4(k1 + k2 − p1 − p2)

× 1

k2
1 + µ2 − iε

1

k2
2 + µ2 − iε

× 1

(k1 − p1)2 +m2 − iε
1

(p′1 − k1)2 + µ2 − iε .

(C5)

This looks almost identical to the part of the χχ → χχ
amplitude given in (C3), except that the roles of the par-
ticle mass m2 and Yukawa scattering parameter µ2 are
switched. To check unitarity, we can compute the imag-
inary part of the forward limit p′1 → p1,p

′
2 → p2 of

this amplitude. A classic result of Cutkosky [89] says
that the poles at k2

i = −µ2 combine to form an overall
branch cut in the complex s-plane. The imaginary part
of the diagram is computed as the complex discontinuity
across this cut, and is given by replacing the two factors
1/(x+ µ2 − iε)→ iπδ(x+ µ2). That is,

Im Mχχ̄→χχ̄
f (s) = −π2α̃4

∫
d3k1

2Ek1

d3k2

2Ek2

×
∣∣∣∣

1

(p1 − k1)2 +m2 − iε

∣∣∣∣
2

δ4(k1 + k2 − p1 − p2).

(C6)

To satisfy the optical theorem, this would have to be
given by something of the form of the right-hand side
of (4). But much like the example of section I, if the
outgoing states are made up of χ and χ̄ particles alone,
there is simply no set of diagrams that can satisfy this.
In particular, the total elastic χχ̄ cross-section is given
by

σχχ̄→χχ̄ = −π2α̃4

∫
d3k1

2Ek1

d3k2

2Ek2

×
∣∣∣∣

1

(p1 − k1)2 + µ2 − iε

∣∣∣∣
2

δ4(k1 + k2 − p1 − p2).

(C7)

While these look similar, note that the masses m2, µ2

appearing in the denominators are different. Thus (4) is
not satisfied and we have a unitarity violation.

The solution is the same as before. We recognize that
on the right-hand side of

Im Mf =
∑

X

| 〈X|S|ψin〉 |2 (C8)

we need to add some new states |X〉. In this case, what
we need to add is the process χχ̄ → “2 gravitons′′. See
Fig. 13. Inserting the amplitude Mχχ̄→gg on the right
hand side of (C8) makes the equation precisely correct.
Unlike the tree-level example, the sum is not over a single
isolated point of phase space but rather a full integral
over all possible kinematically allowed annihilations to
two gravitons.
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FIG. 12. Forward ��̄ scattering at second order in the grav-
itational interaction. The imaginary part of the forward am-
plitude has a branch cut singularity, which precisely equals
the total cross section for the process ��̄! gravitons.

included by inserting 1 =
P |k1k2i hk1k2| above). How-

ever, we will only need the infrared part of this diagram
in what follows, where the expression (C3) is reliable.

It is easy to check that (C3) satisfies the optical the-
orem. The imaginary part of the amplitude, which is of
order G2

N , is determined precisely by the square of the
elastic tree-level ��! �� amplitude of order GN . How-
ever, there will be a problem when we now extend these
results to ��̄ scattering. By crossing symmetry, the am-
plitude for ��̄ ! ��̄ should be given by the �� ! ��
amplitude, but with the roles of some outgoing momenta
switched with incoming momenta (see Fig. 11). At low-
est order in perturbation theory, we simply get (9), but
with the momentum transfer t = �(p01�p1)

2 replaced by
the total incoming energy-momentum s = �(p1 + p2)

2:

M��̄!��̄
p1p2!p0

1p
0
2

=
4⇡↵̃2

�s + µ2
. (C4)

For physical momenta p2
1 = p2

2 = p021 = p022 = �m2, we
have s � 4m2. Thus the pole in the denominator cannot
be reached, so the amplitude is purely real. Much like the
t-channel �� amplitude, the optical theorem is therefore
trivial at this order since Im M = 0 + O(↵̃4).

However, at the next order in perturbation theory
O(↵̃4), we will have unitarity problems. In particular,
the amplitude will contain a term given by (C3) but with

external momenta crossed:

M��̄!��̄
p1p2!p0

1p
0
2

= O(↵̃2)

+ ↵̃4

Z
d4k1d

4k2�
4(k1 + k2 � p1 � p2)

⇥ 1

k2
1 + µ2 � i✏

1

k2
2 + µ2 � i✏

⇥ 1

(k1 � p1)2 + m2 � i✏

1

(p01 � k1)2 + µ2 � i✏
.

(C5)

This looks almost identical to the part of the �� ! ��
amplitude given in (C3), except that the roles of the par-
ticle mass m2 and Yukawa scattering parameter µ2 are
switched. To check unitarity, we can compute the imag-
inary part of the forward limit p0

1 ! p1,p
0
2 ! p2 of

this amplitude. A classic result of Cutkosky [89] says
that the poles at k2

i = �µ2 combine to form an overall
branch cut in the complex s-plane. The imaginary part
of the diagram is computed as the complex discontinuity
across this cut, and is given by replacing the two factors
1/(x + µ2 � i✏) ! i⇡�(x + µ2). That is,

Im M��̄!��̄
f (s) = �⇡2↵̃4

Z
d3k1

2Ek1

d3k2

2Ek2

⇥
����

1

(p1 � k1)2 + m2 � i✏

����
2

�4(k1 + k2 � p1 � p2).

(C6)

To satisfy the optical theorem, this would have to be
given by something of the form of the right-hand side
of (4). But much like the example of section I, if the
outgoing states are made up of � and �̄ particles alone,
there is simply no set of diagrams that can satisfy this.
In particular, the total elastic ��̄ cross-section is given
by

���̄!��̄ = �⇡2↵̃4

Z
d3k1

2Ek1

d3k2

2Ek2

⇥
����

1

(p1 � k1)2 + µ2 � i✏

����
2

�4(k1 + k2 � p1 � p2).

(C7)

While these look similar, note that the masses m2, µ2

appearing in the denominators are di↵erent. Thus (4) is
not satisfied and we have a unitarity violation.

The solution is the same as before. We recognize that
on the right-hand side of

Im Mf =
X

X

| hX|S| ini |2 (C8)

we need to add some new states |Xi. In this case, what
we need to add is the process ��̄ ! “2 gravitons00. See
Fig. 12. Inserting the amplitude M��̄!gg on the right
hand side of (C8) makes the equation precisely correct.
Unlike the tree-level example, the sum is not over a single
isolated point of phase space but rather a full integral
over all possible kinematically allowed annihilations to
two gravitons.

FIG. 13. Forward χχ̄ scattering at second order in the grav-
itational interaction. The imaginary part of the forward am-
plitude has a branch cut singularity, which precisely equals
the total cross section for the process χχ̄→ gravitons.
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