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This paper presents the SPIIR pipeline used for public alerts during the third advanced LIGO
and Virgo observation run (O3 run). The SPIIR pipeline uses infinite impulse response (IIR)
filters to perform extremely low-latency matched filtering and this process is further accelerated
with graphics processing units (GPUs). It is the first online pipeline to select candidates from
multiple detectors using a coherent statistic based on the maximum network likelihood ratio statistic
principle. Here we simplify the derivation of this statistic using the singular-value-decomposition
(SVD) technique and show that single-detector signal-to-noise ratios from matched filtering can
be directly used to construct the statistic. Coherent searches are in general more computationally
challenging than coincidence searches due to extra search over sky direction parameters. The search
over sky directions follows an embarrassing parallelization paradigm and has been accelerated using
GPUs. The detection performance is reported using a segment of public data from LIGO-Virgo’s
second observation run. We demonstrate that the median latency of the SPIIR pipeline is less than
9 seconds, and present an achievable roadmap to reduce the latency to less than 5 seconds. During
the O3 online run, SPIIR registered triggers associated with 38 of the 56 non-retracted public alerts.
The extreme low-latency nature makes it a competitive choice for joint time-domain observations,
and offers the tantalizing possibility of making public alerts prior to the merger phase of binary
coalescence systems involving at least one neutron star.

Keywords: gravitational waves; low-latency search pipeline; coherent search

I. INTRODUCTION

Gravitational wave (GW) astronomy has been advanc-
ing rapidly since the first operation (referred to as O1)
of the two Advanced Laser Interferometer Gravitational-
wave Observatory (aLIGO) in 2015 [1]. The advanced
Virgo detector [2] joined the LIGO detectors from the
second observation run (O2). The third and latest run
(O3) of aLIGO and Virgo lasted 11 months and finished
in March 2020 [3, 4]. There have been over a dozen de-
tections of compact binary coalescences (CBCs) by the
LIGO collaboration in the O1 and O2 run [5–7]. The first
six months of O3 has seen three times more detections
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than O1 and O2 combined [8]. With new advanced de-
tectors, the KAGRA detector in operation since 2020 [9]
and LIGO-India envisioned to be operational in the next
decade [10], it is expected the GW astronomy will see reg-
ular frequent detections and possible new breakthroughs.

A high priority for observing runs is to use GW detec-
tions as a trigger for electromagnetic (EM) follow-up ob-
servations. A successful example is the first detection of
GW from merging binary neutron stars (GW170817 [11])
with multiple coincident observations across electromag-
netic spectrum [12]. Improved detector sensitivity will
expose more binary merger signals, as well as enabling
detections ahead of the final coalescence phase, known
as the early warning detections. To facilitate the real-
time and early-warning detections, a public alert infras-
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tructure1 was established by LIGO-Virgo collaboration
before O3 to enable online data streaming, pipeline de-
tection and prompt real-time alert publication.

Five detection pipelines have been used in this infras-
tructure: one to search for unmodeled signals, the cWB
pipeline [13]; four to search for the modeled compact bi-
nary coalescence (CBC) signals, including GstLAL [14–
16], MBTA [17], PyCBCLive [18–20], and the SPIIR
pipeline which is the focus of this paper. Previous work
on the SPIIR pipeline development can be found in [21–
26] and the SPIIR pipeline started its online trial runs
during the O1 and O2 runs.

The SPIIR pipeline is distinguished from other CBC
search pipelines in several aspects. It adopts the summed
parallel infinite impulse response (SPIIR) method for
matched filtering [21–23]. This method is expected to
be more efficient computationally than the traditional
Fourier method when a filtering delay of less than 10s
is intended [21]. It is straightforward to parallelize
this algorithm using Graphics Processing Units (GPUs),
a popular and cost-effective parallel computing plat-
form [24, 25].

The other main difference is that the SPIIR pipeline
selects candidates based on the maximum network like-
lihood ratio principle which is referred as the coherent
method. Coherent methods have been developed for peri-
odic GW searches [27], inspiral searches in the band of the
proposed space-based interferometric detector, LISA [28–
30], and for GRB-triggered CBC searches [31, 32]. It was
proposed for CBC searches [33–35] but not widely used
due to computational challenges of searching through ad-
ditional parameters of source sky directions. A recent
work [36] is proposed to reduce the computational cost of
parameter search using particle swarm optimization. In
this paper, we express the coherent method for CBC sig-
nals using singular value decomposition (SVD). SVD and
its variation principal component analysis have been ap-
plied to many areas of GW research including waveform
decomposition [37, 38] and parameter estimation [39]. It
has been proposed for general formalization of GW data
analysis with a detector network [40]. The SVD deriva-
tion here is an extension of [40] and simplifies the ex-
pression of the coherent statistic for CBC searches. It
shows that output from matched filtering, i.e. the signal-
to-noise ratio (SNR) time series, can be directly used
and only the two parameters of sky directions need to be
searched over. The search on each sky direction is inde-
pendent and thus has been distributed to parallel GPU
threads for acceleration.

This paper is organized as follows: Sec. II gives a de-
tailed explanation of the SPIIR pipeline. Sec. III reports
the performance of the SPIIR pipeline using a segment
of the public O2 data, including a break-down analysis
of contributions to the pipeline latency. It also reports

1 https://emfollow.docs.ligo.org/userguide/

the results of the pipeline on O3 public alerts. Sec. IV
gives conclusion and future perspectives of the pipeline.

II. PIPELINE DESCRIPTION

A flowchart of the SPIIR pipeline is shown in Fig. 1.
The elements of the flowchart may be grouped into five
stages:

(A) A pre-processing stage, where live data streams
from detectors LIGO-Livingston (L1), LIGO-
Hanford (H1), and Virgo (V1) are read, conditioned
using data quality (DQ) channels, downsampled,
whitened, and conditioned again.

(B) A filtering stage, where whitened data are con-
volved with SPIIR filters in the time domain to ap-
proximate the matched filtering result – SNR time
series.

(C) A coherent search stage, where candidates from in-
dividual detectors are searched over companion de-
tectors to form coherent candidates.

(D) Candidate significance estimation, where back-
ground (noise) events generated by time-shifted
data are used to estimate the false alarm rate
(FAR) of a candidate.

(E) Candidate veto and submission, where candidates
are tested against a few statistic thresholds and
submitted to the GW candidate event database
(GraceDB).

A. Data conditioning, down-sampling, and
whitening

The first stage of the SPIIR pipeline uses the data ac-
quisition module from the gstlal software package2 to
read in live (optionally offline) data. During O3, the live
data were delivered in one-second packets. The first step
of the pipeline is to “Apply DQ channel” as shown in
Fig. 1. The DQ channel uses bit masks to mark the peri-
ods of the strain data when not in the lock condition or
affected by known loud noises. The pipeline replaces the
strain data in these periods with zeros (a.k.a. gating)
with a tapering filter. This zeroing method could in-
troduce power spectral leakage in the frequency domain.
The data is whitened later in the frequency domain by
the pipeline where this leakage will be carried over, which
could result in a slightly inaccurate whitening outcome.
The leakage can be avoided if data is whitened in the time
domain or by adoption of an in-painting method instead

2 https://git.ligo.org/lscsoft/gstlal
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FIG. 1. A flowchart of the online SPIIR pipeline. Rectan-
gular blocks denote pipeline components; those in gray have
been accelerated by GPUs. Parallelogram blocks denote in-
put for given components. At the start, the pipeline reads
live data from LIGO-Livingston (L1), LIGO-Hanford (H1),
and optionally Virgo (V1) (marked by the dashed line) on
the computing cluster. The pipeline applies per-detector DQ
flags from the DQ channel to gate noise-affected segments
in the main strain data. The data are downsampled from
16 kHz to 2 kHz and whitened based on a real-time estimate
of the noise power spectral density (PSD). After whitening, a
gating process vetoes noise outliers. The gated data are then
filtered using SPIIR filters (Sec. II B) and a coherent search is
performed (Sec. II C). An asynchronous process collects back-
ground events from time shifted data to update the distribu-
tion of the ranking statistic R from which the FAR of a fore-
ground candidate is estimated. Candidates are then clustered
and tested against thresholds before submitted along with the
sky map of coherent statistics to the GW candidate database
(GraceDB).

of the zeroing method shown in the recent work [41].
Both methods will be considered for the pipeline for the
next observation run.

The strain data are then downsampled from the orig-
inal 16384Hz to a lower rate of 2048 Hz to reduce the
computational cost downstream. This reduced rate is
sufficient to capture CBC signals within the most sensi-
tive band (15-1000 Hz) of the LIGO-Virgo detectors. The
pipeline uses the resample module from the gstreamer3

3 https://gstreamer.freedesktop.org/

library for down-sampling, which implements the method
in time-domain using a finite impulse response (FIR) fil-
ter.

The data are then whitened (refers to whitening in
Fig. 1) in the frequency domain that can be expressed
as:

dw(t) =

∫ ∞
−∞

d̃(f)√
Sn(|f |)

ei2πft, (1)

where d̃(f) is data in the frequency domain obtained
by Fourier transform and dw(t) denotes the whitened
data. Sn(|f |) is the one-sided noise power spectra density
(PSD) defined through ensemble average E() of the noise
spectrum E(ñ(f)ñ∗(f ′)) = 1/2Sn(f)δ(f − f ′), f > 0. In
an ideal world where the noise is stationary, the past
data can be used for noise PSD estimation to whiten the
current segment of data. However the noise is known to
be non-stationary in the LIGO-Virgo online data. The
noise PSD is therefore estimated by tracking the geo-
metric median PSD from overlapping 4-second blocks of
immediate past data spanning 56 seconds. This estima-
tion converges quickly and is robust against glitches (See
Sec. II. B of [14]). It is implemented by the lal whiten
module from the gstlal library.

The pipeline applies a second “gating” function after
whitening, where outstanding amplitude excursions of
the whitened data are replaced with zeros. This is to
remove glitches that are not identified by the online DQ
channels. We also replace 0.25 second of data on each
side of the gated segment with zeros to suppress excess
power from the glitch. This step would not cause spec-
tral leakage problems as following steps are performed in
the time domain.

B. Time-domain matched filtering with SPIIR
filters

1. SPIIR method

The matched filtering method is the optimal method to
search for known signals from Gaussian noise. It has been
used in CBC searches as the CBC GW waveform tem-
plates can either be derived from post-Newtonian per-
turbation theories or from numerical solutions of Ein-
stein’s field equations [42–44]. The parameters of the
CBC waveforms can be divided into two sets, the intrin-
sic and the extrinsic parameter sets. The intrinsic set
is related to the intrinsic properties of the GW sources
— masses and spins. The extrinsic parameters include
the distance l, the source location (α, δ), the inclination
angle ι and the polarization angle ψ, the phase φc and
the time tc at the coalescence. The extrinsic parameters
can be represented by two parameters effectively — the
effective distance leff and the termination phase φ0 [45].

https://gstreamer.freedesktop.org/
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The CBC signal h(t) can then be expressed as:

h(t) =
l

leff
A(t) cos (φ(t) + φ0) , (2)

where A(t) and φ(t) are the amplitude and phase evo-
lution respectively. The effective distance is a function
of the antenna responses to the two GW polarizations
(F+,×) and the inclination angle:

leff =
l√

F+2(1 + cos2 ι)2/4 + F×2(cos ι)2
, (3)

and φ0 is the coalescence phase with modulation from
the antenna response functions:

φ0 = φc − arctan

(
F×(2 cos ι)

F+(1 + cos2 ι)

)
. (4)

To search for the unknown phase φ0, a common way is
to use a two-phase matched filter with orthogonal phases.
This can be implemented as a complex filter [45]:

hT (t) = h(t, φ0 = 0) + ih(t, φ0 = π/2). (5)

This filter is then whitened and normalized by its ex-
pected value at an effective distance of 1 Mpc, denoted by
hwT . Using hwT to cross-correlate the whitened data, one
obtains the matched filtering result, the complex SNR
time series z(t):

z(t) =

∫ ∞
0

dw(τ)hwT (t+ τ)dτ. (6)

The detected phase φ0, the coalescence time, and the
effective distance can then be obtained from the detected
SNR.

The SPIIR method uses a chain of first-order impulse
response (IIR) filters to approximate hwT . Each IIR filter
is consist of three coefficients to approximate a small seg-
ment of the waveform: the feedforward coefficient b1, the
feedback coefficient a0 and the delay of the filter td. The
summation of responses from all IIR filters is the approx-
imated waveform denoted by u(t). The SPIIR method is
applicable to approximation of any analytical or numeri-
cal binary waveforms [21–23]. The metric to measure the
approximation accuracy is the overlap O:

O =
(hwT , u)√

(u, u)
√

(hwT , hwT )
, (7)

where (, ) is the inner product4. We optimize the co-
efficients such that the overlap is over 99% which cor-
responds to a SNR loss of less than 1% (see Sec. III A
however for a realistic scenario). The complex SNR from

4 https://en.wikipedia.org/wiki/Dot product

the SPIIR filtering with Nf filters for a given template
can be expressed in a discrete form as:

z[k] =

Nf∑
m=0

(a0,mz[k − 1− td,m/∆t] + b1,mdw[k − td,m/∆t]) ,

(8)
where k is the discrete time, ∆t is the interval of time
samples and m denotes the index of the filter

2. Computational cost and GPU acceleration

A total of 12 floating point operations are required to
calculate the SNR with one IIR filter in Eq. 8 [21, 22].
The total computational cost of the SPIIR filtering in a
search is proportional to the number of filters over all
search templates. Denote the average number of filters
per template by Nf , the number of waveform templates
by NT , the sample rate by NR and the number of de-
tectors by Nd, the computational cost for SPIIR filtering
each second is then O(12Nf ∗NT ∗NR ∗Nd).

A total of 412 000 templates were used by SPIIR during
O3 covering the source component mass of 1.1−100 M�.
In a typical setting of O3 where N(m) is around 350, NR is
2048 Hz and there are 3 detectors, the total computation
is about 10.6 Tera floating point operations per second
(TFLOPS), requiring 2200 typical 4.8-GFLOPS central
processing unit (CPU) cores to process in real-time.

The high demand on CPUs can be mitigated by use
of GPUs. The filtering process is a multiple instruction
single data process. Filtering operations of templates
and of SPIIR filters are independent that they can be
distributed in parallel to GPU threads. It is shown that
with a moderate GPU, a speed-up of more than 100 over
a single-core CPU can be achieved [24–26]. The speed-up
can easily scale up with more GPU cores. The frequent
release of new massive-core GPU hardwares is likely to
accommodate the increased computational demand due
to increased detector sensitivity.

C. Coherent trigger generation and localization

1. Coherent network SNR

The coincidence search method has long been used
to search for event candidates from a detector network
where high SNR triggers from individual detectors are
selected first and those coincident in time are selected
as candidates. The coherent search on the other hand
will look for both time and phase coherent triggers from
individual detectors based on the maximum network log
likelihood ratio (LLR) principle. Previous work can be
found in [32–35] and Appx. V A of this paper shows
the network LLR derivation can be simplified mathemat-
ically using SVD. The coherent statistic from the network
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LLR is referred to the coherent SNR throughout the pa-
per and is expressed with the SVD form as:

ρ2
C(α, δ, tc,Θ) =

∥∥∥∥∥∥∥∥∥IU
T


z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zNd


∥∥∥∥∥∥∥∥∥

2

, (9)

where ρ2
C is the coherent SNR; ‖‖ is the Euclidean norm;

I is a diagonal matrix with the first two elements non-
zero I = diag{1, 1, 0, ..., 0}, and z is the complex SNR of
each detector offset by different arrival times of a signal,
and Nd is the number of detectors in the network. U is
an Nd × Nd unitary matrix from the SVD of the noise-
weighted detector response Gσ given in Eq. 27. The co-
herent SNR dependent on three sets of unknown parame-
ters: the intrinsic source parameters Θ, the sky direction
(α, δ), and the coalescence time tc.

The first two columns of U , spans a plane to capture
the two signal polarizations from Nd detectors. The com-
plementary statistic, the null SNR which is from the null-
space spanned by the remaining Nd − 2 columns of U ,
should only include noise contributions. It can be written
as:

ρ2
NULL =

∑
I

ρ2
I − ρ2

C. (10)

where ρI is the absolute value SNR ρI = |zI |. In the true
direction, the per-detector signal arrival times and sig-
nal phases are coherently matched, the projected signals
should preserve the entire signal power and the projection
for the null SNR should only retains noise. In other direc-
tions where times and phases are not perfectly matched,
the coherent SNR will not preserve all signal power, in-
stead some power will leak to the null space. This lends
to a localization method that explores the phase infor-
mation and is expected to be better than the simple tri-
angularization method using arrival time information.

Before we perform coherent searches, we first select
candidates from each detector. A candidate is selected
if ρI > 4 (the same threshold used by the GstLAL
pipeline [14]). The threshold is less than the fiducial de-
tection threshold of 8 to allow for sub-threshold trigger
and background formation. The candidates are grouped
by each template bank (A template bank is a set of
around 103 templates grouped by chirp mass values for
computational convenience.) over each second, and are
filtered with the following procedure:

• Find the maximum SNR across templates of the
template bank at each time sample and select those
with ρI > 4.

• If a template triggers multiple high SNRs within
one second, only select the candidate with the high-
est ρI .

This procedure will ensure that there is at most one trig-
ger from each template of a bank at different time sam-
ples each second.

For each candidate, we then search for maximum co-
herent SNR using SNR time series from companion detec-
tors. To search over sky directions, we use HEALPix [46]
to divide the whole sky into 3072 equal-area curvilinear
tiles (a.k.a. pixels). The centre coordinates for each tile
are used as sky direction samples. We estimate the max-
imum error on coherent SNR using this sampling. The
worst-case scenario is when the signal lies at the bound-
ary of a sky tile. The angular distance between any
tile centre and its boundary is 1.9o. This corresponds
to a maximum 0.7 ms shift in time from the true time
and a SNR loss of 9% from the peak SNR of a typical
1.4M�+1.4M� system with the O2 L1 detector sensitiv-
ity. The major coherent SNR loss therefore comes from
the misidentified peak SNR. The misidentified individ-
ual SNRs will be projected to the coherent SNR using
the projection matrix U (Eq. 29). The SNR loss from
this inaccurate projection due to the inaccurate sky di-
rection is 0.05%. For more accurate sky tiling, readers
are referred to [31, 32, 35].

The coherent SNR calculation depends on not only the
source sky directions relative to the detectors but also
detector sensitivities. We assume that the noise in one
detector does not change much during an observing run
so that a representative horizon distance is used for the
sensitivity representation. To save run-time calculation
of the projection matrix U , we sample U every half hour
up to 24 hours and update it every day to accommodate
the change of detector locations due to Earth’s rotation.
Relative time offsets of GW arrival times for different de-
tectors are also sampled at the same interval along with
U . The pipeline will calculate the coherent SNR using
the two information that are closest in the time to the
triggering candidate. The error introduced in this imple-
mentation of approximation of U to the coherent SNR
value is subject to the sky sampling error explained in
the last paragraph but it could affect the detected sky
direction up to about 4 degrees in the East-West direc-
tion.

2. ξ2 test for signal consistency

In addition, the pipeline uses another statistic [14, 47]
to test the consistency of the detected SNR series from
each detector with expectation in time domain. The ex-
pected SNR series is projected from the autocorrelation
of a template. The discrete form of the statistic ξ2

I for
detector I is given by:

ξ2
I =

∑Nj

j=−Nj
|zI [j]− zI [0]AI [j]|2∑Nj

j=−Nj
(2− 2|AI [j]|2)

, (11)

where AI [j] is the correlation function of a template with
itself and Nj is the number of time samples for compari-
son. The numerator is summation of a group of χ2 statis-
tics and the denominator is the overall degree of freedom.
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The fraction is then a reduced χ2 with a mean value of
1 [14].

We also compute the average value of ξ2
I , denoted as

ξ2
C:

ξ2
C =

1

Nd

∑
I

ξ2
I . (12)

This average statistic is used along with the coherent
SNR to to form a ranking statistic used to rank coherent
candidate events shown in Sec. II D 1.

3. Background events from time-shift

To quantify the significance of our coherent candidate
by its false alarm rate, incoherent events are constructed
as background events. This is done by applying the con-
ventional time shift technique. For every SNR >= 4
candidate from Sec. II C 1, we apply time shifts on other
detector SNR time series with sufficiently large time off-
sets and use them as the background data. The minimum
offset is 0.1 seconds, which is much longer than the GW
travel time between any two detectors. The number of
time shifts is chosen to be 100, as limited by the GPU
memory to store past data for the statistics. This sets the
lower limit of our FAR from the 100 time shifts of one-
week data to be around 0.5/yr. FAR values beyond this
limit are extrapolated using K-nearest-neighbour (KNN)
techniques shown in Sec. II D 1.

4. Computational cost and GPU acceleration

The computational cost for coherent search and back-
ground collection using Eq. 29 is estimated here. For each
candidate, O(4N2

d ) floating point operations are needed
to compute the coherent SNR and the null SNR with a
pre-calculated look-up table for each sky direction. Here
4 is account for one complex multiplication and one com-
plex addition. Nd is the number of detectors. The look-
up tables are prepared every day and the computing of
them are negligible. The maximum number of candidates
per detector per second is the number of templates NT .
The maximum total FLOPS is therefore O(4N3

dNTNp)
where Np is the number of sky locations, For compu-
tational efficiency, the number of sky areas searched for
background events is reduced to 768 which corresponds
to a maximum SNR loss of 13% compared to the optimal
SNR. Note we perform 100 times calculation for the back-
ground than the foreground. The computation of ξ2 for
each trigger is negligible compared to the coherent net-
work SNR computing. For a typical case of 412 000 tem-
plates as in O3 and three detectors, the worst-case cost is
about 3.5-TFLOPS including both foreground and back-
ground calculations, comparable to the cost of the SPIIR
filtering. However, in practice the number of candidates
is usually one or two orders of magnitudes smaller than

NT . Therefore the computational cost of coherent search
could be significantly less than the SPIIR filtering. The
use of GPUs to accelerate this stage is described in [26].

D. Ranking statistic and false alarm rate
estimation

1. Ranking statistic

A coherent trigger is selected based on a list of statis-
tics: {ρ1, ξ

2
1 , ρ2, ξ

2
1 , ...ρNd

, ξ2
Nd
, ρC , ξ

2
C}. The current co-

herent trigger selection criteria is to require that the SNR
contribution from non-triggering detectors is reasonably
significant so that ρC ≥ ρI +

√
2 (ρI is the SNR of a

single-detector candidate at detector I (Sec. II C 1)). This
requirement is expected to be removed in the future to
allow single-detector candidates.

To construct the ranking statistic, we use the coherent
network SNR ρC which reflects the overall signal strength
in the detector network and ξ2

C for the average score from
the signal morphology test. The coherent statistic and
the null statistic are most useful in signal and noise clas-
sification when there are at least three detectors with
comparable sensitivities. For a network of three detec-
tors with one much less-sensitive detector as in the case
of O2 and O3, the values of coherent statistics would be
close to the network SNR (quadrature sum of individual
SNRs) from the two dominating detectors, L1 and H1.
Besides V1’s SNR contribution is mostly random noise
given the low sensitivity of V1. To deal with this, the
pipeline provides the option to use the dominating detec-
tors for the overall signal strength. ρC in the remainder
of this section would be replaced with

√
ρ2
L + ρ2

H .
The coherent candidates are ranked mathematically by

integrating the background probability P (ρC , ξ
2
C |n) as:

R(ρ
′

C , ξ
2′

C ) =

∫
ρC≥ρ

′
C

∫
ξ2C≤ξ2

′
C

P (ρC , ξ
2
C |n) dξ2

C dρC (13)

where P (|) is the conditional probability and n denotes
the background events constructed by time shifts. In
implementation, the background events are collected into
300× 300 bins of a 2-dimension histogram.

2. False alarm rate estimation

The significance of a candidate is quantified by the
candidate’s false alarm probability, which is determined
by calculating the cumulative distribution of the ranking
statistic R:

P (R < R
′
|n) =

∑
R<R′

P (R|n), (14)

where P (R|n) is the discrete probability of R, calculated
by integrating the probability P (ρC , ξ

2
C |n).
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FIG. 2. Triggers from one-week of O2 noise data (black cir-
cles), triggers from the binary black hole injections described
in Sec. III A (red crosses), and false alarm rate (FAR) estima-
tions using background events of one-week O2 data. Three
representative FAR lines are shown corresponding to signif-
icance levels of 25.6/day (GW database internal submission
threshold), one per two months corresponding to the O3 open
public alert threshold, and 0.5/yr which is our FAR limit from
data.

THe FAR of a given trigger is calculated by its false
alarm probability and the observed noise trigger rate:

FAR(R′) =
P (R < R′ |n)Nb

Tb
. (15)

where Nb is the number of background events and Tb is
the background collection time which is equivalent to the
foreground candidate collection time multiplied by the
number of time shifts performed. Obviously, different
collection of background events will result in a different
FAR value. During O3, background events were grouped
in each computing node based on chirp mass, with 4000
templates processed per node. We normalized the final
FAR of a candidate across the total number of comput-
ing nodes to ensure the number of triggers uploaded is
consistent with the expectation from the FAR.

For the O2 injection test and the O3 run, the pipeline
collects one week of background events for FAR estima-
tion. This sets the lower bound of FAR from data to be
0.5/yr, satisfying the threshold of online alerts. To en-
able the comparisons of significances between candidates
beyond this threshold, a KNN kernel density estimation
method [48] was used to extrapolate the significances of
SPIIR detections. An empirical K value of 11 is chosen
meaning the probability of data within the range spec-
ified by a bin is assigned to be the Gaussian smoothed
average of probabilities of the nearest 11 histogram bins.
The pipeline also collects two hours and one day of back-
ground events to capture potentially non-stationary noise
behaviours in short-term and medium-term. In addition,
the pipeline collects individual statistics, the single SNR
and the single ξ2

I , from the background events and apply

the same FAR estimation method for single-detector FAR
values to be used in the veto stage below. The pipeline
requires at least one million background events before
any FAR value assignment, corresponding to a collection
time of a few hours, to ensure sufficient data points for
reliable FAR estimations. Fig. 2 demonstrates how the
signal triggers can be separated from the noise triggers
using the calculated FARs from one-week of the O2 data.

E. Candidate veto and submission

A single GW signal could trigger several templates, a
scenario avoided by using a clustering function at the last
stage of the pipeline. Candidates are clustered based on
their coherent network SNR values, within a time win-
dow, set to be 0.5 seconds for O3.

A few more tests were designed to veto possible tran-
sient glitches in O3, where O1 and O2 data were used to
tune the veto thresholds.

• Background events were collected by three time
scales of two-hour, one-day and one-week. The
most conservative (maximum) FAR of the three
time scales is assigned to the candidate to account
for possible transient noise fluctuations in any of
these three time scales.

• There were a few loud single-detector glitches in
the O1 and O2 data that generated high signifi-
cance for one detector but very low significance for
other detectors. Therefore we set the FAR thresh-
old for single detectors to be 0.5 Hz to reject such
loud single-detector glitches while not affecting any
detections of known events.

• We submit a subsequent trigger to a latest submis-
sion within the last 50 seconds only if its FAR is a
factor of two less than the latest submission. This
helped remove multiple submissions of a real signal
or periodic transient glitches.

• In January 2020, two SPIIR triggers5 associated
with loud glitches were uploaded after being ranked
with high significance despite extremely high ξ2

values. As a result, an additional test was imple-
mented to veto any triggers with a single ξ2

I > 3.
This threshold was chosen based on trials using O1
and O2 data, and we find that all signals previously
detected by the pipeline are unaffected, including
the GW170817 event despite a significant glitch in
the L1 data close to the event time. This veto re-
mained effective at reducing glitch-based triggers
for the remainder of O3.

5 https://gracedb.ligo.org/superevents/S200106au/view/,
https://gracedb.ligo.org/superevents/S200106av/view/
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If a candidate passes all tests, it is uploaded to
GraceDB with a table of the network SNR, the coherent
SNR, individual SNR, ξ2

I statistics and mass and spin
parameters as well as the time of the merger. For each
significant candidate where SNR is over 7, the skymap
that plots coherent SNRs computed for each searched
sky direction is generated.

III. PIPELINE PERFORMANCE AND O3
ONLINE RUN

A. Data, pipeline, and injection setup

Here we show the performance of the pipeline using
the O2 open data [49]. Category 1 and 2 (CAT1, CAT2)
flags were used to flag periods of poor quality. Compared
to the online data, open data is of better quality as it has
been further processed with glitch removal and calibra-
tions. The CAT1 and CAT2 data quality flags bene-
fited from post-run measurements of noise-witness chan-
nels and provided more data quality information that are
not necessarily available online [49, 50]. The data used
here span from 1186248818 GPS seconds (Aug 13, 2017
at 02:00:00 UTC) to 1187312718 GPS seconds ( Aug 21,
2017, 05:00:00 UTC). The total data duration is 687900
seconds, i.e. 7.96 days. For this period of time, the two
LIGO detectors were mostly in duty with a joint duty cy-
cle of about 70%. For about 25% of the time one of the
LIGO detectors was also joined by the Virgo detector.

The CBC templates used during the SPIIR O3 run
were obtained from [51]. The original templates cover
binary neutron star (BNS), neutron star and black hole
(NSBH), and intermediate-mass binary black hole (BBH)
systems where the total masses are between 2 M� and
400 M� and the mass ratios are between 1.0 and 98.0.
The spin parameter of the system is set to be the non-
negative aligned spin on the z-component. For compo-
nent mass less than 2 M�, the spin is set within ±0.05.
Otherwise, it is set to be within ±0.999. For the SPIIR
O3 run, the templates were down selected by restricting
the component mass to be over 1.1M� as a NS mass less
than that is unlikely from estimation [52]. We further
constrained the upper bound of the component mass to
be less than 100 M� due to computing resource consid-
eration. This gave 412, 000 templates which fit into 103
computing machines on the LIGO-Caltech cluster. Each
computing machine is equipped with a Quad-Core AMD
Opteron(tm) 2376 CPU and a Nvidia GTX 1050Ti GPU.

Two injection sets were used to test the detection per-
formance of the pipeline, the BNS injection set and the
BBH injection set. We expect the pipeline detection per-
formance of NSBH injections to be between the perfor-
mances of the two injection sets here. Injections were
placed every 1000 seconds in the O2 data. The BNS in-
jection parameters were sampled as follows: a uniform
distribution for component masses with the range of 1.1
M� to 2.3 M�, an isotropic distribution up to 0.4 for

FIG. 3. Component mass of templates used for the O3 SPIIR
online search. The templates are divided into BNS, NSBH,
and BBH categories for performance demonstration using
BNS and BBH injections. The BNS templates are chosen so
that both component masses are less than 3 M�. The bound-
ary for the BBH category is that both component masses are
more than 3 M�.

spin, a uniform distribution for sky directions, and a
uniform volume distribution and up to redshift 0.2 for
distance. The BBH injection parameters are drawn from
the same distributions for sky directions and distances re-
spectively except the redshift range was increased to 0.7.
The primary mass for the BBH injection was drawn from
Salpeter IMF distribution between 5 M� and 50 M� and
the secondary mass was drawn uniformly between 5 M�
and the primary mass. The BNS injection set was used
to plot the detection triggers in Fig 2.

In order to demonstrate the pipeline’s performance
with injections, the templates were divided into three
categories to detect BNS, NSBH and BBH injections re-
spectively (see Fig. 3). We can place as many SPIIR
filters for high approximation to the original template.
However, in practice, we limit the number of SPIIR filters
to be no more than 350 as a tradeoff between the filtering
computation cost and the approximation accuracy. Fig. 4
shows that the majority of overlaps from SPIIR filters are
larger than 97%, meaning that SNR loss would be less
than 3% from the SPIIR filtering. This is comparable to
the SNR loss from template placement which is 3%. In
general the overlaps for heavier systems are higher than
that of low-mass systems, e.g. BNS systems. The same
number of filters are used to patch shorter signals from
BBH systems, yielding higher overlaps. However there
are around 5% of the NSBH and BBH systems with over-
laps less than 97%. For comparison, only less than 0.1%
of the BNS template overlaps are less than 97%. This
is due to large asymmetry of some binary systems caus-
ing fast variations in signals that the limited number of
filters are insufficient to capture the profile.

Median PSD of the O2 data segment was used for
data whitening, template whitening, and SNR calcula-
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FIG. 4. Overlaps between the responses of SPIIR filters and
the original templates for each BNS, NSBH, and BBH cate-
gory. Overlap of 97% is marked by the red dashed line.

tions of the injected signals. In reality, the detector noise
is known to be non-stationary in very short time scales
and the effect of using the median PSD than the true PSD
can cause up to 5% discrepancy in detected SNRs for sig-
nificant events [41]. The PSD fluctuation is expected to
be larger in an online run where the pipeline needs to
track the PSDs as mentioned in Sec. II A for whitening.
Fig. 5 shows the amplitude of the noise spectral density
from the median PSD. The figure also shows the BNS
horizon distances computed from each PSD as the con-
ventional method to represent the sensitivity of a single
detector. The pipeline used the combined network SNR
from H1 and L1 for the ranking statistic as explained
in Sec. II D 1. The Virgo sensitivity is low compared to
the LIGO detectors so that it is not used for ranking
but for sky localization. To prepare background events
for immediate significance estimation, the pipeline was
run for a whole week before the injection started and ran
uninterruptedly for the injection period.

B. Injection performance

The performance of the injection runs is demonstrated
in scatter plots (Fig. 6) in terms of missed and found
against effective distance (Eq. 3) and chirp mass. The
chirp mass is a function of the individual masses and
is the leading term in the inspiral phase evolution, ex-
pressed as:

M =
(m1m2)3/5

(m1 +m2)1/5
, (16)

where m1 and m2 are component masses. An injection is
considered detected if the pipeline trigger is within ±0.9
seconds of the injected time and the trigger significance
is better than one per two months. The most sensitive

FIG. 5. Representative amplitude spectral density of the noise
in H1, L1, and V1 detectors from Aug.13 2017 to Aug. 21
2017. The horizon distance is the maximum distance a de-
tector can observe an optimally oriented binary source of 1.4
M� and 1.4 M� with the signal-to-noise ratio no less than 8.

detector, L1, has been used to demonstrate the perfor-
mance in Fig. 6.

The pipeline can detect 100% BNS events at distances
less than 100 Mpc and more than 50% of BNS events if
the source distances are less than 300 Mpc. For BBH
injections, the pipeline can detect 99% sources when the
source distances are less than 500 Mpc and more than
50% of sources when the distances are less than 1 Gpc.
This is consistent with the expectation that heavier sys-
tems which generate stronger GWs could be detected far-
ther away. Two injections within 500 Mpc were missed
by the pipeline because the locations and orientations of
the sources were disfavored by the H1 detector result-
ing a SNR below the selection threshold of 4 and our
O3 pipeline was not prepared to detect GWs from one
detector only.

Fig. 7 shows the SNR recovery accuracy with H1, L1
and V1 detectors. The expected SNRs are computed
from perfectly matching templates using the same me-
dian PSD. There is a 11% error on average in H1 SNR
recovery and 7% error in L1 SNR recovery. Up to 5%
SNR deviation is expected as we used a fixed PSD in-
stead of a true PSD [41]. Other contributors to the error
are the mismatch between the search template and the
injection templates, and by the SPIIR approximation to
the search templates. There is a large uncertainty in V1
SNR estimations due to the low sensitivity of Virgo in
O2. A total of 40% of V1 SNRs are expected to be less
than 2, meaning they are not detectable by V1. This
caused large SNR discrepancies as shown in the last bin
of V1 SNR error in the figure. The V1 SNR estimation
should be improved by the sensitivity improvement in O3
and beyond.

Fig. 8 shows the accuracy of detected chirp mass for
BNS and BBH injections. For BNS detections, the de-
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(a) (b)

FIG. 6. (a) Missed (orange) and found (blue) BNS injections and the SPIIR detection efficiency in terms of the LIGO-Livingston
(L1) effective distance and the binary chirp mass. (b) Missed and found BBH injections by the pipeline. Heavier systems that
could generate stronger GWs can be detected farther away. The detection efficiency of NSBH sources are expected to between
these two types of sources.

(a) (b)

FIG. 7. Top panel: expected SNRs vs. detected individual SNRs of (a) BNS detections, (b) BBH detections using O2 data.
Bottom panel: fractional difference of detected SNRs and expected SNRs from (a) BNS detections, (b) BBH detections. SNR
fractional differences are averagely around 11% for H1 detections and 7% for L1 detections. Around 40% of V1 detected SNRs
are at least 50% off the expected SNRs as shown in the last bins of the histograms. Due to low sensitivity of Virgo in O2, most
of the expected SNRs are less than 2 that the large uncertainty in SNR detection is expected.

tected chirp masses are within 0.4% of true values. The
errors for BBH chirp mass detections are much larger in
the high chirp mass region. This is partly due to that the
BBH templates are placed more sparsely for high chirp
masses and partly due to that the uncertainty is larger
in high mass region[53].

C. O2 event search results

1. GW170814, GW170817, and GW170818

The pipeline used the entire bank set
(BNS+NSBH+BBH) to search over the same chunk
of data without injections. It reported two significant
triggers corresponding to the known events GW170817



11

(a) (b)

FIG. 8. Injected vs. detected chirp mass (top panel) and fractional error (bottom panel) of (a) BNS detections, (b) BBH
detections. The errors for BBH chirp mass detections are larger in the high chirp mass region but are still within 20%.

and GW170814 as shown in Fig. 9. These two events
were also reported online by other pipelines during the
O2 run [5].

The 3rd event GW170818 within the same data chunk
was only identified offline using GstLAL [5] and PyCBC
searches [6]. There was a GstLAL online trigger matching
this event but with a marginal significance [5]. SPIIR re-
ported a trigger with 4.4×102/yr in this search. The sig-
nificance of GW170818 SPIIR trigger was affected by the
background contaminated by the precedent GW170814
detection. If we remove the GW170814 event trigger from
the GW170818 background collection, the GW170818
trigger becomes significant at a FAR of 11/yr. In the fu-
ture runs where detections are more frequent, the SPIIR
online pipeline is planned to adopt strategies to remove
influences of detections from background. The signifi-
cance of GW170818 trigger is not affected by itself as the
online pipeline only collects background from history.

Table I gives the individual, the network, the null
SNRs and the significance for the three SPIIR detec-
tions. The network SNRs are consistent with that of the
GstLAL (within 1%) and the PyCBC pipelines (within
1%) [5].The null SNRs are not used in the SPIIR pipeline
for trigger ranking but are presented here for comparison
to the expected null SNR of 2 from Gaussian noise as-
sumption. The null SNR information is not explored by
the O3 pipeline as the O3 detector network is equiva-
lently a 2-detector network given the low-sensitivity of
Virgo. This information is considered for future versions

of the pipeline when there are at least three detectors
with comparable high sensitivity.

The pipeline outputs a sky map of coherent SNR val-
ues for each significant candidate. Fig. 10 shows the co-
herent SNR skymap for the most significant detection
during this search, the GW170817 SPIIR detection. The
optical discovery of the event is highlighted and well cap-
tured by the high SNR area. The Bayestar program has
been used to rapidly construct source sky localizations
for CBC triggers during online runs [54]. The localiza-
tion of GW170817 using the Bayestar program with the
SPIIR detection is shown in Fig. 10. The 90% localiza-
tion area from the SPIIR detection is 30 deg2, consistent
with the published 31 deg2 using the Bayestar program
with a PyCBC trigger6. Comparing the two sky maps in
the figure, the coherent SNR map computes the network
likelihood ratio optimized over four extrinsic parameters,
while the Bayestar method takes prior information of all
extrinsic parameters and calculates the marginalized pos-
terior distribution.

D. Latency

The pipeline latency is defined as the time between re-
ceiving data and producing a trigger. The latency in gen-

6 https://dcc.ligo.org/LIGO-G1701985/public

https://dcc.ligo.org/LIGO-G1701985/public
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FIG. 9. Search results of H1, L1, and V1 data from Aug.13
to Aug.21, 2017 using the O3 SPIIR pipeline. Orange line
is the expected number of false alarms given the threshold of
inverse false alarm rate (IFAR). Shaded area shows the Gaus-
sian standard deviations for the number of the false alarms.
Blue curve is the number of SPIIR foreground candidates from
this survey. The GW170818 detection has a significance of
11/yr if removing GW170814 influence from the background.

Event detection ρL ρH ρV Network
SNR

ρNULL FAR (y−1)

GW170814 13.8 8.9 3.8 16.9 0.3 0.04a

GW170817 24.4 19.4 3.7 31.5 1.3 < 10−10a

GW170818 9.9 4.4 4.1 11.6 1.0 4.4× 102 (11b )
a 0.5/yr is our FAR limit from data, the significant FARs here

are extrapolated using KNN for the purpose of comparison.
b If GW170814 influence is excluded from background.

TABLE I. Individual, network, null SNRs and significance of
three SPIIR detections in the search of H1, L1, and V1 data
from Aug.13 to Aug.21, 2017. The expected distribution of
the null SNR square in Gaussian noise is a central χ2 distri-
bution with the degree of freedoms 2.

eral comes from two sources: the intrinsic delay to collect
required size of data, and the time spent on computing.
Tab. II provides a list of main latency sources and pos-
sible future improvement. Nrate is the data sample rate
(2048 Hz for O3). At the beginning of the pipeline, the
data is packed in one-second packets causing a waiting
time of one second. The size of a data packet in the-
ory can be reduced to as small as one sample. Next the
downsampling module uses a FIR filter that introduces a
waiting time equaling the filter length NFIR,D which has a
typical length of 192. The downsampling precision is pro-
portional to the length of this filter. We assume this filter
does not change for simplicity. In the next stage, seg-
ments of the data are collected and Fourier transformed
into the frequency domain. The inverse of the noise PSD
is then applied to this as a weight to perform the spec-
tral whitening. The whitening latency is dependent on
the segment length which is set to two seconds in O3.
A recent work proposed a time-domain whitening that

can reduce the latency to be zero-second [55]. The next
stage gating applies a 0.25 second of side window and we
simply assume the same for future runs. In the coherent
search stage, it calculates ξ2

I over a series of data sam-
ples that requires a collection of Nj data samples (typi-
cally 175). In the last stage of candidate clustering and
veto process, a 0.5 second window is applied to cluster
triggers. This could be removed by applying submission
thresholds. Though data comes in one-second packets,
they would be sliced and combined at different stages of
the pipeline and this process introduces latencies. For
example, the downsampling module needs to reserve a
fraction of NFIR,D/Nrate seconds to process the data at
different sampling rates, and then the downstream mod-
ule working on integral seconds, needs to wait this extra
time to synchronize and combine these data streams at
different sampling rates. A latency of five-second is feasi-
ble by using the zero-latency whitening [55] and advanced
computing hardware. The latency could be reduced to
sub-second in an ideal scenario when all pipeline compo-
nents reach the best latency solutions.

To measure the latency of the pipeline in reality, we
ran the pipeline over one-day stream replay of the O2
online data. We compared the pipeline latency on two
computing platforms. As the CBC search is computa-
tionally intensive and most of the computation has been
carried out on GPUs, we listed the GPU and its host
CPU for each platform. Platform 1 is equipped with
one Quad-Core AMD Opteron(tm) 2376 CPU and one
Nvidia GTX 1050Ti GPU. Platform 1 was used by the
SPIIR pipeline in O3. Platform 2 is equipped with a
more advanced CPU, the Intel(R) Xeon(R) E5-2630v4 @
2.20GHz and a more advanced GPU, the Nvidia Ti-tan
V100. Just by using advanced hardware from Platform
2, the latency has been improved by nearly one second
as shown by Fig. 11. At the time of writing only the
PyCBCLive pipeline published its O3 latency which is in
the range of 11 to 15 seconds [20]. The median latency
of the SPIIR pipeline is less than 9 seconds.

E. O3 public alerts

During O3, 80 public alerts were issued from candi-
dates reported by the five online pipelines 7. The rate
of glitches, predominantly at frequencies below 100 Hz,
has increased significantly during O3 [8]. This resulted
in 24 immediate retractions of submitted public alerts
based on online investigation of noise association with
the candidates. Two retractions were from the SPIIR
pipeline on the same day of Jan. 6, 2020 due to high-
amplitude scattered noise in the L1 detector on that day.
It is expected the offline searches using cleaned data will
find some alerts to be insignificant and in the meantime

7 https://gracedb.ligo.org/superevents/public/O3/

https://gracedb.ligo.org/superevents/public/O3/
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(a) (b)

FIG. 10. (a) The all-sky map of coherent SNRs searched by the SPIIR pipeline for the GW170817 detection. (b) Rapid sky
localization, Bayestar, using the SPIIR detection. The black cross marks the sky direction from the optical discovery [12].

.

FIG. 11. Latency of the O3 SPIIR pipeline on two hardware
platforms (see Sec. III D for description of the platforms).
Dashed lines are median latencies. Platform 1 was used for
the SPIIR pipeline for O3 online search.

rediscover some sub-threshold online triggers with im-
proved significance. Of the 56 online alerts, the SPIIR
pipeline registered 37 of them as published in LIGO-
Virgo GCN notices 8 and one online trigger associated
with the GW190814 event [56]. 37 of them were reported
with other pipelines and one alert was reported only by
the SPIIR pipeline (S190910d) which is proved no longer
significant by the offline deep searches [8].

8 https://gcn.gsfc.nasa.gov/lvc_events.html

Component Current latency (s) Future latency (s)

Data package 1(1) NPACK/Nrate
(1)

Downsampling NFIR,D/Nrate
(1) NFIR,D/Nrate

(1)

Whitening 2(1) 0

Gating 0.25(1) 0.25(1)

SPIIR filtering < 1(2) < 1(2)

Coherent search < 1(2) +Nj/Nrate
(1) < 1(2) +Nj/Nrate

(1)

Trigger generation < 1(2) + 0.5(1) < 1(2)

Data irregular
slicing

< 1(1) ∼ 0

Computing time
from components
other than afore
mentioned

< 1(2) ∼ 0

Overall < 9 < 5

TABLE II. Breakdown of the pipeline latency. (1) marks the
intrinsic delay associated with data collection and (2) marks
the latency associated with computing time. Nrate is the data
sample rate. NPACK is the number of samples for each data
packet. NFIR,D is the filter length for downsampling. Nj is the
number of data samples used for ξ2 calculation in the coherent
search.

IV. CONCLUSION AND DISCUSSION

This paper presents a low-latency pipeline used in
the third LIGO-Virgo observation (O3) run, the SPIIR
pipeline. It uses the efficient time-domain GPU-
accelerated SPIIR method to perform time-domain
matched filtering covering templates from binary neu-
tron stars to intermediate binary black holes. It is the
first low-latency CBC pipeline that employs the coherent
search method with the help of GPU acceleration. The
median latency of the pipeline for O3 is less than nine

https://gcn.gsfc.nasa.gov/lvc_events.html
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seconds which is the fastest among online pipelines. It
has the potential to be reduced to be below five seconds.

For the next coming run of O4, it will use data from
new detector KAGRA and explore new algorithms to uti-
lize the null-SNR information. Though the pipeline is
using the novel coherent statistic for multi-detector de-
tections, the single-detector significance estimation has
been implemented for vetoing and can be adapted to sin-
gle detector triggering. This can help increase the num-
ber of detections up to 30% [8]. The early-warning con-
figuration of the pipeline to detect CBC events before the
merger has been tested recently [57]. Given that the de-
tector sensitivity is expected to improve significantly in
this decade, early-warning detections have the potential
to lead to major breakthroughs in the near future.

Additional information of the pipeline document and
code can be found in https://git.ligo.org/lscsoft/spiir/.
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V. APPENDIXES

A. Network log likelihood ratio

A GW signal is a function of two sets of parameters, the
intrinsic parameters (Θ) including the masses and spins
of the components, and extrinsic parameters including
the sky location (right ascension α and declination δ),
the coalescence time tc, the luminosity distance l, the po-
larization angle ψ, the inclination angle ι, and the GW
coalescence phase φc. Previous work have shown that
four extrinsic waveform parameters (l, ψ, ι, and φc) can
be analytically maximized for the network log likelihood
ratio (LLR) statistic [32–35] which leaves a reduced set of
parameters for the network LLR representation. Here we
simplify the reduced LLR using the SVD technique and
show that the SNRs from matched filtering can be di-
rectly used to construct the network LLR statistic which
is referred to the coherent SNR throughout the paper.

We first show the GW signal expression with an inter-
ferometric detector I:

hI(t) = F+
I (t)h+(t) + F×I (t)h×(t), (17)

where h+,× are the two polarizations and F+,× are beam-
pattern functions describing the responses of a detector
to the two polarizations.

By rearranging the extrinsic parameters, the signal can
then be expressed with the direction-induced modula-
tions G+,× which is dependent on the source sky loca-
tion α and δ, and the detector location and orientation
s(t); the ajk matrix pertaining to the source luminosity
distance l, the polarization angle ψ, the inclination angle
ι, and the GW coalescence phase φc; and the hc and hs
waveforms which only depend on the intrinsic parameters
and the coalescence time.

hI(t;Θ, α, δ, tc, l, ψ, ι, φc, s) =
(
G+
I (α, δ, s(t)) G×I (α, δ, s(t))

)( a11 a12

a21 a22

)(
hc(t;Θ, tc)
hs(t;Θ, tc)

)
. (18)

The G+,× expressions can be found in Eq.12 and Eq.13 of [27] (G+ equivalent to a(t) and G× equivalent to b(t) in

https://git.ligo.org/lscsoft/spiir/
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cited equations) or Eq.1.53 and Eq.1.54 in [58]. They are
related to the beam-pattern functions by the polarization
angle ψ:(

F+
I (t)
F×I (t)

)
=

(
cos 2ψ sin 2ψ
− sin 2ψ cos 2ψ

)(
G+
I (t)

G×I (t)

)
.

The ajk matrix can be expressed as:

(
a11 a12

a21 a22

)
=

1

l

(
cos 2ψ sin 2ψ
− sin 2ψ cos 2ψ

)(
1
2 (1 + cos2 ι) 0

0 cos ι

)(
cosφc sinφc
− sinφc cosφc

)
. (19)

The solutions to {l, ψ, ι, φc} from ajk can be found in
[34]. hc and hs are in quadrature and the strength of each
at a distance of 1 Mpc seen from a detector is defined by
σI :

(hc | hs) = 0,
σ2
I ≡ 1

1Mpc (hc | hc) = 1
1Mpc (hs | hs). (20)

The operator (· | ·) is defined as:

(a | b) = 4Re

∫ ∞
0

ã(f)b̃∗(f)

SnI
(f)

df, (21)

where SnI
(f) is the noise PSD in this detector.

The network LLR is the sum of single LLRs assuming

the noises in individual detectors are independent:

lnLNW =
∑
I

(dI |hI)−
1

2
(hI |hI),

= (dT |h)− 1

2
(hT |h), (22)

where the subscript NW stands for the network, d =
(d1, ..., dNd

)T with Nd being the number of detectors.
h = (h1, ..., hNd

)T depends on the detector location. The
operator on the matrix is defined as:

(D | B) =

n∑
p=1

(Djp | Bpk)p . (23)

We group the aij into two entities Ac = (a11, a21)T

and As = (a12, a22)T for expression convenience. G rep-
resents the modulation for each detector. The network
LLR can be written as:

lnLNW =
(
dT | GAchc + GAshs

)
− 1

2

(
AT
c G

Thc + AT
sG

Ths | GAchc + GAshs
)
. (24)

Maximizing LLR over ajk is equivalent to maximiza-
tion over Ac and As respectively. The solution is then:

Ax

∣∣∣∣
x={c,s}

=
(
GThx | Ghx

)−1
GT (dT | hx),

=
1

1Mpc
(GT

σGσ)−1GT
σ

(
Hx | dT

)
, (25)

where

Hx

∣∣∣∣
x={c,s}

=


hx/σ1 0 . . . 0

0 hx/σ2 . . . 0
...

...
. . .

...
0 0 . . . hx/σNd

 . (26)

Gσ is the noise-weighted modulation and its SVD has

the form:

Gσ =


G+

1 σ1 G×1 σ1

G+
2 σ2 G×2 σ2

...
...

G+
Nd
σNd

G×Nd
σNd

 = UΛV T ,Λ =


λ1 0
0 λ2

...
...

0 0

 .

(27)

The SVD decompose Gσ into a Nd×Nd unitary matrix
U , a Nd × 2 pseudo-diagonal matrix Λ with decreasing
positive singular values, and the transpose of a 2 × 2
unitary matrix V . This form can be used obtain the
Moone-Penrose pseudo inverse (GThx | Ghx)−1 and sim-
plify Eq. 25.

Substituting the solutions of A into the network LLR,
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the maximized LLR can then be expressed as:

lnLNW
max{ajk}

=
1

1Mpc

∑
x={c,s}

(
Hx | d

)T
UIUT

(
Hx | d

)
=

1

1Mpc
‖ IUT

(
Hc + iHs | d

)
‖2 (28)

=
1

1Mpc

∥∥∥∥∥∥∥∥∥IU
T


z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zNd


∥∥∥∥∥∥∥∥∥

2

, (29)

where ‖ · ‖ is the Euclidean norm, I = diag{1, 1, 0, ..0},
and z is the individual SNR from each detector. The
maximization procedure can be thought of as a projection
of all the signal components in the Nd streams onto the
signal plane spanned by the two vectors from U , with the

noise contributions reduced from Nd Gaussian streams to
two Gaussian streams. If the noise is Gaussian in each
detector, then this statistic will obey a non-central χ2

distribution with a 4 degrees of freedom.

For a detector network with more than two detectors,
the null stream or the null statistic can then be expressed
as:

lnLNULL =
1

1Mpc

∥∥∥∥∥∥∥∥∥I
†UT


z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zNd


∥∥∥∥∥∥∥∥∥

2

, (30)

where I† = diag{0, 0, 1, . . . , 1}. When noise is Gaussian
in each detector this statistic follows a central χ2 distri-
bution with (Nd × 2− 4) degrees of freedom.
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M. Tápai, The Astrophysical Journal 891, 123 (2020).

[7] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and
M. Zaldarriaga, Phys. Rev. D 101, 083030 (2020).

[8] R. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. X 11, 021053 (2021).

[9] T. Akutsu et al., arXiv e-prints (2020), arXiv:2005.05574
[physics.ins-det].

[10] B. Iyer et al., “Ligo-india, proposal of the consortium
for indian initiative in gravitational-wave observations
(indigo),” https://dcc.ligo.org/ligo-M1100296/public
(2011).

[11] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. Lett. 119, 161101
(2017).

[12] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi
GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc
Telluride Imager Team, IPN, Insight-Hxmt, ANTARES,
Swift, AGILE Team, 1M2H Team, Dark Energy Camera
GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA,
ASKAP, Las Cumbres Observatory Group, OzGrav,
DWF (Deeper Wider Faster Program), AST3, CAAS-
TRO, VINROUGE, MASTER, J-GEM, GROWTH,
JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-
STARRS, MAXI Team, TZAC Consortium, KU, Nordic
Optical Telescope, ePESSTO, GROND, Texas Tech
University, SALT Group, TOROS, BOOTES, MWA,
CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA,
HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of
Sky, Chandra Team at McGill University, DFN, AT-
LAS Telescopes, High Time Resolution Universe Survey,

RIMAS, RATIR, SKA South Africa/MeerKAT), Astro-
phys. J. Lett. 848, L12 (2017), arXiv:1710.05833 [astro-
ph.HE].

[13] S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Ti-
wari, G. A. Prodi, C. Lazzaro, K. Ackley, S. Tiwari, C. F.
Da Silva, and G. Mitselmakher, Phys. Rev. D 93, 042004
(2016).

[14] C. Messick et al., Phys. Rev. D 95, 042001 (2017).
[15] S. Sachdev et al., arXiv e-prints (2019),

arXiv:1901.08580 [gr-qc].
[16] C. Hanna et al., Phys. Rev. D101, 022003 (2020),

arXiv:1901.02227 [gr-qc].
[17] T. Adams, D. Buskulic, V. Germain, G. Guidi, F. Mar-

ion, M. Montani, B. Mours, F. Piergiovanni, and
G. Wang, Class. Quant. Grav. 33, 175012 (2016),
arXiv:1512.02864 [gr-qc].

[18] A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst,
and D. A. Brown, Astrophys. J. 849, 118 (2017),
arXiv:1705.01513 [gr-qc].

[19] A. H. Nitz, T. Dal Canton, D. Davis, and S. Reyes, Phys.
Rev. D 98, 024050 (2018), arXiv:1805.11174 [gr-qc].

[20] T. Dal Canton, A. H. Nitz, B. Gadre, G. S. Davies,
V. Villa-Ortega, T. Dent, I. Harry, and L. Xiao, arXiv
(2020), arXiv:2008.07494 [astro-ph.HE].

[21] J. Luan, S. Hooper, L. Wen, and Y. Chen, Phys. Rev.
D 85, 102002 (2012), arXiv:1108.3174 [gr-qc].

[22] S. Hooper, S. K. Chung, J. Luan, D. Blair, Y. Chen, and
L. Wen, Phys. Rev. D 86, 024012 (2012), arXiv:1108.3186
[gr-qc].

[23] D. McKenzie, Using the SPIIR method for detection of
gravitational waves from spinning neutron star binaries.,
Master’s thesis, University of western australia (2014).

[24] Y. Liu, Z. Du, S. K. Chung, S. Hooper, D. Blair, and
L. Wen, Classical and Quantum Gravity 29, 235018
(2012).

[25] X. Guo, Q. Chu, S. K. Chung, Z. Du, L. Wen, and Y. Gu,
Computer Physics Communications 231, 62 (2018).

[26] X. Guo, Q. Chu, Z. Du, and L. Went, in 2018 26th Eu-
ropean Signal Processing Conference (EUSIPCO) (IEEE,
2018) pp. 2638–2642.

[27] P. Jaranowski, A. Królak, and B. F. Schutz, Phys. Rev.

http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://arxiv.org/abs/1411.4547
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://arxiv.org/abs/1408.3978
http://dx.doi.org/10.1103/PhysRevLett.123.231107
http://dx.doi.org/10.1103/PhysRevLett.123.231108
http://dx.doi.org/10.1103/PhysRevLett.123.231108
http://dx.doi.org/ 10.1103/PhysRevX.9.031040
http://dx.doi.org/10.3847/1538-4357/ab733f
http://dx.doi.org/ 10.1103/PhysRevD.101.083030
http://dx.doi.org/ 10.1103/PhysRevX.11.021053
http://arxiv.org/abs/2005.05574
http://arxiv.org/abs/2005.05574
http://dx.doi.org/ 10.1103/PhysRevLett.119.161101
http://dx.doi.org/ 10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.3847/2041-8213/aa91c9
http://dx.doi.org/10.3847/2041-8213/aa91c9
http://arxiv.org/abs/1710.05833
http://arxiv.org/abs/1710.05833
http://dx.doi.org/ 10.1103/PhysRevD.93.042004
http://dx.doi.org/ 10.1103/PhysRevD.93.042004
http://dx.doi.org/10.1103/PhysRevD.95.042001
http://arxiv.org/abs/1901.08580
http://dx.doi.org/10.1103/PhysRevD.101.022003
http://arxiv.org/abs/1901.02227
http://dx.doi.org/10.1088/0264-9381/33/17/175012
http://arxiv.org/abs/1512.02864
http://dx.doi.org/ 10.3847/1538-4357/aa8f50
http://arxiv.org/abs/1705.01513
http://dx.doi.org/ 10.1103/PhysRevD.98.024050
http://dx.doi.org/ 10.1103/PhysRevD.98.024050
http://arxiv.org/abs/1805.11174
http://arxiv.org/abs/2008.07494
http://dx.doi.org/ 10.1103/PhysRevD.85.102002
http://dx.doi.org/ 10.1103/PhysRevD.85.102002
http://arxiv.org/abs/1108.3174
http://dx.doi.org/10.1103/PhysRevD.86.024012
http://arxiv.org/abs/1108.3186
http://arxiv.org/abs/1108.3186
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2018.05.002
http://dx.doi.org/10.1103/PhysRevD.58.063001


17

D 58, 063001 (1998), arXiv:gr-qc/9804014.
[28] A. Rogan and S. Bose, Classical and Quantum Gravity

21, S1607 (2004).
[29] A. Krolak, M. Tinto, and M. Vallisneri, Phys. Rev. D

70, 022003 (2004).
[30] N. J. Cornish and E. K. Porter, Class. Quant. Grav. 24,

5729 (2007), arXiv:gr-qc/0612091.
[31] A. R. Williamson, C. Biwer, S. Fairhurst, I. W. Harry,

E. Macdonald, D. Macleod, and V. Predoi, Phys. Rev.
D 90, 122004 (2014).

[32] I. W. Harry and S. Fairhurst, Phys. Rev. D 83, 084002
(2011).

[33] A. Pai, S. Dhurandhar, and S. Bose, Phys. Rev. D 64,
042004 (2001), arXiv:gr-qc/0009078.

[34] S. Bose, T. Dayanga, S. Ghosh, and D. Talukder, Clas-
sical and quantum gravity 28, 134009 (2011).

[35] D. Macleod, I. W. Harry, and S. Fairhurst, Phys. Rev.
D 93, 064004 (2016).

[36] M. E. Normandin and S. D. Mohanty, Phys. Rev. D 101,
082001 (2020).

[37] K. Cannon, C. Hanna, and D. Keppel, Phys. Rev. D 84,
084003 (2011).

[38] I. S. Heng, Classical and Quantum Gravity 26, 105005
(2009).
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