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The gravitational radiation from the ringdown of a binary black hole merger is described by the solution of the
Teukolsky equation, which predicts both the temporal dependence and the angular distribution of the emission.
Many studies have explored the temporal feature of the ringdown wave through black hole spectroscopy. In
this work, we further study the spatial distribution, by introducing a global fitting procedure over both temporal
and spatial dependences, to propose a more complete test of General Relativity. We show that spin-weighted
spheroidal harmonics are the better representation of the ringdown angular emission patterns compared to spin-
weighted spherical harmonics. The differences are distinguishable in numerical relativity waveforms. We also
study the correlation between progenitor binary properties and the excitation of quasinormal modes, including
higher-order angular modes, overtones, prograde and retrograde modes. Specifically, we show that the exci-
tation of retrograde modes is dominant when the remnant spin is anti-aligned with the binary orbital angular
momentum. This study seeks to provide an analytical strategy and inspire the future development of ringdown
test using real gravitational wave events.

I. INTRODUCTION

The gravitational waves emitted at the final stage of a bi-
nary black hole (BBH) merger – the ringdown stage, consist
of a series of quasinormal modes (QNMs) [1–5]. QNMs are
solutions to the homogeneous Teukolsky equation [6–9], i.e.
the linearized Einstein’s equations in the background of a Kerr
black hole [10–14]. The foundation for doing so follows mod-
els that describe stellar collapses [10–13] – the strong-field re-
gion “falls down” toward the future horizon of the final black
hole, revealing a spacetime region in which perturbations sat-
isfy the homogeneous Teukolsky equation with ingoing con-
dition near the horizon, and outgoing condition near infinity.

The homogeneous Teukolsky equation not only predicts the
temporal dependence of the ringdown waves, in terms of their
complex spectra, but also their spatial distributions, in terms
of angular emission patterns. There have been many studies
on black hole ringdown spectroscopy involving multiple an-
gular frequencies by modeling it as the superposition of expo-
nentially damped sinusoids [15–20], or using other methods
of frequency extraction [21, 22]. Recently, it has been shown
that the inclusion of overtones [4, 23] can improve the fitting
of numerical relativity (NR) waveforms and lead to better es-
timation of ringdown model parameters [20, 24, 25], because
of the better characterization of the post-merger signal from
an earlier time.

Many phenomenological fitting studies based on NR wave-
forms have been done [26–28], while most previous works
only focused on the ringdown temporal properties. Our study
further includes spatial dependence on different models, ex-
plicitly. Specifically, when the final spin is not aligned with
the initial orbital angular momentum, the spatial properties for
retrograde excitations [29–32] have not been carefully stud-
ied. As the temporal-spatial consistency check of ringdown
emission can provide a more complete test of General Rela-

tivity [33–36], exploring such a problem defines the theme of
this paper.

In gravitational wave observations, the prospective searches
for ringdown waveforms [37, 38] would enable the test of the
spatial-temporal features. With the rapidly increasing number
of binary coalescences observed [39–42] by ground-based de-
tectors like Advanced LIGO [43] and Advanced Virgo [44],
events with detectable higher-order modes [45–47] are ob-
served, e.g., GW190412 [48] and GW190814 [49]. The de-
tectability of higher-order modes not only impacts the param-
eter estimation [18, 19, 36, 50–52], but can be used to study
angular emission as well. Currently, in the ringdown stage, a
high signal-to-noise ratio (SNR) is difficult to achieve due to
the lack of post-merger cycles and the degraded detector sensi-
tivity at high frequency range. However, the sensitivity of the
proposed next-generation detectors, including Einstein Tele-
scope [53, 54], Cosmic Explorer [55, 56], and NEMO [57],
will be significantly improved [58], especially at the high fre-
quencies, opening more possibilities in the BBH post-merger
studies [25]. Although a single event could provide limited
information about angular dependence, combining multiple
events and extracting angular-dependent features will become
possible with the expected large number of events in the fu-
ture. That calls for strategic studies of temporal-spatial emis-
sion patterns before more events with high ringdown SNR are
observed.

In this paper, we study ringdown gravitational waves and
show that the spin-weighted spheroidal harmonics are es-
sential in the faithful representation of the temporal-spatial
ringdown emission pattern [59], further confirming that the
Teukolsky equation describes the ringdown dynamics. We fit
the NR simulated strain data of merging binaries with different
parameters provided in the Simulating eXtreme Spacetimes
(SXS) Collaboration catalog [60], without adding simulated
noise. The exclusion of nonlinear gravitational wave mem-
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ory effects in SXS waveforms [61] provides an ideal test bed
for the linear perturbation theory. We infer the final black
hole spin and mass via parameter estimation [62, 63], as in
the usual temporal-only fitting. Our results show that when
the spatial distribution is considered in addition to the spec-
trum, more information could be extracted from the ringdown
stage, which would benefit the determination of the progenitor
BBH properties and their formation channels [64, 65]. Along
this procedure, we describe various features of the temporal-
spatial emission pattern; in particular, we illustrate the physi-
cal meaning of the two complex amplitudes of each QNM. We
also study the cases where retrograde modes [29–32, 66] are
excited when the initial spin of the primary progenitor black
hole is large and anti-aligned with the orbital angular momen-
tum [64, 67], and thus the remnant spin is left anti-aligned
with the binary orbital angular momentum.

The structure of this paper is organized as follows. In
Sec. II, we review the QNM decomposition model under
the spin-weighted spheroidal harmonic basis and the spin-
weighted spherical harmonic basis, respectively, and describe
the temporal-spatial fitting strategy used in this paper. In
Sec. III, we describe the fitting results for waveforms of a
benchmark binary and several nonspinning binaries with dif-
ferent mass ratios, and discuss the distinguishability of the two
decomposition models and the contributions of higher-order
modes and overtones. Then, in Sec. IV, we investigate the
excitation of retrograde modes when the remnant spin is anti-
aligned with the binary orbital angular momentum. Finally, in
Sec. V, we summarize and further discuss our results.

II. RINGDOWN MODELS

In this work, the discussion is restricted to non-precessing
binaries, for which we establish two coordinate systems: the
“orbital frame” adapted to the binary orbital angular momen-
tum, and the “final spin frame” adapted to the remnant spin
angular momentum. In the final spin frame, we decompose
the temporal and angular distribution of gravitational waves
into a sum over QNMs. This analytical decomposition is fit-
ted to the waveforms from NR simulations. In Sec. II A, we
introduce the orbital and final spin frames, describe the QNM
decomposition in the final spin frame, and discuss the excita-
tions of the modes analytically. In Sec. II B, we present the
fitting strategy in the orbital frame.

A. Frames and QNM models

In this subsection, we define the coordinate frames used to
describe outgoing waves near infinity, carry out QNM decom-
position in two types of bases, describe the temporal and spa-
tial dependences of the QNMs, and discuss the excitations of
prograde and retrograde modes.

FIG. 1. Convention of coordinate continuation from positive to
negative values of the final spin χ f . (a) Spin aligned case (χ f > 0):
when the final spin is aligned with the orbital angular momentum,
the final spin frame coincides with the orbital frame, with ι = ι̃ and
ϕ = ϕ̃. (b) Spin anti-aligned case (χ f < 0): when the final spin is
anti-aligned with the orbital angular momentum, we have ι = π − ι̃
and ϕ = 2π − ϕ̃.

1. Coordinate frames

For the majority of BBH events detected so far, the inspiral
stage often contributes most of the SNR [35, 36, 40, 42]. The
most natural coordinate system to describe non-precessing bi-
naries has its ẑ axis aligned with the direction of the orbital
angular momentum. We refer to this as the orbital frame and
use (ι, ϕ) to label the polar (inclination) and azimuthal angles,
respectively. In particular, waveforms of non-preceesing bi-
naries from the SXS catalog adopt the orbital frame. On the
other hand, QNM decomposition is most easily performed by
taking the ẑ axis along the spin direction of the remnant black
hole. We shall refer to this as the final spin frame and use (ι̃, ϕ̃)
for its polar (inclination) and azimuthal angles.

The transformation between the orbital frame and the final
spin frame in two specific cases are illustrated in Fig. 1: (a)
When the final spin of the remnant black hole is aligned with
the orbital angular momentum (spin aligned case) [28], the
two frames coincide, i.e. ι = ι̃, ϕ = ϕ̃. (b) When the final
spin is anti-aligned with the orbital angular momentum (spin
anti-aligned case), we have ι = π− ι̃ and ϕ = 2π−ϕ̃. With such
coordinate transformation, the parameter space of χ f is con-
structed to be continuous across zero, thus linking the cases
of aligned and anti-aligned remnant spins. For more general
cases of spin misaligned with the orbital angular momentum,
the orbital angular momentum precesses in time, and is nei-
ther aligned nor anti-aligned with the final spin – this is left
for future studies.

For consistency with the SXS data structure and most of
the literature, we adopt the orbital frame when describing the
final remnant spin χ f , with χ f < 0 corresponding to the spin
anti-aligned case, and use |χ f | to denote the spin magnitude.
For simplicity, we use the symbol ~Ω ≡ (ι, ϕ) to represent co-
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ordinates in the orbital frame.

2. QNM decomposition models

Let us now perform QNM decomposition of outgoing grav-
itational waves near infinity in the final spin frame. From a
start time t0, the complex-valued ringdown waveform can be
written as [1, 5, 7, 8, 68]:

h(S )(ι̃, ϕ̃, t)

=(h+ − i h×)(S )(ι̃, ϕ̃, t)

=
M f

r

lmax∑
l=2

m=l∑
m=−l

nmax∑
n=0

[B(S +)
lmn e−iωlmn(t−t0)

−2S lmn(γlmn, ι̃, ϕ̃)+

B(S−)
lmn eiω∗lmn(t−t0)

−2S ∗lmn(γlmn, π − ι̃, ϕ̃)], (1)

where h+ and h× are the plus and cross polarization com-
ponents, respectively, r is the distance from the source bi-
nary to the detector on Earth. The QNMs summed over here
are labeled by three integers: the angular indices (l,m) with
l = 2, 3, ... and |m| ≤ l, and the overtone index n = 0, 1, ....
Here we have only carried out the summations up to finite
maximal values of the angular quantum number lmax and the
overtone number nmax. The real and imaginary parts of each
ωlmn correspond to the (angular) frequency and decay rate
of the QNM; the entire spectrum {ωlmn} is exclusively deter-
mined by the remnant black hole’s mass M f and dimension-
less spin χ f – the only two parameters that characterize a sta-
tionary uncharged black hole, according to the no-hair theo-
rem [25, 34, 69–73]. The angular functions −2S lmn in Eq. (1)
are the spin-weighted spheroidal harmonics, with dimension-
less spheroidicity parameter γlmn given by [8]:

γlmn = χ f M fωlmn. (2)

The dependence of the angular function on γlmn can be at-
tributed to the deformation of bounded photon orbits due to a
Kerr black hole’s spin.

In practice, on the other hand, the ringdown waveform is
often approximated by an expansion of decaying sinusoids
with angular dependence given by spin-weighted spherical
harmonics {−2Ylm}:

h(Y)(ι̃, ϕ̃, t)

=(h+ − i h×)(Y)(ι̃, ϕ̃, t)

=
M f

r

lmax∑
l=2

m=l∑
m=−l

nmax∑
n=0

[B(Y+)
lmn e−iωlmn(t−t0)

−2Ylm(ι̃, ϕ̃)+

B(Y−)
lmn eiω∗lmn(t−t0)

−2Y∗lm(π − ι̃, ϕ̃)]. (3)

For simplicity, we refer to the decompositions in Eqs. (1)
and (3) as S model and Y model, respectively. The mode
mixing between the two bases depends on the spheroidicity
γlmn [8, 26, 68, 74]:

−2S lmn(γlmn, ι̃, ϕ̃) = −2Ylm(ι̃, ϕ̃) + γlmn

∑
l,l′

cl′lm −2Yl′m(ι̃, ϕ̃)

+ O(γlmn)2, (4)
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FIG. 2. Examples of complex QMN frequencies for χ f ∈ [0, 0.99]
(similar to Fig. 6 in Ref. [68]). The horizontal axis represents the
frequency (the real part) and the vertical axis represents the decay
rate (the imaginary part). The solid, dashed, and dotted curves stand
for prograde modes (m > 0), m = 0 modes and retrograde modes
(m < 0), respectively. Each curve is labeled by its lmn indices, start-
ing with the frequency value of χ f = 0 and ending at the frequency
value of χ f = 0.99. When χ f = 0, QNM frequencies with the same
l index coincide, as indicated by the black circles. We mark the fre-
quencies corresponding to χ f = 0.3725 (N9; see waveform label in
Table II), χ f = 0.6864 (N1) and χ f = 0.9 (the example in Fig. 3) by
plus, inverted triangle and dot markers, respectively. For the modes
with the same lm indices, the ones with overtone n = 1 (lower curves)
have larger decay rates than the ones with n = 0 (upper curves).

where cl′lm are the mixing coefficients between spin-weighted
spheroidal harmonics and spin-weighted spherical harmonics
with different l′ and l but the same m index. To test the angular
emission patterns of remnant black holes, we compare the two
models and check which one is more consistent with the QNM
expansions.

It is worth pointing out that the conventions for writing the
QNM expansion in Eq. (1) are not all consistent in the exist-
ing literature, e.g., Refs [5, 26, 68]. We will briefly comment
on them in Sec. II A 5 and summarize in Table I. For the refer-
ence of the readers, the notation and terminology specifically
defined in this paper are listed in Appendix A.

3. Temporal and spatial dependences of the modes

The physical meanings of the parameters and terms in
Eqs. (1) and (3) are explained as follows:
Time dependence.— Each ωlmn represents one complex fre-
quency of the QNMs with index lmn, with the imaginary part
being the decay rate. Among the QNMs, the m > 0 modes
are prograde, while the m < 0 terms are retrograde. In this
paper, we obtain ωlmn numerically using the qnm python pack-
age [75]. As we vary χ f , the trajectories of a selected set of
ωlmn appear as branches in the complex plane in Fig. 2. Real
parts of prograde-mode frequencies (solid curves) increase
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with the spin magnitude |χ f |, while those of the retrograde-
mode frequencies (dotted curves) decrease with |χ f |. More-
over, the decay rate increases with increasing overtone num-
ber n, as shown in the upper (n = 0) and lower (n = 1) parts
of Fig. 2. Higher overtones play more important roles in the
earlier stage of the ringdown [4, 23–25].
Spatial dependence.— For prograde (retrograde) modes with
indices m > 0 (m < 0), the {B(S +)

lmn −2S lmn(γlmn, ι̃, ϕ̃)},
{B(Y+)

lmn −2Ylm(ι̃, ϕ̃)} terms describe the emission mainly towards
the north (south) hemisphere, while the {B(S−)

lmn −2S ∗lmn(γlmn, π−

ι̃, ϕ̃)}, {B(Y−)
lmn −2Y∗lm(π− ι̃, ϕ̃)} ones describe the emission mainly

towards the south (north) hemisphere. The coefficients
B(S±/Y±)

lmn are the corresponding excitations of the lmn mode
and are governed by the merging dynamics of the progenitor
binary. The temporal and spatial features of different terms
are summarized in Table I.

4. Excitations of prograde and retrograde modes

Let us now discuss the features of prograde and retrograde
modes, and how they should be excited in a merging binary. In
Fig. 3, we illustrate the polarization contents of each ringdown
mode by plotting in 2D graphs the (h+(t), h×(t)) observed from
the north (ι = 0, ϕ = 0) and south (ι = π, ϕ = 0) poles in the
orbital frame, for t ∈ [0, 100M f ]. For illustration purpose, we
choose χ f = 0.9, l = 2, and m = ±2 in the plot. We assign
the same, arbitrarily chosen starting amplitude for all the
modes, (h+(0), h×(0)) = (0.63, 0). Since the modes oscillate
and decay over time, each mode traces a trajectory that spirals
toward the center as time passes.

Here we emphasize that plotting h+(t) along the x direction
and h×(t) along the y direction in the graph (instead of the op-
posite) illustrates the way that the polarization patterns rotate:
if a binary along with its emission pattern rotates about the
(ι, ϕ) emission direction by an angle, say ζ, following right-
hand rule, the complex strain value h = h+ − ih× will become
e−2iζh = e−2iζ(h+ − ih×) and the pattern of (h+(t), h×(t)) in the
plot will rotate by 2ζ counterclockwise.
Spin aligned case.— In the left panels (a) of Fig. 3, we study
the spin aligned case, with χ f > 0. At the north pole (ι = 0,
upper left panel), we observe that the B(+)

m>0 (blue solid curve)
and B(−)

m<0 (orange dashed curve) terms correspond to the coun-
terclockwise and clockwise trajectories in the (h+, h×) plane,
respectively. It is important to note that the other two terms,
with amplitudes B(−)

m>0 and B(+)
m<0, vanish at the north pole due

to the properties of spin-weighted spheroidal harmonics. The
counterclockwise (clockwise) trajectory corresponds to the
positive (negative) value of the real part in the QNM frequency
of the B(+)

m>0 (B(−)
m<0) term. In this case, the spin of the black hole

is counterclockwise, therefore B(+)
m>0 (B(−)

m<0) corresponds to a
prograde (retrograde) pattern of polarization rotation. One can
also see that the prograde B(+)

m>0 mode spirals decay “slower”
toward the center than the retrograde B(−)

m<0 mode (the blue
solid curve reaches the gray dotted circle at t = 10M f while
the orange dashed curve reaches it before t = 10M f ), because
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FIG. 3. Polarization contents (h+(t), h×(t)) of the template ring-
down waveform indexed with (l,m) = (2, 2), (2,−2), observed from
the north pole (ι = 0, ϕ = 0) and south pole (ι = π, ϕ = 0) in
the orbital frame for (a) spin aligned (χ f = 0.9) and (b) spin anti-
aligned (χ f = −0.9) cases. Each parametric curve starts at t = 0
from (h+, h×)=(0.63,0) and evolve as a spiral over t ∈ [0, 100M f ].
The “×” marker indicates the strain at t = 10M f and the gray dotted
circle indicates the strain magnitude of prograde mode at that mo-
ment for reference. The Bm>0 and Bm<0 terms represent the prograde
and retrograde QNMs excitation, respectively. For Bm>0 (Bm<0), the
“(+)” superscript stands for the emission in the same (opposite) di-
rection as the spin. For (a) spin aligned case, the B(+)

m>0 and B(−)
m<0 terms

represent the emission towards the north pole direction; for (b) spin
anti-aligned case, the B(−)

m>0 and B(+)
m<0 terms represent the emission

towards the north pole direction. In either case, the B(+)
m>0 and B(−)

m<0
terms represent the emission towards the remnant spin direction.

the prograde mode has a higher quality factor (the ratio be-
tween absolute values of real and imaginary parts of the QNM
frequency).

At the south pole (ι = π, lower left panel), again according
to properties of the spin-weighted spheroidal harmonics, we
only observe the B(−)

m>0 (solid orange curve) and B(+)
m<0 (dashed

blue curve) terms, which represent the prograde and retro-
grade modes, respectively. In comparison with the view from
the north pole, the prograde (retrograde) mode now spirals
clockwise (counterclockwise). This is consistent with the fact
that the black hole rotates clockwise when viewed from the
south pole. Mathematically, the signs of the real parts of the
eigenfrequencies are flipped, while the imaginary parts remain
unchanged.
Spin anti-aligned case.— In the right panels (b) of Fig. 3, we
study the spin anti-aligned case, with χ f < 0. We still fol-
low an expansion in the final spin frame (ι̃, ϕ̃) using Eq. (1)
with dimensionless spin equal to |χ f |, but now need to carry
out the transformation (ι = π − ι̃, ϕ = 2π − ϕ̃) to obtain the
complex strain h in the orbital frame. Because of this trans-
formation, at the north pole (ι = 0, upper right panel), we ob-
serve the B(−)

m>0 (solid magenta curve) and B(+)
m<0 (dashed green

curve) modes. They still correspond to prograde and retro-
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[a] [b] [c] [d]
Temporal-spatial profile e−iω220t

−2S 220(γ220, ι̃, ϕ̃) eiω∗220t
−2S ∗220(γ220, π − ι̃, ϕ̃) e−iω2−20 t

−2S 2−20(γ2−20, ι̃, ϕ̃) eiω∗2−20t
−2S ∗2−20(γ2−20, π − ι̃, ϕ̃)

Amplitude in Eq. (1) B(+)
220 B(−)

220 B(+)
2−20 B(−)

2−20
Right/Left-handed (R/L) R L R L
Prograde/Retrograde Prograde Prograde Retrograde Retrograde
Emission direction
(in final spin frame) North South South North

Angular eigenfunction
(standard form) −2S 220(γ220, ι̃, ϕ̃) −2S 2−20(−γ∗220, ι̃, ϕ̃) −2S 2−20(γ2−20, ι̃, ϕ̃) −2S 220(−γ∗2−20, ι̃, ϕ̃)

Amplitude in [68]a (2006) A220 A′220 (mirror mode of [a]) A2−20 A′2−20 (mirror mode of [c])
Terminology in [26] (2014) Regular mode Regular mode Mirror mode of [b] Mirror mode of [a]
Amplitude in [30, 32] (2019) A220 A′220 A2−20 A′2−20
Amplitude in [36] (2021) A220 A2−20 (not included) (not included)
Amplitude in [5] (2021) C[1]220 C[1]2−20 C[−1]220 C[−1]2−20

Amplitude in [76] (2021) C220 C′2−20 (mirror mode of [c]) C2−20 C′220 (mirror mode of [a])
Amplitude in [77, 78] (2021) C220 C2−20 C′2−20 (mirror mode of [b]) C′220 (mirror mode of [a])

a Ref. [68] denotes GW strain tensor as h+ + i h×, thus we include a sign change in angular frequency when comparing the convention in [68] with other papers.

TABLE I. Conventions and notations for writing the QNM expansion, taking (l,m, n) = (2,±2, 0) for example.

grade modes, respectively, although now the prograde (retro-
grade) mode has frequency with negative real part and a spi-
ral pattern that goes clockwise (counterclockwise). These are
consistent with the fact that the spin direction of the black hole
is clockwise viewed from the north pole.

At the south pole (ι = π, lower right panel), we observe the
B(+)

m>0 (solid green curve) and B(−)
m<0 (dashed magenta curve)

modes, which correspond to prograde and retrograde modes,
respectively. The black hole spins counterclockwise when
viewed from the south.

It is worth pointing out that both the remnant spin direction
and the excitation of prograde or retrograde mode are deter-
mined by the binary dynamics. They are related to each other
because the polarization patterns of the inspiral wave would
transition smoothly to the ringdown modes. During the in-
spiral stage, the orbital motion of the binary appears coun-
terclockwise (clockwise) when viewed from the north (south)
pole. When the progenitor black holes are nonspinning, the
remnant spin is contributed solely from the orbital angular
momentum and thus aligned with the orbital angular momen-
tum. Therefore, we anticipate the prograde modes to be more
strongly excited. On the other hand, when the initial spin is
anti-aligned with the orbital angular momentum, there would
be competition between the spin and orbital angular momen-
tum during the merger. The left-over stronger contribution
will determine the direction of remnant spin, as well as the ex-
citation of prograde or retrograde modes. Specifically, when
the contribution from the negative individual spin is larger,
the remnant black hole is left with a spin anti-aligned with the
orbital angular momentum, and we anticipate stronger excita-
tions for retrograde modes.

5. QNM conventions

Before moving on to the following discussion, we briefly
comment on the conventions for writing the QNM expansion
in Eq. (1) or (3) in this paper and other literature. The QNM

expansion consists of four parts corresponding to the combi-
nations of two frequencies (ωlmn and −ω∗lmn), as well as the
prograde and retrograde modes.

In our convention, we first add up the terms with conjugate
frequencies explicitly, and then sum up prograde (the expres-
sions with positive m’s) and retrograde modes (with negative
m’s) over all the lmn indices through the summation signs.
The convention and summation order in Ref. [5] is similar to
ours. In Eq. (1) of [5], the p = 1 terms represent the prograde
modes (our m > 0 terms), and p = −1 terms represent the
retrograde modes (our m < 0 terms). When the retrograde
modes are not considered, the Eq. (3) of Ref. [5] is equivalent
to our m ≥ 0 terms in Eq. (1), with (−1)l absorbed into the
B(S−)

lmn coefficients to be determined.

In an alternative convention, one can sum up the terms with
the same sign of frequencies first. Specifically, the terminol-
ogy of “mirror mode” was first mentioned in [68] to describe
the feature that half of the QNM frequencies are “degener-
ate in modulus of the frequency and damping time,” as shown
in Fig. 6 of [68]. Later in Ref. [26], the terminology “mir-
ror modes” was used to refer to the retrograde modes with
a different frequency sign from the corresponding prograde
modes; while in Ref. [76], it was used to refer to all terms with
negative frequencies. In recent work presented in [77, 78],
the same terminology “mirror modes" is used to describe the
retrograde modes that emit to the same direction as the con-
sidered prograde modes (Fig. 1 of Ref. [77]), while the re-
maining terms with the conjugate frequencies are taken into
account by symmetry. Since there is no consistent definition
of mirror modes yet, we choose not to use such terminology
and, instead, define and describe the prograde and retrograde
modes, as well as the terms with conjugate frequencies explic-
itly. We summarize the conventions and notations for writ-
ing the QNM expansion in some existing literature in Table I.
More details are given in Appendix B.
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6. Beyond linear ringdowns

We finally point out that in addition to QNMs, the gravita-
tional waveform after the merger phase also contains power-
law tails [79] and gravitational wave memory [80–82]. Power-
law tails arise from the long-range nature of the black hole’s
gravitational potential. This contribution decay with time fol-
lowing a power law and is generally believed to be negligible
for binary black hole coalescence.

Gravitational wave memory originally refers to the change
in spacetime geometry at future null infinity before and after
the passage of a transient gravitational wave. Linear memory
refers to changes that can be related to the initial and final mo-
mentum distributions of the gravitational wave source [80],
while non-linear memory is induced by the non-linearity of
the Einstein’s equations [81]; it can be further interpreted as
arising from the gravity effect caused by the energy and mo-
mentum of the gravitons [82]. For compact binaries, the mem-
ory waveform also refers to a non-oscillatory component of
the total waveform that starts off at zero and gradually reaches
the final value equal to the gravitational wave memory [83].
Memory waveform can be computed from those waveforms
obtained from perturbation theory that do not account for the
memory effect [84, 85].

Recent numerical simulations have also been able to de-
compose the full waveform at null infinity into a memory
piece and a memory-free piece [86]. It is also shown that
the previous SXS waveforms (including those approximated
by the NR surrogate models) correspond to the memory-free
piece. In this paper, we use the memory-free waveforms,
and show that they can be decomposed into QNMs, in terms
of both the temporal and spatial distributions. The memory
waveform, on the other hand, cannot be decomposed into
QNMs.

B. Fit memory-free NR waveforms with QNM expansions

We now develop a strategy to use QNM expansions (1)
and (3) to fit memory-free NR waveforms. In our strategy, we
do not focus on one wave-emission direction, or one particu-
lar (l,m) mode, but rather consider the joint temporal and spa-
tial (angular) dependence of the ringdown gravitational waves.
More specifically, for each binary, and its ringdown waveform
starting from a particular time t0, we find the optimal set of pa-
rameters (M f , χ f ) and coefficients {B(S±/Y±)

lmn } with which the
expansion in Eqs. (1) or (3) best describes the h(~Ω, t) obtained
from numerical relativity. From this approach, we are able to
determine whether the S or the Y model is the more faithful
representation of the ringdown gravitational waves.

1. Target waveforms and templates

In this paper, our (memory-free) target waveform h(~Ω, t) is
obtained from the SXS catalog, which provides h in terms of

the expansion in spin-weighted spherical harmonics:

h(~Ω, t) =
∑
lm
−2Ylm(~Ω)hlm (t). (5)

For each binary, we denote the time at which
∑

lm |hlm(t)|2 is
maximum by tpeak. We then use templates in the forms of
QNM expansion, either Eq. (1) or Eq. (3), to approximate the
target waveform during t ∈ [t0,+∞)1. Here t0 is a starting time
not far from tpeak, with an offset

toffset = t0 − tpeak. (6)

In order to evaluate the quality of the fit, we first define a
temporal-spatial inner product of the target waveform h(~Ω, t)
and the template waveform g(~Ω, t) by doing a double integral
over both time and angular coordinates:

〈g | h〉 =

∫
d2~Ω

∫ +∞

t0
dt

[
g∗(~Ω, t)h(~Ω, t)

]
. (7)

We can then characterize the distance between h(~Ω, t) and
g(~Ω, t) using

χ2[h, g] =
〈h − g | h − g〉
〈h | h〉

. (8)

For each binary configuration, the distance χ2 depends on
the starting time t0 of ringdown fit, the mass and dimension-
less spin (M f , χ f ) of the remnant black hole, the set of QNM
modes summed over (including whether we use the S or the
Y model), and their complex amplitudes {B(±)

lmn}. The param-
eters (M f , χ f ) are intrinsic and need to be optimized numer-
ically, the mode amplitudes {B(±)

lmn} can be optimized analyti-
cally, while the starting time t0 works as the hyperparameter
that controls the fitting.

2. Strategy for minimizing χ2 over {B(±)
lmn}

As it turns out, minimization of χ2 over {B(±)
lmn} can be car-

ried out analytically, because χ2 can be viewed as squared
distance between h and a linear subspace spanned by the spin-
weighted harmonic basis by varying coefficients/coordinates
{B(±)

lmn}.
Let us do this explicitly for the S model, and the procedure

for the Y model can be obtained by simply switching S to Y .
Let us first define the following quantities for inner products:

K(σ)
lmn =

∫
d2~Ω

∫ +∞

t0
dt g(σ) ∗

lmn (~Ω, t)h(~Ω, t), (9)

G(σ,σ′)
lmn,l′m′n′ =

∫
d2~Ω

∫ +∞

t0
dt g(σ) ∗

lmn (~Ω, t)g(σ′)
l′m′n′ (~Ω, t). (10)

1 Practically, for all value of t0, we consider the waveform till tpeak + 100M
when it essentially damps to 0.
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TABLE II. SXS BBH waveforms used in Sec. III.

Label SXS ID/Leva qref
b (~χref,1)z

b (~χref,2)z
b χeff (~χ f )z

b ,c

G0 0305/Lev6 1.221 0.3300 −0.4399 −0.0166 0.6921
N1 1154/Lev3 1.000 0.0000 0.0000 0.0000 0.6864
N2 1143/Lev3 1.250 −0.0001 0.0000 −0.0001 0.6795
N3 0593/Lev3 1.500 0.0000 0.0001 0.0001 0.6641
N4 1354/Lev3 1.832 −0.0002 0.0001 −0.0001 0.6377
N5 1166/Lev3 2.000 0.0000 0.0000 0.0000 0.6234
N6 2265/Lev3 3.000 0.0000 0.0000 0.0000 0.5406
N7 1906/Lev3 4.000 0.0001 −0.0001 0.0000 0.4718
N8 0187/Lev3 5.039 0.0000 0.0000 0.0000 0.4148
N9 0181/Lev4 6.000 0.0000 0.0000 0.0000 0.3725

a All SXS waveforms [60] used in this paper have the ID type “BBH_SKS”,
and the levels listed are the maximum available ones.

b The initial values are taken at the reference time after junk radiation [87].
At an accuracy level of 10−4, the spin components in x̂ and ŷ directions
are zero for all the primary, secondary and remnant black holes listed here.

c For simplicity, in the main text we use χ f to represent (~χ f )z.

Here σ = ±, and we further define

g(+)
lmn(~Ω, t) = e−iωlmn(t−t0)

−2S lmn(γlmn, ι̃, ϕ̃), (11)

g(−)
lmn(~Ω, t) = eiω∗lmn(t−t0)

−2S ∗lmn(γlmn, π − ι̃, ϕ̃). (12)

Note that (ι̃, ϕ̃) need to be converted to (ι, ϕ) depending on
whether we have spin aligned or spin anti-aligned binaries.
We can now view B(σ)

lmn and K(σ)
lmn as the components of column

vectors ~B and ~K, and G(σ,σ′)
lmn,l′m′n′ as those of a Hermitian matrix

G. The inner product in Eq. (7) can thus be written as:

〈g|h〉 = ~B† ~K , 〈g|g〉 = ~B†G~B. (13)

This leads to the least-squares value of distance

χ2
l−s = 1 −

~K†G~K
〈h|h〉

, (14)

which is achieved when the coefficients satisfy

~B = G−1 ~K. (15)

We then search the 2D parameter space of (M f , χ f ) to find the
best estimates of (M f ,est, χ f ,est) that yield the optimal distance
χ2[h, g(S/Y)

opt ] for S and Y models, respectively. Details of the
numerical implementation can be found in Appendix D.

III. BENCHMARK AND NONSPINNING BINARIES

In this section, we focus on spin aligned binaries, for which
the spin of the remnant black hole is in the same direction as
the binary orbital angular momentum. For both the S and Y
models of QNM expansion, starting from different times (de-
scribed by the hyperparameter toffset), we compare the optimal
distance χ2[h, g(S/Y)

opt ] (χ2 for short in the plot labels) and the
corresponding (M f ,est, χ f ,est), when different groups of angu-
lar (l,m) modes and overtones are included. We demonstrate
that, as expected, the S model describes the NR waveforms

better than the Y model. We carry out this study firstly for a
“benchmark binary” waveform, G0 (with parameters similar
to the first GW event GW150914 [60, 88, 89]), and then nine
non-spinning binaries with mass ratio q ranging from 1 to 6,
as listed in Table II.

In Sec. III A, we introduce the our strategy for choosing
which angular (l,m) modes to include in the QNM expansion.
In Sec. III B, we present the fitting results for the benchmark
binary waveform G0. In Sec. III C, we compare the results for
binaries with different mass ratios.

A. Strategy for choosing angular modes

Even though the quadrupole (l,m) = (2, 2) mode is the
dominant component of the inspiral, merger and ringdown
waves, gravitational wave detectors at present and in the fu-
ture are capable of detecting higher multipole modes that are
also excited [45]. This capability is the foundation for our
studies in this paper. The NR waveforms from the SXS cat-
alog include all (l,m) modes up to lmax = 8 [60]. However,
incorporating too many modes in the QNM expansion will
eventually lead to overfitting and numerical noise. We need
a strategy to include the appropriate angular modes, which
should be based on: (i) the strength of excitation of the modes,
and (ii) the accuracy of the NR waveforms, and the sensitivity
of our detectors.

Let us now address (i) above, while (ii) will be discussed at
the end of Sec. III B. To investigate the excitation strength of
each (l,m) mode, we can rank them in terms of their relative
importance for the QNM expansion:

Alm =

∫ tpeak+100M

tpeak

dt |hlm(t)|2 . (16)

For G0 and N1–N9 binaries, we plot theirAlm as vertical bars
in Fig. 4. According to the order of magnitude of Alm for all
q’s, the (l,m) modes can be qualitatively categorized into four
groups:

Group 1: (2, 2),
Group 2: (3, 3), (2, 1),
Group 3: (4, 4), (2, 0), (3, 2),
Group 4: (5, 5), (4, 3), (6, 6).

In our studies, instead of testing each of the individual modes,
we add modes to our QNM expansion by groups, from Group
1 to Group 4 sequentially. The contribution of each group can
thus be quantified by comparing the fitting results before and
after adding it.

Before moving on to the fitting, let us comment that the
magnitude of the Alm’s can be traced qualitatively to the ex-
citation of the corresponding (l,m) mode during the inspiral
stage. The initial magnitudes of (l,m) modes are determined
by (a) their post-Newtonian order, i.e., higher (l,m) modes are
generally weaker, and (b) the suppression due to symmetry,
i.e., the (l,m) = (3, 3), (2, 1), (5, 5), (4, 3) modes are prohibited
for equal mass ratio binaries (e.g. N1). As Alm is an integral
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(2, 2) (3, 3) (2, 1) (4, 4) (2, 0) (3, 2) (5, 5) (4, 3) (6, 6) (3, 1) (7, 7) (3, 0) (5, 4)
10−4

10−3

10−2

10−1

100

101 G0 q=1.221

N1 q=1.000

N2 q=1.250

N3 q=1.500

N4 q=1.832

N5 q=2.000

N6 q=3.000

N7 q=4.000

N8 q=5.039

N9 q=6.000

Alm

Mode︸︷︷︸
Group 1

︸           ︷︷           ︸
Group 2

︸                        ︷︷                        ︸
Group 3

︸                        ︷︷                        ︸
Group 4

FIG. 4. The relative importanceAlm, defined in Eq. (16) as the strain component in spin-weighted spherical mode (l,m) squared and integrated
from tpeak to tpeak + 100M. Groups 1–4 of the (l,m) modes are defined according to their relative importance in the QNM expansion, and are
added to the fitting models in order. See details in Sec. III A.

over time, the ranking of each Alm is determined jointly by
the initial magnitude and the decay rate of that specific mode.

B. Fittings results for the benchmark binary G0

In this section, we discuss the fitting results for the bench-
mark binary G0. This binary waveform is used to verify the
fitting algorithm described in Sec. II B, as it has the best nu-
merical precision in the SXS catalog to date [60, 88, 89]. We
first investigate the distinguishability of the S and Y models
and the contributions of higher-order angular modes and over-
tones. We then comment on the fitting error by comparing the
results obtained using waveforms at different numerical reso-
lution levels.

To characterize the accuracy of (M f ,est, χ f ,est), we define the
relative errors as follows:

|∆M f /M f | ≡ |(M f ,est − M f ,true)/M f ,true|, (17a)
|∆χ f /χ f | ≡ |(χ f ,est − χ,true)/χ f ,true|, (17b)

where the true values (M f ,true, χ f ,true) are taken from the SXS
metadata. In Fig. 5, for both the S and Y models, we show
results of the optimal distance χ2[h, g(S/Y)

opt ] and the relative es-
timation errors. The results obtained using the S and Y models
are presented by blue solid and orange dotted curves, respec-
tively. All results are shown with respect to toffset defined in
Eq. (6). Each row represents the fitting with the same (l,m)
modes but different numbers of overtones. Different rows dis-
play the results with different groups of (l,m) modes.

Let us first discuss the influence of varying the hyperpa-
rameter t0, or equivalently, toffset. As shown in each panel of
Fig. 5, with the increasing toffset, χ2[h, g(S/Y)

opt ] decreases and
converges to a stable level after some specific value of toffset,
which looks like a “flat tail” in the plot. We define that spe-
cific toffset as transition time (ttrans), and the converged value of
distance as minimum distance (χ2

min). More discussion about

ttrans and χ2
min can be found at the end of Sec. III C. Practi-

cally, we define ttrans as the time when 30% of the maximum
slope in logarithmic scale of the fitting distance with respect
to toffset is reached. For the S model, in each χ2 block, ttrans is
marked by a vertical line and χ2

min by a horizontal line, both
in translucent blue. The accuracies of M f ,est and χ f ,est (shown
in blocks below each χ2 block) oscillate, while in general the
levels of accuracy agree with the evolution of χ2 with respect
to toffset, i.e., the relative errors decrease significantly before
ttrans and slightly oscillate around a stable level after that. De-
spite the oscillation, after ttrans, the relative errors are gener-
ally bounded by some specific small error level (similar to the
reaching of χ2

min in the χ2 plot). As the ttrans values generally
agree between χ2 and the accuracies of (M f ,est, χ f ,est), we sim-
ply refer to the optimal distance when comparing the fitting
results in the following discussions.

We then discuss the contribution of different (l,m) angular
modes. The ranking of each Alm (Fig. 4) indicates its signif-
icance in the fitting. The contribution of higher-order angular
modes can be observed by comparing among different rows in
Fig. 5. Specifically, the four panels in the first column show
the results of fitting with different (l,m) mode groups, with
the fundamental n = 0 overtones only. From top to bottom,
the χ2

min values for the S and Y models are listed in Table III.
The χ2

min values for the S model are consistently smaller than
those for the Y model. In the case of using the S model, adding
Group 3, (l,m) = (4, 4), (2, 0), (3, 2), improves the results most
significantly. It reduces χ2

min from ∼ 10−3 to ∼ 10−4 and the
relative estimation error from ∼ 10−2 to ∼ 10−3. On the con-

TABLE III. The values of χ2
min when fitting G0 with different (l,m)

modes (n = 0 only).

Model Group 1 Group 1,2 Group 1–3 Group 1–4
S 7.9 × 10−3 2.3 × 10−3 2.2 × 10−4 9.9 × 10−5

Y 1.0 × 10−2 5.1 × 10−3 3.1 × 10−3 3.0 × 10−3
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FIG. 5. Fitting results for the benchmark binary G0. Each three closely laid blocks show the optimal distance χ2 and the relative error in
estimated (M f , χ f ), with respect to toffset/M. The solid blue and dotted orange curves correspond to the S and Y models, respectively. Different
rows, from top to bottom, correspond to adding (l,m) modes sequentially in groups, as specified in the upper right corner of each χ2 block.
Within each row, different columns, from left to right, correspond to adding overtones for the same set of (l,m) modes, as specified in the lower
right corner of each χ2 block.
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FIG. 6. Fitting results for G0 using SXS data with different numerical levels (presented in different colors). The first and second rows
correspond to fitting with the S and Y models, respectively. Within each row, the columns, from left to right, correspond to adding (l,m) modes
sequentially in groups. In this comparison, the models only contain the n = 0 fundamental modes without including overtones.

trary, no order of magnitude improvement is seen when using
the Y model by adding (l,m) groups, as the Y model is not
accurate enough such that the errors due to missing higher-
order modes are smaller compared to the errors caused by the
inaccuracy of the Y model itself. As shown in Fig. 4, for bi-
nary G0, (l,m) = (3, 2) in Group 3 and (3, 3) in Group 2 are
the subdominant modes except for the leading mode (2, 2) in
Group 1; while Group 4 is the least important group among 1–
4. Accordingly, in Fig. 5, we can see that including Groups 2
and 3 leads to significant improvement while including Group
4 does not.

On the other hand, the effect of overtones can be observed
by comparing different columns within each row. It is shown
that adding overtones can bring ttrans to an earlier time; the
more overtones added, the earlier ttrans becomes. This effect
can be explained by referring to Fig. 2: the higher-order over-
tones have larger decay rates and usually play roles at the time
closer to tpeak. By including overtones, the ringdown model is
more accurate at an earlier time after the merger and thus χ2

min
can be achieved with a smaller toffset.

The distinguishability between the S and Y models is influ-
enced jointly by (l,m) modes and overtones. With the same
modes included, the S model can always yield smaller χ2

min
than the Y model. Moreover, the improvement in χ2

min of using

S compared to Y is more significant when more (l,m) modes
are added, and when more overtones are included. This is il-
lustrated by Eq. (4): there is a certain difference between S
and Y bases for each given lmn mode. Specifically, in the
S model, different overtones of the (l,m) mode have different
angular distributions, while they share the same distribution in
the Y model. Therefore, adding more (l,m) modes and over-
tones enlarges the difference between two models. Addition-
ally, by adding higher-order overtones, χ2

min generally does not
change, because higher-order overtones are damped before
ttrans and have negligible contribution to the converged level
of distance. In terms of the relative errors in (M f ,est, χ f ,est), the
advantage of using the S model only becomes obvious when
adding modes up to Group 3. This will be further discussed in
Sec. III C with other nonspinning binaries N1–N9.

Before the extensive comparison of binaries with various
mass ratios in the next section, we first comment on possi-
ble sources of fitting errors that could potentially impact the
conclusion of model distinguishability. In this study, no sim-
ulated noise has been added. Thus, apart from the limitation
of the model itself, the fitting errors mostly come from nu-
merical noises in the NR waveforms. The SXS waveforms
are provided at several numerical resolution levels labeled as
Lev1, Lev2, Lev3, etc. For the same binary, a higher level
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has higher resolution; while between different binaries, level
numbers are not necessarily meaningful [60]. The uncertain-
ties in χ2

min and (M f ,est, χ f ,est) are supposed to be bounded by
the difference between the results obtained from the numer-
ical level used in Table II and the adjacent lower level [60].
For the results in Fig. 5, we used the highest available numer-
ical level of G0, Lev6, as listed in Table II. We now compare
them with the results obtained from lower levels, Lev5–Lev3.
If the difference between using the S and Y models at Lev6
is clearly larger than the difference of results obtained among
different levels, we are able to state that the two models are
distinguishable. In Fig. 6, we plot the results obtained from
different levels, with different (l,m) groups (n = 0 only). It
is shown that the χ2 values obtained at different levels are not
distinguishable by eye, definitely smaller than the S/Y differ-
ence shown in Fig. 5. Thus, the conclusion that the S model
can be distinguished from the Y model and is a more faithful
representation of the NR waveform is not impacted by the nu-
merical errors. Note that not all SXS waveforms have such a
good numerical precision in the ringdown part for the purpose
of this study, probably due to memory residuals in the cho-
sen Bondi-Metzner-Sachs (BMS) frame [90]. To avoid this
impact, we select the SXS waveforms that can produce consis-
tent results from different numerical levels. See Appendix F
for more details. When the ringdown waveform has signif-
icantly decayed, if the model is sufficiently accurate with
Group 3 and Group 4 included, subtle ringdown residu-
als due to the choice of frame in the numerical data will
manifest as slightly increased χ2 values for 40 . toffset . 50
(see Fig. 5 and Appendix E). Potentially, subtractions of
the late ringdown residuals [24] could help improve the
fitting in the range of 40 . toffset . 50. We do not con-
duct such subtraction because it is not well motivated, and
the small impact from the residuals [91] does not quanti-
tatively change the resulting transition time and minimum
distance in our analysis. Recent studies show that using
the Cauchy-characteristic extraction (CCE) and mapping
to the super-rest frame would be a proper approach to ob-
tain the memory-free waveform [90, 91].

C. Nonspinning binaries with different mass ratios

In Sec. III B, we have verified the fitting algorithm with the
benchmark binary G0. To study the contributions of (l,m)
modes and overtones in binaries with various mass ratios [25],
we apply the same method to a series of nonspinning binary
waveforms N1–N9 with mass ratios ranging from 1 to 6, as
listed in Table II. In this section, we demonstrate that more
modes are needed in order to achieve the same level of χ2

min
with larger mass ratios, as the higher-order modes are more
strongly excited in larger mass-ratio binaries. We summarize
the results in two plots grouped by (l,m) groups and numbers
of overtones: Fig. 7 shows the comparison between the S and
Y models in terms of χ2

min; Fig. 8 displays ttrans for the S model
when different modes and overtones are included. Detailed
fitting results in the same format as those of G0 in Fig. 5 are
presented in Appendix E.

10−4

10−3

10−2

10−1

Y model

S model

n = 0

G0 q=1.221
N1 q=1.000
N2 q=1.250
N3 q=1.500
N4 q=1.832

N5 q=2.000
N6 q=3.000
N7 q=4.000
N8 q=5.039
N9 q=6.000

(a)

10−4

10−3

10−2

10−1

Y model

S model

n = 0, 1

(b)

10−4

10−3

10−2

10−1

Y model

S model

n = 0−2

(c)

Group 1 Group 1,2 Group 1-3 Group 1-4

10−4

10−3

10−2

10−1

Y model

S model

n = 0−3

(d)

FIG. 7. The minimum distance χ2
min obtained for binaries G0 and

N1–N9 when (a) n = 0, (b) n = 0, 1, (c) n = 0, 1, 2, and (d) n =

0, 1, 2, 3 are considered. The horizontal axes are arranged by (l,m)
groups. Within each group, results for different waveforms are shown
by markers in different shapes, as indicated by the legend in (a). For
each binary waveform, the big colored and the small black markers
indicate χ2

min obtained using the S and Y models, respectively.

In Fig. 7, for both the S and Y models, χ2
min decreases

when more (l,m) modes are added. For a binary with larger
q, more significant improvement is seen when adding more
(l,m) modes. In the case of the S model, χ2

min for binary N1
(q = 1) decreases from 2× 10−3 (Group 1) to 7× 10−5 (Group
1–4), with the accuracy level improved by a factor of ∼ 30;
for binary N9 (q = 6), an improvement by a factor of ∼ 280 is
achieved from Group 1 to Group 1–4. As indicated in Fig. 4,
higher angular modes are more strongly excited in binaries
with larger mass ratios and thus play a more important role
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in the QNM expansion. On the other hand, to reach an ac-
curacy of χ2

min < 0.01 in the S model, the fundamental (2, 2)
mode is enough for q < 1.25 ; while (l,m) modes up to Group
2 are needed for 1.25 < q < 4 binaries and Group 1–3 are
needed for q > 5. Comparing panels (a)–(d) in Fig. 7, we see
that adding more overtones does not result in any order-of-
magnitude improvement to χ2

min. That is because higher-order
overtones decay faster and thus only influence the ringdown
waveform at an earlier time while have negligible impact on
the converged χ2

min after ttrans.
Comparing results of different binaries in Fig. 7, the differ-

ences between S and Y are the most and least significant for
the q = 1 and q = 6 binaries, respectively. Taking the last
column of groups (Groups 1–4) in panel (a) for example, for
binary N1 (q = 1), we have χ2

min = 7 × 10−5 and 3 × 10−3 for
the S and Y models, respectively, with a factor of ∼ 40 im-
provement in accuracy by using S versus Y; while for binary
N9 (q = 6), the accuracy is only a factor of ∼ 1.8 better by
using S (χ2

min = 6.0 × 10−4 for S and 1 × 10−3 for Y). This
is because the distinction between the S and Y bases depends
on the spheroidicities, as shown in Eq. (4), which are propor-
tional to |χ f |, M f , and ωlmn’s. Meanwhile, when the progeni-
tor black holes are nonspinning, |χ f | decreases as q increases,
e.g., χ f = 0.6864 for N1 and χ f = 0.3725 for N9.

Even though the S model results in better χ2
min than the

Y model, it is not always the case for the estimated param-
eters M f ,est and χ f ,est. The features of relative errors defined
in Eq. (17) are summarized below, with detailed results pre-
sented in Appendix E:

• For G0, N1–N4: before adding (l,m) Group 3, Y model
behaves better; S turns better after adding Group 3.

• For N5: there is no clear S/Y distinction when includ-
ing only Group 1; Y behaves better after adding Group
2; S behaves better after adding Group 3.

• For N6: Y behaves better before adding Group 3; there
is no distinction after adding Group 3 but not Group 4;
S behaves better after adding Group 4.

• For N7: Y behaves better before adding Group 3; there
is no distinction after adding Group 3.

• For N8–N9: Y behaves better before adding Group 4;
there is no distinction after adding Group 4.

From the observations above, we notice that when not in-
cluding enough (l,m) modes, S model is not necessarily bet-
ter than Y model in estimating parameters of the remnant
black hole. It indicates that the more accurate S model with
spin-weighted spheroidal harmonics are more impacted by
the missing (l,m) modes, while the less accurate Y model
with orthogonal spin-weighted spherical harmonics is less im-
pacted. For binaries with larger q, more (l,m) modes have
non-negligible contributions to the ringdown waveform, and
thus are all required for a precise characterization when us-
ing the S model. Once those (l,m) modes are included, the S
model is consistently better than the Y model in both χ2

min and
the accuracy of (M f ,est, χ f ,est).
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FIG. 8. The S model transition time ttrans for binaries G0 and N1–
N9. Each panel corresponds to a specific binary, labeled in the upper
left corner. The horizontal axis is toffset/M, and the discretized vertical
axis specifies the (l,m) groups. Markers in different shapes indicate
different numbers of overtones included, shown in the legend in the
top left panel.

10−5

10−3

10−1

χ
2

n = 0

G0

n = 0, 1

G0

0 10 20 30
10−5

10−3

10−1

χ
2

n = 0

N9

Group 1
Group 1,2

Group 1-3
Group 1-4

0 10 20 30

n = 0, 1

N9

toffset/M

FIG. 9. Example S model distances χ2 for binaries G0 and N9,
with respect to toffset. The left and right columns are for n = 0 and
n = 0, 1, respectively. Curves with different colors stand for different
(l,m) Groups, as shown in the legend. The translucent vertical and
horizontal lines indicate ttrans and χ2

min, respectively.



13

Based on the discussion above, we conclude that the spin-
weighted spheroidal harmonics (S model) is indeed the better
representation of gravitational wave ringdown signals com-
pared to the spin-weighted spherical harmonics (Y model),
and that the difference is distinguishable in NR waveforms.

Let us comment on the temporal behavior of fitting with
different (l,m) modes and overtones. Now we only consider
the S model as we have demonstrated that the S model is a
better representation. In Fig. 8, we summarize ttrans for bina-
ries G0 and N1–N9, and further in Fig. 9, we show the details
of χ2 with respect to toffset for two example binaries, G0 and
N9. Essentially, the transition time ttrans happens when the
missing overtones have mostly decayed in the NR waveform,
with χ2 reaching the minimum distance χ2

min determined by
the precision that the model can achieve. Adding overtones
brings forward ttrans, while adding (l,m) modes postpones ttrans
– when the model becomes more accurate, the achievable χ2

min
is smaller and thus takes more time to arrive. In other words,
when the model template includes more (l,m) modes, more
overtones are needed accordingly to reach the transition at a
similar time. Similarly, mass ratios also influence the transi-
tion time as a result of different achievable χ2

min levels. As
shown in Fig. 8, with the same sets of modes included in the
template, ttrans generally occurs earlier when q is larger, be-
cause the achievable χ2

min is relatively larger.
In this section, we have discussed the S/Y model distin-

guishability and contribution of higher-order (l,m) modes and
overtones. In the next section, we will further consider the
situations when the progenitor binaries have spins along the
−ẑ direction that leads to anti-aligned spins in remnant black
holes.

IV. SPINNING BINARIES AND RETROGRADE
EXCITATION

For nonspinning binaries, only the orbital angular momen-
tum contributes to the remnant spin. While in general cases,
the spin angular momentum of each individual progenitor
black hole also leaves imprints in the ringdown waveform.
Specifically, when the spins of the progenitor black holes are
anti-aligned with the orbital angular momentum [64, 67, 92]
and are large enough, retrograde modes could be excited in the
remnant black hole. Retrograde excitations have been studied
in the case of extreme mass ratio inspirals [29–32] using black
hole perturbation theory [7]. Features of the ringdown wave-
forms have also been numerically studied in superkick BBH
systems with equal mass [93]. While not many studies have

TABLE IV. SXS BBH waveforms used in Sec. IV.

Labela SXS ID/Lev qref (~χref,1)z (~χref,2)z χeff (~χ f )z

A0 0188/Lev3 7.187 0.0000 0.0000 0.0000 0.3306
A1 1424/Lev3 6.464 −0.6566 −0.7991 −0.6757 −0.0929
A2 1435/Lev3 6.589 −0.7893 0.0673 −0.6764 −0.1828
A3 1422/Lev3 7.953 −0.8001 −0.4588 −0.7620 −0.2721

a Omit the same notes as in Table II.

been done in the intermediate mass ratio inspirals [94, 95].
To study the retrograde excitations, we apply the fitting

method described above to three binaries, A1–A3, with χ f < 0
(|χ f | increases from A1 to A3), as listed in Table IV. A non-
spinning binary A0 with χ f > 0 is included for comparison
purposes. The orbital angular momentum and the spin an-
gular momentum of the primary black hole, when in oppo-
site directions, will cancel out to some extent in the merger
stage [67, 92]. Becasue of that, retrograde QNMs, excited
when the anti-aligned spin dominates, have smaller frequen-
cies compared with the corresponding prograde modes. Dur-
ing the merger, the inspiral polarization pattern transitions
smoothly to the dominating prograde or retrograde ringdown
modes for remnant spin χ f > 0 and χ f < 0, respectively. This
will be discussed in more details as discussed in Sec. II A 4.

In this section, we describe the fitting strategy, again, based
on the relative importance of different modes in these wave-
forms (A0–A3) and implement the fitting with both prograde
and retrograde modes included, or with prograde modes only.
We then analyze the results and discuss the features of QNM
frequencies and polarization patterns in the spin anti-aligned
case.

The relative importance Alm (defined in Eq. (16)) of bina-
ries A0–A3 are plotted in Fig. 10. We follow the conven-
tion in Fig. 1 to extend the parameter space of the orbital
frame spin χ f to include negative values. In Sec. III, we
have demonstrated that the S model is more accurate com-
pared to the Y model. In this section, we focus on the fitting
using the S model. We follow the grouping and ranking of
(l,m) modes discussed in Sec. III A. Given that the fitting in-
cluding retrograde modes is more computationally expensive
(the number of modes doubled) and that the main purpose
here is to study the retrograde modes, we directly compare
the results between including only the prograde modes up to
Group 3, i.e., (l,m) = (2, 2), (3, 3), (2, 1), (4, 4), (2, 0), (3, 2),
and the results including the corresponding retrograde modes
(l,m) = (2,−2), (3,−3), (2,−1), (4,−4), (3,−2) as well. To
confirm the contribution of overtones, we implement two sets
of fittings with n = 0 and n = 0, 1 for each of the two scenar-
ios above. Also, since χ2

min will be stabilized at some given
level after ttrans, we carry out the fitting up to toffset = 35M in
this section.

The polarization patterns for A0–A3 have similar features
at different emission directions, as shown in Fig. 11 – they
all look counterclockwise when viewed from the north side
(ι < π/2) and clockwise when viewed from the south side
(ι > π/2). Combined with Fig. 3, we can see that the dominant
excitations are either characterized by B(S±)

m>0 for spin aligned
binaries, or by B(S±)

m<0 for spin anti-aligned binaries. Thus the
dominant QMNs should be prograde modes for A0 but retro-
grade modes for A1–A3.

Another feature we expect to see when comparing the fit-
ting results with and without the retrograde modes is asso-
ciated with |χ f |. As shown in Fig. 2, the QNM frequencies
of the retrograde modes correspond to the dotted curves, ex-
tending towards lower frequencies when |χ f | increases from
the points with χ f = 0, while the curves of prograde modes
extend towards higher frequencies when |χ f | increases. For
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FIG. 10. The relative importance Alm of binaries A0–A3. The definitions of Group 1–3 follow those in Fig. 4. Considering the computing
cost with retrograde modes added, we only include (l,m) modes up to Group 3 in Section IV.

larger |χ f |, the frequencies of a prograde mode and the cor-
responding retrograde mode becomes more separated in the
spectrum. Thus the difference in fittings with and without the
retrograde modes becomes more distinct.

The fitting results are shown in Fig. 12, where (a) and (b)
correspond to the cases with overtones n = 0 and n = 0, 1,
respectively. When showing χ f ,est, we no longer use the rela-
tive error defined in Eq. (17), as it is not a good measure when
the true value is small and comparable to the level of oscil-
lation, e.g., A1 has χ f ,true = −0.0929, while χ f ,est oscillates
up to ∼ 0.1. Instead, we directly compare χ f ,est to χ f ,true (the
dotted red lines in Fig. 12).

In Fig. 12 both (a) and (b), the difference between exclud-
ing and including retrograde modes becomes more significant
from left (A0) to right (A3). Taking the n = 0 case for ex-
ample, we list the χ2

min values in Table V. For the nonspinning
binary A0, the ratio between the χ2

min values obtained with
models including and excluding retrograde modes is close to
unity, i.e., the difference is small. For binaries A1–A3, includ-
ing retrograde modes largely improves the fitting accuracy and
the improvement becomes more significant when |χ f | is larger.
Again, we estimate the fitting error by comparing the results
obtained from different numerical resolution levels. As shown
in Fig. 13, for all binaries A0–A3, the difference of results ob-
tained between Lev3 and Lev2 are much smaller compared to
the difference between using models including and excluding
retrograde modes. Thus the results are not impacted by the

TABLE V. The values of χ2
min when fitting with prograde modes only

(P), versus fitting with both prograde and retrograde modes (PR) (all
modes fundamental n = 0). The last row lists the ratio between the
χ2

min values obtained with and without including retrograde modes.

Model A0 A1 A2 A3
P 0.0037 0.0063 0.0090 0.0130

PR 0.0035 0.0041 0.0046 0.0055
Ratio (PR/P) 0.93 0.65 0.51 0.42

numerical errors in the waveforms.
In terms of M f ,est and χ f ,est, there is tiny difference in the fit-

ting results when adding the retrograde modes for A0. While
for A1–A3, including retrograde modes improves a lot the ac-
curacy of M f ,est and χ f ,est. Specifically, when χ f ,true < 0 while
retrograde modes are not included, the algorithm tends to find
a lower spin value but does not go below χ f = 0, even though
we allow negative χ f values in the fitting in both cases. This
is because the prograde modes for χ f < 0 cannot satisfy the
polarization patterns of the NR waveforms shown in Fig. 11.

The magnitudes of the optimal coefficients B(S±)
lmn and B(S±)

l±mn
are also plotted in Fig. 12, characterizing the contribution of
each mode. In (a2) and (b2), it is shown that adding retro-
grade modes barely influences the prograde mode coefficients
(solid curves) at all discrete toffset values for A0 (first column),
and the prograde mode coefficients are consistently larger than
the coefficients of the corresponding retrograde modes (dot-
ted curves) by order(s) of magnitude. While for A1–A3, the
retrograde modes appear to be dominant (with larger coeffi-
cients) when they are included in the fitting. In the case of
A3 with n = 0, 1, as show in the last column of (b2), the
retrograde mode coefficients are dominant at all toffset values.
In other cases, the retrograde mode coefficients are larger at
some toffset values but switch to be smaller at other toffset’s – and
such switch always happens when χ f ,est flips its sign. That is
understandable from the data waveform polarization patterns,
and that the prograde modes dominate for χ f > 0 while ret-
rograde modes dominate for χ f < 0, but both cases with sim-
ilar polarization patterns and frequencies and thus generating
similar waveforms. At earlier times, the incorrect results with
dominant prograde modes are caused by the lack of overtones
that have non-negligible contributions before ttrans, and thus
the model is not accurate enough to represent the waveform,
and more specifically, the correct frequencies. The switch
happens at an earlier time for binaries with a larger mass ra-
tio (A3). For A1, there is another switch at toffset = 25M as
shown in the second column of (b2). This could be caused by
numerical errors or the random jumps in the (M f , χ f ) parame-
ter space – when |χ f ,true| has such a small value of 0.0929, the
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FIG. 11. Polarization contents (h+(t), h×(t)) of the ringdown wave-
form of binaries A0–A3, with t = 0 starting at their own tpeak. The
plotting convention follows that of Fig. 3.

estimates can easily oscillate around zero.
The results and analysis in this section are all consistent

with our expectations discussed in Sec. II A 4. An interesting
follow-up study is to map the progenitor black hole properties
to the ringdown QNM excitations. We leave it to future work.

V. CONCLUSIONS

In this work, using results from numerical simulations,
we verified predictions of black-hole perturbation theory for
gravitational waves emitted by remnant black holes of bi-
nary mergers. In particular, we simultaneously fitted the tem-
poral and spatial dependences of the NR ringdown wave-
forms to models of QNM expansion. Comparing between the

spin-weighted spheroidal harmonics (S model) and the spin-
weighted spherical harmonics (Y model), we have demon-
strated that the S model, as predicted by the Teukolsky equa-
tion, is the more faithful representation of the ringdown wave-
form. The combination of temporal and spatial behaviors al-
lowed a more comprehensive study of the linearized Einstein’s
equations in the background of a Kerr black hole and comple-
mented existing black hole spectroscopy studies.

With spatial dependence included, we reinforced conclu-
sions in previous studies of black-hole spectroscopy about
higher-order (l,m) modes and overtones. When the progenitor
binary has asymmetric masses, higher-order angular modes
are required to accurately represent the ringdown waveform.
For nonspinning binaries, the necessity of taking into account
the higher-order modes depends on the mass ratio and the re-
sulting remnant spin magnitude. The (l,m) = (2, 2) funda-
mental mode is enough to achieve an accuracy above 99% (i.e.
χ2

min < 0.01) when modeling the ringdown with the S model
for q < 1.25, while for 1.25 < q < 4 and q > 5, about three
and six modes are needed, respectively, to achieve that level
of accuracy (with changes subject to the grouping strategy,
see Sec. III A). On the other hand, adding overtones improves
the accuracy of the model at an earlier time of the ringdown.
For binaries with higher mass ratios, when more (l,m) modes
are included, more overtones are needed accordingly to accu-
rately represent the early stage ringdown waveform. The fact
that overtones can improve the QNM expansion when both
temporal and angular patterns are matched to numerical wave-
forms, and the fact that the S model works better than the Y
model, provide stronger evidence that overtones are truly ex-
cited, and that such improvement is not due to overfitting.

During the transition from inspiral to ringdown, the mag-
nitudes, spatial dependence, and polarization patterns of the
gravitational waves during the inspiral stage are transferred
to the ringdown stage. Our study confirmed this transfer.
The magnitudes of the initial excitation of the (l,m) ringdown
QNMs are determined by the leading post-Newtonian order
of the mode during inspiral, with possible suppression due to
symmetry. The polarization content of the mode (i.e., left-
versus right-hand) is determined by the direction of the or-
bital angular momentum of the binary. The remnant spin di-
rection and the excitation of prograde or retrograde mode are
determined by the binary dynamics. When the remnant spin is
aligned (anti-aligned) with the orbital angular momentum, the
prograde (retrograde) modes are dominant. Including the ret-
rograde modes is necessary to build an accurate model of the
ringdown waveform in the spin anti-aligned case. The more
general cases with the remnant spin misaligned with the or-
bital angular momentum will be left to future work.

Under the sensitivity of the currently working detectors,
higher-order angular modes, overtones, or retrograde modes
generally do not play an important role in the detection or pa-
rameter estimation for most of the events. However, events
with high signal-to-noise ratios (especially the high signal-to-
noise ringdown) are expected to be observed regularly with
the next generation detectors [58]. Features discussed in this
work will be important for future studies of the source prop-
erties.
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FIG. 12. Fitting results for binaries A0–A3 using the S model with (a) only the fundamental modes n = 0 and (b) overtones n = 0, 1. For each
binary (in each column), (a1) and (b1) show the optimal distance χ2, the relative error in M f ,est, and χ f ,est; (a2) and (b2) show the magnitudes of
the optimal coefficients. In (a1) and (b1), the solid cyan and dot-dashed magenta curves correspond to the results without and with retrograde
modes included, respectively. The dotted red line in each χ f block indicates the χ f ,true. In (a2) and (b2), the upper and lower blocks show
optimal coefficients when fitting without and with retrograde modes included, respectively. The solid and dotted curves correspond to prograde
and retrograde modes, respectively. Note that B (S +)

lmn and B (S−)
lmn with the same lmn indices are roughly conjugate to each other (in the spin aligned

or spin anti-aligned cases). For brevity, we only plot their absolute values.
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FIG. 13. Fitting results for the binary waveforms A0–A3 using SXS data with different numerical levels. The S model used for fitting only
contains the fundamental n = 0 modes. Plot settings are the same as Fig. 6. The inset in the χ2 block of the first column shows the results in a
zoomed-in range.

Finally, this work also provided a theoretical and analytical
foundation for developing strategies for testing the temporal-
spatial emission patterns of the ringdown. Even though, prac-
tically, each binary is only observed from one particular wave-
emission direction, angular emission patter can be recon-
structed by collecting multiple events.
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Appendix A: Notation and terminology

In Table VI, we summarize the notation and terminology specifically defined and used in this paper.

TABLE VI. Notations and terminology used in this paper.

Notation Definition and description
S The QNM decomposition in spin-weighted spheroidal harmonics, defined in Eq. (1), often labeled in superscripts.
Y The QNM decomposition in spin-weighted spherical harmonics, defined in Eq. (3), often labeled in superscripts.
toffset The offset of starting time from the peak of

∑
lm |hlm(t)|2 (tpeak), defined in Eq. (6), the control hyperparameter in fitting.

χ2[h, g(S/Y)
opt ] The optimal distance over the searched (M f , χ f ) parameter space, defined in Eq. (D10), shortened as χ2 in the figures.

ttrans Transition time, the value of toffset after which the optimal distance converges to a stable level, defined in Sec. III B.
χ2

min Minimum distance, the converged value of the optimal distance after the transition time, defined in Sec. III B.
|∆M f /M f |, |∆χ f /χ f | Relative errors, the quantities used to characterize the accuracy of the estimated parameters, defined in Eqs. (17).
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Appendix B: QNM expansion conventions

Solutions to the Teukolsky equation can be written in the form of:

ψ(t, r, ι̃, ϕ̃) = e−iωlmntRlmn(r)S lmn(ι̃)eimϕ̃. (B1)

Here (l,m) are the angular quantum numbers, n is the overtone number, and Rlmn(r) is the radial function. To avoid confusion,
we continue using the notations defined in the main text, i.e., the coordinates in the final spin frame (ι̃, ϕ̃) here and the remnant
black hole parameters (a f ,M f ), although the solutions to the Teukolsky equation apply to all Kerr black holes.

As it turns out, for each overtone number n, there is a family of modes with Re(ωlmn) > 0 and another family with Re(ωlmn) <
0. They correspond to modes with polarization patterns that either rotate counterclockwise or clockwise, when the wave comes
toward the observer directly face-on. We denote Re(ωR

lmn) > 0 as right-handed (R) and Re(ωL
lmn) < 0 as left-handed (L). At

r → +∞, for both families, we can write:

ψR
lmn(t, r → +∞, ι̃, ϕ̃) ∼ e−iωR

lmn(t−r∗)r−1S R
lmn(ι̃)eimϕ̃, (B2)

ψL
lmn(t, r → +∞, ι̃, ϕ̃) ∼ e−iωL

lmn(t−r∗)r−1S L
lmn(ι̃)eimϕ̃, (B3)

where r∗ is the tortoise coordinate [9].
Note that ωR

lmn corresponds to the usual tabulated values of QNM frequencies, so we write

ωR
lmn = ωlmn. (B4)

Here m > 0 are prograde, and m < 0 are retrograde modes. We also have

S R
lmn(ι̃)eimϕ̃ = −2S lmn(χ f M fωlmn, ι̃, ϕ̃). (B5)

The frequencies and the angular mode functions of the L and R modes are related, and we wish to make this relation explicit.
We notice that if ψ(t, r, ι̃, ϕ̃) is an outgoing solution to the Teukolsky equation, then ψ∗(t, r, π − ι̃, ϕ̃) is also an outgoing solution,
with ∗ denoting the complex conjugate. In this way, ψR∗

lmn(t, r, π − ι̃, ϕ̃) is also a QNM, with

ψR∗
lmn(t, r, π − ι̃, ϕ̃) = eiω∗lmn(t−r∗)r−1

−2S ∗lmn(χ f M fωlmn, π − ι̃, ϕ̃). (B6)

We can further write [9]

−2S ∗lmn(χ f M fωlmn, π − ι̃, ϕ̃) = −2S ∗lmn(χ f M fωlmn, π − ι̃)e−imϕ̃ (B7)

= −2S lmn(χ f M fω
∗
lmn, π − ι̃)e

−imϕ̃ (B8)

= (−1)l
−2S l−mn(−χ f M fω

∗
lmn, ι)e

−imϕ̃, (B9)

leading to

ψR∗
lmn(t, r, π − ι̃, ϕ̃) = (−1)leiω∗lmn(t−r∗)r−1

−2S l−mn(−χ f M fω
∗
lmn, ι̃, ϕ̃). (B10)

By comparing Eqs. (B10) and (B3) and replacing m with −m, we can see that

ωL
lmn = −ω∗l−mn , ψL

lmn(t, r, ι̃, ϕ̃) = (−1)lψR∗
l−mn(t, r, π − ι̃, ϕ̃). (B11)

Using the symmetry above, we can expand the QNM in two different ways. To avoid confusion, we intend to write out all
arguments explicitly. The first way is to group in terms of (l,m) spin-weighted spherical harmonics (see Table I for corresponding
notations [a][b][c][d]):

h(t, r, ι̃, ϕ̃) ∼
lmax∑
l=2

l∑
m=−l

nmax∑
n=0

[
AR

lmnψ
R
lmn(t, r, ι̃, ϕ̃) + AL

lmnψ
L
lmn(t, r, ι̃, ϕ̃)

]
(B12)

=
M f

r

lmax∑
l=2

l∑
m=−l

nmax∑
n=0

[
AR

lmne−iωR
lmn(t−r∗)S R

lmn(ι̃)eimϕ̃ + AL
lmn(−1)lψR∗

l−mn(t, r, π − ι̃, ϕ̃)
]

(B13)

=
M f

r

lmax∑
l=2

l∑
m=−l

nmax∑
n=0

[
AR

lmne−iωlmn(t−r∗)
−2S lmn(χ f M fωlmn, ι̃, ϕ̃)︸                                           ︷︷                                           ︸

[a] for m>0; [c] for m<0;

+ AL
lmneiω∗l−mn(t−r∗)

−2S lmn(−χ f M fω
∗
l−mn, ι̃, ϕ̃)︸                                               ︷︷                                               ︸

[d] for m>0; [b] for m<0.

]
. (B14)
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In this way, AR
lmn and AL

lmn correspond to the excited modes with different absolute oscillation frequencies and decay rates; there
is one prograde and one retrograde mode in each lmn group. The two terms have different polarization patterns (R and L), but
the same emission direction: for m > 0, both terms emit toward the north, while for m < 0, both terms emit toward the south.

Alternatively, switching m and −m for the AL
lmn term in Eq. (B14), we can regroup the summation as follows:

h(t, r, ι̃, ϕ̃) =
M f

r

lmax∑
l=2

l∑
m=−l

nmax∑
n=0

[
AR

lmne−iωlmn(t−r∗)
−2S lmn(χ f M fωlmn, ι̃, ϕ̃) + AL

l−mneiω∗lmn(t−r∗)
−2S l−mn(−χ f M fω

∗
lmn, ι̃, ϕ̃)

]
(B15)

=
M f

r

lmax∑
l=2

l∑
m=−l

nmax∑
n=0

[
AR

lmne−iωlmn(t−r∗)
−2S lmn(χ f M fωlmn, ι̃, ϕ̃) + AL

l−mneiω∗lmn(t−r∗)(−1)l
−2S ∗lmn(χ f M fωlmn, π − ι̃, ϕ̃)

]
(B16)

=
M f

r

lmax∑
l=2

l∑
m=−l

nmax∑
n=0

[
A(+)

lmne−iωlmn(t−r∗)
−2S lmn(χ f M fωlmn, ι̃, ϕ̃)︸                                           ︷︷                                           ︸

[a] for m>0; [c] for m<0;

+ A(−)
lmneiω∗lmn(t−r∗)

−2S ∗lmn(χ f M fωlmn, π − ι̃, ϕ̃)︸                                               ︷︷                                               ︸
[b] for m>0; [d] for m<0.

]
. (B17)

Here we have defined

A(+)
lmn = AR

lmn , A(−)
lmn = (−1)lAL

l−mn . (B18)

In this way of grouping, A(+)
lmn and A(−)

lmn correspond to the excited modes with different angular emission patterns (in terms of both
polarization and direction), but the same absolute oscillation frequency and decay rates. Prograde and retrograde modes are not
mixed into the same lmn group. Eq. (B17) has the same form as we defined in the main text Eq. (1). We believe this is more
convenient, since modes in the same group tends to be either both excited or both not excited. For example, the entire retrograde
groups can be ignored in many situations, as is done in e.g., Ref. [36].

Appendix C: Limitation of single-direction fittings

Here we briefly comment on the limitation of single-direction fittings, which is one of the motivations of implementing a
temporal-spatial fitting strategy in this paper. In brief, the S/Y models cannot be distinguished using the signal of a single event
without prior information about QNM excitations.

The excitation amplitudes {B(S±/Y±)
lmn } are governed by progenitor binary dynamics, and the emission strength varies with the

spherical coordinate ~Ω, especially the inclination angle ι [58]. The waveform observed from a single direction cannot reveal
angular distribution in the source frame, and thus we can only fit the waveform with a single-direction model:

hSD(t) =
M f

r

lmax∑
l=2

m=l∑
m=−l

nmax∑
n=0

[
C(+)

lmne−iωlmnt + C(−)
lmneiω∗lmnt

]
, (C1)

with {C(±)
lmn} being the relative amplitudes of different frequency components. While we do find that single-direction fitting is

capable of finding the dominant frequency components, the relative amplitudes {C(±)
lmn} do not help in the S/Y model selection

unless the binary inclination is known from the inspiral stage. Taking the spin aligned case for an example, the {C(±)
lmn} are related

to {B(S±/Y±)
lmn } via:

C(+)
lmn = B(S +)

lmn −2S lmn(γlmn, ι̃, ϕ̃), B(Y+)
lmn −2Ylm(ι, ϕ), (C2a)

C(−)
lmn = B(S−)

lmn −2S ∗lmn(γlmn, π − ι̃, ϕ̃), B(Y−)
lmn −2Y∗lm(π − ι̃, ϕ̃), (C2b)

for the S/Y models, respectively. However, in practice, the inclination angle ι is usually not well constrained, even from the full
inspiral-merger-ringdown waveform fitting. Thus, the S and Y models are not distinguishable from a single event.

In addition, due to the parameter degeneracy in single-direction fitting, it is likely that different (M f , χ f ) values with different
dominate QNMs could result in the same set of dominant frequencies. Thus, for non-face-on emission or more complicated
binaries with precession and/or misaligned spin [45, 76], the lack of spatial information might lead to incorrect estimation of the
source parameters. This degeneracy could in principle be broken if we know the relative amplitude of each QNM a priori, and
we can, in turn, use the relative amplitudes of different frequency components to estimate the inclination angle.
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Appendix D: Numerical implementation for optimizing {B(±)
lmn}

In the fitting, the NR ringdown waveform is treated as data, h(~Ω, t). The template waveform g(S/Y)(~Ω, t) is built from Eq. (1)
and Eq. (3) for the S and Y models, respectively, with excitation coefficients {B(S±/Y±)

lmn } to be determined. In numerical realization,
we use discretized representation to express temporal-spatial functions and their inner products. We define a Nt × NΩ matrix
Mh to represent the temporal-spatial function h(~Ω, t), where Nt is the number of discretized time steps and NΩ is the number of
spatial points that include reasonably sampled ι and ϕ values:

Mh =


h̄(~Ω1, t1) h̄(~Ω1, t2) ... h̄(~Ω1, tNt )
h̄(~Ω2, t1) h̄(~Ω2, t2) ... h̄(~Ω2, tNt )

... ... ... ...

h̄(~ΩNΩ
, t1) h̄(~ΩNΩ

, t2) ... h̄(~ΩNΩ
, tNt )

 . (D1)

In the matrix (D1), h̄(~Ωi, t j) ≡
√

sin ιi h(~Ωi, t j) is the strain value at a specific spatial point ~Ωi = (ιi, ϕi) and a specific time step t j,
weighted by

√
sin ιi, the square root of the Jacobian for a unit sphere. This weight factor is introduced because we are going to

represent the temporal-spatial inner product (Eq. (7)) using the vector product in Eq. (D3), and want to have the Jacobian sin ιi
shared equally by the data and template waveforms. We further express the matrix in a 1 × NtNΩ row vector:

~Vh =
(
h̄(~Ω1, t1), ... , h̄(~Ω1, tNt ), h̄(~Ω2, t1), ... , h̄(~ΩNΩ−1, tNt ), h̄(~ΩNΩ

, t1), ... , h̄(~ΩNΩ
, tNt )

)
. (D2)

For the template waveform g(~Ω, t), using the similar matrix and vector representations as (D1) and (D2), the temporal-spatial
inner product in Eq. (7) can be represented by the vector product as follows (c.f. Eq.(13)):

〈g | h〉 = ~Vh~V
†
g. (D3)

With a given set of parameters (M f , χ f ), each lmn mode contributes to two 1×NtNΩ(M f , χ f ) vectors ~V(S±/Y±)
lmn (M f , χ f ), for S/Y

model respectively. Combined with coefficients B(S±/Y±)
lmn , we can construct the discretized template waveform g(S/Y)(~Ω, t; M f , χ f )

in the (D2) vector form:

~V(S/Y)
g (M f , χ f ) =

∑
lmn

(
B(S +/Y+)

lmn
~V(S +/Y+)

lmn (M f , χ f ) + B(S−/Y−)
lmn

~V(S−/Y−)
lmn (M f , χ f )

)
. (D4)

Considering the ± components, there are 2Nlmn modes in total. We form a large matrix for these 2Nlmn modes:

M(S/Y)
g (M f , χ f ) =



~V(S +/Y+)
(lmn)1

(M f , χ f )

...

~V(S +/Y+)
(lmn)Nlmn

(M f , χ f )

~V(S−/Y−)
(lmn)1

(M f , χ f )

...

~V(S−/Y−)
(lmn)Nlmn

(M f , χ f )


, (D5)

and assemble the matrix with the coefficient vector,

~B (S/Y) =

(
B(S +/Y+)

(lmn)1
, ... , B(S +/Y+)

(lmn)Nlmn
, B(S−/Y−)

(lmn)1
, ... , B(S−/Y−)

(lmn)Nlmn

)
, (D6)

such that the discretized template waveform (D4) can be expressed as:

~V(S/Y)
g (M f , χ f ) = ~B (S/Y)M(S/Y)

g (M f , χ f ). (D7)

The fitting procedure is as follows: For each set of remnant parameters (M f , χ f ), we obtain the QNM frequencies {ωlmn} using
the qnm package [75] and compose the template waveform (D5) for S and Y models, separately. We then apply multi-variable
linear regression [96] to determine the least-squares excitation coefficients B(S±/Y±)

lmn (c.f. Eq. (15)):

~B (S/Y)
l-s (M f , χ f ) =

[~VhM
(S/Y)†
g (M f , χ f )

][
M(S/Y)

g (M f , χ f )M(S/Y)†
g (M f , χ f )

]−1
, (D8)
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such that the distance between the data waveform ~Vh and the template waveform ~V(S/Y)
g, l-s (M f , χ f ) = ~B (S/Y)

l-s (M f , χ f )M
(S/Y)
g (M f , χ f )

is minimized (c.f. Eq. (14)):

χ2[h, g(S/Y)
l-s (M f , χ f )] =

[~Vh − ~V
(S/Y)
g, l-s (M f , χ f )

][~Vh − ~V
(S/Y)
g, l-s (M f , χ f )

]†
~Vh~V

†

h

. (D9)

Note that Eqs. (D4)–(D9) are defined under values of M f and χ f . Then we carry out a search in the 2D parameter space of
(M f , χ f ) to find the minimum point of χ2[h, g(S/Y)

l-s (M f , χ f )] and define it as the optimal distance:

χ2[h, g(S/Y)
opt ] ≡ min

(M f ,χ f )
χ2[h, g(S/Y)

l-s (M f , χ f )]. (D10)

The mass and spin that yield this optimal distance are denoted by (M f ,est, χ f ,est) (for S and Y models separately). The correspond-
ing excitation coefficients (D8) computed with (M f ,est, χ f ,est) are the optimal coefficients and are labeled as ~B (S/Y)

opt . Comparing
results between the S and Y models, the one that yields a smaller optimal distance demonstrates a better fit.

Appendix E: Full fitting results for N1–N9

The full fitting results for N1–N9 are shown in Figs. 14–22, plotted in the same way as Fig. 5.

Appendix F: Numerical error in SXS waveforms

In the main text, we use the highest numerical resolution levels available for each chosen binary, as listed in Tables II and IV.
In this appendix, we show the results of the lower SXS numerical resolution levels for binaries N1–N9. Figs. 23–25 are plotted
in a similar way as Fig. 6 for both the S and Y models. It shows that all the differences from various numerical levels are clearly
smaller than the difference from using different fitting models (S versus Y , or including different lmn modes). Therefore, our
conclusions in Sec. III C are not impacted by numerical errors of the waveforms.
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FIG. 14. Fitting results for binary waveform N1. Plot settings are the same as Fig. 5.
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FIG. 15. Fitting results for binary waveform N2. Plot settings are the same as Fig. 5.
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FIG. 16. Fitting results for binary waveform N3. Plot settings are the same as Fig. 5.
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FIG. 17. Fitting results for binary waveform N4. Plot settings are the same as Fig. 5.
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FIG. 18. Fitting results for binary waveform N5. Plot settings are the same as Fig. 5.
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FIG. 19. Fitting results for binary waveform N6. Plot settings are the same as Fig. 5.
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FIG. 20. Fitting results for binary waveform N7. Plot settings are the same as Fig. 5.
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FIG. 21. Fitting results for binary waveform N8. Plot settings are the same as Fig. 5.
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FIG. 22. Fitting results for binary waveform N9. Plot settings are the same as Fig. 5.
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FIG. 23. Fitting results for N1–N4 using SXS data with different numerical levels. Plot settings are the same as Fig. 6.
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FIG. 24. Fitting results for N5–N8 using SXS data with different numerical levels. Plot settings are the same as Fig. 6.
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FIG. 25. Fitting results for N9 using SXS data with different numerical levels. Plot settings are the same as Fig. 6.
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