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We present a wave generalization of the classic Schwarzschild method for constructing self-
consistent halos – such a halo consists of a suitable superposition of waves instead of particle orbits,
chosen to yield a desired mean density profile. As an illustration, the method is applied to spher-
ically symmetric halos. We derive an analytic relation between the particle distribution function
and the wave superposition amplitudes, and show how it simplifies in the high energy (WKB) limit.
We verify the stability of such constructed halos by numerically evolving the Schrödinger-Poisson
system. The algorithm provides an efficient and accurate way to simulate the time-dependent halo
substructures from wave interference. We use this method to construct halos with a variety of
density profiles, all of which have a core from the ground-state wave function, though the core-halo
relation need not be the standard one.

I. INTRODUCTION

What makes a halo tick? For a halo built out of par-
ticles, be it dark matter or stars, the answer lies in the
distribution function f , which tells us how the particles
are distributed in phase space. A halo in equilibrium
should be described by a time-independent f , satisfying
the Vlasov or collisionless Boltzmann equation (ignor-
ing processes such as two-body encounters). In a clas-
sic paper, Schwarzschild [1] described a method for self-
consistently constructing such a halo with a desired den-
sity profile: compute a library of particle orbits in the
corresponding gravitational potential, and choose an ap-
propriate weighting of the orbits to reproduce the input
density profile, thereby deducing the f that sustains the
halo (see also [2, 3]). Our goal in this paper is to develop
the corresponding method for a halo built out of waves.

Why waves? For a typical halo mass density, such
as that of the solar neighborhood, it can be shown that
a dark matter candidate with a constituent mass below
about 30 eV behaves like waves, because its de Broglie
wavelength falls below the average interparticle separa-
tion ([4] and references therein). Such a dark matter
particle is necessarily bosonic [5], with the prime exam-
ple being the QCD axion [6–15], or more generally, an
axion-like particle [16–20].

Novel wave signatures are most easily observable if the
de Broglie wavelength is large, i.e., if the mass is ultra-
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light (∼< 10−20 eV). This possibility is often referred to
as fuzzy dark matter (FDM), a term introduced by Hu,
Barkana, and Gruzinov [21]. There has been a revival
of interest in this possibility, starting from the work of
Schive, Chiueh, and Broadhurst [22] [18, 23–37] (more
generally, the subject of scalar field dark matter has a
long history [38–55]; see reviews [4, 56, 57] and references
therein).

The Schwarzschild-inspired strategy for building a halo
of a given desired density profile involves computing a
library of wave eigenmodes (replacing particle orbits)
in the corresponding gravitational potential, and choos-
ing an appropriate superposition of them to reproduce,
or match as best as we can, the given density profile.
Widrow and Kaiser proposed the wave superposition am-
plitude is proportional to the square root of the particle
distribution function f [58]. We will demonstrate that
this approach is to a large extent correct, with important
corrections in the inner parts of a halo. More recently,
Lin et al. [59] constructed wave dark matter halos using
the distribution of amplitudes measured from dynamical
FDM simulations.

We build on these earlier works with three principal
objectives in mind: (1) to clarify the validity and limita-
tion of the Widrow-Kaiser ansatz through a systematic
exploration of the particle and wave descriptions in the
WKB limit; (2) to extend the Lin et al. [59] construction
to halos of a general density profile,1 and show that the

1 Realistic halos have a variety of profiles, due in part to feedback
processes. It is thus useful to construct halos with profiles beyond
those predicted by pure dark matter cosmological simulations.
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wave construction inevitably puts constraints on what
kind of density profile is allowed; and (3) to demonstrate
that such a wave halo construction faithfully reproduces
wave interference substructures seen in dynamical wave
simulations.

The last point is a particularly important motiva-
tion for our work: dynamical wave simulations that
evolve the exact Schrödinger-Poisson system are com-
putationally expensive. The halo construction method
à la Schwarzschild, though numerical, is considerably
more efficient than these dynamical wave simulations.
This opens the door to detailed investigations of wave
halo substructure. Indeed, there are a few recent papers
heading in this direction: Dalal et al. [60] employed the
method of Widrow and Kaiser to construct wave dark
matter halos, for the purpose of studying the scattering
of tidal streams by the interference substructure; we in
[61] studied soliton random walk and oscillations by de-
composing a wave dark matter halo into its eigenmodes;
Zagorac et al. [62] studied the distortions of solitons using
perturbation theory.

The outline of the paper is as follows. We present
the wave halo construction method in §II, focusing on
the particular example of a Navarro-Frenk-White (NFW)
[63] halo with a core according to Schive et al. [64]. We
use this example to discuss several choices one may make
in such a construction. In §III, we check the stability of
the so-constructed halo by performing dynamical wave
simulations. We then turn to the construction of halos
with more general density profiles in §IV – as we will
see, a cored central profile is a universal feature of wave
dark matter, while a variety of outer profiles is allowed.
We explore in §V halos with a core size that deviates
from the Schive et al. [64] halo-core relation, and con-
clude in §VI. Appendix A contains a derivation of the
connection between the particle description (in terms of
distribution function) and the wave description (in terms
of superposition amplitudes), in particular verifying the
Widrow-Kaiser ansatz in the WKB limit.

Throughout this paper, we adopt a dark matter mass
of the ultra-light kind for illustration, but it should be
emphasized that the method can be applied in principle
to wave dark matter of any mass (∼< 30 eV). While the
ultra-light end of the spectrum is the most interesting
from the point of view of astrophysical observations, ax-
ion detection experiments target a wide range of axion
masses – from 10−22 to 10−3 eV – and are sensitive to
wave interference features down to very small scales.

We also use the terms fuzzy dark matter (FDM)
and wave dark matter somewhat interchangeably, even
though FDM is more appropriately restricted to wave
dark matter of the ultra-light kind [4].

One more remark on terminology – in the discus-
sion below we utilize (and draw a contrast between)
two different kinds of numerical simulations: one is the
Schwarzschild-like construction of halos which allows one
to efficiently simulate and evolve the halo substructure;
the other is the computationally expensive simulation

that evolves the Schrödinger-Poisson system exactly. We
refer to the former as Schwarzschild simulations and to
the latter as dynamical wave simulations.

II. METHOD FOR WAVE DM HALO
CONSTRUCTION

The behavior of wave dark matter is described by a
complex scalar field Ψ(x, t) that obeys the Schrödinger-
Poisson (SP) equations:

i~
∂Ψ

∂t
=

(
− ~2

2ma
∇2 +maV

)
Ψ , (1)

∇2V = 4πGρ = 4πGma|Ψ|2 , (2)

where V is the gravitational potential and ma is the par-
ticle mass. We set ma = 8.1 × 10−23 eV/c2 throughout
this work. We refer to Ψ as the wave function, with |Ψ|2
giving the number density of particles. It is important
to note that Ψ is a classical complex field, describing the
regime in which there are many dark matter particles per
de Broglie volume. Quantum fluctuations in this regime
are therefore negligible.2

Our goal is to construct an FDM halo in local equi-
librium, whose potential profile is static. Note that a
realistic halo, even a virialized one, has short timescale
fluctuations. Here, we are interested in a halo that has
no long term evolution, for which as a first approxima-
tion, the potential V , and therefore the Hamiltonian, can
be treated as time-independent. In this case, Ψ(x, t)
can be decomposed into a series of normalized and or-
thogonal spatial eigenmodes ψj(x) that satisfy the time-
independent Schrödinger equation:

(
− ~2

2ma
∇2 +maV

)
ψj = Ejψj . (3)

Each eigenmode ψj has an associated (time-
independent) complex amplitude aj and frequency ωj ,
the latter of which is related directly to that state’s en-
ergy eigenvalue (ωj = Ej/~). The time-dependent wave
function can thus be written as a sum of the eigenmodes:

Ψ(x, t) =
∑

j

ajψj(x)e−iEjt/~ , (4)

2 Note that a factor of ~ still appears in Eq. 1 despite the claim
that Ψ is a classical field. However, by dividing Eq. 1 by a
factor of the particle mass ma it is evident that ~ only appears in
conjunction with ma, and one may simply think of the quantity
~/ma as setting a characteristic scale in the problem.
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and the number density of particles is:

|Ψ(x, t)|2 =

∣∣∣∣
∑

j

ajψj(x)e−iEjt/~
∣∣∣∣
2

=
∑

j

|aj |2|ψj(x)|2 +
∑

j 6=k

aja
∗
kψj(x)ψ∗k(x)ei(Ek−Ej)t/~ .

(5)

The final term represents the interference of different
eigenstates, and is responsible for the small-scale FDM
fluctuations (sometimes referred to as ‘granules’). The
phase of each eigenmode (phase of aj) is assumed ran-
dom, and thus the granules or interference fringes take
on a somewhat random pattern. The typical granule size
is given by the de Broglie wavelength, ~/(mav), where v
is roughly the velocity dispersion of the halo [18, 22, 61].

The interference term is manifestly time-dependent,
with a characteristic timescale of the order of the de
Broglie time ~/(mav

2). In other words, the density, and
therefore the gravitational potential, is time-dependent
in detail.3 However, under time averaging, or averaging
over the random phases:

〈|Ψ(x, t)|2〉 =
∑

j

|aj |2|ψj(x)|2 . (6)

Our task is to find the superposition coefficients aj such
that the averaged density profile (Eq. 6) matches, to the
extent possible, the desired density profile. Once this
is done, the actual density profile at any given moment
(Eq. 5) exhibits the time-dependent halo substructure
from wave interference. The evolution of the substructure
is completely determined by this halo construction: it is
just a matter of attaching the right time-dependent phase
to each eigenmode.

It is important to emphasize, however, that this evolu-
tion is approximate – the exact evolution should account
for the fact that the gravitational potential fluctuates
with time, i.e., a completely self-consistent treatment in-
volves solving the Schrödinger-Poisson system (what we
call dynamical simulations). We will carry out dynam-
ical simulations in §III to demonstrate that our time-
independent halo construction method works: that the
constructed halo is stable, and that the substructures ap-
pear very similar to those seen in dynamical simulations.
The advantage of our halo construction is that it is much
faster, and evolving the substructure (by propagating the
phases of eigenmodes) takes minimal computational ef-
fort.

3 It is worth noting that even a halo composed of classical par-
ticles such as stars (i.e., negligible de Broglie wavelength) has
time-dependent fluctuations. The analog of random phase for
the wave eigenmodes is random phase for the stellar orbits. Oc-
casionally, some stars might come together, creating temporary
density enhancements. Such density fluctuations become small
if the density of stars is sufficiently high.

To illustrate the application of this procedure, we im-
pose spherical symmetry throughout the remainder of
this work. However, our method is more general: it could
be used to generate triaxial halos if one wishes, though
the computation of the corresponding eigenmodes in a
non-spherical potential is more involved.

A. Target Density Profile

For the purpose of illustrating the procedure in this
section, we adopt a target density profile corresponding
to an NFW halo with a soliton-like core, consistent with
the halo density profiles found in cosmological simula-
tions of structure formation [22, 25, 64, 65]. The outer
profile is defined using the classical NFW prescription
[63]:

ρNFW(r) =
ρ0

(r/rs)(1 + r/rs)2
, (7)

with a scale radius of rs = 10 kpc and a scale density
of ρ0 = 1.1 × 106 M� / kpc3, corresponding to a virial
mass Mvir ≈ 1010 M�, enclosed within rvir = 56 kpc (the
radius within which the average density of the halo is 347
times the background matter density).4 We truncate the
density profile around the virial radius by multiplying Eq.
7 by an exponential factor: exp(−r2/2r2

vir), in order to
keep the total halo mass finite. This also ensures that our
wave function Ψ does not extend beyond the simulation
box for the dynamical simulations carried out in §III.

We replace the inner density cusp of the NFW profile
with an FDM-like core following [64]. The core density
profile is described by an approximation of the soliton
solution to the SP equation [22]:

ρc =
0.019(ma/10−22eV)−2(rc/kpc)−4

[1 + 0.091(r/rc)2]8
, (8)

where we use the core radius given by the scaling relation
from [64] (with z = 0):

rc = 1.6

(
ma

10−22eV

)−1(
Mvir

109M�

)−α
kpc , (9)

with α = 1/3, yielding a core radius of 0.9 kpc for the
density profile discussed in this section.

The target density profile is shown in Figure 1. The
transition between the inner core density profile and the
outer NFW profile occurs at approximately 2rc. In §IV
and §V we apply this method to fit a variety of other
spherically symmetric density profiles, including a similar
NFW profile without a superposed soliton core.

4 All the dynamical wave simulations in this work are performed in
isolated, periodic boxes, for which the virial radius is an arbitrary
cutoff for calculating the halo mass (the mass of an NFW profile
out to large radii is logarithmically divergent). However, we
quote the virial mass in order to relate to other works (e.g., [64])
in which cosmological simulations are utilized to investigate the
behavior of FDM.
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FIG. 1. The target density profile for this section, consisting
of an NFW halo with a superposed soliton core following the
Schive et al. [64] core-halo relation.

B. Calculation of Eigenmodes

Given the spherical symmetry of our target halos, a
convenient basis is to factorize each eigenmode into its
radial and angular components: ψj = ψn`m(r, θ, φ) =
Rn`(r)Y

m
` (θ, φ), where n, `, and m are the radial,5 an-

gular, and magnetic quantum numbers, respectively (i.e.,
the subscript j is a proxy for n, `,m), Y m` are the spheri-
cal harmonics, and the radial functions Rn` are obtained
by solving:

− ~2

2ma

d2u

dr2
+

[
~2

2ma

`(`+ 1)

r2
+maV (r)

]
u = Eu , (10)

with un`(r) ≡ rRn`(r). The energy eigenvalue E depends
on n and ` but not m, by virtue of spherical symmetry.

Using the density profile described in §II A as the in-
put density profile, we compute the corresponding grav-
itational potential V and then solve Eq. 10 numerically
for each value of `.6 This yields a series of eigenvalues
En` and corresponding radial functions Rn`, that each

5 Many sources use n to instead denote the principal quantum
number. The radial quantum number n here corresponds to the
number of nodes in Rn`, and is related to the principal number
through n = nprincipal − `− 1.

6 The eigenvalue/eigenmode problem is solved numerically on a
finite grid from close to the origin out to 2rvir. We have verified
that the obtained eigenvalues and eigenmodes are sufficiently ac-
curate, and that extending the grid out to larger radii does not
change the results significantly. All eigenmodes are obtained via
the finite difference method, using SciPy’s linear algebra library,
with the exception of the ` = 0 modes, for which we utilize the
dedicated boundary value problem solver from the SciPy inte-
gration and ODE library, to ensure the accuracy of the ` = 0
solutions at small r.

have 2`+ 1 degenerate states once we include the corre-
sponding spherical harmonic term Y m` . The eigenmodes
are each normalized such that:

∫
r2 sin θ |ψn`m|2 dr dθ dφ = 1 . (11)

Figure 2 shows the first few eigenmodes, labeled by the
values of n and ` (noting that the degenerate states with
a given value of n and ` but different values of m do not
differ in their radial profiles).

We include all eigenmodes from the ground state up
to a maximum energy, chosen to be the energy corre-
sponding to a particle on a circular orbit at rvir. Note
that the eigenmodes can extend beyond rvir (see foot-
note 6) – especially the higher energy ones, but they are
also assigned very small amplitudes, by virtue of our con-
struction method where the target density profile is ex-
ponentially suppressed beyond rvir.
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FIG. 2. The radial profiles of the first few eigenmodes, orga-
nized by their radial (n) and angular (`) quantum numbers.
The ground state is shown in the panel on the upper left.

C. Determination of Amplitudes and Application
of the Schwarzschild Method to Wave DM Halos

Self-consistency requires that we choose the ampli-
tude coefficients an`m that correspond to each eigen-
mode ψn`m such that the constructed wave function re-
produces the correct (time-averaged) density profile. In
other words, the reconstructed density must source the
potential V that was used to construct the eigenmodes
in the first place. In what follows, we describe a proce-
dure inspired by Schwarzschild’s method, for which the
inputs are the desired density profile and a few assump-
tions about the distribution of amplitudes.

Schwarzschild [1] devised the following four-step ap-
proach to produce stable and self-consistent galactic ha-
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los (triaxial in general, and composed of stars or other
classical particles):

1. Choose an initial density distribution (ρin).

2. Compute the gravitational potential corresponding
to the density distribution from step 1.

3. Create a large library of orbits that exist in the
potential from step 2, and translate each orbit into
a density distribution based on the average amount
of time a star on that orbit spends at each location.

4. Reproduce the original density distribution
through a superposition of the orbits calculated
in step 3 by assigning each orbit an occupation
number (the number of stars on that orbit).

For our wave halo construction, steps 1 and 2 are the
same, while step 3 was covered in the preceding subsec-
tion: the computation of orbits is replaced by the com-
putation of eigenmodes.

The wave analog of step 4 is to choose a superposi-
tion of eigenmodes to reproduce the desired density dis-
tribution, i.e., choose the |aj |2 (where j is a shorthand
for n, `,m) in Eq. 6 such that the time-averaged den-
sity profile matches the input. Each aj comes with a
phase, which has no impact on the time-averaged profile
but does affect the instantaneous one (Eq. 5). We as-
sign the phase randomly for each eigenmode, much as in
Schwarzschild’s construction, where the orbital phase for
each particle is chosen randomly.

In Schwarzschild’s classic paper, step 4 was formulated
as a linear programming problem – one searches for the
superposition of orbits that yields the desired density
profile, while minimizing a cost function of one’s choos-
ing [1, 2]. Linear programming was a useful technique
because of its low computational cost. With modern-day
computational resources, the problem of searching for the
right superposition can be thought of as a parameter-
fitting problem, where one minimizes some effective χ2

or maximizes some effective likelihood, just like problems
in data analysis.

In the classic Schwarzschild construction, there are
typically many possible ways to achieve a given density
profile. For instance, one could choose to build a halo out
of different combinations of radial and non-radial orbits.
The role of the cost function is to break this degeneracy
[2]): one could choose to minimize the difference between
the tangential velocity dispersion and the radial one (in
which case, the constructed halo will have effectively an
isotropic velocity dispersion), or one could minimize the
tangential velocity dispersion (in which case, the con-
structed halo will consist of radial orbits).

We have similar freedom in our wave construction. As
a first step, we demand that the amplitude an`m be inde-
pendent of m, as is appropriate for a spherically symmet-
ric halo: the |ψj |2 in Eq. 6 contains |Y m` (θ, φ)|2 whose

sum over m is independent of θ and φ:

∑

m

|Y m` (θ, φ)|2 =
2`+ 1

4π
. (12)

We proceed by optimizing |an`m|2 to minimize the fol-
lowing quantity:

D(ρin, ρout) =
1

rfit

∫ rfit

0

dr

(
ρout − ρin

ρin

)2

, (13)

with ρin representing the target density and ρout repre-
senting the average density profile according to Eq. (6),
or:

ρout(r) = ma

∑

n`m

|an`mRn`(r)Y m` (θ, φ)|2

=
ma

4π

∑

n`

(2`+ 1)|an`m|2|Rn`(r)|2 , (14)

where we have used Eq. 12 and the fact that the value of
an`m is independent of m. We choose rfit, the maximum
radius out to which we attempt to fit the target profile,
to be 1.2rvir.

There is some arbitrariness in the choice of D (which,
in a way, plays the role of the cost function): for instance,
one could choose to give more weight to deviations from
the target density profile at smaller or larger radii. The
overall goal is to produce an output density profile that
is as close to the input as possible, but there is no guar-
antee the two would be equal. For instance, the output
density profile can never match an input profile that is
cuspy at small radii. This is because only ` = 0 modes
can contribute to the density at r = 0, and all ` = 0
eigenmodes are characterized by a flat (or cored) density
profile around r = 0 (see Figure 2). Thus, no superposi-
tion of modes can possibly create a density cusp at small
radii. In this section, we replace the cuspy inner region
of the NFW profile with a soliton-like core to circum-
vent this issue, but we demonstrate the outcome of this
procedure on cuspy input profiles in §IV.

To improve our solution, we repeat the four-step pro-
cess described above a few times, updating the target
density with the previous iteration’s output density each
time. This is particularly important for cases with cuspy
target profiles, where one iteration alone may not lead to
a self-consistent solution; the first iteration may lead to
an output density profile that deviates considerably from
the original input density, meaning the eigenmodes that
were used to construct the output in the first iteration
may no longer be supported by the output density. Hav-
ing noted that, it only takes a few such iterations for the
method to converge to a self-consistent construction; in
all the applications described in this work we find that
the solution never requires more than five iterations to
converge, and in most cases one or two iterations suffice.

A comparison of the NFW+core input density profile
and the self-consistent output of this procedure is shown
in Figure 3. We label this the unconstrained fit, because
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no additional constraints are placed on the amplitudes
of modes with different values of n or `. In this case –
and due to the target density profile having a core that is
meant to match the ground state – the method produces
an output density profile that matches the target very
well.

Additional constraints can be implemented with ease.
Figure 3 includes two additional self-consistent outputs
obtained by adding various constraints to our wave im-
plementation of the Schwarzschild method:

1. An isotropic fit, in which the eigenmodes are binned
based on their energy eigenvalues En`, and we re-
quire the amplitude an`m to be identical for all
eigenmodes in the same energy bin. This is the
analog of demanding isotropic velocity dispersion
for particle orbits (see examples in [2]). In the par-
lance of the particle distribution function f , it is
the wave analog of imposing f as a function of en-
ergy alone. This fit appears to match the target
potential to a very high degree of accuracy at all r,
just like the unconstrained fit.

2. A fit that does not include the ground state, in
which the ground state amplitude is forced to be
zero. This is an interesting toy example for study-
ing ground state condensation. This fit appears to
do well at large radii, but (unsurprisingly) fails to
match the precise shape of the density profile at
radii where the solitonic core dominates the target
potential.

The output density for each of these options is shown
in Figure 3. In some cases, additional constraints can
cause the best-fit self-consistent output configuration to
deviate from the target density. For example, while the
no-ground-state fit succeeds in matching the outer den-
sity profile, it struggles to fit the exact shape of the inner
soliton because no superposition of excited states is able
to exactly reproduce the density profile of the missing
ground state.

It is natural to guess that |an`m|2 should be somehow
proportional to the particle distribution function f . In-
deed, this was the proposal by Widrow and Kaiser [58],
and was utilized in [60]. This can be made concrete in
the simple case where |an`m|2 and f are functions of en-
ergy alone. The well-known Eddington formula (Eq. A6)
[3, 66] can be used to compute f(e) for a given spheri-
cally symmetric density (and therefore potential) pro-
file, where we use lowercase e to refer to the energy per
unit mass E/ma. As we show in Appendix A, in the
high energy (i.e., WKB) limit, |an`m|2 ∼ (2π~)3f/m4

a

(Eq. A19).7 Figure 3 also shows the output density

7 There are two main results in Appendix A. Eq. A9 gives the
general relation between |aj |2 and f(e) without using the WKB
approximation (but it does assume a continuum limit such that
the number of eigenstates per energy is well-defined). Eq. (A19)
provides the WKB limit of this relation.

102

104

106

108

ρ
[M
�

/k
pc

3 ]

Target Density Profile
Unconstrained Fit
Isotropic Fit
No Ground State Fit
DF Fit

10−1 100 101

r [kpc]

0.0

0.5

( δ
ρ ρ
) 2

FIG. 3. Comparison of the target density profile (blue dots)
to the output density profiles from each of the methods de-
scribed: (1) unconstrained Schwarzschild algorithm (light
blue dot-dashed line, almost identical to the target profile),
(2) Schwarzschild algorithm with isotropic constraint (orange
dotted line, also almost identical to the target profile), (3)
Schwarzschild algorithm with no ground state (green dashed
line), and (4) using directly the particle distribution function
f of the target density, i.e., |an`m|2 = (2π~)3f/m4

a (red solid
line, labeled DF Fit). The bottom panel shows the fractional
difference (squared) from the target: (1) and (2) match the
target profile at all radii; (3) and (4) match the target at large
but not small radii.

profile for this particular choice of the superposition am-
plitudes (labeled DF fit), to compare it to the outputs
of the Schwarzschild method discussed above. One can
see that the DF fit matches the target profile well at
large radii, but fails at small radii (see also [60]). This
is because the inner region is dominated by eigenmodes
at low energies, where the WKB approximation breaks
down. Contrast this with the isotropic fit, which by con-
struction also employs amplitude coefficients that depend
purely on energy, but are allowed to freely adjust to fit
the target density profile. The isotropic fit does a good
job at all radii.

To reveal the inner workings of the constructed ha-
los, we show in Figure 4 the squared eigenmode am-
plitudes |an`m|2, sorted by energy, and compare them
against f(e). We can see that in all cases, most of the
amplitudes (squared) do roughly have the same energy
dependence as f(e), but there are also eigenmode ampli-
tudes with significant deviations. The isotropic fit pro-
vides the most fair comparison, since the amplitudes are
by construction dependent on energy alone, just as in the
distribution function. In that case, we still see significant
deviations at low energies. The unconstrained fit has a
larger scatter, reflecting the fact that the amplitudes de-
pend not only on energy, but also on angular momentum.
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FIG. 4. Comparison of the output amplitudes anlm

(for the unconstrained/isotropic/no-ground-state fit in the
top/middle/bottom panel) and the distribution function f ob-
tained from the Eddington inversion formula. The blue +’s
represent ma|an`m|2, or the total mass found in each eigen-
state. The black-dashed line is proportional to the distribu-
tion function: (2π~)3f(e)/m3

a (the proportionality constant is
derived in Eq. A19 in §A). In the bottom panel (the fit with
no ground state), we differentiate between the ` = 0 modes
and the ` > 0 modes by plotting the former with red ×’s,
in order to show how, absent the ground state, the excited
` = 0 modes are all elevated in this fit in order to match the
central density of the target density profile (see discussion in
the text).

In the case of the fit that does not include the ground
state (the bottom panel in Figure 4), the lack of a ground

state forces the algorithm to assign larger amplitudes to
the excited n > 0, ` = 0 eigenstates, in order to match
the central region of the target density profile (eigenstates
with ` > 0 do not contribute to the density at r = 0, as
shown in Figure 2). These are the eigenmode amplitudes
plotted in red ×’s in Figure 4 that are systematically
above the f(e) line.

In Appendix A, we include a second demonstration of
how the WKB approximation can also be used to relate
an`m to the distribution function, this time of a halo
constructed entirely out of radial (` = 0) modes (see
Figure 15).

D. Random Phases and Halo Evolution

As a final step in the process, we assign each eigen-
mode a random phase by multiplying an`m by eiφn`m

where φn`m is a randomly chosen number between 0 and
2π (note that unlike an`m, φn`m is also dependent on m,
i.e., different m modes with the same n and ` have inde-
pendently assigned phases). A three-dimensional FDM
halo can then be produced. Its time evolution is sim-
ple: propagate the phase of each eigenmode analytically,
according to Eq. 4. The halos discussed in this section
are created from a superposition of ∼ 105 eigenmodes,
and the efficient numerical construction of these halos is
enabled by fast spherical harmonic transforms using the
SHTools library8 [67].

The output of the numerical construction of four ha-
los from Figures 3 and 4 is shown in the four columns of
Figure 5. Each of the panels in the first row is a density
slice through each numerically constructed halo, exhibit-
ing clearly the expected small-scale density fluctuations
caused by the interference term in Eq. 5.

The second row of Figure 5 illustrates how the den-
sity profiles of these numerically constructed halos fluc-
tuate over time (we emphasize the time evolution de-
picted here comes entirely from the analytic propagation
of each eigenmode’s phase; dynamical wave simulations
would be required if one is interested in the exact time
evolution, as discussed in the next section). The density
fluctuations at large radii appear to be less pronounced
compared to those at small radii, but that is mostly an
artifact of spherical averaging – the density profile at a
larger radius is averaged over shells of a larger volume.

Several differences stand out among the four con-
structed halos shown in this figure:

• In the first three fits shown in Figure 5, the
central region is characterized by density fluctua-
tions caused by interference between the ground
state and the most prominent excited states, sim-
ilar to those discussed in several recent works

8 https://shtools.github.io/SHTOOLS/index.html
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FIG. 5. Further details on each of the constructed halos presented in Figure 3. Top row: Density slices along the XY plane at
z = 0 at one particular moment in time. Middle row: the blue dots mark the target density profile, the blue dashed line shows
the output average density profile from the wave Schwarzschild method, and the blue shaded region depicts the rms density
fluctuations from the analytic evolution of the eigenmodes’ phases. Bottom row: the probability distribution of the density
fluctuation ρ/ρ̄, where ρ̄ is the local average density; light gray lines represent the probability distribution measured from 10
different snapshots (one line for each snapshot), and the black dashed line is the analytic prediction.

[33, 61, 65, 68]. These density fluctuations are es-
pecially prominent in the final fit (the fit with no
ground state); in this, the most prominent excited
states all have comparable amplitudes (as shown
in the bottom panel of Figure 4), leading to large
fluctuations.

• The unconstrained fit and the isotropic fit both do a
better job matching the target central core density
compared to the DF fit, for reasons discussed ear-
lier. Moreover, they appear to be nearly identical
to each other. This is particularly important from
the perspective of computational efficiency; while
the unconstrained fit optimizes the amplitudes for
all n and ` eigenmodes (> 1000 degrees of freedom),
the isotropic fit achieves very similar results with
only 30 parameters corresponding to the 30 bins in

energy space into which the eigenmodes are sorted.

• The fit without the ground state eigenmode over-
populates some excited states in order to match the
desired central density of the halo (see Figure 4).
However, overpopulating these excited states still
does not fit the core precisely, and also leads to
larger density fluctuations outside the core region.
It turns out that it is impossible to fit both the
inner density core and the outer regions simultane-
ously without the ground state.

Finally, the third row of Figure 5 depicts the one-point
probability distribution of density fluctuation of each of
the halos. Here, ρ̄ refers to the local average density and
a histogram of ρ/ρ̄ provides a measure of the probability
distribution of the density fluctuation. The light gray
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lines represent the distribution from 10 different snap-
shots (one for each snapshot). The black dashed line
represents the analytical prediction:

P (ρ/ρ̄) = e−ρ/ρ̄ , (15)

i.e., P (ρ/ρ̄) d(ρ/ρ̄) is the probability that ρ/ρ̄ falls within
the indicated range. This probability is sometimes re-
ferred to as the Rayleigh distribution [69], and can be
derived from the assumption of random phases for the
eigenmodes [37]. The measured probability distribution
agrees very well with the analytic prediction.

As explained earlier, the Schwarzschild wave con-
struction involves an approximation: the eigenmodes
are computed using the time-averaged gravitational po-
tential; gravitational potential fluctuations due to the
interference-induced substructures are ignored. The as-
sumption is that the substructures have negligible effects
on the global structure of the halos. In the next section,
we test this assumption by performing dynamical simula-
tions of wave halos (i.e., solving the Schrödinger-Poisson
system self-consistently) that are initialized from a snap-
shot of our constructed halos, and by comparing these
dynamical simulations to the evolution of the halos in
our Schwarzschild simulations.

III. DYNAMICAL SIMULATIONS AND HALO
DECOMPOSITION

We now turn to testing the stability of the halos con-
structed using the modified Schwarzschild method, by
comparing the evolution of the Schwarzschild simulations
described in the previous section to dynamical wave sim-
ulations. To do so, we take a snapshot of each of the
halos constructed in the previous section, and evolve it
by numerically solving the Schrödinger-Poisson system,
using the SPoS code described in [31].

Each dynamical simulation is performed in a 2563 box
whose sides measure 2rvir = 113 kpc, with a spatial res-
olution of ∼ 0.4 kpc, and periodic boundary conditions.
The chosen box size ensures that the density at the edges
is 3-4 orders of magnitude smaller than the central den-
sity. As a result, the periodic boundary conditions do
not have a significant impact on the evolution of the halo.
Note that none of these are cosmological simulations, and
the background density is not taken into account.

In order to initialize each dynamical simulation, we
project the output wave functions from the previous sec-
tion onto the dynamical simulation grid as initial condi-
tions. Each halo is then evolved for 16 Gyr, or approxi-
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mately eight free-fall times, defined as:

Tff =

√
π2r3

vir

8MG
. (16)

The top row of Figure 6 compares the density profiles of
the constructed halos against the profiles measured from
the dynamical simulations. The blue shaded regions de-
pict the Schwarzschild constructions, evolved by analyt-
ically propagating the eigenmodes’ phases (identical to
those shown in Figure 5); the blue dashed lines show the
corresponding time averages. The orange shaded regions
show the range of density profiles measured from snap-
shots of the dynamical wave simulations; the red dashed
lines show the corresponding averages. All dynamical
simulation snapshots are taken from after the halo has
evolved for 4 Gyr, in order to give the halos ample time
to relax into a steady state. Significant deviations of the
dynamical simulations from the Schwarzschild construc-
tions would thus indicate that the Schwarzschild method
has failed to produce a globally stable halo.

At first glance, the halo initialized directly from the
distribution function appears to match the target pro-
file well, though a more careful inspection reveals that
the dynamical simulation relaxes to a somewhat different
configuration with a core that is slightly more prominent
than the rest of the halo.

In contrast, the halos initialized from both the uncon-
strained fit and the isotropic fit remain stable throughout
the duration of the dynamical halo evolution, maintain-
ing an average density profile that is similar to the output
time-averaged density from the Schwarzschild method.
In both halos, the core grows by a small fraction and the
density fluctuations at the core become slightly less pro-
nounced, but overall the deviations of the dynamical sim-
ulations from the Schwarzschild construction are small.
This suggests, at least for our chosen halo mass and
target density profile, that the Schwarzschild construc-
tion method is able to produce stable and self-consistent
halos. Moreover, the similarity between the results in
these two columns further supports the assertion that
the isotropic method can be used to obtain similar re-
sults as the unconstrained method, at a fraction of the
computational cost.

The halo initialized without a ground state does not
maintain its original configuration – the time-averaged
density profile in the dynamical simulations clearly sug-
gest that a prominent soliton has grown for this halo
where there wasn’t one originally, so much so that it sur-
passes the central density of the original target density
profile by a considerable amount.

The second row of Figure 6 shows the probability
distribution of density fluctuations measured from the
dynamical simulations. In all cases, the probability
distribution matches that shown in Figure 5 for the
Schwarzschild simulations. This suggests that the wave
interference substructures seen in the dynamical simula-
tions are similar to those in the Schwarzschild simula-
tions, at least as far as the one-point probability distri-

bution is concerned – we will have more to say about this
below.

The dynamical wave simulations allow us to test the
Schwarzschild constructions in more detail. For in-
stance, an important assumption of the construction
method is that the amplitude for each eigenmode is time-
independent, and that the only time-dependence is in the
phase. To test this, we can decompose the dynamically
evolved wave function by leveraging the orthonormal na-
ture of the eigenmodes:

anlm =

∫
d3x Ψ(x, t)ψ∗nlm(x) , (17)

where ψnlm refers to the eigenmodes used to obtain the
final output potential in §II (i.e., the blue dashed lines in
Figure 5).9
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FIG. 7. Evolution of the squared amplitude of the ground
state mode over eight free-fall times in the four dynamical
wave simulations shown in Figure 6 (solid lines) compared to
their initial amplitudes (shown for reference in dotted lines of
the matching color). The ground state amplitudes of the sim-
ulations initialized from the unconstrained and the isotropic
fits remain relatively unchanged throughout the entire sim-
ulation, while the ground state amplitude of the simulation
initialized directly from f(e) grows gradually from its orig-
inal value. Lastly, the Schwarzschild construction in which
the ground state is completely depopulated is shown to be
unstable in this figure – the amplitude of the ground state
grows rapidly at the very beginning of the dynamical simu-
lation until it reaches a steadier state near the amplitudes of
the ground states from the other three halos.

Figure 7 shows the amplitude of the ground state for
each of the four dynamical simulations, evaluated by de-
composing each dynamical simulation at various snap-
shots using Eq. 17 for a000. The ground state of the halo

9 In theory, it would be more accurate to decompose the halo at
each snapshot of the dynamical simulation by first calculating a
new library of eigenmodes based on the exact gravitational po-
tential at that snapshot. However, the density profile doesn’t
change enough throughout any of the simulations to cause sig-
nificant inaccuracies due to this issue.
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FIG. 8. Top row: density slices through four snapshots of the halo constructed using the isotropic implementation of the
Schwarzschild method and evolved using Eq. 5 (i.e., analytic propagation of each eigenmode’s phase). Bottom row: density
slices through four snapshots of the dynamical wave simulation, initialized using the t = 0 Gyr snapshot of the halo in the top
row. Note the similarity of the substructures in the two different kinds of simulations, both in terms of the typical size scale
and the time variability.

initialized directly from the distribution function f(e) ap-
pears to grow gradually over the course of the dynamical
simulation, such that by the end of the simulation the
mass in the ground state has nearly doubled (likely at
the expense of several of the excited states). For the
unconstrained and the isotropic fits, the initial ground
state amplitude stays more or less constant throughout
the dynamical simulation, never exceeding the original
value by more than 50%, indicating that in both cases
the Schwarzschild method has produced not only a glob-
ally stable halo, but also one with a stable ground state.

On the other hand, it is clear from Figure 7 that the
Schwarzschild construction with no ground state is un-
stable. The ground state is rapidly populated in the dy-
namical simulation, reaching an amplitude comparable
to the other constructions after approximately 100 Myr.
This timescale is remarkably close to the crossing time at
the core radius for this soliton, which is approximately 80
Myr. The relaxation process in the core that leads to the
re-population of the ground state in this last simulation
is in line with prior theoretical and numerical work on
the topic of self-gravitating Bose-Einstein Condensates
(see, e.g., [18, 27, 70–72]).

Finally, the similarities between the Schwarzschild sim-
ulations and the dynamical wave simulations are also
readily apparent from a qualitative comparison of the
two. Figure 8 compares four snapshots of each simu-
lation; both rows exhibit similar substructures (both in

terms of spatial and time scales), with notable differences
only at the edges and particularly the corners of the box.
The two methods are not meant to produce the exact
same evolution, of course, but the visual similarities sug-
gest the (much more efficient) Schwarzschild method is a
reliable way to statistically study and explore wave sub-
structures.

Given the findings above, we conclude that the
Schwarzschild method successfully produces stable and
self-consistent wave halos, with the requisite substruc-
tures, at least in the case of a Schive et al. [64] target
density profile.

IV. APPLICATION TO OTHER DENSITY
PROFILES

Having focused so far on one type of density profile,
and specifically one that is known to remain stable in
FDM simulations, we now turn to applying the halo con-
struction method described in §II to a variety of other
(spherical symmetric) density profiles. It is worth noting
that realistic galactic halos exhibit a variety of profiles,
due in part to feedback processes, and it is thus useful to
be able to construct halos that span a range of profiles.10

10 One ingredient that will be missing in our construction is baryons
or stars. In principle, our approach can be adapted to construct
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We begin this section with two central questions in mind:

1. Is it possible to match any arbitrary density pro-
file with an FDM halo using the Schwarzschild halo
construction method? If not, what constraints ex-
ist?

2. Do all halos constructed using the wave
Schwarzschild method remain as stable in simula-
tions as those simulated in §III, or does the Schive
et al. [22] NFW+core density profile represent a
uniquely stable density profile for FDM halos?

Following the process described in §II, we construct
four new halos following four commonly used density pro-
files in galactic dynamics whose outer density profiles fol-
low different slopes:

1. An isothermal (logarithmic) halo, in which the cir-
cular velocity is constant and ρ ∝ r−2 (we choose
vc = 28 km/s, to match the approximate charac-
teristic circular velocity of the 1010 M� NFW halos
constructed in §II):

ρ(r) =
v2
c

4πGr2
. (18)

2. An NFW halo, whose density profile transitions
from ρ ∝ r−1 to ρ ∝ r−3 at a scale radius of 10
kpc (see Eq. 7). Unlike §II and §III, here we do
not impose a core, meaning the central region of
the halo forms a density cusp.

3. A Hernquist halo, whose density profile transitions
from a ρ ∝ r−1 inner region to ρ ∝ r−4 at a scale
radius of 10 kpc. Like both the isothermal and the
NFW profiles, this halo has a central density cusp:

ρ(r) =
Mh

2πr3
s

1

(r/rs)(1 + r/rs)3
. (19)

4. A Plummer halo, whose density profile transitions
from a flat density core to ρ ∝ r−5 at the scale
radius, which we again set at 10 kpc:

ρ(r) =
3Mh

4πr3
s

(
1 +

r2

r2
s

)− 5
2

. (20)

The four target density profiles are shown in Figure
9. Note that both the isothermal and the NFW halos
must be truncated at a certain radius to have a finite

wave dark matter halos of a certain profile, together with baryons
following another profile. We leave this for future work.
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FIG. 9. Four target density profiles withM = 1010 M� (dots),
and the output density profile of the Schwarzschild method
for each target (solid lines).

total mass, which we accomplish in the same manner
described in §II A. We retain only the eigenmodes whose
energy is lower than the classical circular orbit at r = 56
kpc.

As in §II, we find no significant differences between the
unconstrained implementation and the isotropic imple-
mentation of the Schwarzschild method for any of these
halos, so we proceed with only the isotropic results, which
are obtained at a significantly lower computational cost.
The time-averaged fits obtained from the isotropic im-
plementation of the Schwarzschild method are shown in
solid lines in Figure 9 (alongside the target density pro-
files shown in the corresponding dotted lines). The wave
solutions fit the outer regions of all four profiles to a very
high degree of accuracy, suggesting that it may be pos-
sible to construct FDM halos with outer density profiles
ranging from ρ ∝ r−2 to ρ ∝ r−5. Unsurprisingly, the
wave solutions fail to fit the central regions of all three
cuspy profiles (isothermal, NFW, and Hernquist), while
the cored center of the Plummer profile is fit with ease.

Of course, none of these fits is guaranteed to de-
scribe a stable halo when the gravitational effect of the
time-dependent interference is accounted for in a self-
consistent manner. Thus, we turn next to checking
whether these numerically constructed halos remain sta-
ble in SPoS simulations.

After obtaining the amplitudes an`m for each of the
halos and assigning a random phase to each eigenmode,
we evaluate the stability of each solution by comparing
its evolution using Eq. 4 (i.e., analytically propagating
the phase of each eigenmode) to the evolution in dynam-
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FIG. 10. Top row: Output amplitudes for each of the four target profiles shown in Figure 9, plotted against f(e) obtained
from the inversion formula. Bottom row: Comparison of the Schwarzschild simulations (i.e., numerical simulations of the
Schwarzschild output where the phase of each eigenmode is propagated analytically) to a dynamical wave simulation initialized
from a snapshot of the output of the Schwarzschild method, for each of the four halos discussed in this section (see the
description of the top row in Figure 6 for the meaning of the different lines).

ical simulations (i.e., using the SPoS code described in
§III) initialized from a snapshot of the Schwarzschild-
constructed halo.

Figure 10 shows a summary of the results for the four
halos. The panels of the top row show that, as expected,
the amplitudes obtained from the Schwarzschild method
largely adhere to the particle distribution functions (cal-
culated from the target density profiles using the Edding-
ton inversion formula), with some deviations appearing
at low energies, where the WKB approximation breaks
down.

The bottom row compares the Schwarzschild construc-
tions (with phases of eigenmodes evolved analytically)
against their dynamical simulation counterparts (this is
the same comparison as the one shown in the top row of
Figure 6 in §III for the NFW+core profile). In general,
the two agree well in the outer regions of all the profiles
(out to where the box edges begin affecting the density
profile in the dynamical simulations). For the three cuspy
profiles, the dynamical simulations appear to converge to
a slightly higher central density than that arrived at by
the Schwarzschild method. However, as shown in §II this
can be easily overcome by forcing a target profile that
takes into account something like the core-halo mass re-
lation. The cored center of the Plummer profile remains
stable, though even here one may note a slightly more
pronounced soliton-like core that appears in the dynami-
cal simulation at a smaller radius than the Plummer halo

scale radius.

It is worthwhile to pause here in order to appreciate
a characteristic of self-consistent FDM halos that can be
easily understood through the Schwarzschild construc-
tion method. Figure 9 clearly demonstrates that FDM
cannot reproduce cuspy halos to arbitrarily small radii.
At those radii the density profile is instead dominated
by the ground state which has a core (in all the pan-
els in the top row of Figure 10 the ground state always
has the highest amplitude). It raises an interesting ques-
tion: why not use the excited states to steepen the inner
density profile? (By excited states, we mean the ` = 0
excited modes; this is because only ` = 0 modes con-
tribute appreciably to the inner density). Observe that,
for instance from Figure 2, the radial profile of the n = 1,
` = 0 mode prior to its first node, is more compact than
the ground state. Why doesn’t the Schwarzschild method
assign this and other excited ` = 0 modes a greater am-
plitude than the ground state in order to fit the cuspy
regions of the target density profiles?

Figure 11 illustrates the reason: the overall shape of
these excited modes makes it impossible to produce a
cuspy interior while at the same time fit the outer target
profile. If one were to elevate the amplitude of one of
these excited states to the level it would need to fit the
central density cusp, one would overshoot in the density
in the outer region of the halo. The same can be shown
for the other two cuspy profiles discussed in this section;
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FIG. 11. A demonstration of why excited eigenmodes with
` = 0 cannot be used to improve the fit to a cuspy target
profile without overshooting the outer density profile. The
target density profile shown here is the NFW profile used
in §IV, and the two eigenmodes shown are calculated using
the corresponding gravitational potential. While the selected
excited state is technically capable of fitting the cuspy profile
to a smaller radius than the ground state, this cannot be done
without contributing to an outer profile that is shallower than
the target density profile.

in fact, something similar is also apparent in the fit with
no ground state in §II, where the n = 1, ` = 0 mode
provides the greatest contribution to the central density
but simultaneously leads to a slight overshooting of the
target density just outside the core.11

To conclude this section, we return to the two questions
posed at the beginning of the section:

1. While a wide variety of spherical profiles can be
constructed with a wave-like FDM solution, it is
not possible to fit any arbitrary density profile with
FDM (of a fixed mass ma). No wave-like solution
will successfully fit a density cusp in the regime
where r is smaller than the de Broglie wavelength.
Furthermore, the central density will be dominated
by the ground state: ` > 0 modes vanish at r = 0,
and while the excited ` = 0 modes do contribute to
the central density, their amplitude is constrained
by the fact that they also contribute to the outer
density profile, as shown in Figure 11.

11 The isotropic constraint imposed in our construction in this sec-
tion further limits the possibility of assigning the excited ` = 0
states a higher amplitude, as that would also necessitate increas-
ing the amplitude of all other states in that given energy bin,
which would lead to even larger deviations from the target den-
sity profile at large radii. However, Figure 11 demonstrates that
even without the isotropic constraint, the excited ` = 0 modes
cannot help with fitting the interior region of a density cusp.

2. The wave Schwarzschild method is able to fit the
outer portion of a wide variety of target density pro-
files, ranging at least from (ρ ∝ r−2 to ρ ∝ r−5),
and the constructions are stable as verified by dy-
namical simulations. While cosmological FDM sim-
ulations may lead to predominantly Schive et al.
[22] NFW+core density profiles, it is certainly pos-
sible to construct self-consistent and stable FDM
halos that follow other density profiles. This is par-
ticularly important given that density profiles can
be altered by feedback processes, of relevance when
comparing theoretical expectations against obser-
vations.

V. PRELIMINARY INVESTIGATION OF THE
CORE-HALO RELATION

As a final demonstration of this method, we turn to a
preliminary investigation of the FDM core-halo relation.
From §II and §III, we already know that constructing
FDM halos with NFW+core density profiles that follow
the Schive et al. [64] core-halo relation leads to stable,
self-consistent solutions. Furthermore, the halos in §IV
demonstrated that ‘blindly’ trying to fit cuspy density
profiles can lead to halos whose central regions find a
new equilibrium in simulations, even as the outer regions
of those halos remain stable at the original target density
profile (which does not necessarily have to be NFW-like).
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FIG. 12. Three target 1010 M� NFW halos with superposed
solitonic cores following three different core-halo mass rela-
tions (dotted lines) and the time-averaged density profiles of
the Schwarzschild constructions for each of the targets (solid
lines). All three constructions provide very good fits to the
target density profiles.

In this section, we investigate whether other prescrip-
tions for the core-halo relation can also lead to sta-
ble solutions. In §II and §III our target density pro-
file followed the Schive et al. [64] scaling relation (see



15

100 101

r [kpc]

103

104

105

106

107

108
ρ

[M
�

/k
pc

3 ]
Target density

〈|Ψ|2〉 (Schwarz. sim.)

〈|Ψ|2〉 (Dyn. sim.)

|Ψ|2 (Schwarz. sim.)

|Ψ|2 (Dyn. sim.)

100 101

r [kpc]
100 101

r [kpc]

FIG. 13. Comparison of the Schwarzschild simulation to the dynamical simulation initialized from a snapshot of the output of
the Schwarzschild method, for each of the three halos discussed in this section (from left to right: α = 1/2, 1/3, 1/4). See the
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FIG. 14. Evolution of the amplitude (squared) of the ground
state mode in each of the three dynamical wave simulations
described in §V. The ground state amplitudes of all three
cases appear to maintain their relative stability with respect
to each other. For the α = 1/2 case, there appears to be an
initial period of instability, but eventually the ground state
amplitude appears to converge to its original target value after
a full free-fall time has elapsed.

Eq. 9, in which α = 1/3). The halos constructed in
§II demonstrated that this relation yields self-consistent
halos whose cores remain stable over long timescales in
simulations. We now compare these halos to two other
halos, constructed to fit target density profiles in which
α = 1/2 and α = 1/4 while maintaining the density pro-
file of the soliton solution in Eq. 8. The core radius is
inversely proportional to the core mass, so as α grows,
the core becomes more massive and compact.

It is worth noting that the purpose of this section is
not to prove a particular core-halo relation or to place
constraints on the value of α – we leave that investigation
to future work. Rather, our goal is simply to see if it is
possible to construct stable FDM halos with core-halo
relations that deviate from the one found by Schive et al.

[64].
As in the previous section, we use the isotropic imple-

mentation of the Schwarzschild method to solve for the
best-fit amplitudes an`m. The solid lines in Figure 12
compare the outputs of the Schwarzschild method to the
three target profiles (in dotted lines). All three fits con-
verge well to the target profile, with only slight deviations
noticeable at small radii in the α = 1/2 case.

To test the stability of these constructed halos, we
again utilize dynamical simulations. As in the previ-
ous sections, the dynamical simulations are initialized
from snapshots of the three halos constructed using the
Schwarzschild method. We run each simulation for two
free-fall times (or approximately four Gyr). In Figure
13, we compare the evolution of the Schwarzschild sim-
ulations to dynamical wave simulations. In all three
cases, the dynamical simulations roughly match the
Schwarzschild constructions both in terms of the stable
time-averaged density profile and in terms of the time-
dependent fluctuations, although in the α = 1/2 case,
the dynamically evolved halo deviates a bit more from
the constructed one.

Based on Figure 13, there does not seem to be any
preference for a specific value of α or rc for an NFW
halo of a given mass. It is important to note that this
does not contradict the finding from Schive et al. [64] that
cosmological simulations lead to a core-halo relation with
α = 1/3; it merely suggests that other core-halo relations
are also stable. One possible driver of the α = 1/3 rela-
tion may be the specific merger history inherent in dark
matter only cosmological simulations such as those de-
scribed in Schive et al. [64]. Critically, the stability of the
cores in all three of the dynamical simulations shown in
Figure 13 opens the window to consider FDM halos with
a variety of core-halo relations, perhaps due to feedback
processes or some external perturbations.

To further validate these results, we decompose the ha-
los from the three dynamical simulations shown in Figure
13 and evaluate the stability of the ground state ampli-
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tude using Eq. 17. The results are shown in Figure
14. All three halos appear to have stable ground states
at their respective amplitudes. In the α = 1/2 case,
the beginning of the simulation is characterized by larger
amplitude fluctuations, which appear to dampen after
approximately one free-fall time, with the ground state
amplitude returning to its initial value.

Figures 13 and 14 suggest that there is no unique
ground state amplitude for an FDM halo that follows
a given NFW (outer) density profile. Rather, it appears
that there may be some freedom in the mass contained
within the ground state.

It is worthwhile to note that the results of the experi-
ment described in this section are not directly compa-
rable to those discussed in §III, because the setup of
the experiments in each section is fundamentally differ-
ent. In §III, several simulations were initialized from
Schwarzschild constructions based on the same target
density profile. Specifically, initializing a halo to match
that cored target density profile, using a superposition of
only excited states, led to a halo that was initially out
of dynamical equilibrium (as shown in the right-hand
column of Figure 6 and in Figure 7) – it is not alto-
gether surprising that the halo relaxed back to its equi-
librium state by rapidly repopulating the ground state.
On the flip side, in this section we have experimented
with three different target density profiles, correspond-
ing to three different values of α. In each of these cases,
the Schwarzschild method appears to find a stable super-
position of eigenmodes.

VI. CONCLUSIONS

The main aim of this paper is to lay out an efficient
and accurate method for constructing and evolving halos
composed of wave dark matter, at a fraction of the com-
putational cost of dynamical wave simulations. A second
aim is to clarify the relation between wave superposition
amplitudes and the particle distribution function (Ap-
pendix A). We have focused on simulations of ultra-light
(fuzzy) dark matter for which ma = 8.1× 10−23 eV, but
the method described in this paper is broadly applicable
to wave dark matter at any scale.12

We adapt the Schwarzschild method for the construc-
tion of stable and self-consistent halos – instead of parti-
cle orbits, we seek a suitable superposition of wave eigen-
modes that satisfy the time-independent Schrödinger
equation. The constructed halo can then be evolved by
analytically propagating the phases of the eigenmodes,

12 For much larger values of ma, the resulting de Broglie wavelength
would be so short that it would be impractical to simulate a whole
halo. One could adapt our method to simulate some restricted
region of the halo. This is relevant for the study of wave inter-
ference substructures in axion detection experiments. See [4] for
further discussions.

providing a computationally efficient way to simulate the
time-dependent wave interference substructures. We ver-
ify that this method produces reliable realizations by
comparing them to dynamical wave simulations. We find
that the constructed halos maintain their mean density
profiles throughout the duration of these dynamical sim-
ulations (except for somewhat artificial cases, such as the
one where we zero out the ground state).

Along the way, the Schwarzschild construction method
allows us to demonstrate several intrinsic properties of
halos composed of FDM:

1. The outer envelopes of FDM halos can take on a
variety of density profiles. In those regions, the
dominant eigenmodes have high energies, for which
the WKB approximation holds. The amplitudes of
those eigenmodes are expected to go as the square
root of the particle distribution function (Eq. A19),
and indeed the Schwarzschild construction confirms
that.

2. The innermost regions of FDM halos must be cored.
The central core is dominated by the ground state
and the first few ` = 0 excited states. It is impossi-
ble to create a cusp by some judicious superposition
of the eigenmodes.

3. The central region of the halo is dominated by the
low energy eigenmodes, for which the WKB ap-
proximation breaks down. Thus, their amplitudes
deviate significantly from the classical expectation
based on the particle distribution function (com-
pare Eqs. A9 and A19). In particular, the ground
state amplitude tends to be larger than the classi-
cal expectation. We have also verified that a halo
in which the ground state is artificially zeroed out,
when dynamically evolved self-consistently, would
grow a ground state.

4. Multiple stable amplitudes of the ground state ap-
pear to be possible for a halo of a given mass
and outer density profile. This suggests that the
core-halo mass relation extracted from cosmologi-
cal dark matter only simulations is not forced upon
us by dynamical consistency; rather, it is likely the
result of the particular merger history of the model.
Feedback processes or external perturbations thus
have the potential to alter the relation between the
core and the host halo.

Several of the topics discussed above warrant further
investigation, including the core-halo relation and the
timescale for FDM core buildup [22, 25, 64, 65], and
higher-order statistics for characterizing the wave inter-
ference substructures in FDM halos (such as the 1-point
statistics shown in Figures 5 and 6). It is worth stressing
that the Schwarzschild method is designed for construct-
ing stable, virialized halos. For truly dynamical situa-
tions – where the amplitudes of eigenmodes are not con-
stant, and the gravitational potential evolves significantly
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– a Poisson-Schrödinger solver remains the tool of choice.
Nonetheless, the construction method described here, be-
cause of its speed and accuracy, holds great promise for
several applications with direct observational signatures.
These include the implications of the wave interference
substructures for stellar heating [18, 28, 30, 32, 68, 73],
the scattering of tidal streams [60, 74–76], and gravita-
tional lensing [36, 37]. We hope to address some of these
issues in the future.
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Appendix A: Connecting waves and particles – the
WKB limit

In this Appendix, we wish to clarify the relation be-
tween the particle distribution function and the wave su-

13 http://enzo-project.org

perposition coefficients. The two main results are Eqs.
(A9) and (A19). Eq. (A9) gives the general relation be-
tween |aj |2 and f without using the WKB approximation
(but it does assume a continuum limit such that the num-
ber of eigenstates per energy is well-defined). Eq. (A19)
provides the WKB limit of this relation. Along the way,
we review a few well known results from galactic dynam-
ics, and as a bonus, we will see how the wave description
provides a convenient way to understand them.

We wish to relate three different expressions for the
density ρ in a halo. The first is:

ρ(~x) =

∫
d3vf(~x,~v) , (A1)

where f is the mass distribution function for particles
(each of mass ma), with f telling us the amount of mass
per phase space volume (~x and ~v are position and veloc-
ity). The second is:

ρ(~x) =
∑

α

MαPα(~x) . (A2)

where α labels particle orbits, Mα is the amount of
mass contained in particles that belong to orbit α, and
Pα(~x)d3x is the probability that a particle of orbital type
α happens to be in the vicinity of ~x (within volume d3x,
i.e., Pα(~x)d3x is the fraction of time particles of orbit α
spend in that volume). The classic Schwarzschild method
for constructing a halo is: for a desired potential, find
all possible orbits, and assign weights Mα such that ρ
matches the corresponding desired density profile.

The above two expressions for ρ are appropriate for
a halo composed of particles. For a halo composed of
waves, we have:

ρ(~x) =
∑

j

ma|aj |2|ψj(~x)|2 + ... , (A3)

where it is assumed the wave function Ψ =
∑
j ajψj with

j labeling the eigenmode ψj and aj is its amplitude. In
squaring the wave function to obtain ρ, we will ignore
interference terms represented by the ellipsis, i.e., ρ here
can be thought of as the time-averaged profile. Our nor-
malization convention is

∫
d3x|ψj |2 = 1. There is a factor

of particle mass ma because the amplitude aj is dimen-
sionless.

To connect Eqs. (A1), (A2) and (A3), it is helpful to
have a simple, concrete example in mind. Let us focus on
a spherically symmetric halo, with a distribution function
f that is a function of energy alone, or energy per unit
mass: e ≡ E/ma = |~v|2/2 + V , where V is the gravita-
tional potential. Such a distribution f(e) solves the col-
lisionless Boltzmann equation, and implies an isotropic
local velocity dispersion. Eq. (A1) can be rewritten as:

ρ(r) = 4π

∫ 0

V (r)

def(e)
√

2(e− V (r)) , (A4)

where we have assumed a bound halo such that the max-
imum e = 0 . Note that our e is opposite in sign to E
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in [3]. It is possible to invert the above equation, though
we do not need it for the discussion in this Appendix:
assuming ρ and V are monotonic functions of the radius
r, we have upon differentiation:

dρ

dV
= −2

√
2π

∫ 0

V

de
f(e)√
e− V , (A5)

which can be inverted to give the Eddington formula:

f(e) =
1

2
√

2π2

d

de

(∫ 0

e

dV
dρ/dV√
V − e

)
. (A6)

To show this, observe that
∫ 0

e
dV (dρ/dV )/

√
V − e =

−2
√

2π2
∫ 0

e
dẽf(ẽ), by plugging in the expression for

dρ/dV , exchanging the order of integration and using∫ ẽ
e
dV/

√
(V − e)(ẽ− V ) =

∫ 1

0
dz/
√
z(1− z) = π.

It is interesting to compare Eqs. (A4) and (A2). Es-
sentially, the energy per unit mass e plays the role of α in
Eq. (A2): all orbits with the same e are given the same

weight Mα. The factor
√

2(e− V (r)) must somehow be
proportional to the probability Pα of finding a particle
at radius r. It might come as a surprise that the proba-
bility should scale as

√
2(e− V ), which is like a velocity

– after all, one would think the higher the velocity, the
less time the particle would spend at that location. This
reasoning turns out to miss an important effect. As we
will see, the wave picture gives us a convenient way (not
the only way, of course) to understand this.

Let us start by comparing Eq. (A4) with Eq. (A3).
Integrating Eq. (A3) over volume, we have:

∫
d3xρ =

∑

j

ma|aj |2 ∼
∫
deN(e)ma|aj |2 , (A7)

where we assume |aj |2 is a function of e only (i.e., a wave
analog of f(e)), and deN(e) represents the number of
states around e ± de/2. On the other hand, integrating
Eq. (A4) over volume gives, upon exchanging the order
of integration and assuming spherical symmetry:

∫
d3x ρ = 4π

∫ 0

V (0)

def(e)

∫ rmax(e)

0

dr4πr2
√

2(e− V (r)) ,

(A8)
where rmax(e) is the maximal radius reached by a particle
of energy E = mae. Comparing the two expressions, it
is natural to equate:

|aj |2 = f(e)
4π

maN(e)

∫ rmax(e)

0

dr4πr2
√

2(e− V (r)) .

(A9)

We wish to show, in the WKB limit, this simplifies to
|aj |2 ∼ f(e) times a constant factor. And as a bonus,
we will understand better why in the integral for ρ, Eq.
(A4), orbits with a seemingly higher velocity are given a
higher weight.

Consider the eigenmode ψj (substituting for the role
of an “orbit”), written as Rj(r)Y

m
` (θ, φ) with the radial

function Rj satisfying:

− ~2

2ma
∂2
r (rRj) +

(
~2

2ma

`(`+ 1)

r2
+maV

)
rRj = ErRj .

(A10)
Here, the label j stands for n, `,m (the radial, angu-
lar, and magnetic quantum numbers). With a spheri-
cally symmetric V , the energy E and the radial function
Rj depend on n and ` but not m. Using the fact that∑
m |Y m` |2 = (2`+ 1)/(4π), and assuming ai is indepen-

dent of m (as is appropriate for the wave analog of a halo
with a distribution function f(e)), we have:

ρ(r) =
ma

4π

∑

n,`

(2`+ 1)|an`|2|Rn`(r)|2 . (A11)

For the radial function, we can use the WKB approxima-
tion in the large E limit [84]:

Rn`(r) =
Nn`

r
√
keff(r)

sin

[∫ r

r1

keff(r′)dr′/~ +
π

4

]
, (A12)

where:

keff(r) ≡
√

2ma

(
E − `(`+ 1)

2mar2
−maV

)

= ma

√
2

(
e− `(`+ 1)~2

2m2
ar

2
− V

)
. (A13)

and the energy eigenvalue E satisfies the quantization
condition:

π

(
n+

1

2

)
=

∫ r2

r1

keff(r)dr/~ . (A14)

Here, r1 and r2 are the turning points where keff van-
ishes. The normalization Nn` is chosen such that∫
d3x|ψj(~x)|2 = 1:

N 2
n` =

[∫ r2

r1

dr

2keff(r)

]−1

, (A15)

where we have approximated the square of the sine as
1/2 and used

∫
sinθ dθdφ|Y m` |2 = 1. We approximate

the sum over n and ` by integrals:

ρ(r) =
ma

4π

∫
de d`

dn

de
(2`+ 1)|an`|2|Rn`(r)|2 .(A16)

The integration measure dn/de can be obtained by dif-
ferentiating the quantization condition:

dn

de
=
m2
a

π

∫ r2

r1

dr

keff(r)~
. (A17)

When differentiating the quantization condition, there
are in principle contributions from the fact that r1 and
r2 depend on e, but they turn out to vanish because the
integrand keff vanishes precisely at these points. Using
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this expression together with the WKB approximation
for Rn` in Eq. (A16), and integrating over `, we find:14

ρ(r) =
m4
a

2π2~3

∫
de|aj |2

√
2(e− V ) . (A18)

Here, it is important to be clear about the notation: the
j of aj still labels n, `,m, but aj is a function of e only
(wave analog of f(e)). We can compare this against the
particle distribution function description in Eq. (A4).
The two expressions match up nicely provided we iden-
tify:

|aj |2 ∼
(2π~)3

m4
a

f(e) . (A19)

The superposition coefficient aj is dimensionless, as
it should be (recall that f(e)d3xd3v has the dimension
of mass). We emphasize that the equality is approxi-
mate, in the sense it is derived in the WKB limit. In
the wave construction of a halo of a given density pro-
file ρ(r), we expect the above to hold for eigenmodes
with a high energy e � V (0), i.e., modes that have a
significant overlap with the outer parts of the halo. In-
cidentally, one could also derive Eq. (A19) from Eq.
(A9), by noting that N(e) ∼

∫
d` (2` + 1)(dn/de) ∼

[2m3
a/(π~3)]

∫ rmax(e)

0
r2dr

√
2(e− V ).

As a bonus, the above derivation shows why the con-
tribution of a given mode to the density at r scales as√

2(e− V ) (recall the puzzle stated earlier in the parti-
cle picture: that according to Eq. (A4), the probability

density Pα scales as
√

2(e− V ), some sort of velocity).
From the form of the radial function in Eq. (A12), we see
that the contribution scales as |Rn`|2 ∝ 1/keff(r), which
is as it should be: the larger the momentum or velocity,
the less time a particle spends at the location of interest
r (or the smaller the amplitude of the wave mode at that
position). What counteracts this is the integral over `:

there are many more ` modes if
√

2(e− V ) is large.
To summarize, we have shown that for a spherically

symmetric halo with a particle distribution function f(e),
the density profile is given by Eq. (A4) and the wave
analog is Eq. (A3), with |aj |2 given by Eq. (A19) in the
WKB, i.e., high energy, limit.

Let us close with another simple example, a halo con-
structed entirely out of ` = 0 modes (i.e., the wave analog
of a halo composed of particles on radial orbits). Suppose
f = g(e)δD(L2) where L is the angular momentum per

14 For a given e and r, ` ranges from 0 to `max such that e −
[`max(`max+1)~2/(2m2

ar
2)]−V (r) = 0. The integration measure

(2` + 1)d` can be recast as d(`[` + 1]). The integral turns out
to be dominated by small rather than large `; there is thus the
concern that an integral approximation of the sum over ` might
not be accurate. The point is that as long as e is sufficiently
large compared to V (0), the error made is small.

10−1 100 101

r [kpc]

103

104

105

106

107

108

ρ
[M
�

/k
pc

3 ]

Target Density Profile
Radial Schwarzschild Fit
Radial DF Fit

−0.8 −0.6 −0.4 −0.2
−e/φ(0)

105

106

107

108

109

1010

M
as

s
[M
�

]

ma|a j|2
(2π)3h̄

ma
g(e)

FIG. 15. Top panel: Comparison of a target NFW density
profile (blue dots) to the output density profiles of two con-
structed halos. The light blue dashed line represents the pro-
file of a halo constructed using the Schwarzschild construction
method, with a radial constraint applied (i.e., the amplitudes
of all ` > 0 modes are set to zero). The orange dot-dashed
line represents the profile of a halo constructed directly from
the radial distribution function (Eqs. A21 and A30). The lat-
ter fits almost perfectly at large r but deviates significantly
closer to r = 0. The Schwarzschild fit sacrifices the fit at
large r in order to reduce the deviation at small r. Bottom
panel: Comparison of the scaled radial distribution function
obtained through the Eddington inversion formula (dashed
black line) to the squared amplitudes obtained through the
Schwarzschild construction method.

unit mass and δD is the Dirac delta function, the density
profile is:

ρ(r) =

∫
d3v g(e) δD(r2v2

⊥) =
2π

r2

∫ ∞

0

dvrg(e)

=

√
2π

r2

∫ 0

V (r)

de
g(e)√
e− V (r)

, (A20)

where we use e = v2
r/2 + V (r). Note how the integrand

is smaller at radii where the velocity is higher, in accord
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with expectation. Again, we do not need it for our dis-
cussion here, but for completeness, the inversion formula
is (viewing ρ as a function of V ):

g(e) = − 1√
2π2

d

de

(∫ 0

e

dV
ρr2

√
V − e

)
, (A21)

using the fact that
∫ 0

e
dV r2ρ/

√
V − e =

√
2π2

∫ 0

e
dẽg(ẽ),

which can be verified by substituting in the expression
for ρ.

The volume integral of ρ is:

∫ ∞

0

dr 4πr2ρ(r) = 4
√

2π2

∫ ∞

0

dr

∫ 0

V (r)

de
g(e)√
e− V (r)

= 4
√

2π2

∫ 0

V (0)

de

∫ rmax(e)

0

dr
g(e)√
e− V (r)

. (A22)

Comparing this against Eq. (A7), it is natural to equate:

|aj |2 = g(e)
4
√

2π2

maN(e)

∫ rmax(e)

0

dr√
e− V (r)

. (A23)

To make further progress, we use the WKB approxi-
mation. The eigenmode ψj(r) obeys:

− ~2

2ma
∂2
r (rψj) +maV rψj = Erψj , (A24)

with the approximate solution:

ψj(r) =
N

r
√
keff(r)

sin

[∫ r

0

keff(r′)dr′/~ +
π

4

]
, (A25)

where:

keff(r) ≡
√

2ma (E −maV ) = ma

√
2 (e− V ) , (A26)

and the quantization condition [85]:

π

(
n+

3

4

)
=

∫ r2

0

keff(r)dr/~ , (A27)

where r2 is the outer turn-around radius. Here, with no
` and m, the label j is the same as n. The normalization
N is chosen to keep

∫
dr4πr2|ψj |2 = 1:

N 2 =

[∫ r2

0

2πdr

keff(r)

]−1

. (A28)

Differentiating the quantization condition, we have:

dn

de
=
m2
a

π

∫ r2

0

dr

keff(r)~
. (A29)

To find |aj |2, we can follow one of two approaches. One
is to use Eq. (A23), with N(e) ∼ dn/de, giving:

|aj |2 =
(2π)3~
m2
a

g(e) . (A30)

The other is to equate Eq. (A20) with ρ(r) =∑
jma|aj |2|ψj(r)|2 ∼

∫
de(dn/de)ma|aj |2|ψj(r)|2, mak-

ing use of Eqs. (A29) and (A25). One confirms Eq.
(A30), and sees that the WKB prefactor of |ψj |2 nicely

reproduces 1/
√
e− V in the integrand of Eq. (A20).

Figure 15 compares the output density profiles and the
eigenmode amplitudes of two halos constructed to match
the NFW target density profile used throughout the pa-
per (with no core; see Eq. 7). The first is constructed us-
ing the Schwarzschild method, constrained to only allow
radial modes; the amplitudes of all ` > 0 modes are set to
zero. The second is constructed directly from g(e) follow-
ing Eqs. (A21) and (A30). The fit from g(e) matches the
outer profile (dominated by eigenmodes at the higher en-
ergies for which the WKB approximation holds) almost
perfectly, and deviates from the target only at smaller
radii. The Schwarzschild fit is similarly good, though the
algorithm has sacrificed the fit at large radii in order to
reduce the deviation from the target profile at smaller
radii. In the high energy limit, both fits assign almost
identical amplitudes to the eigenmodes, as shown in the
lower panel of Figure 15.
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