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The detection of ∼ 50 coalescing compact binaries with the Advanced LIGO and Virgo detectors
has allowed us to test general relativity, constrain merger rates, and look for evidence of tidal effects,
compact object spins, higher waveform modes, and black hole ringdowns. An effect that has not
yet been confidently detected is binary eccentricity, which might be present in a small fraction of
binaries formed dynamically. Here we discuss general limits on eccentricity that can, in-principle,
be placed on all types of compact object binaries by a detector operating at the design sensitivity of
Advanced LIGO. Using a post-Newtonian model for gravitational-wave phasing valid in the small
eccentricity regime, we assess the relative measurement error for eccentricity for a variety of spinning
and non-spinning binaries. Errors and correlations involving the mass and spin parameters are also
investigated. We find that decreasing the low frequency limit of a detector’s observational frequency
band is one of the key design factors for increasing the odds of measuring binary eccentricity.
We also introduce and analytically explore the eccentric chirp mass parameter, which replaces
the chirp mass as the key measurable parameter combination in eccentric gravitational waveform
models. The eccentric chirp mass parameter explains a degeneracy between the chirp mass and
the eccentricity. This degeneracy leads to a bias in the standard chirp mass parameter. We also
investigate the systematic parameter bias that arises when eccentric systems are recovered using
circular waveform templates. We use both Fisher matrix and Bayesian-inference-based Markov
Chain Monte Carlo (MCMC) methods to investigate these parameter estimation issues, and we
find good agreement between the two approaches (for both statistical and systematic errors) in the
appropriate signal-to-noise ratio regime. This study helps to quantify how effectively one can use
eccentricity measurements as a probe of binary formation channels.

I. INTRODUCTION AND MOTIVATION

The first three observing runs of the Advanced LIGO
[1] (hereafter LIGO) and Advanced Virgo [2] detec-
tors have led to the discovery of 48 binary black holes
(BBHs) [3–12], two binary neutron star (BNS) merg-
ers [13, 14], and two neutron-star/black-hole (NS/BH)
mergers [15]. Several known features in the gravita-
tional waveforms of compact binaries were observed or
constrained via these systems. These include the tidal
deformability in binary neutron star mergers GW170817
[13] and GW190425 [14], the detection of subdominant
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harmonics in GW190412 [9] and GW190814 [10], and the
detection of a weak signature of spin-induced precession
of the orbital plane in the case of GW190412 [9]. Another
class of compact binaries that is yet to be confirmed by
advanced ground-based detectors are those in elliptical
orbits (but see our discussion regarding GW190521 and
other recent work in Sec. I C below).

This paper addresses the parameter estimation prob-
lem of eccentric compact binaries in detail, focusing on
limits that an Advanced-LIGO like detector could (in
principle) place in the near future (once design sensitiv-
ity is reached). We also pay significant attention to the
role of systematic parameter bias if eccentricity in wave-
form models is ignored.

An important open problem in GW astrophysics is
identifying the formation channels of compact bina-
ries [8]. Two competing models are field binary evo-
lution [16] and dynamical formation in dense stellar
clusters [17–20]. The latter predicts ∼ 5% to 10% of
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BBHs merging in globular clusters will have eccentricities
e0 > 0.1 in the LIGO frequency band.1 It is well-known
that gravitational-wave (GW) emission in an inspiralling
compact binary leads to decreasing orbital eccentricity
[23, 24]. Measurement of non-zero eccentricity has been
proposed as a potential smoking gun for the dynamical
formation channel (see references in Sec. I A below). In
this case, a tight eccentric binary forms via multi-body
interactions and is not able to shed its eccentricity before
coalescence. Hence, accurate measurement of orbital ec-
centricity could play an important role in understanding
the formation and evolution of compact binaries.

Previous work (e.g., [25] and references therein) has
shown that even relatively small eccentricities (e0 ∼
10−3–10−2) can produce parameter biases. Here, we re-
visit and extend this work with the aim to ask (and an-
swer) the following questions: (i) how well can LIGO
measure orbital eccentricity and (ii) what bias does ec-
centricity induce if neglected. We explore these ques-
tions for a variety of binary systems: binary neutron-
stars (NSs), binary black holes (BHs), and NS/BH bina-
ries. In addition to selected “generic” examples of such
systems, we also examine systems with parameters simi-
lar to the first detected LIGO signals, GW150914 [3] and
GW151226 [4]. These are chosen as representatives of
the two classes (high and low masses) of binary black
holes (BBHs) that LIGO/Virgo has seen during the first
two observing runs [8]. We focus on the case when the
eccentricity e0 at 10 Hz is small, typically e0 ∼ 0.001–0.1
or less. The rapid circularization effect of GW emission
makes this the more astrophysically likely regime.

A. Expected eccentricities of compact-object
binaries

A variety of studies have examined the eccentricity of
binaries when they enter the frequency band of ground or
space-based detectors. (A brief summary of these studies
prior to 2016 is provided in Sec. IA of [22].) In partic-
ular, we note that currently observed galactic BNSs will
have very small eccentricities (. 7 × 10−6) when they
enter the LIGO frequency band (10 Hz; see Table II of
[22]). Reference [26] used a population synthesis code

1 Throughout this paper, we use the following notation when dis-
cussing eccentricity. The symbol e0 denotes a constant parame-
ter representing the value of the binary eccentricity at a particu-
lar reference frequency f0; this is taken to be f0 = 10 Hz (unless
stated otherwise) when discussing our results and the results of
references that we discuss below. The value f0 = 10 Hz is the
reference frequency chosen in most studies, corresponding to the
low-frequency limit of the Advanced LIGO frequency band. The
notation e (no subscript) is used when quoting results in other
papers where the reference frequency is not specified or easily
determined. The notation et denotes a time-evolving eccentric-
ity. It is equivalent to the “time-eccentricity” parameter that is
introduced in the quasi-Keplerian formalism [21] (see Sec. III of
[22] for a discussion and additional references).

to estimate that 0.3%, 0.7%, and 2% of BBH, NS/BH,
and NS/NS binaries (respectively) will have eccentrici-
ties exceeding 0.01 at 30 Hz. A study of isolated triple
systems [27] (containing a BBH inner binary) indicated
that a few percent of these systems could also produce
very large eccentricities above 10 Hz.

Simulations of binary formation in globular clusters
predict a wide range of eccentricities in the LIGO band.
Reference [28] predicts that ∼ 20% of BBHs formed via
dynamical interactions will have eccentricity e > 0.1 at 10
Hz. In Ref. [29] ∼ 1% of globular cluster (GC) BBHs will
have e0 > 10−3. (See also earlier predictions in Ref. [30–
34].) In Ref. [35] the capture and inspiral of a single
stellar-mass BH around a cluster intermediate-mass BH
was simulated and found to have a very small eccentric-
ity in the LIGO band. Reference [36] found that BBHs
formed via 3-body interactions within GCs may make
up to ∼ 5% of the dynamically-formed population and
could have e0 ∼ 0.1 in the LIGO band. A study focus-
ing on NS/BH binaries [37] found that those merging in
isolation are nearly circular in the LIGO band, while a
large fraction of NS/BH formed in triples have a high
eccentricity (e0 & 0.1). A recent study [38] attempts to
constrain the role of clusters in producing detectable ec-
centric BBHs. They find that around ∼ 7% of potentially
detectable cluster BBH sources will have measurable ec-
centricity, and that one detection of eccentricity in the
GWTC-2 catalog would suggest that dense star clusters
produce > 14% of the detectable BBH population. Ob-
servation of eccentricity via space-based interferometers
can also discriminate between cluster and field origins for
BBHs [39].

Along with globular clusters, the dense environments
near galactic nuclei can also produce eccentric BBHs [40–
42], with Ref. [40] predicting quite high eccentricities in
the LIGO band (e > 0.9) and Ref. [41] predicting that
10% of BBHs formed near a supermassive BH will have
e > 0.1 when entering the LIGO band. Studies of BBHs
formed via GW capture in galactic nuclei [43, 44] find
that a substantial fraction of stellar mass BBHs formed
via this route will have e0 > 0.1 (see especially Tables 1
through 4 in [43]). Another study of the BBH eccentricity
distribution in galactic nuclei [45] found that ∼ 75% of
BBHs formed in galactic nuclei via gravitational capture
will have e0 > 0.1. The scattering of BBHs with singles
in AGN disks was found to efficiently produce eccentric
mergers with e0 > 0.1 for LIGO/Virgo [46]. A more
recent study [47] found that binary-single interactions in
AGN accretion disks could yield e0 & 0.03 to 0.3 in the
LIGO band.

B. Eccentricity decay timescales

The eccentricity constraints discussed in this paper are
typically phrased in terms of e0, taken to be the eccen-
tricity when the binary radiates GWs at 10 Hz. To put
this number into context, it is useful to understand how
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TABLE I. Eccentricity decay time for compact-object binaries as a function of measured eccentricity in the LIGO band. The
first column lists the eccentricity e0 detected in the Advanced LIGO band at 10 Hz. The remaining columns show the time
∆T (et) prior to the binary emitting at 10 Hz, at which the eccentricity had a value of et. This is shown for three systems
discussed in the text: BBHs with masses similar to GW150914 and GW151226, as well as a BNS system with masses 1.4 and
1.25 M�. Times are listed in days (d) or years (yr).

GW150914 GW151226 BNS
e0 (10 Hz) ∆T (0.9) ∆T (0.99) ∆T (0.999) ∆T (0.9) ∆T (0.99) ∆T (0.999) ∆T (0.9) ∆T (0.99) ∆T (0.999)
10−1 0.0525 d 0.293 d 1.08 d 0.356 d 1.99 d 7.31 d 12.5 d 69.9 d 257 d
10−2 18 d 0.282 yr 1.04 yr 0.343 yr 1.91 yr 7.04 yr 12.1 yr 67.3 yr 248 yr
10−3 17.0 yr 94.9 yr 349 yr 115 yr 643 yr 2370 yr 4050 yr 22 600 yr 83 200 yr
10−4 5710 yr 31 900 yr 117 000 yr 38 700 yr 216 000 yr 795 000 yr 1.36 Myr 7.60 Myr 28.0 Myr
10−5 1.92 Myr 10.7 Myr 39.4 Myr 13.0 Myr 72.6 Myr 267 Myr 0.457 Gyr 2.55 Gyr 9.39 Gyr

quickly the eccentricity increases “backwards in time”
from 10 Hz (e.g., how large was the eccentricity some
number of days or years before it entered the LIGO
band at 10 Hz). To compute this we numerically inte-
grated the equations for the eccentricity and periastron
separation as a function of time at leading-order in a
post-Newtonian (PN) expansion (using equations in [48],
equivalent to the so-called Peters-Mathews approxima-
tion [24]; see Appendix A for details). Table I quantifies
the results, showing how long it took a particular value of
eccentricity e0 (measured when the emitted primary GW
harmonic frequency is at 10 Hz) to decay from a larger
(earlier) value of et = 0.9–0.999. For example, a BBH
with parameters similar to GW151226 that is observed
to have an eccentricity e0 = 0.01 at 10 Hz had an eccen-
tricity of et = 0.99 only ∆T (0.99) ≈ 1.9 years earlier. We
note that the timescales discussed here assume that no
dynamical interactions with a third body occur between
the high and low eccentricity states.

Table I indicates that BBH or BNS systems that are
observed with e0 ≈ 0.1 were highly eccentric only hours
to weeks earlier. As our analysis will show that only val-
ues of e0 & 0.01 are plausibly detectable with Advanced
LIGO detectors, this suggests that any eccentric binaries
observed by 2nd-generation ground-based detectors must
have been formed almost immediately prior to detection.
Even if eccentricities as low as e0 ∼ 0.001 could be de-
tected (which is plausible for some sources with third-
generation detectors), such binaries would likewise have
had eccentricities near ≈ 1 on a timescale of order ∼ 10
to 104 years earlier—extremely short in comparison to
typical astrophysical timescales associated with stellar
systems (e.g., the relaxation time or crossing time for
a cluster). Hence, the observation of eccentricity with
ground-based detectors is a powerful indicator that the
compact object binary was recently formed via a large-
eccentricity capture in a high-density stellar environment
such as a globular cluster or nuclear star cluster.

C. Searches and parameter estimation constraints
for eccentric binaries

In the case of ground-based detectors, several studies
have considered the impact of ignoring eccentricity on de-
tection [49–54]. They find that (depending on the binary
mass) circular templates are sufficient for eccentricities
e . 0.02–0.15. (The analogous problem for supermassive
BH binaries in the eLISA band is treated in Ref. [55].)
Other studies [56–60] considered the problem of detect-
ing LIGO-band binaries with moderate to large eccen-
tricities. Methods such as Coherent Wave Burst [61],
an algorithm to search for GW transients, were also em-
ployed to search for eccentric binary black holes in the
O1 and O2 data [62] (with none found in that search).
A recent analysis of the O3 data [63] also found no de-
tections but improved on the O2 rate estimate of highly
eccentric mergers by a factor . 2. A comparison of such
morphology-independent analyses with those using the-
oretical waveforms from eccentric binaries can be found
in Ref. [64].

Some works have directly considered parameter esti-
mation for eccentric binaries. One of the present au-
thors [25] considered the systematic bias induced on the
mass or tidal parameters if eccentricity, spin, tides, or
high PN effects are neglected (focusing only on BNS).
Reference [65] considered the effect of eccentricity on
the sky-localization by a second-generation GW detec-
tor network, while Ref. [66] examined the ability of Ad-
vanced LIGO and ET to measure eccentricity, as well
as the effect of eccentricity on other signal parame-
ters. Another set of studies [67, 68] assessed the accu-
racy with which LIGO and Virgo could estimate the pa-
rameters of eccentric binaries. They found that, com-
pared to circular binaries, important parameters of the
binary (masses, distance, source location) will improve
if e0 ≥ 0.1. This improvement may be attributed to
the eccentricity-induced higher harmonics of the orbital
phase, which plays an important role in parameter esti-
mation. Using the Bayesian parameter estimation pack-
age Bilby [69] and non-spinning inspiral-only templates,
Ref. [70] found that 2nd generation GW observatories
can measure BBHs with e0 ≥ 0.05.

Several works have examined the LIGO/Virgo data
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from the first two observing runs for signatures of ec-
centric binaries. In Refs. [71, 72] it was initially reported
that e0 . 0.1 would not produce any measurable devia-
tion from the parameters of GW150914 that were deter-
mined with circular waveforms. More recent work by the
LIGO-Virgo Collaborations looked at a range of possible
systematic errors [73]. In the case of eccentricity, they
found that an eccentricity e > 0.05 − 0.1 at 25 Hz will
begin to show a bias in the chirp mass for GW150914
[with the mass ratio and effective spin parameter unaf-
fected by eccentricities as large as the maximum value
they considered, e(25 Hz) = 0.13]. Using a spin-aligned
eccentric effective-one-body (EOB) model [74] and Bilby
[69], Ref. [75] analyzed the GWTC-1 [8] BBH events and
found that all are consistent with zero eccentricity; they
also provide 90% upper limits on the events, ranging from
e0 ≤ 0.024–0.054. (For GW151226, which we consider in
detail below, they find an upper limit of e0 ≤ 0.029.)
Using a frequency-domain non-spinning eccentric wave-
form [76] and Bilby, Ref. [77] also performed parameter
estimation on the GWTC-1 BBHs. They find 90% upper
limits ranging from 0.033 to 0.181 (with the latter for
GW151226).

Reference [78] performed a search for eccentric BNS
in the LIGO data from 2015 to 2017, finding no evi-
dence for eccentric sources. Those same authors [79] also
performed Bayesian parameter estimation via the PyCBC
Inference package [80] on the BNS events GW170817
and GW190425, making use of the 3PN inspiral-only low-
eccentricity waveform developed and implemented by the
present authors [22, 81]. They find upper limits (at 90%
confidence) of e0 ≤ 0.024 for GW170817 and e0 ≤ 0.048
for GW190425, but with significant dependence on the
priors.

As this manuscript was being finalized, we became
aware of recent work in Ref. [82], who also investigate
the bias when recovering eccentric signals with circular
templates. Those authors further analyzed the public
LIGO/Virgo data for GW151226 and GW170608. They
find clear evidence for eccentricity if non-spinning tem-
plates are used, but both events are consistent with
zero eccentricity if aligned-spin and eccentric waveform
templates are used. Upper limits (90% confidence) of
e0 < 0.15 and e0 < 0.12 are set on GW151226 and
GW170608 (respectively). More recently, Ref. [83] an-
alyzed 36 of the BBHs in GWTC-2 [12] using Bilby and
assuming aligned spins. Making use of the waveform
model in [74], they find twelve events with some sup-
port for eccentricity e0 ≥ 0.05. Two events have more
than 50% of their posterior probability distribution above
e0 ≥ 0.05: GW190521 and GW190620A.

Following the detection of the first intermediate mass
BH system GW190521 by LIGO/Virgo [11], several
works have considered the possibility that this system
is an eccentric binary. The LIGO/Virgo Collaboration
analysis [84] raised the possibility that spin precession or
very-high eccentricity (or a head-on collision [85]) could
not be distinguished in this source, given the small num-

ber of cycles from such a large mass binary. A subsequent
analysis in Ref. [86] suggests that the data prefers a signal
with e0 ≥ 0.1 over a precessing circular signal; however
they do not confidently determine if the source is eccen-
tric or precessing/circular. Work by [87] also suggests
evidence for a high-eccentricity merger over a precess-
ing/circular one. Given that GW190521 has only ∼ 4
GW cycles detected in the LIGO/Virgo frequency band,
with the inspiral representing . 2 of those cycles (see
Fig. 1 of [11]), a firm measurement of eccentricity from
that source seems unlikely. Similarly, GW190620A was
identified (along with GW190521) in Ref. [83] as having
support for eccentricity, using spin-aligned waveforms.
This is also a high-mass BBH (total mass M ≈ 92M�)
with few inspiral cycles. It remains to be seen if in-
dications of eccentricity in these systems remain when
analyzed with waveforms that also include spin preces-
sion. Our work will focus on inferring eccentricity from
lower-mass binaries (M . 65M�), where the effect of
eccentricity manifests itself over several inspiral cycles.

D. Present work

In this paper we take an agnostic approach as to
the likelihood of binary eccentricity in the LIGO band.
We view binary eccentricity as another signal parame-
ter which should be measured, with the resulting con-
straints providing feedback to astrophysical models. Our
goals are simply to estimate how well LIGO can—in
principle—constrain binary eccentricity, and to assess the
impact of ignoring eccentricity in GW signal templates.
To do this, we first apply the Fisher matrix formalism
to investigate a range of compact-binary types. We also
provide some limited comparisons using a Bayesian in-
ference Markov-chain Monte Carlo (MCMC) approach.

We expand on previous work in several ways. Our fo-
cus is on the capability of LIGO to constrain eccentricity
once it reaches design sensitivity. We focus on two sets of
binary systems: (i) a set of “fiducial” BNS, NS/BH, and
BBH binaries, and (ii) systems with parameters similar to
GW150914 and GW151226. (Our analysis uses only the
published parameters for these systems and does not di-
rectly analyze the events’ strain data.) Unlike some pre-
vious studies, our Fisher-matrix analysis includes both
spin and eccentricity effects in our waveform model. (Our
MCMC analysis does not include spins.) Focusing on the
low-eccentricity limit, [e0 ≡ et(f0) . 0.2], our eccentric
waveform consistently incorporates all secular, eccentric
phase corrections to 3PN order and to order e2

0. A com-
plete description of our eccentric waveform is given in
[22]. Here we also incorporate spin corrections to the
circular phasing, but work in the regime where coupled
eccentric/spin phase corrections are negligible.

For the two sets of systems mentioned above, we con-
sider the following issues: (a) with what error can LIGO
(at design sensitivity) measure e0, and (b) what error
in the mass and spin parameters is induced by ignor-
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FIG. 1. Fractional (1-sigma) statistical error in eccentricity e0 at 10 Hz as a function of e0. The left panel shows the fractional
errors for a variety of fiducial systems discussed in the main text. From left to right, the four BBH curves correspond to the
systems labeled BBH1, BBH2, BBH3, and BBH4 defined in Sec. V and with masses and signal-to-noise ratios as indicated in
the figure. Results for a NS/BH and a BNS system are also shown. The right panel shows these same errors for systems with
parameters similar to GW150914 (solid curves) or GW151226 (dashed curves). The SNRs are chosen to be the same as the
actual observed events, but the calculations were performed using the LIGO design sensitivity. The different colors indicate
different low-frequency limits used in evaluating the Fisher matrix integrals (35 Hz, 25 Hz, and 10 Hz). Reducing the detector’s
low frequency sensitivity dramatically improves the eccentricity measurement precision.

ing eccentricity entirely. These issues are addressed via
a Fisher matrix analysis, supplemented with the sys-
tematic parameter bias formalism developed by Cut-
ler and Vallisneri [88]. For the case of GW151226, we
also performed a separate parameter estimation analysis
using LALInferenceMCMC [89–91], a Bayesian inference
MCMC code implemented in the LIGO Algorithm Li-
brary (LALSuite) [92]. We compare those calculations
with our Fisher matrix estimates.

E. Summary of results

This paper contains a variety of results that we sum-
marize here.

1. Measurements of eccentricity better than ≈ 30%
(1-sigma fractional error) require a binary’s eccen-
tricity to exceed e0 ≈ 0.01 for BNS, ≈ 0.03 for
NS/BH binaries, and ≈ 0.05–0.1 for BBHs. Gener-
ally, larger mass binaries require a larger e0 to at-
tain a specific fractional error in e0. This is quanti-
fied in the left panel of Figure 1. Additional Fisher-
matrix parameter error estimates and parameter
correlations are shown in Figures 10 and 11.

2. Efforts to improve the low-frequency sensitivity of
ground-based detectors are of paramount impor-
tance for improving eccentricity measurements. We
investigated the eccentricity measurement precision
for binaries with parameters similar to GW150914

and GW151226, as well as the measurement’s de-
pendence on the detector’s low-frequency sensitiv-
ity. This is shown in the right panel of Figure 1. In
the case of a GW150914-like binary, no strong con-
straint on e0 can be placed for any e0 < 0.3 unless
the low-frequency limit (flow) of the detector goes
to 10 Hz. In the flow = 10 Hz case, a better than
∼ 30% constraint on e0 can be set if e0 & 0.1. For
a GW151226-like system a ∼ 30% constraint can
be set if the detector low-frequency limit is 25 Hz
and e0 & 0.25. If the limit is 10 Hz, this same con-
straint is relaxed to e0 & 0.06. The improvement
in the eccentricity measurement as the detector’s
low-frequency limit is reduced simply follows from
the fact that binary circularization implies larger
eccentricity at lower frequencies.

3. A Bayesian MCMC parameter estimation analy-
sis was performed for a BBH system with masses
similar to GW151226. Overall, the MCMC pa-
rameter estimation results are consistent with
those obtained from our Fisher matrix calcula-
tions. Marginalized posterior probability distribu-
tions for the recovered parameters for increasing
binary eccentricity are shown in Figure 2. There
we see that a clear measurement of eccentricity in
a GW151226-like system with a signal-to-noise ra-
tio ≈ 20 requires e0 & 0.1–0.2. See Table II for
details of the comparison between the MCMC and
Fisher-matrix analyses.

4. We observe a degeneracy between the chirp mass
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FIG. 2. Posterior probability distributions from a Bayesian inference MCMC calculation of a binary black hole system with
parameters similar to GW151226, showing three intrinsic parameters as a function of injected eccentricity. The top row shows
the eccentricity parameter e0, the middle shows the reduced mass ratio η, and the bottom row shows the detector-frame chirp
mass Mdet

ch . The injected eccentricity varies by column over einj
0 = [0.04, 0.12, 0.2] from left to right. The vertical dotted

lines show the injected value of the corresponding parameter. The posterior distributions shown here were marginalized over
the other parameters. Relevant detector-frame mass parameters are mdet

1 = 15.6M�, mdet
2 = 8.2M�, Mdet

ch = 9.746M�, and
η = 0.226. The binary components are assumed to be non-spinning and the SNR is set to 20.12. Parameter estimation is
performed using the TaylorF2Ecc waveform as described in the main text. See also Table II. Note the growing bias in the
recovered chirp mass as the injected value of e0 is increased (bottom row). This arises from the degeneracy between e0 and
Mdet

ch (see Sec. VIII).

Mch and the binary eccentricity e0. This is man-
ifested via an increasing bias in the chirp mass
(lower-right panel of Figure 2) and via banana-
shaped probability contours in the eccentricity-

chirp mass plane (Figure 9).2 We explain this de-

2 This bias was also independently highlighted in the recent work
of Ref. [82], and is implicit in the results of [77, 79, 83].
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generacy analytically via the introduction of an ec-
centric chirp mass parameter M ecc

ch , which is intro-
duced and derived here. For low-eccentricity bina-
ries, the eccentric chirp mass

M ecc
ch =

Mch

(1− 157
24 e

2
0)3/5

(1.1)

approximately replaces the “circular” chirp mass
Mch as the primary “effective parameter” that gov-
erns the phase evolution of a compact object bi-
nary. Just as the precise measurement of Mch for
circular binaries leads to a degeneracy between the
binary masses m1 and m2, the dominance of the
eccentric chirp mass in low-eccentricity waveforms
causes a degeneracy between e0 and Mch. This is il-
lustrated in Figure 3 and discussed in Sec. III). We
further explore the e0-Mch degeneracy via an exam-
ination of the error ellipses using both the MCMC
and Fisher matrix approaches. In Sec VIII we ana-
lytically illustrate how the e0-Mch correlation leads
to a rotation of the corresponding error ellipse.

5. For a range of compact binary systems, systematic
errors from ignoring eccentricity become compara-
ble to statistical errors for e0 & 0.01–0.1, with more
massive systems at the higher end of this range (see
Figure 5). When the detector low-frequency cutoff
is at 35 Hz, neither GW150914 nor GW151226-like
binaries experience any significant parameter bias
for e0 < 0.3. Unless the eccentricity was greater
than this value, circular templates were likely a
very good approximation for those two LIGO de-
tections. If the low-frequency limit is taken to 25
Hz, eccentricity-induced bias could play a role in
GW151226-like systems if e0 & 0.2. At 10 Hz,
parameter bias can be become an issue for both
GW150914 or GW151226-like systems if e0 & 0.07.

6. Systematic parameter bias is also investigated via
a Bayesian MCMC approach for a GW151226-like
system, showing a clear and significant bias for
e0 & 0.12. The predicted bias agrees very well with
calculations based on the Cutler-Vallisneri formal-
ism [88].

The remainder of this paper provides the details of
the analysis and additional results. Section II discusses
the details of our waveform model. It also provides a
pedagogic discussion of how cosmological redshift affects
the waveform, as well as explicit formulas for computing
signal-to-noise ratios and frequency termination condi-
tions. Section III introduces the notion of the eccentric
chirp mass parameter and derives it from the GW phas-
ing in the small-eccentricity limit. Section IV reviews the
Fisher matrix parameter estimation formalism in detail,
including the Cutler-Vallisneri [88] method for computing
systematic errors. Approximate analytic scaling laws for
both statistical and systematic errors are also provided.

Section V presents our results for the statistical errors, fo-
cusing on the errors in the eccentricity parameter e0. Er-
rors and correlations in the other intrinsic system param-
eters are also discussed there. Section VI discusses our
Fisher-Cutler-Vallisneri (FCV) results for systematic pa-
rameter errors. Section VII reviews our Bayesian MCMC
calculations, and discusses their application to comput-
ing statistical and systematic errors. We also provide
a quantitative comparison between the Bayesian MCMC
and FCV approaches. Section VIII explains the observed
degeneracy between the chirp mass and eccentricity, via
both analytical and numerical investigations using the
Bayesian MCMC and Fisher matrix approaches. Section
IX briefly discusses some implications and conclusions
of our work. Three appendices discuss the calculations
shown in Table I, formulas for the inspiral termination
frequency, and some additional Fisher matrix results (in-
cluding a discussion of parameter correlations).

II. WAVEFORM MODEL

In this section we review the gravitational wave signal
model that we apply in our parameter estimation calcu-
lations. Section II A provides our waveform model in the
stationary phase approximation, including the incorpora-
tion of eccentricity and spin effects. Appendix B reviews
how cosmological effects enter the waveform. Section II B
provides some useful formulas for the signal-to-noise ratio
(SNR), and Section II C discusses the termination condi-
tion for our waveforms at high frequencies.

A. Gravitational waveform model

In terms of the GW polarizations h+,× and the corre-
sponding antenna pattern functions F+,×, the GW signal
readout from the detector is

h(t) = F+h+(t) + F×h×(t) = A(t) cos[2φ(t)− 2β − 2Φ0],
(2.1a)

where

A(t) = −2ηM

D
[v(t)]2

[
(1 + C2)2F 2

+ + 4C2F 2
×
]1/2

(2.1b)

and Φ0 =
1

2
arctan

[
2F×C

F+(1 + C2)

]
. (2.1c)

Here C ≡ cos ι, with ι the binary inclination angle (the
angle of the Newtonian orbital angular momentum direc-
tion relative to the line from source to detector), β spec-
ifies the azimuth angle of the Newtonian orbital angular
momentum relative to a reference direction in the source
frame, D is the proper distance to the detector, v(t) is the
relative (orbit-averaged) speed of the binary, φ(t) is the
orbital phase, M = m1 +m2 is the sum of the component
masses (we assume m1 ≥ m2), and η = m1m2/M

2 is the
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reduced mass ratio. We will later make use of the chirp
mass parameter, Mch = η3/5M . In the above equations
we are ignoring eccentricity corrections to the amplitude,
which is effectively that of a circular binary and contains
only one harmonic (at twice the orbital frequency). Ec-
centric corrections only enter the secular phase evolution
ϕ(t) via a low-eccentricity expansion accurate to O(e2

0)
(described below). Except for the inclusion of spin ef-
fects, this waveform is equivalent to that developed in
[22].

To compute the Fourier transform (FT) of the signal,

h̃(f) ≡
∫ ∞
−∞

h(t)e2πift dt , (2.2)

we use the stationary phase approximation (SPA). Fol-
lowing Sec. VI E of [22] the FT becomes

h̃(f) = AeiΨ , where (2.3a)

A = −M
√

5π

96

(
M

D

)
√
η(πMf)−7/6

×
[
(1 + C2)2F 2

+ + 4C2F 2
×
]1/2

. (2.3b)

The SPA phase can be written as a sum of several
terms,

Ψ(f) = φc + 2πftc +
3

128ηv5

(
1 + ∆Ψcirc.

3.5PN

+ ∆Ψspin, circ.
4PN + ∆Ψecc.

3PN

)
, (2.4)

where tc and φc are the coalescence time and phase, and
v ≡ (πMf)1/3 is the PN orbital velocity parameter. Note
that the angle β is absorbed into a constant shift to φc.

The standard 3.5PN circular contribution is
∆Ψcirc.

3.5PN =
∑7
n=2 cn(η)vn, where the cn(η) can be

read off of Eq. (3.18) of [93], and the 2.5PN and 3PN
coefficients also depend on ln v.

Spin effects to 4PN order are encapsulated in the term

∆Ψspin, circ.
4PN = 4β1.5v

3 − 10σv4 + v5 ln v3

[
40

9
β2.5

−β1.5

(
3715

189
+

220

9
η

)]
+ P6v

6 + P7v
7 + P8v

8. (2.5)

Here β1.5 is the 1.5PN spin-orbit term [94–96]),

β1.5 =
∑
i=1,2

χiκi

(
113

12

m2
i

M2
+

25

4
η

)
. (2.6)

The 2PN spin-spin term σ = σS1S2 + σQM + σself spin

combines three effects [see Eq. (9) of Ref. [97]]. The first
is the standard spin-spin interaction [94, 96],

σS1S2
=

1

48
ηχ1χ2(721κ1κ2 − 247γ12) . (2.7)

The second is the quadrupole-monopole term arising
from corrections to the Newtonian potential caused by
a spinning object’s mass quadrupole moment [98],

σQM = −5

2

∑
i=1,2

pi(3κ
2
i − 1)

=
5

2

∑
i=1,2

aiχ
2
i

(mi

M

)2

(3κ2
i − 1), (2.8)

where pi = Qi/(miM
2) for the quadrupole moment

scalar Qi = −aiχ2
im

3
i , and where ai = 1 for BHs and

ai ≈ 4–8 for neutron stars [98, 99]. The third term is the
self-spin interaction arising from (current quadrupole)2

terms in the energy flux’s multipole expansion [97, 100]:

σSS−self =
1

96

∑
i=1,2

χ2
i

(mi

M

)2

(7− κ2
i ). (2.9)

In these equations the dimensionless spin parameter χi is
related to the individual compact object spin vectors via
Si = χim

2
i ŝi, κi is the cosine of the angle between the ith

spin direction ŝi and the Newtonian orbital angular mo-
mentum LN (κi = ŝi · L̂N ; hatted quantities denote unit
vectors3), and γ12 = ŝ1 · ŝ2. All the spins used here refer
to a spin-supplementary condition in which the magni-
tudes of the spin vectors are constant (see e.g., [101, 102],
or Ref. [103] where these spin vectors are denoted Sc

i ).
The 2.5PN spin-orbit term β2.5 is [102]:

βSO
2.5 =

∑
i=1,2

χiκi

[
m2
i

M2

(
−31319

1008
+

1159

24
η

)

+η

(
−809

84
+

281

8
η

)]
, (2.10)

where we neglect BH absorption terms [104]. The 3PN,
3.5PN, and 4PN terms P6, P7, P8, are taken from
Eqs. (5) and (6) of Ref. [105]. This analysis assumes
nonprecessing (aligned) spins, so all the β(··· ) and σ(··· )
parameters are functions of χi and constant in time. Sim-
ilarly, at 3PN order the spin terms contain spin-orbit
effects arising from the tail contribution [106] and the
1PN correction to the leading spin-spin term [107]. The
3.5PN term contains the spin-orbit and cubic spin inter-
actions in the spin dynamics [108, 109]; the 4PN spin
terms contain only spin-orbit interactions [110] and no
other contributions. (See similar computations within
the Effective Field Theory approach [111–113].)

Leading-order in eccentricity corrections to the SPA
phase were derived to 3PN order in Eq. (6.26) of [22],
making use of the results of prior PN modelling of eccen-
tric binaries [23, 114–118]. (See [119] and the references
therein for recent work in the development of eccentric

3 Note that Ref. [97] uses the notation κi → cosκi.
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waveforms.) To display the structure we show here only
the 1PN-order corrections (but we use the full 3PN ex-
pression in all our calculations):

∆Ψecc.
3PN = −2355

1462
e2

0

(v0

v

)19/3
[
1 + v2

(
299 076 223

81 976 608

+
18 766 963

2 927 736
η

)
+ v2

0

(
2833

1008
− 197

36
η

)
+ · · ·+O(v6)

]
.

(2.11)

Here, e0 is the eccentricity at a reference frequency f0,
and v0 ≡ (πMf0)1/3. The choice of f0 is arbitrary;
through most of this paper we set f0 = 10 Hz except
where otherwise noted.

The ∆Ψecc.
3PN phase correction above ignores periodic os-

cillations in the phase that occur on the orbital timescale.
We are also ignoring eccentricity-induced harmonics of
the GW signal at frequencies other than twice the orbital
frequency (these are small for low eccentricity). At large
frequencies, this waveform correction (like all PN wave-
forms) will begin to violate the assumptions inherent in
the PN expansion. Similarly, as the eccentricity becomes
large, this correction will become inaccurate. These is-
sues are discussed quantitatively in [22] and addressed
again in Sec. V below.

It is helpful to note that while the evolution of the
eccentricity variable et with time or frequency does not
have a general analytic solution, an analytic solution can
be found in the small-eccentricity limit:

et = e0

(
f0

f

)19/18 [
1 +O(πMf)2/3 +O(πMf0)2/3

]
,

(2.12)
where the full expression with corrections to 3PN order
is found in Eq. (4.17) of [22]. A similar expression giving
the time-dependence et(t) is

et = e0

(
tc − t
tc − t0

)19/48

, (2.13)

where tc is the coalescence time, t0 is the time when
et = e0, and the 3PN corrections to this formula are
found in Eq. (4.23) of [22]. The above are helpful for un-
derstanding the decay of binary eccentricity in the small
e0 limit. Note that Eq. (2.11) already accounts for the
variation of the eccentricity with time (i.e., e0 is a con-
stant parameter specifying the value of et at the reference
frequency f0).

We refer to circular waveforms in the SPA approxima-
tion as discussed above as TaylorF2 waveforms; when the
eccentric correction in Eq. (2.11) is included, we refer to
this as the TaylorF2Ecc waveform. The TaylorF2Ecc
waveform has been coded into LALSuite [92] by the
present authors [81] and reduces to the TaylorF2 wave-
form in the e0 → 0 limit. We note that TaylorF2Ecc
has been used for parameter estimation on LIGO data to
look for evidence of eccentricity [78, 79].

Cosmological corrections to the waveform become im-
portant at large distances, and the incorporation of these

effects is discussed in Appendix B. The appropriate cor-
rection to Eq. (2.3) is obtained by replacing D with the
redshift-dependent luminosity distance dL(z) [Eq. (B5)],
and also replacing the total mass with the detector-frame
mass (1 + z)M . To emphasize these redshift-dependent
corrections we redefine the FT of the GW signal in the
observer’s (i.e., detector’s) frame as

h̃(f) = AzeiΨ(f) = Âzf−7/6eiΨ(f) , where (2.14)

Âz ≡ Azf7/6, with Ψ(f) and Az defined via making
the above replacements in Eq. (2.3) [e.g., Eq. (B4)]. See
Appendix B for details. Note that throughout this paper,
the symbol M refers to the total mass in the source frame
(the frame of the binary) and f refers to the frequency
of the GWs measured at the detector.

B. Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) ρ is defined via

ρ2 = 4

∫ ∞
0

|h̃(f)|2

Sn(f)
df , (2.15)

where Sn(f) is the one-sided noise power spectral den-
sity, and all quantities are defined in the observer frame.
Using Eq. (2.14) allows us to rewrite ρ as

ρ2 = 4Â2
z

∫ fhigh

flow

f−7/3

Sn(f)
df , where (2.16)

|Âz|2 =
5

96π4/3
(1 + z)5/3η

M5/3

d2
L

×
[
(1 + C2)2F 2

+ + 4C2F 2
×
]
, (2.17)

and we have replaced the integration limits with the low-
frequency limit of the detector and a high-frequency cut-
off determined by a waveform termination condition (see
Sec. II C below). For antenna patterns F+,×(θ, ϕ, ψ) de-
pending on sky-position angles (θ, ϕ) and a polarization
angle ψ, and for GW polarizations h+,×(ι, β) depending
on the direction of the Newtonian orbital angular mo-
mentum to the observer (ι, β) in the source frame, we
can compute the angle-averaged SNR via

〈ρ2〉 =

∫ 2π

0

∫ π

0

sin θ dθ dϕ

4π

∫ π

0

dψ

π

∫ 2π

0

∫ π

0

sin ι dι dβ

4π
ρ2.

(2.18)
Using 〈F 2

+,×〉 = 1/5 (for interferometers with 90◦ arms),

〈C2〉 = 1/3, and 〈(1 + C2)2〉 = 28/15, we find

〈ρ2〉 =
2

15π4/3
(1 + z)5/6 ηM

5/3

d2
L

F7/3 , where (2.19)

F7/3 ≡
∫ fhigh

flow

f−7/3

Sn(f)
df . (2.20)
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(Since dimensionally [Sn] = 1/Hz, [F7/3] = 1/Hz1/3.)
For an “optimally-oriented” and “optimally-located” bi-
nary (e.g., ι = θ = ϕ = ψ = 0, C = F+ = 1, F× = 0),
(1 + C2)2F 2

+ + 4C2F 2
× = 4, and ρ2 becomes

ρ2
opt =

5

6π4/3
(1 + z)5/6 ηM

5/3

d2
L

F7/3 . (2.21)

Note that ρopt = 5
2

√
〈ρ2〉.

C. Frequency range

The limits of integration in F7/3 [Eq. (2.20)] and in our
Fisher matrix calculation below are computed as follows:
flow is generally taken to be the fiducial seismic cutoff
for the Advanced LIGO design, flow = 10Hz, although
we also consider other values as discussed below. For
the high-frequency cutoff we investigated two choices: (i)
a conservative choice given by the validity limit of the
quasi-Keplerian approximation estimated in Eq. (3.22)
of [22]:

fqK =
2585

1 + z

(
1M�
M

)
Hz , (2.22)

where the factor (1 + z) is needed to provide the cutoff
frequency at the detector in terms of the source-frame
mass. (ii) As a less-conservative alternative—and in the
spirit of pushing PN expansions to their limit (with the
understanding that actual LIGO measurements will make
use of waveforms calibrated to numerical relativity)—we
choose either (a) fhigh = 1000 Hz for BNS4, or (b) the
ISCO frequency corresponding to the final BH formed
following the merger for BBH or NS/BH systems. In
case (b) we do not distinguish between BBH and NS/BH
systems, treating both objects as point masses. The fre-
quency we use is given by

fisco,z =
1

1 + z

Ω̂isco(χf )

πMf
, (2.23)

where Ω̂isco(χ) ≡MkerrΩisco is the dimensionless angular
frequency for a circular-equatorial orbit around a Kerr
BH with mass Mkerr and spin parameter χ [121]. The

dimensionless frequency Ω̂isco depends only on a spin pa-
rameter χ, which is taken to be the final spin parameter
χf of the BH merger remnant. Similarly, the mass pa-
rameter Mf entering Eq. (2.23) is the final mass of the

4 This value is motivated by Figures 5 and 7 of Ref. [120], which in-
dicate that PN waveforms with tidal corrections and EOB point-
particle waveforms start to develop large phase errors past fre-
quencies Mω ≈ 0.05. In any case, because the LIGO sensitivity
is poor close to 1000 Hz, moderate perturbations about this up-
per frequency cutoff do not affect our results substantially. For
this reason we ignore the redshift correction in computing fhigh

for the BNS case.

BH merger remnant. Explicit formulas for Ω̂isco, Mf ,
and χf are given in Appendix C, with the latter two
quantities determined by fits to numerical relativity sim-
ulations.

III. THE ECCENTRIC CHIRP MASS

Before introducing our parameter estimation formal-
ism, we first discuss an important feature of eccentric
waveforms which has, to our knowledge, not been previ-
ously highlighted. This concerns the identification of the
appropriate “effective mass” parameter that enters the
waveform for a coalescing compact binary.

It is well known that for circular binaries the chirp mass
Mch ≡ η3/5M = (m1m2)3/5(m1 +m2)−1/5 is the combi-
nation of intrinsic system parameters that most directly
governs the strength and evolution of the GW signal.
This is easily seen by examining the functional form of
key quantities such as the GW luminosity (energy flux),
frequency evolution, and the waveform SPA amplitude
and phase at leading (0PN) order:

Lcirc,0PN
gw =

32

5
M

10/3
ch (πf)10/3 , (3.1a)

df

dt

∣∣∣∣
circ,0PN

=
96

5π
M

5/3
ch (πf)11/3 , (3.1b)

Acirc,0PN ∝ −
√

5π

96

M
5/6
ch

D
(πf)−7/6 , (3.1c)

Ψcirc,0PN = φc + 2πftc +
3

128M
5/3
ch (πf)5/3

. (3.1d)

For this reason the chirp mass is the parameter that
is measured with the highest accuracy in systems that
are inspiral dominated. For example, the detector frame
chirp mass for GW170817 was measured with a fractional
precision ∼ 0.05% [13]. Because the chirp mass—not the
individual system masses (m1,m2)—is the dominant pa-
rameter, this leads to a degeneracy in the m1-m2 plane:
the chirp mass is measured precisely, but the individual
system masses are not. This results in the famous chirp
mass “banana” (see, e.g., the left panel of Figure 3).

We extend this line of reasoning to the case of eccentric
binaries. It is important to note that eccentricity is not
a high-order PN effect: the effects of eccentricity modify
the quantities in Eq. (3.1) at leading (0PN/Newtonian)
order:

Lecc,0PN
gw = Lcirc,0PN

gw ×
[

1 + 73
24e

2
t + 37

96e
4
t

(1− e2
t )

7/2

]
, (3.2a)

df

dt

∣∣∣∣
ecc,0PN

=
df

dt

∣∣∣∣
circ,0PN

×
[

1 + 73
24e

2
t + 37

96e
4
t

(1− e2
t )

7/2

]
, (3.2b)

Aecc,0PN ∝ Acirc,0PN ×

[
(1− e2

t )
7/4(

1 + 73
24e

2
t + 37

96e
4
t

)1/2
]
,

(3.2c)
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FIG. 3. Comparison of contours of constant chirp mass and the eccentric chirp mass. The left plot shows the standard curve
of constant chirp mass Mch = η3/5M = (m1m2)3/5(m1 + m2)−1/5 in the m1-m2 plane, with the colored band delimiting
the region with Mch = 9.746 ± 0.09M�. Analogously, the right plot shows a band of constant eccentric chirp mass Mecc

ch =
Mch(1− 157

24
e2

0)−3/5 in the e0-Mch plane, with Mecc
ch = 9.746± 0.09M�. Masses in both plots are in units of M�.

Ψecc,0PN ∝
3

128M
5/3
ch (πf)5/3

[
1− 2355

1462
e2

0

(
f0

f

)19/9
]
,

(3.2d)

where Eqs. (3.2a) and Eqs. (3.2b) come from Eqs. (6.7)
and (6.10) of [118] and are implicit in the work of [23, 24].
The correction in Eq. (3.2c) comes from Eq. (4.23) of
[122] and includes additional eccentric corrections not
displayed here. Note that the et appearing in the above
equations is itself a function of the frequency et =
e0F (f/f0), where the behavior of the function F (f/f0)
in the low-eccentricity limit is shown in Eq. (2.12). Here
f represents the GW frequency of the harmonic at twice
the orbital frequency. The last equation shows the 0PN
SPA phase Ψ from Eqs. (2.4) and (2.11).5 Clearly, these
expressions show that the GW signal now depends (at
leading order) on a combination of the chirp mass and
the eccentricity.

Since most of the information in a coalescing binary’s
GW signal comes from the variation in the signal’s phase,
we focus on the parameter dependence in Ψ(f) above.

5 Unlike the expressions in Eqs. (3.2a)–(3.2c), the 0PN SPA phase
cannot be written as a relatively simple closed-form analytic
function valid for arbitrary et. An exact expression for the SPA
phasing is possible at 0PN order while also including the 1PN
periastron precession [123], but it requires the evaluation of hy-
pergeometric functions to obtain the phasing as a function of e0
and f . See also Eq. (4.28) of [122] for a higher-order expansion
in the small e0 limit.

There we see that the eccentric correction is most im-
portant near f ≈ f0 = 10Hz; it becomes even larger at
lower frequencies, but these are typically below the LIGO
band. The size of the eccentric correction then rapidly
decays for f > f0. If we series expand Ψ(f) near f = f0,
the SPA phase can be written as

Ψ(f) ≈ Ψ(f0) + (2πtc −A)(f − f0) +B(f − f0)2

+O[(f − f0)3] , (3.3)

where

A =
5

128M
5/3
ch (πf0)5/3f0

(
1− 157

43
e2

0

)
, and (3.4)

B =
5

96M
5/3
ch (πf0)5/3f2

0

(
1− 157

24
e2

0

)
. (3.5)

The first two terms in Eq. (3.3) [∝ (f − f0)] shift the
values of tc and the phase constant φc. An examination
of the B-term above suggests that the “effective mass”
parameter that dominates the phase evolution near f0 is
an “eccentric chirp mass” parameter

M ecc
ch ≡

Mch

(1− 157
24 e

2
0)3/5

, (3.6a)

≈Mch

(
1 +

157

40
e2

0

)
. (3.6b)

This effective parameter is approximate as it relies on
the small e0 limit and an expansion of the 0PN phas-
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ing near f = f0.6 Still, it is a helpful conceptual tool
for understanding the parameter dependence of eccentric
waveforms.

Just as an accurate measurement of Mch in a circu-
lar binary yields a comparatively larger spread in the
range of m1 and m2 (see the left panel of Fig. 3), M ecc

ch
plays an analogous role for signals with small eccentric-
ity: The parameter M ecc

ch effectively governs the phase
evolution and is precisely measured, suggesting a degen-
eracy between the “circular chirp mass”Mch and e0. This
is illustrated in the right panel of Fig. 3. There we see
that contours of constant M ecc

ch form a parabolic shape,
Mch ≈ M ecc

ch

(
1− 157

40 e
2
0

)
, analogous to the circular chirp

mass “banana” plot. In Sec. VIII below we will return to
this as a means of explaining the increasing chirp mass
bias seen in the lower-right panel of Fig. 2.

While this paper was being finalized, we learned of
an independent work [124] that also discusses the notion
of an effective chirp mass for eccentric binaries, but in
the context of burst searches using time-frequency maps.
Their effective parameter is a phenomenological polyno-
mial function to O(e6), based on fitting the leading order
(0PN) frequency evolution. Our eccentric chirp mass pa-
rameter is analytically derived directly from the O(e2)
corrections to the SPA phasing, which is the function
more directly relevant for parameter estimation.

IV. FISHER MATRIX FORMALISM FOR
STATISTICAL AND SYSTEMATIC PARAMETER

ESTIMATION

The Fisher information matrix is widely discussed in
the GW literature (for a small selection of examples, see
e.g., Refs. [125–132]). It yields accurate results only in
the high SNR limit. (For a discussion of its limitations
see Refs. [133, 134].) Here we apply the Fisher matrix
as a way to make fast but somewhat crude assessments
of the parameter estimation capabilities of ground-based
detectors. A comparison between the Fisher matrix ap-
proach and parameter estimation via LALInferenceMCMC
is performed in Sec. VII. Our goal in this section is to
provide a brief but clear and explicit review of the Fisher
matrix approach, including a discussion of how system-
atic parameter biases can be computed. We also derive
some simple analytic scaling estimates for statistical and
systematic parameter errors.

6 Unlike the circular case, this approximate combination does
not appear in the amplitude, where a similar series ex-
pansion near f ≈ f0 of Eq. (3.2c) yields Aecc,0PN ∝
M

5/6
ch f

−7/6
0

(
1− 157

48
e20
)

+ O(f − f0), suggesting Mecc
ch =

Mch

(
1− 157

48
e20
)6/5 ≈Mch

(
1− 157

40
e20
)
. Note the sign difference

relative to Eq. (3.6b).

A. Computing statistical errors with the Fisher
matrix

Here we largely follow the presentation in Ref. [128].
For stationary, Gaussian noise and in the limit of large
SNR, the probability of detecting the parameter set θ =
[θa] given some detector data d(t) is

p(θ|d) ∝ p0(θ) exp

[
−1

2
Γab(θ

a − θ̂a)(θb − θ̂b)
]
, (4.1)

where ∆θa ≡ θa − θ̂a, θ̂a are the parameter values that
maximize the probability distribution function (PDF),
and p0(θ) is the prior probability that the signal is char-
acterized by the values θ. The Fisher matrix is given
by

Γab =

(
∂h

∂θa

∣∣∣∣ ∂h∂θb
)

(4.2)

and is evaluated at the maxima θ̂a. The (· · · | · · · ) refers
to the standard waveform inner product weighted by the
detector noise Sn,

(a|b) = 2

∫ fhigh

flow

df

Sn(f)

[
ã(f)b̃∗(f) + ã∗(f)b̃(f)

]
, (4.3)

where ∗ denotes complex conjugation.
We assume that our prior knowledge of the model pa-

rameters corresponds to a Gaussian distribution about
values θ̄a,

p0(θ) ∝ exp

[
−1

2
Γ0
ab(θ

a − θ̄a)(θb − θ̄b)
]
, (4.4)

where the θ̄a need not be the same as θ̂a. If the differ-
ence is negligible (θ̄a ≈ θ̂a, which we assume), then the

posterior distribution p(θ|d) is peaked at θ̂a and the co-
variance matrix is given by the matrix inverse of the sum
of the matrices:

Σab ≡ E[(θa − θ̂a)(θb − θ̂b)] = (Γab + Γ0
ab)
−1 , (4.5)

where E[ ] denotes the expectation value. The 1-sigma
statistical measurement error in the parameter θa is then

σa =
√

Σaa (4.6)

(with no summation over repeated indices). (More accu-
rately,

√
Σaa represents the Cramér-Rao lower-bound on

the 1-sigma error.) The correlation between the param-
eters θa and θb is given by the correlation matrix

cab =
Σab
σaσb

. (4.7)

The n-sigma error ellipsoid is given by the equation

(Γab + Γ0
ab)(θ

a − θ̂a)(θb − θ̂b) = n2 . (4.8)
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For waveforms in the restricted SPA form [i.e.,
Eq. (2.14), but dropping the z label below for simplicity]

and for which A ≡ Âf−7/6 and Ψ are real, the Fisher
matrix simplifies to:

Γab = 4

∫ fhigh

flow

f−7/3df

Sn(f)

(
∂aÂ∂bÂ+ Â2∂aΨ∂bΨ

)
,

(4.9)

=
ρ2

F7/3

∫ fhigh

flow

f−7/3df

Sn(f)

(
δa,ln Âδb,ln Â + ∂aΨ∂bΨ

)
,

(4.10)

where ∂a ≡ ∂/∂θa, and in the second line we used

Eq. (2.16) (taking ln Â to be one of our parameters). For
our purposes here (where we are not interested in con-
straining the distance to the source or the sky position),

Â is not a parameter of interest. Since it decouples com-
pletely from the rest of the Fisher matrix we need only
consider the inner block of the matrix that depends on
the derivative of Ψ,

ΓAB =
ρ2

F7/3

∫ fhigh

flow

f−7/3df

Sn(f)
∂AΨ∂BΨ , (4.11)

where the capital indices span the parameters θa but ex-
cluding lnA. (Note that we raise and lower indices via
the Kronecker delta, so θa = θa and repeated indices
denote summation except where stated otherwise.)

We incorporate Gaussian priors by adding to the di-
agonal elements of our Fisher matrix terms of the form
Γ0
AA = 1/(δθA)2. The δθA are assigned a size corre-

sponding to the parameter’s maximum variation from
zero. Our parameter set consists of

θA = (tc, φc, lnM, ln η, χ1, χ2, ln e0) . (4.12)

In our analysis below we use priors on the parameters7

φc ∈ [−π, π], χ1,2 ∈ [−1, 1], and e0 ∈ [0, 1], corresponding
to

δφc = π , δχ1,2 = 1 , δe0 = 1 . (4.13)

The prior on φc has the most significance on reducing our
errors, with the χ1,2 priors having a smaller effect (and
little effect on σe0). We note that the statistical errors
on the remaining parameters do not change if we replace
the lnM parameter with lnMch.

In all our calculations we use a fit to the zero-
detuned high-power LIGO sensitivity found in Eq. (4.7)

7 To apply a sensible prior to e0, we actually use e0 (rather than
ln e0) as the parameter in our Fisher matrix, and later compute
the fractional error as σln e0 = σe0/e0. Removing the prior on
e0 has very little effect on our results. A similar approach can be
used to apply a prior on η ∈ [0, 0.25]: δη = 0.25. Doing so results
in a very small improvement to our reported errors (in the third
or fourth digit), so we leave out this prior for simplicity.

of Ref. [135]. Cosmological effects are incorporated by
using expressions for ρ, Ψ, and fhigh corrected by the ap-
propriate factors of (1 + z) as discussed in Appendix B.
Mass parameters listed in this paper refer to the source-
frame masses unless otherwise noted.

B. Systematic error formalism

The Fisher matrix allows us to determine the parame-
ter errors due to the random (statistical) error associated
with the detector noise. In addition to this source of er-
ror, there is also a systematic error due to possible inaccu-
racies in our waveform model. Cutler and Vallisneri [88]
developed a formalism to compute these systematic er-
rors, which we apply to our Fisher matrix analysis here
(and denote as the FCV formalism).

Working in the restricted SPA, consider an approxi-
mate waveform

h̃AP = AeiΨ = Âf−7/6eiΨ (4.14)

and a true waveform

h̃T = (A+ ∆A)ei(Ψ+∆Ψ) (4.15)

that differs from the approximate model by small correc-
tions to the amplitude ∆A and to the phase ∆Ψ. The

systematic error ∆θa ≡ θT
a − θ̂a due to waveform mod-

eling uncertainty in the parameter θa is the difference
between the “true“ value of the parameter (θT

a , i.e., the
value given a waveform without modeling errors) and the

recovered parameter θ̂a (i.e., the peak of the recovered
Gaussian PDF). From Eq. (29) of [88], the systematic
error ∆θa is given by

∆θa ≈ Σab
(
[∆A+ iA∆Ψ]eiΨ|∂bhAP

)
, (4.16)

where Σab is computed from hAP and all terms on the

right-hand-side are evaluated at θ̂a (the best fit param-
eter values determined using the approximate waveform
hAP). Ignoring any systematic errors that enter the am-
plitude (∆A = 0) and using Eq. (2.16), Eq. (4.16) sim-
plifies to

∆θA =
ρ2

F7/3
ΣAB

∫ fhigh

flow

f−7/3df

Sn(f)
∆Ψ∂BΨAP, (4.17)

where we have replaced lower-case Latin indices with cap-
ital letters to emphasize (as before) that we do not in-
clude the amplitude as a parameter. Notice that since
ΣAB ∝ ρ−2, ∆θA is independent of the SNR ρ.

C. Scaling Estimates

Ignoring parameter correlations, we can make simple
scaling estimates of the statistical errors using the crude
approximation σa ≈ 1/

√
Γaa ∼ 1/(ρ∂aΨ). Dropping
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the numerical coefficients arising from the integration,
we find the scalings:

σM
M
∼ ση

η
∝ η

ρ
(Mfc)

5/3 , (4.18a)

σe0
e0
∝ η

ρ
(Mfc)

5/3 1

e2
0

(
fc
f0

)19/9

, (4.18b)

where fc is a characteristic frequency scale that enters
on dimensional grounds (but does not appear explicitly
when the full numerical integration is performed). We
note that the number of wave cycles in the detector band
scales as

∆Ncyc ≡
1

π
[φ(fhigh)− φ(flow)] ∼ 1

η(Mflow)5/3
(4.19)

at leading order and

∆Ncyc,ecc ∼ −
e2

0(f0/flow)19/9

η(Mflow)5/3
(4.20)

for eccentric terms. If fc ≈ flow, this implies that statis-
tical errors scale like

σa
θa
∼ 1

ρ∆Ncyc
, (a = M,η) (4.21a)

σe0
e0
∼ 1

ρ∆Ncyc,ecc
∼ σa/θa
et(fc)2

. (4.21b)

[In the last term we made use of Eq. (2.12).] Hence, larger
SNR and more cycles in band suggests smaller statistical
errors (as is widely understood).

Analogous estimates of the systematic error on a pa-
rameter θa can be crudely approximated via

∆θa ∼
ρ2

F7/3
Σaa

∫ fhigh

flow

f−7/3df

Sn(f)
∆Ψ∂aΨAP ,

∼ ρ2σ2
a∆Ψ∂aΨAP ∼

∆Ψ

∂aΨAP
∼ ρσa∆Ψ , (4.22)

where there is no sum on the index a above. If sys-
tematic errors result from ignoring eccentricity [∆Ψ ∝
∆Ψecc

3PN/(ηv
5)], then we can crudely approximate the

fractional bias in the mass parameters via

∆M

M
∼ ∆η

η
∼ e2

0

(
f0

fc

)19/9

∼ et(fc)2 (4.23)

∼ σa/θa
σe0/e0

∼ ∆Ncyc,ecc

∆Ncyc
. (4.24)

This is clearly SNR independent and scales like the frac-
tional number of cycles due to the eccentric corrections.
In the next two sections we explicitly evaluate and com-
pare these statistical and systematic errors.

V. RESULTS: STATISTICAL ERRORS ON
ECCENTRICITY VIA THE FISHER MATRIX

Using the Fisher matrix formalism discussed above,
we compute the 1-sigma parameter estimation errors for

the parameter set given in Eq. (4.12). We do this for
a variety of “fiducial” GW sources and show the results
for the fractional error in e0 in the left panel of Figure
1. For the systems with neutron stars, we take the NS
dimensionless spin to be χi = 0.01 and its quadrupole-
monopole parameter to be ai = 5. For all BHs we take
the dimensionless BH spins to be χi = 0.5 and ai =
1. Throughout this paper we assume that all spins are
aligned with each other and with the angular momentum
axis (κi = γ12 = 1). We consider one BNS system, one
NS/BH system, and four binary BH (BBH) systems, and
we summarize their parameters as follows:

(i) NS/NS (BNS): m1 = 1.4M�, m2 = 1.25M� at 100
Mpc (z = 0.02227). We integrate to 1000 Hz and
obtain an angle-averaged SNR [via Eq. (2.19)] of
13.85.

(ii) NS/BH: m1 = 15M�, m2 = 1.4M� at 200 Mpc
(z = 0.04384). We integrate to 493.5 Hz [following
from Eq. (2.23)] and obtain an SNR of 17.87.

(iii) BBH1: m1 = 10M�, m2 = 5M� at 500 Mpc (z =
0.1051). We integrate to 723.3 Hz [again following
from Eq. (2.23)] and obtain an SNR of 11.81.

(iv) BBH2: m1 = 15M�, m2 = 10M� at 500 Mpc. We
integrate to 455.6 Hz and obtain an SNR of 18.64.

(v) BBH3: m1 = 25M�, m2 = 15M� at 500 Mpc. We
integrate to 280.3 Hz and obtain an SNR of 26.76.

(vi) BBH4: m1 = 35M�, m2 = 25M� at 500 Mpc. We
integrate to 191.5 Hz and obtain an SNR of 37.18.

In all cases above we assume a single detector, and we
start our integration at 10 Hz. The masses listed above
are source-frame masses.

From the left-panel of Figure 1 we make the following
observations:

(a) First, the fractional error in e0 improves (i.e., de-
creases) for systems with more cycles in band. E.g.,
we see that BNS and NS/BH binaries have the small-
est σe0/e0, while the more massive BBHs have the
largest. This agrees qualitatively with the σe0/e0 ∼
1/∆Ncyc scaling predicted in Eq. (4.21). As pre-
dicted by Eq. (4.18b), the slope of the lines in that
figure are very close to −2.

(b) Second, to obtain meaningful constraints on eccen-
tricity with LIGO (e.g., σe0/e0 . 0.3), the eccen-
tricity at 10 Hz must be in the range e0 & 0.01 to
0.1, depending on the system masses. In particular,
we find that the fractional error in eccentricity de-
creases below 20% when e0 exceeds 0.013 for BNS,
0.028 for NS/BH binaries, 0.05 for BBH1, 0.065 for
BBH2, 0.08 for BBH3, and 0.1 for BBH4.

Note that the statistical parameter errors discussed
here (and throughout this paper) can be scaled to other
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SNR values using the fact that σθi ∝ 1/ρ. Those er-
rors can be approximately scaled to other distances using
σθi ∝ dL, however this scaling is not exact as it ignores
the redshift dependence of the masses and the upper-
frequency cut-off.

Appendix D shows additional parameter estimation re-
sults for the systems shown in the left panel of Fig. 1.
Figure 10 shows that the statistical errors on M , η, and
χ1,2 are largely independent of e0, except for χ2 (the spin
parameter of the secondary) for systems with unequal
mass ratios. This is expected as the circular piece of the
waveform phasing largely determines the mass parame-
ter errors in the low-eccentricity limit, and our phasing
does not contain “mixed” terms of the form ∼ O(en0χ

m
1,2).

Figure 11 shows the correlation coefficient cAB [Eq. (4.7)]
of e0 with the other intrinsic system parameters. Those
correlations are weak, with |ce0θA | . 0.5 in most cases.

In the right panel of Figure 1 we show the fractional
error in e0 for two systems with parameters similar to the
first two LIGO detections, GW150914 [3] and GW151226
[4]. These systems are chosen as their masses are rep-
resentative examples of the high mass and low mass
LIGO-Virgo BBHs. (Systems with masses higher than
GW150914 will have very few GW cycles in the inspiral
phase and are less amenable to an analysis of binary ec-
centricity.) For these two systems we use the following
parameters consistent with the observations as reported
in Table IV of [136]:

(i) GW150914: mdet
1 = 39.4M�, mdet

2 = 31.7M�, χ1 =
0.32, χ2 = 0.48, ρ = 23.6. We integrate to fisco =
166.2 Hz.

(ii) GW151226: mdet
1 = 15.6M�, mdet

2 = 8.2M�, χ1 =
0.49, χ2 = 0.52, ρ = 13.0. We integrate to fisco =
506.7 Hz.

In both cases we use the LIGO noise curve as before (not
the actual detector noise at the time of detection), and
we vary the low-frequency cut-off as indicated in the fig-
ure. The masses given above are detector-frame masses.
Rather than specify a distance, we assume SNRs (listed
above) corresponding to the actual two-detector network
SNR of the actual detections (see, e.g., Table I of [136]).8

The same waveform model is used as in the left panel of
Figure 1, again truncated at the ISCO corresponding to
the final mass and spin as determined via the formulas in
Sec. II C and Appendix C (setting z = 0 when we make
use of the detector-frame masses).

We note that the low-frequency sensitivity at the time
of the actual detections was close to ≈ 35 Hz. As we
are using the observed SNRs (not the larger SNRs that

8 For a network with N detectors with identical orientations and
sensitivities, the Fisher matrix parameter errors for the network
is computed by evaluating the Fisher matrix for a single detector
using the network SNR, where the network SNR is the quadra-
ture sum of the individual SNRs, ρ2

network =
∑N
i ρ2

i .
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100

101
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e 0
/e
0

e
0

FIG. 4. Effect of changing the high-frequency cut-off of the
integration entering the Fisher matrix. The color scheme is
the same as the left panel of Figure 1. The same systems
are shown here (using the same color scheme), except for the
NS/NS case. The solid curves are the same curves as in Figure
1, which use fhigh = fisco,z. The dashed curves use fhigh =
fqK. From left to right the solid (or dashed) curves correspond
to the systems NS/BH, BBH1, BBH2, BBH3, BBH4.

would be seen by an identical system at the same dis-
tance observed by LIGO at its final design sensitivity),
the curves labeled 35 Hz are approximate constraints on
the measurement precision of e0 that could be set at
the time of detection assuming that the source had the
value of e0 given on the x-axis of Fig. 1. The curves la-
beled 25 Hz and 10 Hz show the same calculation using
a lower value for the low-frequency limit of the integra-
tion in Eq. (4.11). We clearly see that decreasing the
low-frequency limit significantly increases the measure-
ment precision of e0. This naturally follows from the fact
that e0 is defined to be the value at 10 Hz in all cases
(regardless of the choice of flow). Since the instanta-
neous eccentricity varies as in Eq. (2.12), a detector with
a lower frequency limit is probing the waveform when
the eccentricity (for a given value of e0 fixed at 10 Hz) is
higher. Since the measurement precision improves with
larger instantaneous eccentricity [Eq. (4.21)], we expect
that lowering the detector noise floor from 35 Hz to 10 Hz
will increase the eccentricity measurement precision by a
factor ∼ (35 Hz/10 Hz)19/9 ≈ 14 (although the precise
number will also depend on how the detector sensitivity
varies at lower frequencies).

From the right panel of Figure 1 we see that both
GW150914 and GW151226 have very poor measurement
precision for e0 in the 35 Hz case (or even the 25 Hz
case, unless e0 & 0.25 for GW151226). However, if the
detector sensitivity goes down to 10 Hz, then measure-
ments with modest precision are possible if e0 & 0.1 for
GW150914-like systems or e0 & 0.05 for GW151226-like
systems.
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In computing our results we have pushed our 3PN
eccentric waveform [Eq. (2.11)] to values of e0 as high
as 0.3. This is a bit past the range where the wave-
form remains accurate. In Sec. VIII of [22] it was esti-
mated that phase accuracy (δNcyc . 1) is maintained for
e0 . 0.06–0.15. We estimate that higher-order eccentric-
ity effects will produce corrections scaling like ∼ O(e0) or
higher; this corresponds to corrections of order . 30% to
our results (and typically much less for smaller values of
e0). Further, we have pushed our 3PN waveform to high
frequencies, terminating them at the ISCO correspond-
ing to the final mass and spin. However, in Ref. [22] we
estimated an upper frequency fqK [Eq. (2.22)] where the
quasi-Keplerian approximation breaks down. In many
cases this is significantly below the ISCO frequency.

To assess the impact of a more conservative high-
frequency termination for our waveforms, Figure 4 exam-
ines the difference in the fractional error σe0/e0 between
using fqK and fisco,z. For the case when e0 = 0.1, the
fractional error σe0/e0 is larger for the (lower-frequency)
fqK cutoff by a factor of 1.27 (NS/BH), 1.42 (BBH1),
1.80 (BBH1), 2.53 (BBH1), or 4.18 (BBH1). While
this is clearly significant for higher-mass BBHs, we note
that our intention in this work is to provide represen-
tative estimates for eccentricity constraints that could
be achieved with LIGO. By pushing our waveforms to
high frequencies, we anticipate the development of im-
proved waveform families that can accurately describe
the regime close to merger. Considering the approxima-
tions involved in the Fisher formalism itself, these errors
are in keeping with our desire to make crude estimates
of the constraints achievable with LIGO.

VI. RESULTS: SYSTEMATIC ERRORS VIA
THE FCV FORMALISM

Having examined the precision with which eccentric-
ity could be measured, we turn now to the question
of the bias induced in the other parameters if eccen-
tricity is neglected. Here we use the formalism sum-
marized in Sec. IV B. We take as our parameter set
θA = (tc, φc, lnM, ln η, χ1, χ2) and use the priors as in
Eq. (4.13) for φc and χ1,2. Aside from the elimination of
e0 as a parameter, the calculation of the Fisher matrix
and ΣAB is the same as described above. The systematic
parameter error is computed via Eq. (4.16), taking ∆Ψ to
be 3

128ηv5 ∆Ψecc.
3PN and ΨAP to be all terms in Eq. (2.4) ex-

cept for ∆Ψecc.
3PN. We compute the resulting statistical and

systematic parameter errors for the same systems shown
in Figure 1. Figure 5 shows those errors for the parame-
ters (M,η, χ1,2) as a function of e0. Figure 6 shows the
corresponding errors for systems similar to GW150914
and GW151226. We make the same choices for the sensi-
tivity curve, frequency range, and system parameters as
in the previous section.

Figure 5 suggests that systematic errors begin to ex-
ceed statistical ones when e0 & 0.01–0.1, with the inter-

section point varying by system. Further, the intersection
point (where statistical and systematic errors are equal)
roughly increases as the system mass or number of cycles
decreases. For our fiducial NS/NS binary, this intersec-
tion point occurs at e0 ≈ 0.01 for the mass parameters
and e0 & 0.022 for the spin parameters. For our NS/BH
binary the intersection point occurs near e0 & 0.025 for
the mass and spin parameters. For BBH1, BBH2, BBH3,
and BBH4, the approximate intersection points occur
(respectively) at e0 & 0.05, 0.07, 0.08, and 0.09 for the
mass parameters, and 0.06, 0.11, 0.15, and 0.3 for the
spin parameters.

The systematic errors in Fig. 5 show a clear decreasing
trend as the binary total mass increases. More massive
and comparable-mass binaries are stronger emitters of
GWs and will shed away eccentricity (circularize) more
rapidly. Hence, only if they have a higher initial ec-
centricity will their parameters be biased by an amount
comparable to that seen in lower mass systems (BNS or
NS/BH).

From Figure 6 we see that any eccentricity-induced sys-
tematic bias in the parameters is completely negligible for
GW150914 and GW151226 when the low-frequency limit
is taken to be 35 Hz (consistent with the actual obser-
vations). The use of circular templates for the analyses
performed in [3, 4] is thus likely to be quite sufficient.
However, as we go to smaller values of flow, eccentricity-
induced bias can become more important. At 25 Hz, sys-
tematic errors can exceed statistical errors in the mass
parameters if e0 & 0.2 for GW151226-like systems. Go-
ing to 10 Hz, systematic biases in the mass parameters
become important for both GW151226 and GW150914-
like systems for e0 & 0.07. Biases in the spin parameters
become important only for GW151226-like systems for
e0 & 0.1.

VII. PARAMETER ESTIMATION USING
BAYESIAN MCMC INFERENCE

A. Overview of MCMC calculations

In addition to our Fisher matrix study, we performed a
limited investigation using LALInferenceMCMC, a param-
eter estimation pipeline included in LALSuite [92] (and
described in detail in [91]; see also [71, 137]). Unlike the
Fisher matrix approach, the Bayesian inference approach
does not assume that the SNR is large. It also allows for
multi-modal and non-Gaussian posterior probability dis-
tributions, as well as more complex prior probability dis-
tributions. On the other hand, the resulting code is much
more complex, and the significant increase in computa-
tional cost leads to a longer timescale for producing re-
sults (days to weeks vs. seconds for the Fisher approach).
For this reason we performed a limited investigation on a
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FIG. 5. Systematic and statistical errors for fiducial binary systems considered in the left panel of Figure 1. We show 1-sigma
fractional errors for M and η, and 1-sigma errors for χ1,2, both as a function of e0. Statistical errors are shown as solid
horizontal lines. Systematic errors are shown as upward-sloping dashed lines, with slopes ≈ 2 consistent with the scaling in
Eq. (4.23). The color scheme is the same as the left panel of Figure 1. Labels for the various systems are placed such that they
point to or are near the intersection of the statistical and systematic error curves for a given system.

single binary system using the LALInferenceMCMC code.9

We focused on a single binary with parameters simi-
lar to GW151226, one of the lightest known BBHs from
the first two LIGO/Virgo observing runs (O1 and O2).
To reduce computation time, we imposed additional re-
strictions on our GW151226-like binary compared to the
Fisher-based analysis considered in the previous sections.
Specifically, we use the observed detector-frame masses

9 Our version of the code was modified slightly to allow for the e0
and f0 parameters appearing in the TaylorF2Ecc waveform, but
is otherwise identical to that used by the LVC around August
2016 [92]. The software features we use for MCMC parameter
estimation here (e.g., likelihood computation, marginalization of
a PDF) are essentially the same as in [71].

of mdet
1 = 15.6M� and mdet

2 = 8.2M� of GW151226,
but here we ignore BH spins. This allows us to sample
the (smaller) parameter space in less time. We also as-
sume that the binary is located at a distance of 500 Mpc,
and is observed by a single LIGO detector (Hanford).
The single-detector SNR is 20.12. In contrast to the case
in Sec. V, to speed up computation time we choose our
low-frequency limit to be 25 Hz. The upper-frequency
limit is set to 184.75 Hz (corresponding to twice the
Schwarzschild ISCO orbital frequency for GW151226).
Note that we still define our eccentricity parameter e0 at
the frequency f0 = 10 Hz.

To directly compare with our LALInferenceMCMC re-
sults, we re-ran our Fisher matrix code using parame-
ters consistent with the MCMC calculation as described
above. (Note that since we are now ignoring spins, our
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FIG. 6. Systematic and statistical errors for systems similar to GW150914 and GW151226 as considered in the right panel of
Figure 1. As in that figure, errors for GW150914 are shown with solid lines and errors for GW151226 are shown with dashed
lines. Different choices for flow are likewise labeled as in Figure 1: black (10 Hz), red (25 Hz), and blue (35 Hz). As in Figure
5, statistical errors are horizontal lines and systematic errors are upward-sloping lines.

Fisher code is using only five parameters in this case,
[tc, φc,Mch, ln η, e0], while the MCMC code is searching
over a ten-parameter space.10)

Priors in our Fisher code are treated the same as pre-
viously discussed. In the MCMC code we assume that
eccentricity is distributed uniformly between 0 and 1.
(While the TaylorF2Ecc waveform is not valid for large
e0 [22], we note that our posterior distributions show
little support above e0 = 0.3, due to the low e0 val-
ues of our injected signals. Hence, the breakdown of

10 The additional five parameters are θJN (inclination angle de-
fined as the angle between the total angular momentum vector
and the direction to the detector), dL (luminosity distance), ψ
(polarization angle), and (α, δ) (right ascension and declination
of the source).

TaylorF2Ecc at higher eccentricities is unlikely to signifi-
cantly alter our conclusions.) Priors on other parameters
in the MCMC code are treated as in [71]. Specifically, we
use uniform priors on tc (with width 4 seconds) and uni-
form priors on φc over [0, 2π]. We also use uniform priors
in m1,2 ∈ [1.0, 100.0]M� with m2 ≤ m1. We assume that
the sources are uniformly distributed on the sky with ori-
entations distributed uniformly in cos(inclination angle).
In the MCMC code, we marginalize over the coalescence
time when computing the posterior probability distribu-
tion. Both Fisher and MCMC codes were run using the
LIGO design sensitivity.11

11 The one-sided spectral density used in the MCMC code differed
slightly near 25 Hz from the analytic fit used in our Fisher matrix
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In order to perform MCMC parameter estimation for
a simulated GW strain with eccentricity, we have used
16 seconds for the segment length, a low-frequency cut
of 25 Hz, a sampling rate of 2048 Hz, and a reference
frequency of fref = 100 Hz. All source angles are defined
at this reference frequency. The eccentricity is defined at
f0 = 10 Hz as described earlier.

An essential task of LALInference and parameter es-
timation is to compute the log-likelihood, which depends
on an inner product [defined in Eq. (4.3)] between the
detector data d(t) = n(t) + htrue(t;θtrue) and a template
hT (t;θ):

lnL = −1

2

(
d(t)− hT (t;θ)|d(t)− hT (t;θ)

)
. (7.1)

Here n(t) is the detector noise, htrue(t;θtrue) is the GW
signal and depends on the “true” system parameters
θtrue, and the template hT (t;θ) depends on parame-
ters θ (which can be thought of as independent vari-
ables that specify a particular template). Here, we as-
sume “zero noise” (e.g., [138]), which means the sample
data generated within LALInferenceMCMC uses the choice
d(t) = htrue(t;θtrue) when computing the log-likelihood.
[I.e., we assume the data contains only injected GW sig-
nals and n(t) = 0.] However, a model for the detector
noise is incorporated via the inner product [Eq. (4.3)],
which depends explicitly on a model for the detector’s
one-sided noise spectral density Sn(f) [126]. In the limit
of very large sampling and the zero noise approximation,
the resulting a priori (i.e., before a prior probability is
imposed) probability distribution should be peaked at
θ = θtrue, but with a spread (standard deviation) that is
proportional to the detector’s noise spectral density.

We apply the “zero noise” approximation when per-
forming Bayesian MCMC parameter estimation as the
most optimistic realization to compare with Fisher ma-
trix results. A more realistic parameter estimation
study might include a particular noise realization n(t).
Aside from having the stationary (time-independent) and
Gaussian spectral properties that are embedded in the
noise spectral density Sn(f), a chosen n(t) might addi-
tionally contain time variations in the noise’s spectral
content or non-Gaussian features like “glitches.” These
features (which are present in realistic detector data) may
further alter the resulting a priori distribution such that
it will no-longer be maximized at θ = θtrue. We expect
realistic noise models to further limit (i.e., worsen) the
measurement of binary eccentricity.

B. MCMC results: statistical errors

In Figure 2 we show the marginalized posterior proba-
bility distributions for e0, η, and the detector-frame chirp

calculations (see Sec. IV B). However, we checked that this had
a negligible effect on our parameter estimates.

mass Mdet
ch for three different values of the injected ec-

centricity. (The injected signal is generated with the
TaylorF2Ecc waveform with the specified value of e0,
and recovered with TaylorF2Ecc waveform templates in
which e0 and the nine other parameters are allowed to
vary.) Table II quantifies the recovered parameter val-
ues for Mdet

ch , η, and e0 for a slightly larger selection of
injected eccentricities, and also lists the statistical errors
estimated from the Fisher-matrix calculation.

Figure 2 and Table II indicate that Mdet
ch and η are

recovered with excellent accuracy (better than 1% error
in the maximum a posteriori probability for η, with a
fractional error ση/η ∼ 4%–5%; the equivalent numbers
are smaller for Mdet

ch ). In the case of e0 we see that the
posterior distribution is much more broad, and is railing
against e0 = 0 when the eccentricity is small. This makes
small eccentricity difficult to measure. However, as the
injected e0 is increased to e0 ≥ 0.1, the recovery accu-
racy increases significantly (∼few to 10%), although the
relative precision remains modest (σe0/e0 ∼ 38%–65%;
consider the maP and σ columns for the e0 = 0.1 through
0.2 cases in Table II).

While e0 and η are accurately recovered, we note an ob-
vious bias in the recovery of the chirp mass Mdet

ch (Fig. 2,
bottom row) that grows with increasing e0. We will re-
turn to this feature in Sec. VIII below. While η is re-
covered accurately even for e0 = 0.2 (see Table II), we
do note that the posterior probability distribution has
shifted slightly towards larger η (middle-right panel of
Fig. 2 and median values in Table II).

We also note that the statistical error estimates (σ val-
ues) between the MCMC and Fisher approaches agree to
∼ 3% to 13% for η and ∼ 2% to 36% for Mdet

ch (Table II).
The statistical error estimates for e0 show poor agree-
ment for e0 ≤ 0.1, but this improves to ∼ 20% agree-
ment for e0 ≥ 0.15. The top row of Figure 2 suggests
that this poor agreement with the Fisher calculation is
due to the prior distribution for e0 considered in each
approach. The MCMC calculation assumes e0 is uniform
in the range [0, 1], while the Fisher matrix approach only
allows for a Gaussian prior which has non-zero support
for e0 < 0.

C. MCMC results: systematic errors

In Figure 7 we show the systematic bias that results
when eccentric signals are injected but recovered using
circular templates (i.e., using the TaylorF2 waveform,
which is identical to TaylorF2Ecc but with e0 set to
zero). We focus on the resulting bias in η and Mdet

ch .
There is clear indication of a growing bias in η (top row)
and Mdet

ch (bottom row) as e0 is increased from 0.04 to
0.2. (A similar trend is noted in [82].)

Tables III and IV further quantify our MCMC results
and also compare with the bias computed via the Fisher-
Cutler-Vallisneri (FCV) formalism. There we see a gen-
erally increasing bias with increasing e0, growing to 5%
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FIG. 7. Marginalized posterior probability distributions for the symmetric mass ratio η (top row) and the detector-frame
chirp mass Mdet

ch (bottom row), showing the systematic bias induced by the signal’s unmodeled eccentricity. Eccentric signals
are injected with the TaylorF2Ecc waveform, but recovered using circular TaylorF2 templates. As in Fig. 2, the vertical
dotted lines indicate the injected values of η and Mdet

ch (which are the same in each row). The injected eccentricity varies as

einj
0 = [0.04, 0.12, 0.2] from left to right. A growing systematic bias is clearly seen as the eccentricity increases.

in η and 1% in Mdet
ch . The middle three columns of those

tables compare the bias predicted by the MCMC and
FCV methods. We see that they agree quite well: gen-
erally better than 1% for η and better than 0.1% for
Mdet

ch . This confirms the utility of the Fisher/FCV ap-
proaches for estimating statistical and systematic errors
in the high SNR limit.

VIII. INVESTIGATING THE e0–Mch

DEGENERACY

We noted in Sec. VII B that the bottom row of Fig. 2
shows an offset between the injected chirp mass and
the peak of the recovered distribution; the offset grows
with increasing e0. (This behavior was independently
noted in recent work by [82].) Here we investigate this
further—both numerically and analytically—and show
that it arises from a degeneracy between the chirp mass
and the eccentricity parameter e0.

This degeneracy is clearly seen by examining the prob-
ability contours from our MCMC calculation in the 2D
e0-Mch plane (Fig. 8). These plots show a banana-shaped
region, with probability density migrating rightward (in-

creasing e0) and downward (decreasing Mch) as e0 in-
creases. We note that similar behavior is also seen in
Figs. 1 and 2 of [79], Fig. A1 of [77], and Figs. 7 and 8
of [82].12

To understand this behavior, we postulate that it is
analogous to the well-known banana-shaped degeneracy
seen in probability contour plots in the m1-m2 plane,
originating from the dominance of the chirp mass in the
waveform. In Sec. III above, we argued that a similar
degeneracy exists between e0 and Mch, arising from the
fact that M ecc

ch is the “effective parameter” governing the
phase evolution in binaries with small eccentricity. A
comparison of Fig. 8 with Fig. 3 qualitatively illustrates
this, with contours of constant M ecc

ch bending down and
to the right in the e0-Mch plane.

This behavior can be further analyzed analytically via
a simplified 2D Fisher-matrix calculation. In particular,

12 References [82, 83] also discuss possible correlations between the
eccentricity and the effective spin parameter χeff . While we do
not investigate this in our MCMC analysis here, Fig. 11 in Ap-
pendix D shows a weak correlation between e0 and the individual
spin parameters χi in our Fisher matrix analysis.
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TABLE II. Comparison of statistical errors between MCMC and Fisher matrix calculations for a GW151226-like binary black
hole system. We show results for the parameters Mdet

ch , η and e0 for selected injected values of the eccentricity parameter (einj
0 ).

The injected values for the mass parameters are Mdet
ch,inj = 9.746M� and ηinj = 0.2258. See also Fig. 2. The different columns

refer to the following quantities computed via the MCMC code: the maximum a posteriori probability (maP, most-likely value
accounting for the prior; this is generally different from the maximum value of the marginalized 1D PDFs shown in Fig. 2), the
median of the probability density (med.), and the standard deviation. The last column for each parameter shows the standard
deviation computed using the Fisher matrix approach.

parameter Mdet
ch (M�) parameter η parameter e0

einj
0 maP med. σMCMC σFisher maP med. σMCMC σFisher maP med. σMCMC σFisher

0.04 9.744 9.730 0.04969 0.06794 0.2263 0.2245 0.008043 0.008744 0.07384 0.08533 0.06126 0.3036
0.08 9.760 9.740 0.05139 0.07000 0.2268 0.2254 0.008212 0.008906 0.005230 0.09030 0.06295 0.1570
0.10 9.752 9.747 0.05333 0.07025 0.2273 0.2260 0.008402 0.008926 0.09802 0.09543 0.06473 0.1260
0.12 9.747 9.755 0.05541 0.07037 0.2261 0.2267 0.008651 0.008937 0.1131 0.1017 0.06641 0.1051
0.15 9.741 9.770 0.06029 0.07046 0.2257 0.2282 0.009206 0.008946 0.1651 0.1152 0.06989 0.08393
0.20 9.748 9.794 0.07204 0.07047 0.2253 0.2308 0.01027 0.008952 0.2020 0.1529 0.07631 0.06257

TABLE III. Comparison of systematic bias in the reduced mass ratio η between the MCMC and Fisher-Cutler-Vallisneri (FCV)
methods. Parameters are as in Table II, except here signals are injected with the TaylorF2Ecc waveform and recovered with the
(circular) TaylorF2 waveform. Columns 2 and 3 show the difference between the estimators xη (maP, median) and the injected
(true) value of η. Column 4 shows the parameter bias predicted by the FCV approach. Columns 5 and 6 show the relative
error between the indicated MCMC estimators and the FCV approach. The last two columns show the standard deviations
(statistical errors) computed via the two methods. The MCMC and FCV approaches generally show consistent agreement.

xη − ηinj |xη − FCVη|/ηinj ση

einj
0 maP median FCV maP median (MCMC) (Fisher)

0.04 0.0001242 0.001297 0.0004082 0.001257 0.003937 0.006848 0.006164
0.08 0.0003878 0.002550 0.001633 0.005514 0.004060 0.007036 0.006164
0.10 0.001676 0.003613 0.002551 0.003875 0.004701 0.007185 0.006164
0.12 0.003078 0.004929 0.003674 0.002640 0.005558 0.007377 0.006164
0.15 0.001829 0.007708 0.005740 0.01732 0.008714 0.007629 0.006164
0.20 0.006579 0.01466 0.01021 0.01608 0.01972 0.007197 0.006164

TABLE IV. Same as Table III except here we show results for the systematic bias in the detector-frame chirp mass Mdet
ch .

xMdet
ch
−Mdet

ch,inj (M�)
|x

Mdet
ch
−FCV

Mdet
ch
|

Mdet
ch,inj

σMdet
ch

(M�)

einj
0 maP median FCV maP median (MCMC) (Fisher)

0.04 0.0005586 0.008325 0.004089 0.0003622 0.0004347 0.02986 0.02752
0.08 0.01331 0.02070 0.01636 0.0003127 0.0004454 0.03041 0.02752
0.10 0.02055 0.03059 0.02556 0.0005145 0.0005162 0.03084 0.02752
0.12 0.03358 0.04245 0.03680 0.0003304 0.0005792 0.03134 0.02752
0.15 0.03971 0.06563 0.05750 0.001825 0.0008340 0.03212 0.02752
0.20 0.08470 0.1193 0.1022 0.001796 0.001753 0.03004 0.02752
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we will show below that the increasing rotation of the
probability contours in Fig. 8 as the injected eccentricity
increases is predicted from the 2D e0-Mch Fisher error
ellipse [Eq. (4.8)]. This ultimately arises from the rela-
tively large value of the ΓMche0 component of the Fisher
matrix.

To understand this more fully, consider the 2D slice
through the 5D error ellipsoid that spans the e0-Mch

plane. Ignoring priors and setting θa = θ̂a for a 6=
(Mch, e0) in Eq. (4.8) yields an equation for the 2D n-
sigma error ellipse,

Γe0e0
n2

δθ2
e0 +

ΓMchMch

n2
δθ2
Mch

+
ΓMche0

n2
δθe0δθMch

= 1 ,

(8.1)
where the Fisher matrix elements are given by Eq. (4.11)

and δθa = θa−θ̂a. [In this approach the other parameters
in the Fisher matrix (tc, φc, η) are not marginalized over.]

Consider separately the equation of an ellipse in the
Cartesian x-y plane that has semi-major axis a, semi-
minor axis b, and has been rotated about its center at
(x0, y0) by a counter-clockwise angle θ from the positive
x-axis. The equation for such an ellipse is13

(
cos2 θ

a2
+

sin2 θ

b2

)
δx2 +

(
cos2 θ

b2
+

sin2 θ

a2

)
δy2+

−
(

1

b2
− 1

a2

)
sin 2θδxδy = 1 , (8.2)

where δx = x − x0 and δy = y − y0. In terms of the
eigenvalues of the 2× 2 Fisher matrix

λ± =
1

2

[
ΓMchMch

+ Γe0e0

±
√

(ΓMchMch
− Γe0e0)2 + (2ΓMche0)2

]
, (8.3)

the error ellipse semimajor and semiminor axes are

a = n/
√
λ−, and b = n/

√
λ+ . (8.4)

This is found by identifying δx ≡ δθe0 and δy ≡ δθMch
,

equating the coefficients of Eqs. (8.1) and (8.2), and solv-
ing for a, b, and θ. The rotation angle of the ellipse is

θ = −1

2
arctan

(
2ΓMche0

ΓMchMch
− Γe0e0

)
. (8.5)

From the form of Eq. (4.11) and assuming a 0PN model
for Ψ as in Eq. (3.2d), we can see that the Fisher matrix
elements will have the form:

ΓMchMch
= α

ρ2

M2
ch

1

(πMchfc)10/3

[
1−O(e2

0)
]
, (8.6a)

13 This is easily derived from the standard Cartesian form of an
ellipse at the origin by applying a counter-clockwise rotation fol-
lowed by a translation of the ellipse.

Γe0e0 = βρ2 1

(πMchfc)10/3
e2

0

(
f0

fc

)38/9

, and (8.6b)

ΓMche0 = γ
ρ2

Mch

1

(πMchfc)10/3
e0

(
f0

fc

)19/9 [
1−O(e2

0)
]
,

(8.6c)

where (α, β, γ) are positive dimensionless constants that,
along with fc, serve as placeholders for the numerical
integration in Eq. (4.11). For the cases of interest here,
ΓMchMch

� ΓMche0 � Γe0e0 .
In the limit of small e0, θ can be simplified to

θ ≈ − ΓMche0

ΓMchMch

≈ −γ
α
Mche0

(
f0

fc

)19/9

∼ −e0Mch .

(8.7)
This shows that the semimajor axis of the error ellipse in
the e0-Mch plane will be nearly horizontal for negligible
e0, but will slope downward as e0 increases (θ < 0 for
e0 > 0, corresponding to a clockwise rotation of the el-
lipse in the plane). We confirm this analytic expectation
by directly computing the error ellipses via Eq. (8.1), us-
ing the same parameters and Fisher matrix code used
in Sec. VII (e.g., a 5-D Fisher matrix using 3PN or-
der non-spinning waveforms, and replacing Mch with the
detector-frame chirp mass).

The result is shown in Fig. 9, where the blue error
contours show the expected behavior described by our
analytical analysis and qualitatively match the behavior
of Fig. 8. More properly, we also compute the marginal-
ized error ellipse, which is shown via the green contours
in Fig. 9. These are computed by constructing a new
2D Fisher matrix Γ̃jk by removing the θa = (tc, φc, η)
row and columns from the 5D covariance matrix ΣAB ,
and then inverting the resulting 2× 2 matrix [139, 140].
The marginalized error ellipse is then constructed via
ΓAB → Γ̃jk in Eq. (8.1). These marginalized error el-
lipses (green curves in Fig. 9) more appropriately match
the MCMC contours in Fig. 8.

IX. CONCLUSIONS

Our goal was to explore the capability of a LIGO-type
detector to constrain eccentricity for a range of inspi-
ralling compact binary systems. We made use of a com-
bination of Fisher matrix and Bayesian inference tech-
niques, generally finding good agreement between the two
approaches. Unlike many prior studies, we include spin
interactions when applying the Fisher matrix formalism,
but we work in the small-eccentricity limit. The latter
is astrophysically realistic as large binary eccentricity is
very rapidly reduced. Even if binaries with eccentricities
as small as ∼ 0.01 are detected, this implies very large
eccentricities (∼ 0.99) only ∼ 102 to 104 years before
detection.

In practice, eccentricity as small as ≈ 0.01 will be
quite difficult to detect with LIGO (except perhaps for bi-
nary neutron star systems). Eccentricities e0 & 0.02–0.2
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FIG. 8. Posterior probability contours in the e0-Mdet
ch plane computed via LALInferenceMCMC. Each panel shows a different

value of the injected initial eccentricity, einj
0 = [0.04, 0.12, 0.2] from left to right, for the same value of injected chirp mass

Mdet
ch,inj = 9.746M�. The three contours represent 67%, 90%, and 95% confidence intervals, and the star indicates the injected

parameter values. As einj
0 increases, we see that the error ellipse tightens across its narrow dimension near the injected value

and rotates slightly. The ellipse angle is due to the correlation between the two parameters, and roughly follows the behavior
shown in a Fisher matrix analysis (see discussion in Sec. VIII and Figs. 3 and 9). The increasing correlation-induced rotation
of the error ellipse seen here, combined with the prior on e0, is ultimately responsible for the growing bias in the chirp mass
seen in the bottom row of Fig. 2. One clearly sees here that the projection of the probability density on the Mdet

ch -axis skews
the PDF of Mdet

ch to values > Mdet
ch,inj, illustrating the behavior seen in the bottom-right panel of Fig. 2.

FIG. 9. Error ellipses in the e0-Mdet
ch plane computed via the Fisher matrix approach. The contours show confidence regions

representing n = 1, 2, and 3 standard deviations. The blue contours are computed via a 2D slice through the 5D error ellipsoid.
The green contours are the 2D confidence regions after marginalizing over the parameters tc, φc, and η. The y-axis is in units
of M�. The red dot indicates the true parameter values: Mdet

ch,inj = 9.746M� and einj
0 = 0.04, 0.12, 0.2 from left to right,

analogous to Fig. 8.
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are more likely to be constrained, provided that LIGO
reaches its design sensitivity at 10 Hz (see, e.g., Fig. 1).

Both binary neutron stars and neutron-star/black hole
systems are promising candidates for constraining eccen-
tricity, due to the large number of GW cycles that such
systems have in the detector’s frequency band. Consid-
ering GW151226 as a prototypical example of the binary
black hole systems with several inspiral cycles seen by
LIGO/Virgo, our Fisher and MCMC analyses indicate
that a source with e0 & 0.1–0.2 is needed to place a
modest constraint on e0. This is consistent with limits
on the eccentricity of GW151226 placed in recent works
[77, 82].

As most GW signal templates do not include eccen-
tricity, we also studied the resulting systematic bias on
the other intrinsic parameters when eccentricity is ne-
glected. This bias becomes significant when e0 & 0.01
to 0.1. Binary black holes with parameters and SNRs
similar to GW150914 and GW151226 are unlikely to be
biased by eccentricity unless e0 & 0.1 to 0.2. Systematic
bias was studied via the Fisher-Cutler-Vallisneri formal-
ism and the LALInference MCMC approach, which agree
well with each other. The inclusion of eccentric waveform
effects is important to reduce systematic bias in detected
GW events.

Separate from the systematic error bias, we also dis-
covered an intrinsic bias in the recovery of the chirp mass
parameter which grows with increasing eccentricity. This
was ultimately explained by introducing the eccentric
chirp mass, which acts as an effective mass parameter in
the waveforms for low-eccentricity binaries. Because the
eccentric chirp mass is the best measured mass parame-
ter, this introduces a degeneracy between the eccentricity
parameter e0 and the standard chirp mass Mch. This de-
generacy is manifested as a tilted error ellipsoid in the
e0-Mch plane, with the tilt angle proportional to e0.

Combined with information on the component spins,
measurements of binary eccentricity from GW observa-
tions can inform us about the formation pathways of com-
pact object binaries. It will be interesting to investigate
the possibility of non-zero eccentricity in GW events from
the third and fourth observing runs of LIGO/Virgo. As
demonstrated here, improvements in the detector sen-
sitivity at low frequencies (≈ 10–30 Hz) is essential to
increasing the odds of measuring or constraining binary
eccentricity.
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Appendix A: Evolution equations for binary
eccentricity

In this Appendix we briefly discuss the evolution equa-
tions for binary eccentricity used to generate the data in
Table I. When we treat the compact objects as point
particles and ignore their spins, then the shape of the or-
bital ellipse (averaged over an orbital timescale) can be
described via two parameters: a time-averaged eccentric-
ity parameter (here chosen to be the time-eccentricity et)
and a second “orbital size” parameter (which we will de-

note here as R̃). A number of possible choices for R̃
are possible, including the semi-major axes of the in-
stantaneous ellipse, the semi-minor axis, the periastron
distance, the apastron distance, or any of a number of
variables relating to the orbital frequency or speed. For
whatever choice is convenient, it is well-known that the
time evolution of the parameters (et, R̃) are governed by a
coupled set of ordinary differential equations of the form:

det
dt

= F (et, R̃) , (A1a)

dR̃

dt
= G(et, R̃) , (A1b)

where F and G denote particular functions of the dy-
namical variables that are computable to 3PN order and
depend on the system masses. Explicit solutions of time
[et(t), R̃(t)] require a numerical solution of these ODEs.

However, for some choices of R̃, an analytic solution of
the form R̃ = H[et; R̃i, ei] is possible (where H is an un-

specified function and R̃i, ei are values of the dynamical
variables at a particular reference time ti.

For simplicity, we evolve versions of Eq. (A1) at lead-

ing post-Newtonian order (0PN order) choosing R̃ to be
the Newtonian periastron separation rp. Making use of
Eqs. (2.20), (2.26), (2.29), (2.39), and (2.40) in [48], we
numerically integrate the system

det
dt

= − η

15M

(
M

rp

)4
et(1− e2

t )
3/2

(1 + et)4

(
304 + 121e2

t

)
,

(A2a)

drp
dt

= − η

15

(
M

rp

)3
(1− et)3/2

(1 + et)7/2

×
(
192− 112et + 168e2

t + 47e3
t

)
, (A2b)
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where M = m1 +m2, η = m1m2/M
2, and Kepler’s third

law provides a relationship between rp and the GW fre-
quency fgw (denoted by f in the main text),

rp
M

=
(1− et)

(πMfgw)2/3
. (A3)

Given initial conditions et(0) = e0, fgw(0) = 10 Hz, and
switching the sign of the time variable (t → −t) to eas-
ily allow for a “backward” in time integration, the above
equations can be numerically solved. Combined with a
root-solving procedure, the time ∆T to reach a speci-
fied value of eccentricity [e.g., et(∆T ) = 0.999] is then
computed to generate the values in Table I.

Appendix B: Cosmological effects

When considering sources at significant distances, we
need to incorporate cosmological effects. This proce-
dure is well-known, but often not made explicit. Here
we provide a brief explanation for clarity and pedagogi-
cal purposes. Consider a general GW signal that is ob-
served outside (but near to) the wave zone of the source:
hsrc(tsrc) ≡ H(tsrc)/D. Here tsrc is the time measured in
a frame co-moving with the source and H is the signal
with the distance D factored out. This distance is nat-
urally the proper distance between the source and the
nearby “local” observer [141]. In terms of the Friedman-
Robertson-Walker (FRW) metric, if the source and local
observer are assigned co-moving radial coordinates r1 and
r2 respectively, then they are separated by a proper dis-
tance D ≈ a(tsrc)r, where r = r2 − r1, and a(t) is the
scale factor entering the FRW metric. (This assumes we
are near the source such that the spatial curvature and
expansion of the universe are negligible.) Far from the
source, the scale factor is related to the redshift z via
a(tsrc)/a(tobs) = 1/(1 + z); the times tsrc and tobs are
related via dtsrc = dtobs/(1 + z); and the frequencies in
the two frames are related via fsrc = (1 + z)fobs. In a
flat universe the GW signal observed at Earth is then
hobs(tobs) = H(tobs)/[a(tobs)r], where r is constant and
a(tobs)r refers to the much larger distance to the Earth-
based observer. (See Ch. 4.1.4 of [141] for a full justifi-
cation.) It is conventional to replace the proper distance
between the source and distant observer a(tobs)r with the
luminosity distance dL = (1 + z)a(tobs)r. [The luminos-
ity distance is the quantity that naturally arises in the
relationship between observed flux F and luminosity at
the source L, F = L/(4πd2

L).] Ignoring the irrelevant
constant time shift between tsrc and tobs, the observed
waveform is thus related to the source-frame waveform
via

hobs(tobs) = (1 + z)
H[tsrc → tobs/(1 + z)]

dL
,

= hsrc

[
tsrc →

tobs

(1 + z)
, D → dL

(1 + z)

]
. (B1)

To compute the FT of the signal [Eq. (2.2)] in the
distant observer’s frame and relate it to the FT in the
source frame, we substitute the above relation between
the two time coordinates:

h̃obs(fobs) =

∫ +∞

−∞
hobs(tobs)e

2πifobstobsdtobs ,

= (1 + z)

∫ +∞

−∞
hsrc(tsrc)e2πifsrctsrcdtsrc ,

= (1 + z)h̃src(fsrc) ,

= (1 + z)h̃src [fsrc → (1 + z)fobs] , (B2)

where in the second line we have ignored an arbitrary
phase offset of the form e2πifobs(1+z)C for constant C that
arises from the relation between tobs and tsrc; this can be
absorbed into the coalescence time tc. In the last line we
must again replace D → dL/(1 + z) to express our result
in terms of the luminosity distance.

Taking the above transformations into account and set-
ting henceforth f ≡ fobs (i.e., dropping the “obs” and
“src” labels), our waveform in the observer frame be-
comes

h̃(f) = AzeiΨ(f) = Âzf−7/6eiΨ(f) , where (B3)

Az = −M
√

5π

96
(1 + z)5/6

(
M

dL

)
√
η(πMf)−7/6

×
[
(1 + C2)2F 2

+ + 4C2F 2
×
]1/2

, (B4)

Âz ≡ Azf7/6, and Ψ(f) above is given by replacing the
frequency in Eq. (2.4) via Ψ[f → (1 + z)f ] . In all
equations used here, masses refer to their source-frame
values. The above scheme for incorporating cosmolog-
ical redshifts is equivalent to starting from Eq. (2.3)
but replacing D → dL and M → Mobs = (1 + z)M ,
with M referring to the “source frame” total mass
and Mobs the “detector-frame” or “observer-frame” total
mass. In our calculations we make use of the luminosity-
distance/redshift relation for a flat universe [142],

dL(z) =
c

H0
(1 + z)

∫ z

0

dz′√
ΩM (1 + z′)3 + ΩΛ

, (B5)

where H0 = 100h (km/s)/Mpc. We use the cosmological
parameters given in Table 4, column 3 of [143]: h =
0.6790, ΩM = 0.3065, and ΩΛ = 0.6935. Throughout this
work we make use of the unit conversions in Eqs. (7.3) –
(7.6) and footnote 21 of [22], as well as the relationship
between Mpc and seconds:14

1 Mpc = 1.029271250× 1014 sec . (B6)

14 This follows from the definitions of the parsec (1pc ≡
648000/πAU) and the AU (1AU ≡ 149 597 870 700 m) [144, 145].
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Appendix C: Equations for the ISCO, final mass,
and final spin

In this Appendix we specify the formulas needed to
construct the redshifted ISCO (inner-most stable circu-
lar orbit) frequency in Eq. (2.23), which is used to set
the high-frequency cut-off of our SNR and Fisher-matrix
integrals. That formula depends on the ISCO of a Kerr
black hole with mass and spin parameters determined by
the final BH merger remnant formed following a BBH or
NS/BH collisions (we do not distinguish between these
two types of binaries for the purpose of setting a termi-
nation frequency for our inspiral waveforms).

The dimensionless Kerr ISCO angular frequency
Ω̂isco(χ) for a Kerr BH with mass Mkerr and spin pa-
rameter χ ∈ [−1, 1] is given by [121]:

Ω̂isco(χ) ≡MkerrΩisco =
1

r̂
3/2
isco(χ) + χ

, (C1a)

r̂isco(χ) ≡ risco

Mkerr
(C1b)

= 3 + Z2 −
χ

|χ|
√

(3− Z1)(3 + Z1 + 2Z2) , (C1c)

Z2 =
√

3χ2 + Z2
1 , (C1d)

Z1 = 1 + (1− χ2)1/3
[
(1 + χ)1/3 + (1− χ)1/3

]
. (C1e)

The final BH mass Mf appearing in Eq. (2.23) is given
by Eqs. (3.7) and (3.8) of [146] in terms of the radiated
GW energy Erad:

Mf = M(1− Erad/M) , where (C2a)

Erad

M
= (0.0559745η + 0.580951η2 (C2b)

− 0.960673η3 + 3.35241η4)

×

[
1 + Ŝ(−0.00303023− 2.00661η + 7.70506η2)

1 + Ŝ(−0.67144− 1.47569η + 7.30468η2)

]
,

and Ŝ =
(χ1m

2
1 + χ2m

2
2)/M2

1− 2η
. (C2c)

(Recall that M = m1 +m2 is the sum of the source-frame
component masses.)

The dimensionless spin parameter of the final BH is
given by Eq. (7) of [147]:

χf = atot + η
{
L̂isco(aeff)− 2atot[Êisco(aeff)− 1]

}
+(k00 +k01aeff +k02a

2
eff)η2 +(k10 +k11aeff +k12a

2
eff)η3,

where the dimensionless orbital energy and angular mo-
mentum are

Êisco(χ) =

√
1− 2

3r̂isco(χ)
, (C3a)

L̂isco(χ) =
2

3
√

3

[
1 + 2

√
3r̂isco(χ)− 2

]
, (C3b)

and where

aeff = atot + ξη(χ1 + χ2) , (C4a)

atot =
χ1 + χ2(m2/m1)2

(1 +m2/m1)2
, with (C4b)

k01 = −1.2019 , k02 = −1.20764 , k10 = 3.79245 ,

k11 = 1.18385 , k12 = 4.90494 , ξ = 0.41616 ,

k00 = −3.821158961 . (C5)

Here k00 follows from the constraint in Eq. (11) of
[147]. Throughout our calculations we also make use of
the following relationship between the mass parameters
(m1,m2) and (M,η):

m1 =
M

2

(
1 +

√
1− 4η

)
, (C6a)

m2 =
M

2

(
1−

√
1− 4η

)
. (C6b)

Appendix D: Additional Fisher matrix statistical
errors and parameter correlations

This Appendix shows additional Fisher-matrix results
not presented in the main text. In the left panel of Fig. 1
of the main text, we considered the statistical error in
the eccentricity as a function of eccentricity for a variety
of “fiducial” compact binary systems. Figure 10 here
shows similar results for the other intrinsic parameters
of those systems, (M,η, χ1, χ2), again as a function of
e0. The parameters M and η are measured with very
good precision (∼ 1% to 8%). The spin parameters are
measured with poor precision, except for the BH spin χ1

in the NS/BH system (σχ1
∼ 0.06). We also see that

the statistical parameter errors on these four parameters
are nearly constant with e0. However, there is a small
variation in the parameter errors with e0 which is more
prominent for systems with more unequal mass ratios.

Figure 11 shows the correlations of these same param-
eters (M,η, χ1, χ2) with the eccentricity e0. Specifically,
we plot the ce0θA coefficients of the correlation matrix
[Eq. (4.7)] as a function of e0. We see that |ce0θA | . 0.5
in almost all cases. Only for ce0M and ce0η for e0 & 0.1 in
the NS/NS binary does the coefficient significantly exceed
0.5; however, note that higher-order in e0 corrections to
the TaylorF2Ecc waveform may become important for
BNS systems with e0 & 0.1. Correlations between e0 and
the spin parameters χ1,2 are generally weaker than those
between e0 and the mass parameters, with the largest
values |ce0χ1,2 | . 0.4 for the NS/BH system.
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FIG. 10. One-sigma parameter estimation errors for the binary total mass M , reduced mass ratio η, and dimensionless spin
parameters χ1,2 for the same systems shown in the left panel of Figure 1. The parameter errors are nearly independent of
eccentricity, except for the secondary’s spin parameter χ2 in unequal mass systems.
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