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Deep inelastic scattering (DIS) samples a part of the wave function of a hadron in the vicinity of
the light cone. Lipatov constructed a spin chain which describes the amplitude of DIS in leading
logarithmic approximation (LLA). Kharzeev and Levin proposed the entanglement entropy as an
observable in DIS [Phys. Rev. D 95, 114008 (2017)], and suggested a relation between the entan-
glement entropy and parton distributions. Here we represent the DIS process as a local quench in
the Lipatov’s spin chain, and study the time evolution of the produced entanglement entropy. We
show that the resulting entanglement entropy depends on time logarithmically, S(t) = 1/3 ln (t/τ )
with τ = 1/m for 1/m ≤ t ≤ (mx)−1, where m is the proton mass and x is the Bjorken x. The
central charge c of Lipatov’s spin chain is determined here to be c = 1; using the proposed relation
between the entanglement entropy and parton distributions, this corresponds to the gluon structure
function growing at small x as xG(x) ∼ 1/x1/3.

I. INTRODUCTION

Fifty years ago, Balitsky, Fadin, Kuraev and Lipa-
tov (BFKL) set out a study of the high-energy behav-
ior of hadron scattering amplitude within perturbative
QCD. They identified the terms (αs ln s)

n (where s is
the squared centre-of-mass energy and αs is the strong
coupling) resulting from the gluon ladders exchanged be-
tween the colliding hadrons. Since at high energies ln s
is large, even at weak coupling it was necessary to resum
the entire series of these leading logarithmic terms. The
result was that the total cross section grows as sαBFKL−1,
where αBFKL > 1 is the intercept of the resulting “BFKL
Pomeron” [1–4].
The growth of the cross section, and the corresponding

increase of the gluon structure function at low Bjorken
x, has been observed in deep inelastic scattering (DIS)
at HERA [5–8], which excited interest in the studies of
BFKL dynamics. In a ground-breaking paper [9], Lev
Lipatov discovered that in the leading logarithmic ap-
proximation (LLA), DIS can be effectively described by
the XXX spin chain with zero spin.
At high energy, the scattering amplitudes in QCD are

described by the exchange of gluons between the virtual
quark-antiquark pair (resulting from the splitting of the
virtual photon) and the hadron. The gluons are dressed
by virtual gluon loops, which leads to their ”reggeiza-
tion”. See Fig. 1. In the limit of large number of col-
ors Nc (with fixed g2Nc, where g is the QCD coupling),
the Hamiltonian describing the interactions of reggeized
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gluons reduces to the sum of terms describing the near-
neighbor interactions, as a Hamiltonian of a spin chain.

γ∗ γ∗

FIG. 1. Feynman diagram describing DIS at small Bjorken
x. The virtual photon γ∗ emitted by the scattered lepton
(not shown) splits into a virtual quark-antiquark pair. The
reggeized gluons are exchanged between the virtual quark-
antiquark pair and the hadron.

The chain was mapped to the spin (−1) [10] and to lat-
tice nonlinear Schrödinger model [11]. Here we will use
nonlinear Schrödinger (NLS) equation [12–15] to describe
the entanglement entropy evolution in DIS. In our treat-
ment, we will rely on the conformal field theory (CFT)
description of quantum lattice NLS.
Ideas of information theory find new applications in

physics. In particular, the quantum information ap-
proach to high energy interactions was extended in a
recent paper [16], where it was argued that the phases
of light cone wave functions cannot be measured in high
energy collisions – therefore, the corresponding density
matrix has to be averaged over the phase, with the cor-
responding Haar measure. This leads to the emergence
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of entanglement entropy describing the corresponding
“Haar scrambled” mixed states. The structure func-
tions measured in DIS can be interpreted in terms of
this entanglement entropy [17, 18]. To develop this de-
scription further and to describe the real-time evolution
of the entanglement entropy in DIS, one needs to iden-
tify the physical excitations of the effective high energy
QCD Hamiltonian. This can be conveniently done in the
spin chain case, with the help of CFT description [19–21].
This motivates our study of entanglement entropy evolu-
tion in a local quench describing the DIS in the XXX spin
chain with negative spin (which is equivalent to NLS).
The algebraic Bethe ansatz (quantum inverse scatter-

ing method) [15, 22] can be used for construction of the
eigenfunctions of NLS. Here we will apply this method to
the XXX spin chain with spins s = 0 and −1 describing
high energy QCD in the LLA. Then we will explain the
relation between XXX spin chain with negative spin to
quantum NLS model.
The paper is organized as follows. In Sec. II, we

present the construction of eigenstates of Lipatov’s spin
chain by means of the algebraic Bethe ansatz. In Sec. III,
we will map the Lipatov’s spin chain to quantum lattice
NLS model and study the thermodynamic limit of the
system. In Sec. IV, we discuss the entanglement entropy
evolution of Lipatov’s spin chain after the local quench,
and the corresponding evolution of the local operator en-
tanglement. Sec. V is the conclusion. Appendix provides
an intuitive derivation of entanglement dynamics based
on CFT.

II. THE LIPATOV’S SPIN CHAIN

The holomorphic multicolor QCD Hamiltonian [9, 10]
describes the nearest neighbor interactions of L particles
(reggeized gluons):

HL =

L
∑

k=1

Hk,k+1, (1)

with periodic boundary conditions HL,L+1 = HL,1. The
local Hamiltonians are given by the equivalent represen-
tations

Hj,k = P−1
j ln(zjk)Pj + P−1

k ln(zjk)Pk + ln(PjPk) + 2γE

= 2 ln(zjk) + (zjk) ln(PjPk)(zjk)
−1 + 2γE , (2)

where Pj = i∂/∂zj = i∂j , zjk = zj − zk, and γE is the
Euler constant. We have to put j = k+1 and substitute
into (1).
Lipatov used a holomorphic representation of SU(2)

S+
k = z2k∂k − 2szk, S−

k = −∂k, Sz
k = zk∂k − s,

(3)
with k = 1, · · · , L. He then mapped DIS to a particular
type of spin chain. The definition of this chain is based

on the existence of a fundamental matrix R
(s,s)
jk (λ) which

obeys the Yang-Baxter equation

R
(s,s)
jk (λ) = f(s, λ)

Γ(iλ− 2s)Γ(iλ+ 2s+ 1)

Γ(iλ− Jjk)Γ(iλ+ Jjk + 1)
. (4)

Here f(s, λ) is a complex valued function (it normal-
izes the R matrix), and λ is called the spectral parame-
ter. The superscript (s, s) means that both the auxiliary
space and the quantum space have spin s. The operator
Jjk is defined in the space V ⊗ V as a solution of the
operator equation,

Jjk(Jjk + 1) = 2~Sj ⊗ ~Sk + 2s(s+ 1). (5)

Everything commutes in this equation, so one can use
Vieta’s formula to solve this quadratic equation. The
Hamiltonian of the XXX model with spin s = 0 describes
interaction of nearest neighbors, see (1), which can be
written as

Hjk =
−1

i

d

dλ
lnR

(s=0)
jk (λ)

∣

∣

∣

∣

λ=0

, (6)

Hjk =ψ(−Jjk) + ψ(Jjk + 1)− 2ψ(1). (7)

For simplicity, we apply the notation Hjk = Hj,k. Here
ψ(x) = d ln Γ(x)/dx, and ψ(1) = −γE (γE is the Euler
constant). The operator Jjk is a solution of (5) when
s = 0,

Jjk(Jjk + 1) = −(zj − zk)
2∂j∂k, (8)

where we have to put j = k + 1 to use in (6). This is a
description of DIS in QCD by s = 0 spin chain.
After a similarity transformation, the spin s = 0 model

can be mapped to s = −1 model. The latter can be
easily solved by algebraic Bethe ansatz method. Thus the
high-energy asymptotics in multi-color QCD is exactly
solvable, and it has the same eigenvalues with that of
XXX spin s = −1 chain.
After finding the family of local integrals of motion and

taking the XXX model of spin s = −1 into consideration,
we can then apply the algebraic Bethe ansatz [23], in a
standard procedure.
We define the auxiliary monodromy matrix by taking

the ordered product of the fundamental Lax operators

L
(s,s)
f,k (λ) = R

(s,s)
f,k (λ) [15, 23] along the lattice (with both

its auxiliary space and quantum space being spin s)

Tf (λ) = L
(s,s)
f,L (λ)L

(s,s)
f,L−1(λ) . . . L

(s,s)
f,1 (λ). (9)

The fundamental transfer matrix is the trace of the mon-
odromy matrix over the auxiliary space,

τ(λ) = trf Tf(λ), [τ(λ), τ(µ)] = 0, (10)

i.e. these matrices commute with each other for different
values of the spectral parameter.
On the other hand, if we choose the L operator:

L
( 1

2
,s)

a,k (λ) =

(

λ1k + iSz
k iS−

k

iS+
k λ1k − iSz

k

)

, (11)
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and define the transfer matrix:

t(λ) =tra[L
( 1

2
,s)

a,L (λ) · · ·L( 1

2
,s)

a,1 (λ)]

=tra

(

A(λ) B(λ)
C(λ) D(λ)

)

=A(λ) +D(λ), (12)

we get

[t(λ), t(µ)] = 0, [t(λ), τ(µ)] = 0. (13)

Both of the two transfer matrices τ(λ) and t(λ) act on
the full quantum space of the model and commute with
each other for different values of the spectral parameters.
One can get a family of mutually commuting conserva-
tion laws of the model. The fundamental transfer matrix
τ(λ) contains the local integrals of motion, including the
Hamiltonian of the model. In contrast, the operator t(λ)
allows one to construct their eigenstates by means of the
Bethe ansatz.
The explicit forms of integrals of motions are given by

[23]. In particular, both the Hamiltonian of spin s = −1
and spin s = 0 models can be obtained from the first
order derivative of the transfer matrix τ ,

H
(s=−1)
L =

−1

i

d

dλ
ln τ (s=−1)(λ)

∣

∣

∣

∣

λ=0

, (14)

H
(s=0)
L =

−1

i

d

dλ
ln τ (s=0)(λ)

∣

∣

∣

∣

λ=0

. (15)

Based on the relation between the Lax operators and the
definition in Eq. (12), the one to one correspondence
between the XXX models of spin s = −1 and spin s =
0 can be described by a similarity transformation (each
local Hamiltonian of spin s = 0 will be converted into a
Hamiltonian with 4-nearest neighbor interactions):

H
(s=−1)
L = (z12z23 · · · zL1)

−1H
(s=0)
L z12z23 · · · zL1. (16)

Thus the Hamiltonians of the two models have the same
eigenvalues.
By using the explicit form of the spin operators (3),

one can find that for s = −1 the equations

S+
k |ωk〉 = 0, Sz

k |ωk〉 = −|ωk〉 (17)

have the solution |ωk〉 = 1/z2k. This allows us to con-
struct the pseudovacuum state as

|Ω〉 = (z21z
2
2 . . . z

2
L)

−1. (18)

Then the Bethe states for spin s = −1 are given in terms
of operator B from (12)

|ϕ̂N ({λ})〉 = B(λ1)B(λ2) . . . B(λN )(z21z
2
2 . . . z

2
L)

−1.
(19)

These are the eigenvectors of Lipatov’s spin chain.
The eigenvalue of the transfer matrix τ(λ) as a function
of spectral parameter λ, has the following form

(λ− i)L
Q(λ− i)

Q(λ)
+ (λ + i)L

Q(λ+ i)

Q(λ)
, (20)

with the function Q(λ),

Q(λ) =

N
∏

k=1

(λ− λk). (21)

The corresponding Bethe equation, determining the
parameters (λ1, . . . , λN ), is

(

λk + is

λk − is

)L

=

N
∏

j=1,j 6=k

λk − λj + i

λk − λj − i
, (22)

with k = 1, · · · , N . Substitute s = −1, then we have

(

λk − i

λk + i

)L

=
N
∏

j=1,j 6=k

λk − λj + i

λk − λj − i
. (23)

These are periodic boundary conditions. In order to con-
struct elementary excitations, we have to change to anti-
periodic boundary conditions. We remark that all the
solutions λk of the above Bethe equations are real num-
bers. This means that there is no bound state in this
system.

The explicit expressions for the eigenvalues of integrals
of motions for arbitrary spin s have been found in alge-
braic Bethe ansatz [23] and we use these expressions for
s = −1 to get the eigenvalues of the Hamiltonian

E ≡
N
∑

j=1

−1

i

d

dλj
ln
λj + i

λj − i
=

N
∑

j=1

2

λ2j + 1
, (24)

where {λj} obey the Bethe equations (23) for a fixed
number of reggeized gluons L. Thus, this relation yields
the spectrum of the original holomorphic QCD model
with Hamiltonian HL.

III. QUANTUM LATTICE NONLINEAR

SCHRÖDINGER MODEL

Let us begin with a brief deescription of the quantum
lattice nonlinear Schrödinger (NLS) model. The quan-
tum lattice NLS equation was introduced in [12, 13, 15].
It is equivalent to XXX spin chain with negative spin.
Quantum lattice NLS is a chain of interacting harmonic
oscillators. Let Ψ∗

j and Ψk be the canonical creation and
annihilation operators of the harmonic oscillator:

[Ψj,Ψ
∗
k] = δjk, (25)

and

̺j = (1 +
κ∆

4
Ψ∗

jΨj)
1

2 . (26)
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Here κ > 0 is coupling constant [24] for NLS and ∆ > 0
is a step of the lattice. The operators

Sj
x =

i√
κ∆

(Ψ∗
j̺j + ̺jΨj), (27a)

Sj
y =

1√
κ∆

(̺jΨj − Ψ∗
j̺j), (27b)

Sj
z =

−2

κ∆
(1 +

κ∆

2
Ψ∗

jΨj), (27c)

are the generators of an irreducible representation of
SU(2) algebra with a negative spin

s = − 2

κ∆
. (28)

In general, this SU(2) representation [12, 23] is infinite-
dimensional, but for special (negative) values of ∆ it can
become finite-dimensional.
Let us focus on the correspondence between Bethe

equations of the two models. The Bethe roots λk of the
quantum lattice NLS model satisfy the following Bethe
equations:

(

1 + iλk∆/2

1− iλk∆/2

)L

=

N
∏

j 6=k

λk − λj + iκ

λk − λj − iκ
. (29)

Comparison of the above modified Bethe equations and
the Bethe equations (23) shows the connections between
the two models. When we take coupling constant κ = 1,
and ∆ = 2, the Bethe equations become

(−1)L
(

λk − i

λk + i

)L

=
N
∏

j 6=k

λk − λj + i

λk − λj − i
. (30)

This means that quantum lattice NLS model describes a
more general XXX spin chain model with negative spin
s = −2/κ∆, and holomorphic QCD is the special case
with spin s = −1, ∆ = 2 and coupling constant κ = 1.
Based on the Bethe equations (23) and (30) for holo-

morphic QCD model (XXX with spin s = −1, also quan-
tum lattice NLS model), we have the logarithmic form
Bethe equations. We define each number n (integer or
half-integer) as a vacancy. Among them, some vacancies
corresponding to Bethe roots are called particles. Other
free vacancies are called holes. The number of vacancies
is the sum of the number of particles and holes.
Differentiate the logarithmic Bethe equation with re-

spect to λ, and change the sum (in Bethe equations) to
an integral, one has the linear integral equation for the
number (density) of vacancies ρt(λ),

2πρt(λ) =

∫ +∞

−∞

K(λ, µ)ρp(µ)dµ+K(λ), (31)

with

K(λ, µ) =
2

1 + (λ− µ)2
, K(λ) = K(λ, 0). (32)

Here ρt(λ) is the sum of the numbers of particles ρp(λ)
and holes ρh(λ). Their proofs follow from [11, 15, 25].
All λj are different [15] (Pauli principle in the momen-

tum space). In the thermodynamic limit, the values of
λj condense and form a Fermi sphere. Considering the
grand canonical ensemble Eh = E − h, (h is chemical
potential) for small h → 0+, then all the vacancies in-
side the interval (−∞,−q] ∪ [q,∞) (called particles) are
occupied by all the Bethe roots λj (the density of holes
ρh(λ) = 0). One can get a linear integral equation for
ρp(λ)

2πρp(λ) =

(
∫ −q

−∞

+

∫ ∞

q

)

K(λ, µ)ρp(µ)dµ+K(λ). (33)

We define the dressed energy of elementary excitation
ε(λ) as the solution of the linear integral equation

ε0(λ) ≡
2

λ2 + 1
− h

=ε(λ)− 1

2π

(
∫ −q

−∞

+

∫ ∞

q

)

K(λ, µ)ε(µ)dµ , (34)

with condition

ε(q) = ε(−q) = 0. (35)

In the correspondence between the structure functions
and the entanglement entropy, the small x behavior of the
structure function is determined by the central charge of
the effective CFT describing high energy QCD [17]. It
is thus important for us to evaluate the central charge of
Lipatov’s spin chain.
The calculation of the central charge goes through the

evaluation of finite size corrections. It can be calculated
by means of Bethe ansatz and conformal field theory
(CFT). The comparison gives the central charge. The
finite size correction to the ground state energy in con-
tinuous NLS was evaluated by means of Bethe ansatz in
Chapter 1 Section I.9 of the book [15].
For the current model, one can calculate the finite size

correction to the ground state energy in the same way.
The ground state energy can be written as a summation
with respect to the Bethe roots,

E

L
=

1

L

∑

j

ε0 (λj) . (36)

Using the Euler-Maclaurin formula for approximating
sums by integrals, one finally obtains

E = L

(
∫ −q

−∞

+

∫ ∞

q

)

ε0(λ)ρ(λ)dλ−
π

6L
vF +h.o.c. (37)

Here vF is the Fermi velocity, and h.o.c. means higher
order corrections.
For unitary CFT, the central charge c, is the coefficient

of the 1/L term in the expansion of the ground state
energy for L→ ∞,

E = Lǫ− c
πvF
6L

+ h.o.c. (38)
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See formula (0.1) in the Introduction of Chapter XVIII
of the book [15]. For lattice NLS and more general cases,
these can be obtained by the specification of the equation
(19) of the paper [26] (one has to put M = 1).
Comparison of (37) with CFT (38) shows that the cen-

tral charge of the corresponding Virasoro algebra

is equal to one, c = 1.

IV. TIME DEPENDENCE OF THE

ENTANGLEMENT ENTROPY

A. Entanglement entropy

The entanglement entropy characterizes the lack of
complete information about a subsystem (quantum fluc-
tuation) when the total system is a known pure state.
Suppose that the system is in the pure state, and con-
sists of subsystems A and B; its state can be represented
as

|ΨAB〉 =
∑

j,k

αj,k|ψA,j〉 ⊗ |ψB,k〉, (39)

with the bipartition of Hilbert space HAB = HA ⊗ HB

and |ψA(B)〉 ∈ HA(B). The pure state can be diagonalized
in the subspace, given by

|ΨAB〉 =
∑

j

α̃j |ψA,j〉 ⊗ |ψB,j〉, (40)

known as the Schmidt decomposition [27]. Above decom-
position naturally gives the density matrix of subsystem

ρA(B) = trB(A)ρAB =
∑

j

pj |ψA(B),j〉〈ψA(B),j |, (41)

with pj = |α̃j |2. Therefore the subsystem A and B are
characterized by the same probabilistic distribution pj,
which is the signature of correlation. Then we consider
the entanglement entropy, defined by

SA(B) = −
∑

j

pj ln pj , (42)

which is the ignorance due to the correlation between
subsystems A and B (we choose to use the natural log,
corresponding to measuring information in “nats”). In
the basis-independent manner, the entanglement entropy
has the form

SA = −trρA ln ρA. (43)

Note that SA = SB, which demonstrates the correlation
nature of the entanglement entropy. If the density matrix
ρA is given by the identity matrix, then the von Neumann
entropy reaches the maximal value

SA = ln dA, (44)

with dA as the dimension of Hilbert space HA. Subsys-
tems A and B are maximally entangled if SA = ln dA.
Quantum mutual information directly quantifies the

amount of correlation between A and B, given by

I(A;B) = SA + SB − SAB. (45)

In the case of a pure state, we have I(A;B) = 2SA.
Therefore the von Neumann entropy of a subsystem is
equal to the half of mutual information between the two
subsystems.

B. Evolution of entanglement entropy after

quenches

DIS probes a subregion A which in the rest frame of
the proton is a tube with radius 1/Q and length 1/(mx)
[28], where Q is the momentum transfer; m is the proton
mass; and x is the Bjorken scaling variable. The region
inaccessible to the virtual photon is denoted as B. Since
the proton represents a pure state which is an eigenstate
of QCD Hamiltonian, the DIS probes a part of this state,
and the unmeasured region has to be traced out. Then
the entanglement entropy naturally arises in DIS [17]. If
the entropy is indeed caused by the entanglement, then
the entropy of rest of the nucleon should equal to the
entropy of parton distribution. The data from LHC (in
the proton-proton collision) supports the complementar-
ity relation SA = SB [18, 29, 30].

The (1+1) dimensional systems described by CFT pos-
sess a universal scaling of entanglement entropy in the
subsystem [19, 21, 31]. Suppose that ℓ is the length of
region A (ℓ≪ L). Then its entanglement entropy is

SA =
c

3
ln
ℓ

ǫ
, (46)

with the central charge c and the ultraviolet cutoff ǫ (the
resolution scale). For spin chains, this logarithmic for-
mula was rigorously proven in [32] (Fredholm determi-
nants and Riemann-Hilbert problem were used). There-
fore, the Lipatov’s spin chain with central charge 1 pre-
dicts the logarithmic state entanglement. In an effec-
tive (1+1) dimensional model of QCD evolution [33, 34],
the entanglement entropy is found to be SA = δ ln(1/x)
where the constant δ thus describes the growth of struc-
ture function xG(x) ∼ (1/x)δ at small x.
In the target rest frame, the cutoff ǫ = 1/m is given by

the proton’s Compton wavelength and ℓ = 1/(mx) is the
longitudinal distance probed in DIS. The correspondence
between the central charge of the CFT and the intercept
of the gluon structure function is thus δ = c/3 [17]. The
experimental data indicate δ ≈ 0.3 (see e.g. [35–37]),
which supports the CFT description of the Lipatov’s spin
chain with the central charge c = 1 determined above.
The DIS process can be understood as a local quench

on the ground state of the proton. The quench causes a
local excitation, which propagates in time, and at time
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≃ 1/(mx) saturates. It is likely that entanglement causes
an effective thermalization of the system (thermalization
through entanglement) [38]. Entanglement thermaliza-
tion in the proton-proton scattering has been discussed
in [39]. Here we argue that the evolution of entanglement
in DIS can be described by the local quench of the Lipa-
tov’s spin chain, or the corresponding CFT with central
charge c = 1.

Calabrese and Cardy have studied the entanglement
evolution after a local quench, basing on the CFT method
[40]. The initial state of the evolution corresponds to the
ground states of region A and B separately. Therefore
the translation invariance is broken. There is a defect
on the boundary of A and B (local excitation), and the
entanglement entropy increases logarithmically:

SA(t) =
c

3
ln
t

τ
, (47)

with the characteristic time τ . This formula can also be
derived by comparison of the theory of classical shock
waves with the CFT, see Appendix. The quasi-particle
excitations are emitted only from the defect point, there-
fore the entanglement entropy undergoes a logarithmic
increase. A linear increase would require a global quench
(sudden change of the entire Hamiltonian) [41].
The characteristic time τ is determined by the bound-

ary condition between A and B. It is independent of the
central charge, and is beyond the CFT description. In
the case of DIS, in the target rest frame it is given by
the proton’s Compton wavelength τ = 1/m. The time
evolution of entanglement entropy is thus given by

SA(t) =
c

3
lnmt, (48)

which agrees with the CFT description of Lipatov’s spin
chain. After the critical time tc = 1/(mx), the entangle-
ment saturates, and the region A probed by DIS becomes
maximally entangled with the remaining part of the pro-
ton (which is not probed by the virtual photon).

C. Evolution of operator entanglement entropy

Entanglement evolution after a local quench character-
izes the spreading of entanglement from a local region.
In a complementary Heisenberg picture, the operators
evolve as O(t) = eiHtOe−iHt. Consider the operator
space H′

L = End(HL) with the Hilbert-Schmidt inner

product 〈Oj |Ok〉 = tr(O†
jOk), Oj(k) ∈ End(HL). Similar

to the state entanglement, the space can be divided in
two regions A and B. Then the operator has the Schmidt
decomposition

O
√

〈O|O〉
=

∑

j

√
χjOA,j ⊗OB,j , (49)

with the eigenvalues χj and the orthonormal bases
〈OA(B),j |OA(B),k〉 = δjk. Similar to the state entangle-
ment entropy defined in Eq. (41), the operator space

entanglement entropy (OSEE) is defined as

S(O) = −
∑

j

χj lnχj . (50)

The evolution of OSEE in terms of local operators also
characterizes the entanglement spreading in the system.
OSEE was first introduced in [42]. Then it was rein-
troduced in [43, 44] to study the simulation of quantum
dynamics. It is suggested that the OSEE grows at most
logarithmically in integrable systems, while chaotic sys-
tems have linear increases.
Numerical studies (based on the density matrix renor-

malization group) have shown that the XXX spin chains
with positive spin (s = 1/2 and s = 1) have logarithmic
increase of OSEE (for local operators) [45–47]. However,
the prefactor in front of the logarithm is different from
the state entanglement evolution. In terms of the local
projection O = 1/2− Sz

k , numerical results show that

S(O(t)) ∝ 2

3
ln t, (51)

in the XXX-1/2 spin chain [47]. Note that different local
operators may have different prefactors. We argue that
the Lipatov’s spin chain (XXX spin chain with s = −1)
has a similar logarithmic increase of OSEE. It is con-
sistent with the state entanglement evolution after local
quench, given by Eq. (47). Besides, a logarithmic in-
crease is a general feature of integrable systems. How-
ever, the evolution of OSEE for local operators can not
be described by CFT in general [48].
Another interesting observation is the OSEE evolution

in the quantum cellular automaton. Cellular automa-
ton has both discrete space and time. Quantum cellular
automaton has the unitary evolution, and is a natural
language for quantum computation. Different rules of
cellular automaton have different names. OESS for local
operator also grows logarithmically (same as the XXZ-
1/2 spin chain) in the quantum cellular automaton rule
54 [46, 47]. Such sublinear increase of entanglement en-
tropy suggests its efficient simulation on quantum com-
puters [49]. Logarithmic increase of OSEE in Lipatov’s
spin chain suggests that DIS can be efficiently simulated
on quantum computers. We leave these simulations for
the future.

V. CONCLUSIONS

In high energy QCD, the scattering amplitude of DIS
in the LLA has been described by Lipatov in terms of
an integrable spin chain model. We mapped this model
to the quantum lattice NLS model. We then derived the
eigenfunctions by means of the algebraic Bethe ansatz.
After evaluation of finite size corrections, we have con-
cluded that the Virasoro algebra (describing an effective
CFT) has the central charge equal to one, c = 1. Basing



7

on the CFT description, we found that the time evolution
of entanglement entropy after local quench is logarithmic

SA(t) =
1

3
ln
t

τ
, (52)

with τ = 1/m for 1/m ≤ t ≤ (mx)−1, wherem is the pro-
ton mass and x is the Bjorken x. The integrable system
also has the logarithmic evolution of OSEE. This sug-
gests that the DIS process can be efficiently simulated
on quantum computers.
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Appendix A: CFT description of entanglement

entropy dynamics

Let us consider the entropy of a block of spins (an inter-
val of an infinite system). At positive temperature, ther-
mal fluctuations dominate. A theory of classical shock
waves shows that after local quench the entropy is a lin-
ear function of time:

S(t) = 2πc

3
T t, (A.1)

where T is the temperature. The coefficient can be found
in [20], see for example their formula (80). The shock
wave changes the density of the entropy.

Now let us consider entanglement entropy at zero tem-
perature, which is quantum. The entropy is some func-
tion f of time,

S(t) = f(t). (A.2)

Conformal mapping shows that for positive T > 0

ST (t) = f

(

v

πT
sinh

πT

v
(x+ vt)

)

, (A.3)

where v is velocity. We can put x = 0 and consider
the limit of large time. The result for the entanglement
entropy at time t is

ST (t) = f (exp[πT (t− t0)]) , (A.4)
where t0 is an inessential constant. Now we have two
expressions for the entropy for positive temperature

ST (t) =
2πc

3
T t = f (exp[πT (t− t0)]) . (A.5)

This means that we have found the function, and it is
given by:

f(t) =
2c

3
ln t+ constant. (A.6)

Each end of the block contributes equally, so for the local
quench we get

S(t) = c

3
ln t+ constant. (A.7)

It agrees with the entanglement entropy evolution after
local quench (with one point of defect) calculated in [40].
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