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Abstract

A sensitive test for whether a black hole is a wormhole, using astronomical observations, would

be to look for perturbations in the orbit of a pulsar around the black hole, caused by a perturbing

object on the other side of the wormhole. By observing a pulsar in an orbit like that of S2 around

the supermassive black hole at Sgr A* at the center of our Galaxy, the attainable mass limit on

the perturber would be ∼ 104 times better than derived from current observations of S2. For a

nominal stellar-mass black hole-pulsar binary, observing for 1 year could set a mass limit on a

perturber more than 6 orders of magnitude better than for a pulsar orbiting Sgr A*. Observations

of a star in a stellar-mass binary containing a black hole could set limits similar to the case of a

pulsar orbiting Sgr A*.
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Introduction: Might some black holes be wormholes? Black holes resulting from stellar

evolution are not expected to be wormholes [1]. However, it has been argued that super-

massive black holes may have a primordial formation history [2]. Furthermore, even some

stellar mass black holes in binary systems may be primordial [3]. It has been argued that

primordial wormhole formation is possible and may be linked to primordial black hole for-

mation [4]. Recently it has even been claimed that a ninth planet (aside from Pluto) in the

solar system might be primordial in nature [5].

Can observations be used to test if specific black holes are wormholes? We explore a

proposal, first discussed by [6], to look for the effect on the orbit of a object on our side of

the wormhole due to a perturbing object orbiting on the other side of the wormhole (for other

methods see e.g., [7–17]). Can we reasonably expect perturbers to orbit on the other side

of a wormhole? It is well known that most stars are members of binaries or triple systems,

etc. Thus, it is more likely that a stellar-mass black hole is a member of a multi-component

system; an orbiting perturber on the other side of the wormhole is a reasonable scenario.

We will consider potential observations of black hole-pulsar binary systems, which can

provide sensitive searches for a wormhole. Importantly, the existence of black hole-neutron

star (BH-NS) systems has been confirmed by LIGO [18, 19]. Furthermore, a population of

black hole-neutron star binaries is suggested to be present near the galactic center [20].

The fascinating study of wormholes goes back to Einstein and Rosen (ER) in 1935 [21].

This work was then explored in the 1950s and 1960s by John Wheeler [22] and collabora-

tors who have emphasized the importance of wormholes (and topology change) in quantum

gravity [23]. In the 1980s Baum [24], Hawking [25] and Coleman [26] focused on the role of

topology change in Euclidean quantum gravity (see [27] for a review), and they speculated

that this process is crucial for the possible fix of fundamental constants in nature, and in

particular, the cosmological constant (see also [28]). In a different research direction, but

around the same time, Kip Thorne and collaborators realized that it was possible to con-

struct “traversable” wormhole solutions [29, 30]. (For an illuminating review of this work

consult [31].) More recently there has been a lot of activity on the subject of wormholes and

quantum entanglement since the ER=EPR proposal [32] (see also, [33], [34]).

Where could such wormhole candidates come from? One obvious source is the quantum

gravity phase of the very early universe. Even though such configurations would be exponen-

tially suppressed, inflation might make them macroscopic and thus potentially observable.
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Their number has to be very small, so that observed structure formation is not affected.

Thus, observing such remnant wormholes would be very challenging, but in principle feasi-

ble, as explained in this letter.

Observable effects of a wormhole: It is a fascinating possibility that such a wormhole

solution can be actually observed. One approach has been recently addressed in [6], and

here we just summarize the main result. Consider a simple wormhole model which can

be studied analytically. A standard Schwarzschild space-time metric with the gravitational

radius rg = 2GM/c2 is given as

ds2 = −(1 −
rg
r
)dt2 +

dr2

1− rg
r

+ r2dΩ. (1)

We cut this space-time at the radius R which is slightly bigger than the gravitational radius,

i.e., R ≥ rg. We take another identical space-time and paste them together. Our global

construct is thus two copies of the Schwarzschild space-time connected through a mouth of

radius R. This setup represents a short throat wormhole, which is traversable since R ≥ rg.

Some exotic matter with negative energy density is needed to keep the wormhole open,

however, in the short throat approximation that we use, we assume that the effects of this

exotic matter are subdominant. This assumption can further be supported by noticing that

an arbitrarily small amount of negative energy might be sufficient to stabilize the wormhole,

as argued in [35].

We consider a situation in which the object we observe is located in our space, while a

perturber, i.e., an object orbiting on the other side of the wormhole, has an elliptical orbit

with the periapsis radius r′p and apoapsis radius r′a. All parameters referring to the perturber

on the other side of the wormhole will be primed; all parameters referring to the perturbed

object on our side (and thus directly observable) will be unprimed. The magnitude of the

acceleration variation of the object in our space is

∆a = GM ′R

(

1

r′p
−

1

r′a

)

1

r2
, (2)

where r is the radial coordinate in our space, and M ′ is the mass of the perturber. If the

orbit of an object on the other side of the wormhole’s is elongated so that r′a ≫ r′p, then we

can approximate the magnitude as

∆a ≈ GM ′
R

r′p

1

r2
. (3)
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Note that what we calculate in Eq. (3) is the magnitude of acceleration variation of an

object in our space due to an elliptical orbit of a perturber on the other side perturbing

the metric. These variations come on top of the constant acceleration that comes from the

central object. With good enough precision, we should be able to detect or exclude this

variable anomalous acceleration. Other variations could be produced by some other dim

sources on our side. Then, more careful modeling would be required to distinguish between

different options.

It is important to note that our wormhole has Schwarzschild geometry outside of the

mouth, while the horizon is not present at all, since we cut the Schwarzschild geometry

at R > rg. Thus, such wormholes can be harbored both by black hole candidates (either

stellar-mass of supermassive) and/or other compact objects less massive than black holes.

In particular, a neutron star candidate might as well be a wormhole, as long as we do not

see its surface.

Searching for wormholes: Dai and Stojkovic [6] considered observations of the star S2

in orbit around the supermassive BH at the center of our Galaxy, at Sgr A*, to produce

tentative limits on a perturber, if the BH is a wormhole.

The most direct way to observe the effect of the anomalous acceleration shown in Eq. (3)

is to look for deviations of the object’s orbit from the expected, unperturbed Keplerian

or general relativistic (GR) result. The observable most directly connected to the physical

argument is a additional, periodic variation in the orbital velocity, i.e., the Doppler velocity of

the object on our side. Our goal in the subsequent calculations is not to precisely determine

the limits on the perturber that one can obtain, but to produce roughly approximate limits

indicative of how one can do much best by observing a pulsar in the cases we consider. And,

therefore, we will use simplifying assumptions that ignore geometric factors of order unity

and other similar choices.

To estimate the change in the orbital velocity caused by ∆a given in Eq. (3) we assume,

for simplicity, that the additional acceleration occurs once every orbital period T ′ of the

perturber (i.e., when it is near its periapsis). We will consider systems where the duration of

the additional acceleration ∆a (i.e., the time the perturber is near its periapsis) is t′p ≪ T ,

where T is the orbital period of the perturbed star on our side of the wormhole, so we treat

the effect of the perturber on the object we observe as impulsive. We also have t′p ≪ T ′, of

course. We estimate the magnitude of the change in the observed object’s velocity caused
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by one such impulse, as

δv ∼ ∆a t′p ∼ GM ′
rg
r′p

1

r2
t′p. (4)

To estimate t′p we note T ′ = t′p + t′a ∼ t′a where t′a is the time the perturber spends away

from periapsis (i.e., mostly at apoapsis for r′a ≫ r′p). So, where v′p and v′a are the periapsis

and apoapsis speeds of the perturber, respectively, we have

t′p ∼ t′p
T ′

t′a
∼

r′p
v′p

v′a
r′a
T ′ ∼

(

r′p
r′a

)2

T ′ ∼ f ′2T ′ (5)

where f ′ = r′p/r
′

a, and we used v′ar
′

a = v′pr
′

p by conservation of angular momentum. The

eccentricity of the orbit of the perturber is e = (1 − f ′)/(1 + f ′). Thus Eq. (4) for δv

becomes

δv ∼ GM ′
rg
r′p

1

r2
f ′2T. (6)

While resonant or chaotic behavior could produce obvious secular changes in the per-

turbed object’s orbital parameters, the goal of this letter is to set limits on the mass of

the perturber absent any such extreme effects. Furthermore, we argue that secular effects

are not likely for two reasons. First, note that the additional acceleration is caused by a

potential which is ∝ 1/r, and is oscillatory. Secular effects would be caused by a monoton-

ically increasing/decreasing 1/r potential. Indeed, in the limit T ′ ≪ T (which is the limit

we will consider) the long-term effect of the perturber is as if the mass of the black hole

were slightly larger, producing a Keplerian (or GR) result for the object we observe. The

second argument is based on studies of secular effects in the solar system. For example,

secular changes in the argument of perihelion of a planet can be explained mainly by the

non-spherical, long-time-average mass distribution of each other planet, equivalent to the

quadrupole mass distribution of a ring, centered on the Sun, of mass and radius equal to the

mass and orbital radius of the perturbing planet [36]. The long-term average is on a time

scale much greater than the orbital period of the perturber, but much less than time scale

of any secular orbital change. In our case the long-term average effect is that of a constant

monopole potential, producing a Keplerian (or GR) result.

A potentially observable, less-than-extreme effect, would be an oscillating Doppler ve-

locity due to the perturbations, with period T ′, on top of the unperturbed orbital Doppler

velocity behavior of period T . Here we consider only perturbations with period T ′ ≪ T ,

which would be more readily separated from the unperturbed time-varying Doppler velocity
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of period T , or from other longer time-scale effects that might be present due to, for example,

perturbations caused by other objects on our side of the wormhole.

After modeling and removing the unperturbed orbital behavior of the Doppler velocity

of our observed object, if an additional cyclic variation of some period T ′ ≪ T is not

readily apparent, the best strategy to search for such a result is to cut the sequence of

velocity residuals into segments of some duration T ′. Then stack and average the sequences.

In this way one could detect a cyclic variation in Doppler velocity of period T ′ as the

noise in the resulting measurements is reduced by
√

τ/T ′, where τ is the duration of the

observing program. Searches for a range of T ′ would be necessary. A particularly elegant

and systematic tool for accomplishing this search for a cyclic result is the Lomb-Scargle

Periodogram, which is especially useful for data sets which are not sampled periodically or

are missing samples [37, 38].

If this search procedure does not make apparent any cyclic perturbation, then individual

perturbations in Doppler velocity must satisfy

δv <∼ σv

(

T ′

τ

)1/2

(7)

for each T ′ in the search, where σv is the uncertainty in an individual Doppler velocity

measurement. To the precision for which we are calculating results, a geometric factor of

order unity has been ignored. Then from Eq. (6) an upper mass limit on the perturber is

M ′ <∼
1

G

r′p
rg

r2avg
1

f ′2T ′
σv

(

T ′

τ

)1/2

(8)

where ravg is the average distance of the observed object, on our side, from the wormhole

(i.e., the semi-major axis of the object’s orbit). Since T ′ ∝ r′p
3/2, this limit is ∝ r′p

1/4.

To determine attainable numerical mass limits on M ′ we first consider the case of S2

orbiting the supermassive BH at Sgr A*. For observations of S2 we have σv ∼ 10 km/s

[39]. We note that modeling of the non-perturbed motion of S2 (to be removed first before

searching for the effects we are studying) would need to take account of the effects of general

relativity and a diffuse distribution of dark matter near Sgr A*, as explained in detail by

[40]. This unperturbed motion of S2 includes secular behaviors such as periapsis precession

(which has been observed by [41]). For all the cases we consider in this paper we take

f ′ = 0.1. We choose f ′ = 0.1 as a rough representation of an elliptical orbit which makes
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the use of Eq. (3) reasonable. For MBH = 4×106M⊙ we obtain a mass limit for a perturber

as a function of r′p/rg given by the upper-most dotted line in Fig. 1.

A better limit could be set from observations of a star in orbit around a stellar-mass

BH, instead of the supermassive BH at Sgr A*. The cleanest systems would be those

with no mass transfer, which would avoid dynamical changes not caused by a perturber

on the other side of the wormhole. Recently, there were suggestions that such systems

had been discovered [42, 43]. However, subsequent work suggests these systems do not

contain BHs [44–47]. Nevertheless, since such a system could be found, we consider here

possible limits on the perturber mass that could be obtained for a generic system inspired by

these observations, with a 10M⊙ BH, stellar orbit of radius ∼ 106rg, and individual Doppler

velocity measurements for the star with σv ∼ 6 km/s (about
√
100 = 10 times larger than the

uncertainty in the amplitude of the fitted model for the Keplerian orbital Doppler velocity

in such systems, assuming ∼100 observations were used). The perturber mass limit for this

case could be ∼4 orders of magnitude lower than obtained from observations of S2, and is

shown by the short-dash line in Fig. 1, for τ = 1 year.

However, observations of a pulsar orbiting a BH have the potential to set even better

limits, given the greater observational precision attainable. BH-pulsar binaries have been

argued to provide remarkable tests of quantum gravity [48–54] on top of their proven record

in testing Einstein’s general relativity in the case of the Hulse-Taylor BH-pulsar binary

PSR B1913+16 [55].

The uncertainty in a measured Doppler velocity for a pulsar at a particular epoch depends

on the precision with which the frequency of the observed pulses can be determined for that

epoch. The precision on measured parameters for a pulsar is determined by the precision

on pulse “times of arrival” (TOA) measurements, which is typically σTOA ∼ 1µs [56]. A

pulse TOA measurement is obtained from τTOA ∼ 1 minute of data at each observing epoch

(during which a folding and pulse-shape averaging process is applied); see the discussion

in [56], for example. The result is one TOA for that epoch. The pulse frequency for that

epoch is ν = n/τTOA where n is the number of pulses arriving during the time interval τTOA

(known accurately from the folding process). The precision on τTOA is ∼ σTOA. Thus the

uncertainty in the pulse frequency for that epoch is

σν ∼
n

τ 2TOA

σTOA. (9)
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Finally, since any variation in the Doppler velocity is determined from the observed pulse

frequency, the uncertainty in the Doppler velocity is

σv ∼
σν

ν
c ∼

σTOA

τTOA

c (10)

or ∼1 m/s for pulsar observations. This is very much better than attained for observations of

an ordinary star (σv ∼ 10 km/s), owing to the precision with which pulse TOA measurements

can be made; this increased precision for pulsar observations is at the heart of our argument.

We have chosen a particularly good TOA uncertainty (1µs) which would be obtained for

a good millisecond pulsar. But there is some theoretical work that BH-NS binaries may

mostly contain normal pulsars, in which case the results would not be as good [57].

For a pulsar in an orbit around Sgr A* which is similar to that of S2, using σv ∼1 m/s,

we obtain a mass limit for the perturber that is ∼ 4 orders of magnitude lower than for

observations of S2. The result is the dash-dot line in Fig. 1. We used τ = 15 years

because observations should stretch over at least the orbital period to model and remove the

unperturbed motion before searching for Doppler variations caused by a perturber. Note

the limits for this case would be similar to those one might obtain for a generic star-BH

binary of stellar masses.

Still better results could be obtained for pulsars in close orbits around stellar-mass black

holes. Consider the “nominal” case of a pulsar in orbit around a 10M⊙ BH where ravg ≈

2×109 m, the semi-major axis for the Hulse-Taylor pulsar. For observations over τ = 1 year,

and σv ∼1 m/s we obtain a limit on the perturber mass more than ∼ 6 orders of magnitude

better than for a pulsar orbiting Sgr A*, at comparable r′p. This result is shown by the solid

line in Fig. 1. Note, the line exists only log(r′p) greater than ∼ 3.9 since for smaller r′p we

have f ′T < τTOA, and the standard pulsar observing process would not be consistent with

the physical situation we have explored in this paper.

We now consider a population of BH-pulsar binaries that may be present in the galactic

center [20]. The semi-major axes of these binaries would range from ∼ 0.1 AU to ∼ 1 AU,

with eccentricities ∼ 0.8. Using MBH = 10M⊙ and τ = 1 year with σv ∼1 m/s the perturber

mass limits attainable for these systems are below the limit for a pulsar orbiting Sgr A*,

but not as low as the nominal Hulse-Taylor-sized pulsar-BH binary. These results are also

shown in Fig. 1, labeled by the sizes of the semi-major axes.

Observational Prospects and Outlook: The best prospects for identifying stable BH-NS
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systems stem from either gravitational wave detection with a follow-up search for pulsar

emission, or the direct detection of pulsars in a binary system followed by determination of

the nature of the binary partner. LISA is designed to detect stable binary systems including

BH-NS systems [58]. The SKA is designed to be able to detect all the pulsars in our galaxy

including near the galactic center where BH-pulsar systems may be more common [59]. In

future work we plan to use numerical simulations to further explore the perturber limits

that can be obtained. We will also explore connections with the recent research on quantum

gravity/string theory [60] with intrinsic non-locality that could be probed as outlined in this

letter.

Acknowledgments: D-C. Dai was supported by the National Science Foundation of China

(Grant No. 11433001 and 11775140), National Basic Research Program of China (973 Pro-

gram 2015CB857001) and the Program of Shanghai Academic/Technology Research Leader

under Grant No. 16XD1401600. D.M. is supported by the Julian Schwinger Foundation

and the Department of Energy (under grant DE-SC0020262). D.S. was partially supported

by the US National Science Foundation Grants No. PHY-1820738 and PHY-2014021. We

thank the anonymous referees for suggestions which have helped us to greatly clarify this

letter.

[1] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, Princeton Univ. Press, Princeton,

2017.

[2] N. Duechting, Phys. Rev. D 70, 064015 (2004) doi:10.1103/PhysRevD.70.064015 [arXiv:astro-

ph/0406260 [astro-ph]].

[3] M. Raidal, C. Spethmann, V. Vaskonen and H. Veerme, JCAP 02, 018 (2019)

doi:10.1088/1475-7516/2019/02/018 [arXiv:1812.01930 [astro-ph.CO]].

[4] H. Deng, J. Garriga and A. Vilenkin, JCAP 04, 050 (2017) doi:10.1088/1475-

7516/2017/04/050 [arXiv:1612.03753 [gr-qc]].

[5] J. Scholtz and J. Unwin, [arXiv:1909.11090 [hep-ph]].

[6] D. C. Dai and D. Stojkovic, Phys. Rev. D 100, no. 8, 083513 (2019); D. C. Dai and D. Sto-

jkovic, “Response to the Comment on ”Observing a wormhole”,” arXiv:1912.07793 [gr-qc].

[7] X. Wang, P. C. Li, C. Y. Zhang and M. Guo, [arXiv:2007.03327 [gr-qc]].

9



[8] J. B. Dent, W. E. Gabella, K. Holley-Bockelmann and T. W. Kephart, [arXiv:2007.09135

[gr-qc]].

[9] H. Liu, P. Liu, Y. Liu, B. Wang and J. P. Wu, [arXiv:2007.09078 [gr-qc]].

[10] M. Khodadi, A. Allahyari, S. Vagnozzi and D. F. Mota, [arXiv:2005.05992 [gr-qc]].

[11] V. De Falco, E. Battista, S. Capozziello and M. De Laurentis, Phys. Rev. D 101, no.10, 104037

(2020) doi:10.1103/PhysRevD.101.104037 [arXiv:2004.14849 [gr-qc]].

[12] T. Tangphati, A. Chatrabhuti, D. Samart and P. Channuie, [arXiv:2003.01544 [gr-qc]].

[13] K. Jusufi, P. Channuie and M. Jamil, Eur. Phys. J. C 80, no.2, 127 (2020)

doi:10.1140/epjc/s10052-020-7690-7 [arXiv:2002.01341 [gr-qc]].

[14] N. Godani, S. Debata, S. K. Biswal and G. C. Samanta, Eur. Phys. J. C 80, no.1, 40 (2020)

doi:10.1140/epjc/s10052-019-7596-4

[15] A. Tripathi, B. Zhou, A. B. Abdikamalov, D. Ayzenberg and C. Bambi, Phys. Rev. D 101,

no.6, 064030 (2020) doi:10.1103/PhysRevD.101.064030 [arXiv:1912.03868 [gr-qc]].

[16] V. I. Dokuchaev and N. O. Nazarova, [arXiv:1911.07695 [gr-qc]].

[17] S. Paul, R. Shaikh, P. Banerjee and T. Sarkar, JCAP 03, 055 (2020) doi:10.1088/1475-

7516/2020/03/055 [arXiv:1911.05525 [gr-qc]].

[18] R. Abbott et al. [LIGO Scientific, KAGRA and VIRGO], Astrophys. J. Lett. 915, no.1, L5

(2021) doi:10.3847/2041-8213/ac082e [arXiv:2106.15163 [astro-ph.HE]].

[19] R. Abbott, et al., ApJ, 896, L44 (2020).

[20] C. Faucher-Giguère and A. Loeb, MNRAS, 415, 3951 (2011).

[21] A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).

[22] J. A. Wheeler, Phys. Rev. 97, 511 (1955).

[23] J. A. Wheeler, Geometrodynamics, Academic, New York, 1962.

[24] E. Baum, Phys. Lett. 133B, 185 (1983).

[25] S. W. Hawking, Phys. Lett. 134B, 403 (1984).

[26] S. R. Coleman, Nucl. Phys. B 310, 643 (1988).

[27] G. W. Gibbons and S. W. Hawking (editors), Euclidean Quantum Gravity, World Scientific,

1993.

[28] D. C. Dai, D. Minic and D. Stojkovic, Phys. Rev. D 98, no. 12, 124026 (2018)

[29] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).

[30] M. S. Morris, K. S. Thorne and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988).

10



[31] M. Visser, Lorentzian Wormholes: From Einstein to Hawking, AIP Press, New York, 1995

[32] J. Maldacena and L. Susskind, Fortsch. Phys. 61, 781 (2013)

[33] In P. R. Holland’s book, Quantum Theory of Motion, (Cambridge 1995), a connection between

ER and EPR has been suggested in the context of the de-Broglie-Bohm interpretation of

quantum theory.

[34] D. C. Dai, D. Minic, D. Stojkovic and C. Fu, “Testing ER=EPR,” arXiv:2002.08178 [hep-th].

[35] M. Visser, S. Kar and N. Dadhich, Phys. Rev. Lett. 90, 201102 (2003)

doi:10.1103/PhysRevLett.90.201102 [arXiv:gr-qc/0301003 [gr-qc]].

[36] Y. Hagihara, Celestial Mechanics, Vol. II, Part 1, MIT Press, Cambridge, 1972.

[37] N.R. Lomb, Ap.& SS, 39, 447 (1976).

[38] J.D. Scargle, Ap.J., 263, 835 (1982).

[39] A. Boehle, et al., Ap.J., 830, 17 (2016).

[40] L. Iorio, MNRAS, 411, 453 (2011).

[41] R. Abuter et al., A&A, 636, L5 (2020).

[42] Th. Rivinius, D. Baade, P. Hadrava, M. Heida and R. Klement, Astron. & Astrophy., 639,

L3 (2020).

[43] J. Liu, H. Zhang, H. Howard, et al., Nature, 575, 618 (2019).

[44] J. Bodensteiner, T. Shenar, L. Mahy, et al., A&A, 641, A43 (2020).

[45] T. Mazeh, F. Faigler, MNRAS, 498, L58 (2020).

[46] T. Shenar, J. Bodensteiner, M. Abdul-Masih, et al., A&A, 639, L6 (2020).

[47] M. Abdul-Masih, Gareth Banyard, J. Bodensteiner, et al., Nature, 580, E11 (2020).

[48] M. Kavic, J. H. Simonetti, S. E. Cutchin, S. W. Ellingson and C. D. Patterson, JCAP 0811,

017 (2008).

[49] M. Kavic, D. Minic and J. Simonetti, Int. J. Mod. Phys. D 17, 2495 (2009).

[50] J. H. Simonetti, M. Kavic, D. Minic, U. Surani and V. Vijayan, Astrophys. J. 737, L28 (2011).

[51] J. Estes, M. Kavic, M. Lippert and J. H. Simonetti, Int. J. Mod. Phys. D 26, no. 12, 1743004

(2017).

[52] S. L. Liebling, M. Lippert and M. Kavic, JHEP 1803, 176 (2018).

[53] M. J. Kavic, D. Minic and J. Simonetti, Int. J. Mod. Phys. D 27, no. 14, 1847007 (2018).

[54] M. Kavic, S. L. Liebling, M. Lippert and J. H. Simonetti, arXiv:1910.06977 [astro-ph.HE].

[55] J.M. Weisberg and Y. Huang, Ap. J., 829, 55 (2016).

11



[56] J.J. Condon and S.M. Ransom, Essential Radio Astronomy, Princeton Univ. Press, Princeton,

2016.

[57] D. Chattopadhyay, arXiv:2011.13503 [astro-ph] (2020).

[58] P. Amaro-Seoane, et al., GW Notes 6, 4-110 (2013) [arXiv:1201.3621 [astro-ph.CO]].

[59] V. Lipunov, A. Bogomazov and M. Abubekerov, Mon. Not. Roy. Astron. Soc. 359, 1517-1523

(2005) doi:10.1111/j.1365-2966.2005.08997.x [arXiv:astro-ph/0503341 [astro-ph]].

[60] L. Freidel, R. G. Leigh and D. Minic, Phys. Lett. B 730, 302 (2014) Int. J. Mod. Phys. D

23, no. 12, 1442006 (2014) JHEP 1506, 006 (2015) Int. J. Mod. Phys. D 24, no. 12, 1544028

(2015). Phys. Rev. D 94, no. 10, 104052 (2016) J. Phys. Conf. Ser. 804, no. 1, 012032 (2017).

JHEP 1709, 060 (2017) Phys. Rev. D 96, no. 6, 066003 (2017) Int. J. Mod. Phys. A 34, no.

28, 1941004 (2019). L. Freidel, J. Kowalski-Glikman, R. G. Leigh and D. Minic, Phys. Rev. D

99, no. 6, 066011 (2019)

12



FIG. 1: The mass limit on the perturber as a function of its periapsis distance from the wormhole

(expressed in units of the gravitational radius of the BH/wormhole). The Sgr A*-S2 line is for

observations of S2 orbiting the supermassive BH at Sgr A*. The BH-star line is for observations

of a generic binary system comprising a star and stellar-mass BH. The other lines are for binary

systems consisting of a pulsar and stellar mass BH. The HT BH-Pulsar case is a Hulse-Taylor-sized

stellar-mass BH-Pulsar binary system.
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