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A small fraction of the gravitational-wave (GW) signals that will be detected by second and third generation
detectors are expected to be strongly lensed by galaxies and clusters, producing multiple observable copies. While
optimal Bayesian model selection methods are developed to identify lensed signals, processing tens of thousands
(billions) of possible pairs of events detected with second (third) generation detectors is both computationally
intensive and time consuming. To mitigate this problem, we propose to use machine learning to rapidly rule
out a vast majority of candidate lensed pairs. As a proof of principle, we simulate non-spinning binary black
hole events added to Gaussian noise, and train the machine on their time-frequency maps (Q-transforms) and
localisation skymaps (using Bayestar), both of which can be generated in seconds. We show that the trained
machine is able to accurately identify lensed pairs with efficiencies comparable to existing Bayesian methods.

I. INTRODUCTION

With the tens of gravitational-wave (GW) signals detected by
the LIGO-Virgo network of detectors [1, 2] during its first three
observing runs [3–8], there is no doubt that GW astronomy has
well and truly arrived. While these detections have enabled
stringent tests of Einstein’s general relativity [9, 10], future
observing runs are likely to provide a number of additional
tests. Among them is the highly anticipated observation of
gravitationally-lensed GWs [11–15], akin to the gravitational
lensing of electromagnetic waves where the deflection of light
from a source due to large agglomerations of matter (such as
galaxies and galaxy clusters) residing along the line of sight
of the observer produces multiple magnified (or demagnified)
copies of the source. Apart from being a unique probe of
general relativity’s prediction of gravitational lensing with a
different messenger [16], lensing of GWs could afford unique
constraints on various aspects of astrophysics and cosmology,
including models of the populations of galaxies [17], as well
as models that probe the distribution and composition of dark
matter [18].

Gravitational lensing observations are typically divided into
three categories: strong lensing, weak lensing and micro lens-
ing (see, e.g., [19]). This classification is based on the proper-
ties of the lens, in particular the density of the lens projected
along the plane perpendicular to the line of sight of the ob-
server. In this work, we concern ourselves exclusively with
strong lensing, where the projected density exceeds a criti-
cal density, resulting in the production of multiple resolvable
images.

Note that this classification is done in the geometric optics
limit, where the wavelength (of light or GWs) is much smaller
than the characteristic gravitational radius of the lens. While
this is almost always true in the lensing of light, this is not
always the case for the lensing of GWs. In this work, we
assume that the wavelength of the GWs is much smaller than
the Schwarzchild radius of the lenses, as is the case when GWs
from coalescing stellar-mass binary black holes are lensed by
galaxies or galaxy clusters. In this limit, strongly lensed GWs
will result in the production of potentially resolvable images.

The resolvability of images in the sky is ultimately depen-
dent on the resolution of the telescopes that observe these im-
ages. GW detectors typically have very poor angular resolution
[20, 21] (at least in comparison to optical telescopes); the lo-
calisation skyarea for GW events detected by the LIGO-Virgo

network in the second and third observing runs spanned tens
of square degrees at best [3]. As a result, even strongly lensed
GW events typically have images whose skyareas almost com-
pletely overlap each other. Indeed, one of the signatures that
two GW events are lensed copies is that their skymaps overlap
(see, e.g, [22, 23]).

While strongly lensed GW events are completely unresolv-
able in the sky with current GW detectors, they are typically
very well resolved in time. Indeed, the temporal resolution of
GW events ( miliseconds) is in general orders of magnitude
smaller than the expected time delay (minutes to weeks) be-
tween strongly lensed GW images. In the geometric optics
limit, these GW images would have different amplitudes, but
their phase evolution would be identical [14, 15, 24–27]. Thus,
in principle, determining whether two non-overlapping GW
events are lensed copies comes down to comparing the shapes
of these signals with respect to each other.

In practice, however, such a comparison is non-trivial.
Firstly, the observed GW signals are projections of the true
GW signals onto the detectors; this projection depends on the
location and orientation of the detector relative to the source,
and would therefore be different for each of the temporally
separated GW images. Furthermore, these images would be
buried in detector noise. Even if the noise is assumed to be
Gaussian and the corresponding power spectral density (PSD)
is assumed to be time invariant, each of the images would be
buried in different realisations of this noise.

A robust alternative to such a direct comparison of the GW-
signals is to work in the space of the inferred source parameters.
Using optimal matched-filter based parameter inference tech-
niques [28], Bayesian posterior distributions on the intrinsic
parameters of the source (the masses and spins of the binary)
and its extrinsic parameters (the skylocation of the binary) can
be constructed. As mentioned earlier, the phase evolution of
the GW images are expected to be identical, and therefore
comparing the inferred posteriors on the intrinsic parameters
(which completely govern the phase evolution) of pairs of GW
events should enable us to discriminate between lensed and
unlensed pairs. This discriminatibility can be further enhanced
by comparing the localisation skymaps which are expected to
overlap almost entirely for lensed GW pairs [22].

Quantitatively, such a comparison can be achieved using
Bayesian model selection [22, 29]. A Bayes factor derived
from the overlap between the posteriors of pairs of events
can be constructed and used to segregate these pairs as either
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lensed or unlensed. However, evaluating this discriminator
is computationally expensive and time consuming. Bayesian
parameter inference of BBH events can take hours to days.
Additionally, constructing the Bayes factor can take up to a
few minutes per event, and the number of such evaluations
will grow as the square of the number GW events. This makes
the estimation of the Bayes factor computationally challenging
when large numbers of BBH events are expected to be detected
in future observing runs.

Current estimates of the rate of stellar-mass binary black-
hole (BBH) mergers [30] suggest that hundreds of BBH events
are expected to be detected in LIGO-Virgo-Kagra’s next ob-
serving run (O4). Among these GW detections, up to a percent
could be lensed copies of each other [31, 32], suggesting that
there is a non-trivial chance that the first confirmed detection
of a lensed GW pair could occur in O4. However, identifying
such lensed pairs would require constructing O(102) posteri-
ors on the GW events’ source-parameters and O(104) Bayes
factors.

These numbers will get significantly larger with observing
runs beyond O4, and astronomically large by the time the
third generation (3G) network of ground-based detectors [33–
35] completes its observations. The 3G network is expected
to observe O(105 − 106) events, of which ∼ 0.3% could be
strongly lensed [32]. Therefore, O(105 − 106) event posteriors,
and O(1010 − 1012) Bayes factors, would need to be evaluated.

This motivates the need to come up with a method to con-
duct a preliminary segregation of pairs of GW events to rapidly
“weed out” the vast majority of unlensed pairs. In this work,
we propose to use machine learning algorithms, trained on
time-frequency maps of the detector strain time series [36] and
the (rapidly estimated) localisation skymaps [37], from both
lensed and unlensed pairs of GW events, to construct a statistic
to discriminate between lensed and unlensed pairs. Using syn-
thetic, non-spinning BBH signals - both lensed and unlensed -
injected in Gaussian noise, we show that our machine-learning-
based statistic, performs almost as well as the optimal Bayes
factor statistic described above, while reducing the computa-
tion time by orders of magnitude. The significant reduction in
evaluation time is a direct consequence of the fact that time-
frequency maps and localisation skymaps can be constructed
in seconds, in constrast to GW inference posteriors which take
hours to days to sample.

The rest of this paper is organized as follows. Section II
summarizes the evaluation of the optimal Bayes factor statis-
tic, introduces the machine learning algorithms we use, and
delineates their training and validation. Section III describes
our results in distinguishing between lensed and unlensed GW
event pairs and compares them with the performance of the
posterior overlap statistic. Section IV summarizes this work
and discusses its potential benefits.

II. METHOD

A. The posterior overlap statistic

Let d(t) be the detector strain time series which is known to
contain a gravitational wave signal h(t, ~θ) with shape (intrin-
sic and extrinsic) parameters ~θ, as well as one realisation of
stochastic Gaussian noise as characterized by its power spec-
tral density S n( f ). A Bayesian inference of ~θ from d(t) can be

achieved by sampling the posterior distribution on ~θ:

p(~θ | d) =
p(~θ)p(d | ~θ)

p(d)
(2.1)

where [38]:

p(d | ~θ) ∝ exp [−(d − h | d − h)/2] (2.2)

is the Gaussian likelihood, p(~θ) is the prior distribution on the
source parameters, p(d) is the evidence, and (· | ·) symbolises
the noise-weighted inner product:

(a | b) ≡ 2
∫ fmax

fmin

ã( f )b̃∗( f )
S n( f )

d f (2.3)

Here, ã, b̃ represent the Fourier transform of the time series
a(t), b(t); [ fmin, fmax] is the frequency range over which the in-
ner product is evaluated; and ∗ represents complex conjugation.

Now consider two segments of data, d1(t) and d2(t), both
of which are known to contain one GW signal each, h1(t) and
h2(t), respectively. We now wish to determine which of the
two hypotheses,HL andHU , is preferred by the data at hand.
HL is the hypothesis that h1(t) and h2(t) are lensed copies

of a GW signal originating from a single source. On the other
hand, HU is the hypothesis that h1(t) and h2(t) are signals
originating from two distinct, unrelated, sources.

As shown in [22], (in the absence of any prior knowledge
of which of the hypotheses is preferred), the optimal Bayesian
statistic to quantitatively determine the preferred hypothesis is
the Bayes factor BL

U , defined as the ratio of the evidences of
the joint data set {d1, d2} given each of the hypotheses.

BL
U ≡

p({d1, d2} | HL)
p({d1, d2} | HU)

=

∫
p(~θ | d1)p(~θ | d2)

p(~θ)
d~θ (2.4)

This Bayes factor can be evaluated making use of the posteriors
p(~θ | d1) and p(~θ | d2) estimated from the two data sets d1 and d2,
as well as the prior p(~θ) employed in the parameter estimation.

B. Classification with Machine Learning

In the language of machine learning (ML), determining
whether a pair of GW events are lensed copies of a single
GW event, or unrelated (unlensed) to each other, is a binary
classification problem. Using features derived from the data
surrounding pairs of GW signals, we can in principle train an
ML algorithm to classify them as either lensed or unlensed.
In this subsection we first describe the construction of the
features we use, the ML algorithms we employ, along with
their training, testing and optimisation.

1. Data Representation

The posterior overlap statistic crucially relies on a time-
consuming way of representing the detector data, viz., the
posterior distributions of source parameters inferred from the
data surrounding the confirmed GW detections. To bypass this
issue, we construct and train a machine learning model which
takes as inputs time-frequency maps (Q-transforms of the GW
event), as well as localisation skymaps (Bayestar Skymaps).
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Both of these can be produced within seconds, in contrast to
sampling the full posterior on the source parameters which can
take anywhere from several hours to several days.

Q-Transforms: Q-transforms [36] are a means by which
time-frequency maps of generic transient signals can be pro-
duced. This is achieved by first representing the time-frequency
plane as a collection of tiles (bins), and then reconstructing
these generic signals as a combination of sine-Gaussians de-
fined by their quality factor ‘Q’. The choice of ‘Q’ in each tile
is determined from a matched-filter search across multiple ‘Q’
templates, and the template that produces the largest SNR is
selected. Using the corresponding optimal sine-Gaussian, a
spectrogram is generated. The time-frequency map is then plot-
ted as colored tiles, where the color represents the so-called
“normalized signal-energy”, which is proportional to the Q-
transform magnitude (and related to the SNR).

As shown in Fig. 1, lensed events will have time-frequency
maps whose shapes are similar, but whose signal energies
across time-frequency tiles will differ in magnitude. This is
a direct consequence of the fact that the phase evolution of
strongly lensed pairs are expected to be identical, but the am-
plitudes will differ by a constant factor. On the other hand,
unlensed signals will have distinct time-frequency maps with
dissimilar shapes in general. 1

Bayestar Skymaps: “Bayestar” [37] is the flagship low-
latency skylocalisation software of the LIGO-Virgo-Kagra
(LVK) collaboration, used during the LVK’s third observing
run (O3) to disseminate skymaps in real-time for electromag-
netic follow-up of GW events [40]. These skymaps are pro-
duced in seconds, and are found to be comparable to those
estimated from a full sampling of the joint posterior distribu-
tion of the source parameters. Bayestar exploits the fact that
errors in sky localisation and the errors in the inference of the
source masses, are semi-independent. Given that this software
is exclusively focussed on providing localisation skyareas, it
exploits this semi-independence to drastically reduce the di-
mensionality of the parameter estimation problem by fixing the
intrinsic parameter values to those of the maximum likelihood
template in the matched filter search that identified the event.
It is thus able to evaluate the (dimensionally-reduced) posterior
on the extrinsic parameters rapidly, without significant loss in
precision.

As shown in Fig. 2, lensed events are expected to have
overlapping localisation skyareas, by virtue of the poor (O(10)
sq. deg.) angular resolution of ground based GW detectors
with respect to the typical angular separation of the images
(O(1′′)). On the other hand, unlensed signals will generally
have non-overlapping skymaps.

2. Data Preparation

In order to train, optimize, and test our machine learning
models, we simulate the lensed and unlensed GW signals, and
inject them in Gaussian noise. Our events consist of non-
spinning binary black hole mergers detectable by the LIGO-

1 A constant (additive) phase-factor called the Morse-phase, which is an inte-
gral multiple of π/2 depending on image type, will in general change the co-
alescence phase of the dominant GW mode [26, 39]. Note that Q-transforms
are independent of coalescence phase, and are therefore unaffected by the
Morse phase.

Virgo network at design sensitivity, where detectability is de-
fined by setting a threshold of 8 on the network SNR.

We follow [22] to generate a set of strongly lensed pairs
of GW events, where the source BBH mergers follow a well-
motivated distribution of masses and redshifts, and the lenses
are assumed to be galaxies that can be modelled as singular
isothermal ellipsoids whose parameters are drawn from the
SDSS galaxy population catalog [41]. We generated ≈ 2800
detectable lensed event pairs and ≈ 1000 unrelated events,
which corresponds to half a million unlensed pairs. We sub-
divide this set into two sets; we use one for training, and the
other for validation. For testing, we use another, distinct, set,
although the general presciption still follows [22] 2. This set
consists of ≈ 300 lensed pairs and ≈ 1000 unrelated events
(half a million unlensed pairs). From here on out, we refer to
the training and validation data set as “DSTrV”, and the testing
set as “DSTe”.

The waveforms are generated using the approxi-
mant IMRPhenomPv2 [42–44], as implemented in the
LALSimulation module of the LALSuite software package
[45]. The waveforms are then projected onto the LIGO and
Virgo detectors using their antenna pattern functions, as
implemented in the pycbc [46] software package.

The detector noise is assumed to be Gaussian, and is gen-
erated using the zero-detuned high-power PSDs of Advanced
LIGO and Advanced Virgo at their design sensitivities [47, 48],
as implemented in pycbc. The projected waveforms are then
added to the detector noise strain to produce the total detector
strain time series.

From the time series’ surrounding each GW event, we gen-
erate Q-transform images for each detector. For events whose
primary mass m1 > 60M�, we set the range of quality factors to
(3, 7); otherwise, we set the range to (4, 10). Further, using the
same time series’, we use Bayestar to generate the localisation
skymaps for all the events.

3. Feature Construction

Comparing the shapes of two time-frequency maps can be
interpreted as a problem of image recognition, and therefore
lends itself nicely to a machine-learning (ML) analysis de-
signed for such problems. Motivated by the fact that the Q-
transform based time frequency maps of lensed pairs will have
similar shapes (though different signal energies across time-
frequency tiles), while unlensed pairs while have dissimilar
shapes in general, we superimpose the time-frequency maps
of candidate pairs by aligning them along the time axis, which
we pass to our machine learning algorithm.

On the other hand, while lensed pairs will have overlapping
skymaps and unlensed pairs will not, the shapes of these maps
are not in general expected to be the same, since the relative
position of the two images with respect to the detectors are, in
general, different (due to the rotation of the earth). However,
GW events’ localisation skymaps are probability density func-
tions in the space of right-ascension (α) and declination (δ).
Thus, a skymap can be thought of as a two-dimensional matrix

2 This data set is chosen for testing because the posterior overlap statistic was
already evaluated for the candidate pairs in this set (and reported in [22]),
which allows for a ready comparison with the ML statistic.
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FIG. 1. Top Panels: A pair of lensed GW events detected by the H1 (Hanford) inteferometer at design sensitvity. These events have time-
frequency tracks with similar shapes. However, the signal energy in different time frequency bins along their tracks differ with respect to
each other. Bottom Panels: A pair of unlensed GW events projected detected by the H1 inteferometer at design sensitvity. These events have
time-frequency tracks whose shapes are significantly different.

where each element gives the probability density evaluated at
a given pixel in the skymap’s image grid spanning the space
of (α, δ). The products of simple operations involving the ma-
trices of candidate pairs can then be used as features that ML
algorithms can employ to identify lensed events.

The Bayestar localisation skymaps are usually generated
in .fits format, which contains the skylocalisation posterior
information sampled over an adaptive HEALPix grid [49].
We project them to cartesian coordinates using the HEALPY
python library [50, 51], which gives us the localisation pos-
terior evaluated over a 400 × 800 rectangular grid of pixels
corresponding to (α, δ) pairs. Denoting the skylocalisation pos-
teriors of each of the events pertaining to a candidate lensed
pair as P1

i j = P(αi, δ j | d1) and P2
i j = P(αi, δ j | d2), we can

construct the following metrics which can serve as features
using which we can train an ML algorithm:

k1 =
∑

i

∑
j

P1
i jP

2
i j, k2 =

∑
i

∑
j

|P1
i j − P2

i j|

k3 =

√
〈
(
P1

i jP
2
i j)

)2〉 − 〈k1〉2
(2.5)

k1 is motivated by the posterior overlap statistic [22], k2 is the
absolute difference between the elements of the matrices, while
k3 is a standard deviation-like metric of the overlap between
the skymaps. Note that angular brackets signify averaging over
the total number of elements in each matrix.

4. Overall Flow

For simplicity, we build two sets of ML models - one that
learns from Q-transforms and another that is fed with skymaps
- to classify the event pairs as either lensed and unlensed. The
models employ two different ML algorithms – DenseNet201
[52] and XGBoost [53] (see Sec. II B 5).

The first set consists of three DenseNet201 ML models
trained on superimposed QT (Q-Transform) images of the
event pairs for each of the three detectors: H1 (Hanford), L1
(Livingston) and V1 (Virgo), operating at their design sensi-
tivities. We further construct an XGBoost model trained on
the output of the DenseNet201 models. The output of this XG-
Boost model gives us the probability of the lensing hypothesis,
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FIG. 2. Top Panels: Bayestar skymaps of a pair of lensed events detected by the H1 (Hanford), L1 (Livingston), V1 (Virgo) network at design
sensitivity. The skymaps of these events overlap. Bottom Panels: Bayestar skymaps of a pair of unlensed events detected by the H1, L1, V1
network at design sensitivity. The skymaps of these events do not overlap.

given the Q-transform images: P(HL| QT1, QT2) 3.
We construct another XGBoostmodel trained on the metrics

derived from pairs of lensed and unlensed Bayestar skymaps.
The output of this XGBoost model gives us the probabil-

ity of the lensing hypothesis, given the Bayestar skymaps:
P(HL|SM1, SM2).

The final output of our ML classifier is then given by:

P(HL|{QT1, QT2}; {SM1, SM2}) = P(HL| QT1, QT2) · P(HL|SM1, SM2) (2.6)

We summarize the overall flow of our classification scheme
in Fig. 3.

5. Machine Learning Models

In this subsection, we briefly summarize the ML algorithms
we use: DenseNet201 and XGBoost.

a. DenseNet201: A number of supervised machine learn-
ing algorithms exist for binary classification problems. How-
ever, only a relatively small subset of these are particularly
suited for image recognition. Among them is the DenseNet
ML [52] algorithm, which is a kind of convolutional neural

3 A more complete notation for this probability would be as follows:
P(HL |{ QT1-H1, QT2-H1}; { QT1-L1, QT2-L1}; { QT1-V1, QT2-V1}).
However, for notational simplicity, we omit the reference to the
interferometers.

network (CNN) with important improvements to mitigate prob-
lems that typically plague CNNs. A CNN, in turn, is a category
of artificial neural networks (see, e.g, [54]) often used for clas-
sification problems that involve images, image recognition and
computer vision (see, for example, [55]).

The basic architecture of a neural network consists of in-
put/output layers of neurons, and a set of hidden layers in
between [56]. Each neuron holds a number between in the
range [0, 1]. An image passed to a neural network would fill
the neurons of the input layer with values corresponding to the
pixels of the image grid. The classification prediction of the
neural network is recorded in the neurons of the output layer;
specifically, in a binary classification problem such as ours,
the output layer has one neuron representing the probability
that the pair of superimposed Q-transforms corresponds to the
“lensed” case.

The neurons in each hidden layer are derived using a two
step process. The first step involves a linear operation between
the vector of neurons ~a in the previous layer, and a matrix of
weights

←→
W , and the second a non-linear operation that maps
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FIG. 3. A visual representation of the overall flow of our ML clas-
sification scheme. Note that, in principle, one could have avoided
the step that trains a second XGBoost algorithm on features derived
exclusively from the skymaps, and instead just used one XGBoost
that jointly trains on features from the skymaps and the outputs of
the DenseNet algorithms. We found that both methods give similar
results. We therefore choose to include the additional XGBoost be-
cause it facilitates a stepwise analysis of the outputs of the individual
components of the overall flow, trained separately on intrinsic and
extrinsic parameters of the candidate pairs.

the output of the linear operation to numbers in the range [0, 1]:

~an+1 = f (
←→
W n · ~an + ~bn) (2.7)

Here, the non-linear function f is referred to as the “activa-
tion function”; common choices include the “sigmoid function”
and “the rectified linear unit” (ReLu) function (see, e.g., [57]).
Further, the vector ~b is called the “bias”. This process is applied
iteratively until the output layer is filled.

Training the neural network ultimately comes down to deter-
mining an optimal choice of weights matrices and bias vectors.
This can be achieved by feeding the neural network with la-
belled data, and penalizing the network’s incorrect predictions
using an appropriately defined cost function. The popular
choice of cost function for binary classification is the binary
cross entropy:

LCE = −[y log(p) + (1 − y) log(1 − p)] (2.8)

where y is the ground-truth (“lensed” = 1 or “unlensed” =

0) of the labelled data, and p is the neural-network’s predicted
value for a given choice of weights and biases. Minimizing
the loss function averaged over multiple training instances
with distinct labelled data, using gradient descent, provides the
required weights and biases.

In CNNs, some of the hidden layers perform convolution op-
erations between the previous layer, and appropriately chosen
filters, in place of the operation described in Eq. (2.7). The fil-
ter can be thought of as a matrix whose size is usually smaller
than the matrix of pixels input to the CNN. The convolution
operation then involves “sliding” the filter across the pixel grid
matrix, which mathematically amounts to taking the product of
the filter with each of the submatrices of the pixel grid matrix.
The resulting output is sometimes referred to as a “feature
map”.

A DenseNet is a type of deep CNN. In addition, its architec-
ture has a few modifications to alleviate some of the problems
commonly faced when using CNNs. DenseNet’s are based on
the observation that CNNs can be substantially deeper, more
accurate, and computationally efficient to train if there are
shorter connections between the layers close to the input and
those close to the output. Thus, in a typical DenseNet model,
for each layer, the feature maps of all preceding layers are
used as inputs. Furthermore, the current layer’s own feature
map is used as input to all the subsequent layers. Because of
this type of architecture, DenseNet models have several advan-
tages compared to other CNN models. They greatly reduce the
number of parameters that define the architecture of the neural
network, mitigate the vanishing-gradient problem, encourage
feature reuse and strengthen the feature propagation through
the network.

b. XGBoost: eXtreme Gradient Boosting, (XGBoost)
[53] is a type of ensemble classifier that uses the combined
output of a collection of trained decision trees to provide a
probabilistic prediction of class-membership to data that needs
to be seggregated into discrete categories. A decision tree, in
turn, learns from training data by iteratively placing linear cuts
in feature-space which minimizes an appropriately chosen loss
function. The repeated splits result in the seggregated data
being pushed down two separate branches at each leaf node
in the tree, starting from the root-node where the first split in
the training data takes place, and ending at leaf nodes where a
terminating criterion (e.g: minimum number of samples in a
leaf) has been satisfied.

“Bagging” (see, e.g., [58]) and “boosting” (see, e.g, [59])
are two ways in which the outputs of decision trees can be
combined. In bagging, bootstrapped copies of the training
data are passed to a collection of decision trees. The trees are
then fitted, in parallel, to the training data they receive, and
the final prediction of the classifier is an average over all the
outputs across the ensemble of trees [60]. In contrast, boosting
algorithms such as XGBoost, fit decision trees to training data
sequentially, where each subsequent tree improves on the errors
in the predictions of class probability of the preceding tree.

In eXtreme Gradient Boosting, the iterative process of in-
crementally improving the prediction of the classifier with
every fitted decision tree, reduces to minimizing the following
objective function [53]:

Lobj
t+1 =

∑
i

L(yi, pi
t+1 = pi

t + Ot) + γT +
1
2
λO2

t (2.9)

where, as before, yi is the ground truth of training data
point i, pi

t(pi
t+1) is the classifier’s predicted probability of class

membership after the sequential fitting of t (t + 1) trees. For
binary classification problems such as the one we are trying to
tackle, the loss function L is simply the binary cross-entropy
defined in Eq. (2.8) (summed over the entire training set), and
Ot is the output of the decision tree t with respect to which the
objective function is to be minimized. The piece γT + 1

2λO2
t

in the objective function is a regularization term that controls
the classifier’s tendency towards overfitting by reducing its
sensitivity to individual training data points. Here, T is the
total number of leaves in a tree, and λ, γ are hyperparameters
that can be appropriately set depending on the data at hand.

Minimizing Lobj for each decision tree (which can have
a vast variety of structures) is in general highly complicated.
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XGBoost thus simplifies the minimization process in two ways.
The first is that the loss function is approximated by a second-
degree Taylor polynomial in Ot. The second is that within each
tree, the objective function is repeatedly minimized at each leaf
node. As a result, the process of fitting a decision tree reduces
to maximizing the gain when splitting the training data at each
leaf node. The gain is defined as the difference between the
sum of the similarity scores of the two daughter nodes post the
split, and the similarity score of the parent leaf. The similiarity
score at a leaf node l (containing Nl training samples) in tree
t + 1 is defined as [53]:

S l
t+1 =

(
∑Nl

i Ri
t)

2∑
i pi

t(1 − pi
t) + λ

(2.10)

where the sum is taken over all the samples in the leaf node,
and Ri

t ≡ pi
t − yi is the residual of the ith training data point in

the leaf node. The output of each tree, defined as S term
t+1 /

∑
i Ri

t
for the terminal leaf node, is then rescaled by a user defined
learning rate η and then added to the log of the odds ratio
corresponding to pi

t, from which the probability estimate of
tree t + 1 can be trivially computed.

As mentioned earlier, λ, γ are user defined regularization
parameters that control overfitting. Specifically, γ sets a thresh-
old on the gain; leaves along branches whose gains do not
exceed γ are pruned. Thus, since positive values of λ tend to
reduce the gain, λ effectively encourages pruning, which in
turn reduces the sensitivity of the decision tree to individual
training data points. 4

6. Training and optimisation

a. DenseNet201 : We use a DenseNet pretrained on the
“Imagenet dataset” [61], which allows it to pick up features
common to most images. We then add fully connected layers
to it, along with the final layer of just one neuron, for our
binary classification, and then retrain it with data specific to our
problem (to wit, the superimposed Q-transforms). This method
of pretraining with a generic data set and then retraining with
a more specific one, is called “transfer learning”. The most
significant benefit of this method is that it reduces the size of
the dataset required for training and solving the problem at
hand.

For each of the three detectors H1, L1 and V1, we train
three individual DenseNet201 models using superimposed
Q-transform pairs, where each image corresponds to a 3-
dimensional array (128 × 128 × 3) of pixels 5. The DenseNet
model is loaded with the imagenet weights using the neural
network package [62]. To make it suitable for our binary clas-
sification task, its top layer is removed and a dense layer of
256 neurons with the ReLu activation function is added along
with the final output layer of a single neuron with a sigmoid
activation function. Each of the three models is trained on
an equal number (1400) of lensed and unlensed Q -transform
image pairs subselected from the DSTrV dataset using TPU

4 In ML literature, λ is often referred to as a “regularization parameter” and γ
is referred to as a “tree complexity parameter”.

5 Each pixel contains RGB values that correspond to the normalized signal
energy at discrete time-frequency coordinates in the Q-transform image.

(Tensor Processing Unit) hardware, which is available in a
kaggle notebook [63]. In the top fully connected layer of the
network, we use the sigmoid activation function (see. e.g.,
[64]) and we employ the Adam optimizer [65] for efficient
gradient calculations. The model prediction is validated using
a validation set sub-selected from the total training set.

b. XGBoost : As described in the previous section, XG-
Boost has a number of tunable hyperparameters that need to
be set based on the problem at hand.

The hyperparameter “n estimators” sets the number of de-
cision trees in the ensemble classifier that are to be fit to the
training data sequentially. It can equivalently be thought of as
the number of fitting iterations the model goes through as it
sequentially improves the prediction of the ensemble classifier.
We set n estimators to 110. The learning rate, regularization
parameter and tree complexity parameter are set to their default
values of 0.3, 1, 0 respectively. The maximum depth of each
decision tree is set using max depth = 6.

In addition, we also set the “scale pos weight” parameter to
0.01. This hyperparameter serves as a weight to account for
training data being biased towards one class – in our case, the
unlensed class, for which we had about 100 times more data
points than for the lensed class.

The first XGBoost model is trained on the features de-
rived from lensed and unlensed pairs of skymaps, described in
Sec. II B 3, using the “DSTrV” dataset. Additionally, a second
XGBoost model is trained on the outputs of each of the three
DenseNet models. The outputs of the two XGBoost models
are then combined (cf. Eq 2.6) to provide a ranking statistic
for candidate lensed pairs.

III. RESULTS

1. Testing and Cross-validation

We assess the performance of the trained ML models on the
“DSTe” dataset. This allows us to compare their performance
with the posterior overlap statistic, which is already computed
for this dataset [22]. We summarize the performance of the
ML models and the posterior overlap statistic with ROC 6

plots of efficiency vs false positive probability (FPP), where
efficiency is the ratio of accurately classified lensed events
to the total number of lensed events, and FPP is the ratio
of wrongly classified unlensed events to the total number of
unlensed events.

To check the robustness of the outputs of the machine learn-
ing models to changing training sets , we use stratified k-fold
cross validation. We implement cross validation by doing a
round-robin of dividing our dataset into k = 3 (k = 10) parts for
the DenseNet (XGBoost) models, using one part for validation
and the rest for training. We test the k trained machines with
the DSTe dataset.

2. ROC Plots

We evaluate the performance of the overall classifier and its
different components using ROCs. For comparison, we also

6 Receiver Operating Characteristic
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plot the ROCs for the posterior overlap statistic. We first test
the performance of the individual DenseNet models trained on
Q-transforms pertaining to each of the three detectors: H1, L1
and V1. We then test the XGBoost model trained on the out-
puts of the DenseNet models. Since we used cross-validation
to assess the robustness of the models, we trained and validated
each of the models on the different cross-validation subsets of
the DSTrV data set, and tested the differently trained models
on the DSTe data set. This gives us an estimate of the variation
of the ROCs due to differences in the training set.

10−4 10−3 10−2 10−1 100

FPP

10−2

10−1

100

E
ffi

ci
en

cy

HLV ML
H1 ML
L1 ML
V1 ML
BL

U : m1,m2

FIG. 4. ROCs for DenseNet models trained on lensed and unlensed
pairs of superimposed Q-transforms, for different cross-validation
subsets of the DSTrV training set. ROCs for models trained on Q-
transforms corresponding to individual detectors are evaluated, in
addition to ROCs pertaining to the XGBoost model trained on the
outputs of the individual DenseNet models. For comparison, the
ROC for the posterior overlap statistic that uses parameter estimation
posteriors on the component masses, m1,m2, is also plotted. At low
false positive probabilities, the individual DensetNet models perform
comparably to the posterior-overlap statistic. On the other hand, the
XGBoost model produces efficiencies that are 1.5 − 2 times better
than the posterior overlap statistic at low FPPs, although there is
some variation in the ROCs when the training set is changed, caused
by small-number statistics. These improvements at low FPPs must
therefore be interpreted with some caution.

Fig. 4 plots ROCs for the outputs of these models trained
on Q-transforms. The ROC for the posterior overlap statis-
tic constructed using parameter estimation posteriors on the
component masses (m1,m2), is also plotted for comparison.
The ROCs pertaining to the individual DenseNet H1, L1, V1
models perform similarly to the ROC for the posterior overlap
statistic, both at low and high false positive probabilities. The
mean ROC corresponding to the XGBoost model trained on
the outputs of the individual DenseNet models performs com-
parably to the posterior overlap statistic. At very low FPPs,
ML seems to perform about 1.5 − 2 times better than the pos-
terior overlap statistic. However, there is some variation in
the XGBoost model’s ROC due to the changing training set.
These improvements must therefore be interpreted with some
caution. As the variation in the ROCs at these FPPs suggests,

low-number statistics are likely causing the ROC to be sensitive
to changes in the training set.
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FIG. 5. ROCs for the XGBoostmodel trained on metrics derived from
pairs of Bayestar localisation skymaps, for different cross-validation
subsets of the DSTrV trainsing set. For comparison, the ROC for the
posterior overlap statistic that uses parameter estimation posteriors
on the skylocation coordinates, α, δ, is also plotted. The XGBoost
performs almost as well as the posterior overlap statistic, at low false
positive probabilities.

Fig. 5 plots ROCs for the XGBoost model trained on the
features (metrics) derived from pairs of Bayestar skymaps.
Each ROC pertains to a different cross-validation subset of the
DSTrV dataset. The ROC for the posterior overlap statistic
evaluated using only the right-ascension (α) and declination (δ)
is plotted for comparison. The XGBoost performs as well as
the posterior overlap statistic at low false positive probabilities,
although at higher false positive probabilities the latter per-
forms marginally better. As with the DenseNet models, there
is some variation in the ROCs when the training set is varied.

Fig. 6 plots ROCs for the overall classifier, which is an
XGBoostmodel trained on the outputs of the DenseNetmodels
and the first XGBoost model. For comparison, the ROC for
the posterior overlap statistic evaluated using the parameter
estimation posterior on m1,m2, α, δ is also plotted. The mean
ROC for the overall classifier performs almost identically to
the posterior overlap statistic at low false positive probabilities,
although at higher false positive probabilities the posterior
overlap statistic performs marginally better.

IV. SUMMARY AND OUTLOOK

GW observations of BBH events is expected to increase
significantly in future observing runs, with O(102) events dur-
ing O4 and O(105 − 106) during the 3G era. The number of
candidate lensed pairs to classifiy could therefore be as high
as O(104) and O(1010 − 1012), respectively. Current optimal
Bayesian methods, such as the posterior overlap statistic, rely
on the parameter estimation posterior on the source parameters,
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FIG. 6. ROCs for the overall classifier, for different cross-validation
subsets of the DSTrV trainsing set. Note that the output of the overall
classifier is the output of the XGBoost model trained on the ouputs
of the three DenseNet models pertaining to H1, L1 and V1, as well as
the ouput of the first XGBoost model trained on Bayestar skymaps.
At low false positive probabilities, the classifier performs almost
identically to the posterior overlap statistic, with mild variation in the
ROCs when the training data set is varied.

which could take anywhere from several hours to several days
to sample.

This therefore motivates the need to come up with a prelim-
inary classification scheme, that can rapidly rule out the vast
majority of unlensed candidates. To that end, as a proof-of-
principle, we construct a machine learning based classifier that
can classify pairs of non-spinning BBH events in seconds. We
use two ML algorithms: DenseNet201 and XGBoost, to build
models trained on time frequency maps and Bayestar skymaps
of pairs of events. We construct 3 DenseNet models trained
on GW events projected onto each of the three detectors in
the LIGO-Virgo network at design sensitivity. The outputs of
these models are fed to an XGBoost classifier to construct a
corresponding model. The output of this model is then com-
bined with the ouput of another XGBoost model trained on
pairs of lensed and unlensed Bayestar skymaps, to produce the
final ranking statistic of our overall ML classifier (cf. Fig. 3
and Eq. 2.6).

We train and validate the classifier on cross-validation sub-
sets of the DSTrV dataset, and test the performance of the
ML classifier (including its different components) on the DSTe
dataset. We find that the overall ML classifier performs com-
parably to the posterior overlap statistic evaluated from the
parameter estimation posterior on m1,m2, α, δ. More specif-
ically, the performance of the ML classifier, as captured by
ROC plots, shows that at low false positive probabilities, the
classifier performs almost identically to the posterior overlap
statistic, although at high false positive probabilities, the per-
formance of the latter is marginally better.

Simple benchmarking tests suggest that our trained ML clas-

sifier is able to classify each event within 2 − 3 seconds 7.
Including the time to produce the Q-transform images and
Bayestar skymaps, the total classification time is still less than
a minute. This is significantly faster than the posterior overlap
statistic, which takes several minutes to classify once the pa-
rameter estimation posteriors are available. Since, in addition,
these posteriors themselves can take hours to days to produce,
per event, the benefit of using ML to perform a preliminary
sweep of lensed candidate pairs to rule out the vast majority of
them as unlensed, becomes manifestly evident.

Additionally, rapid ranking of candidate pairs makes estimat-
ing a background distribution computationally feasible. Such a
distribution enables assigning statistics such as p-values/false
positive probabilities, which are often the preferred statistics
since they can be interpreted independently of the models used
to analyze the pairs. Another potentially useful application
of the rapid identification (and dissemination) of lensed GW
events is in multi-messenger astronomy, since the joint GW-
EM detection of lensed events could enable important tests of
general relativity.

It might be worth mentioning that in addition to the poste-
rior overlap statistic, there are more comprehensive Bayesian
classification methods that take even longer to run. A fully
Bayesian, joint parameter estimation scheme to identify lensed
pairs by evaluating a coherence ratio that accounts for cor-
relations between parameters of lensed events, and selection
effects, currently takes of the order of weeks to complete, per
candidate pair [66, 67]. A more approximate joint parame-
ter estimation method that neglects selection effects, is found
to identify lensed pairs with similar efficiencies as the full
joint parameter estimation method, but within hours instead of
weeks [68]. Thus, identifying lensed pairs from the enormous
number of candidate pairs in future observing runs, can fol-
low a step-wise procedure, where an ML classification method
such as ours can rapidly rule out most of the candidate pairs
as unlensed. The surviving pairs can then be followed up
by the posterior overlap statistic, and then by joint parameter
estimation methods.

Note that our work assumed stationary Gaussian noise, and
that the candidate pairs consist of confirmed, high-significance
non-spinning BBH events. We plan to systematically relax
these assumptions in future work. Specifically, we are currently
looking at the possibility of classifying confident GW events
in real noise. We plan to train the machine on events injected
in real noise, whiten the data so that the Q-transforms are less
sensitive to varying PSDs, and investigate the possibility of
using additional features. We are also working towards the
classification of marginal BBH events, with an ML scheme
similar to what was presented in this work. We hope to report
the results of these investigations in the near future.
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