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Motivated by studies of critical phenomena in the gravitational collapse of vacuum gravitational
waves we compare, at the linear level, two common approaches to constructing gravitational-wave
initial data. Specifically, we construct analytical, linear Brill wave initial data and compare these
with Teukolsky waves in an attempt to understand the different numerical behavior observed in
dynamical (nonlinear) evolutions of these two different sets of data. In general, the Brill waves
indeed feature higher multipole moments than the quadrupolar Teukolsky waves, which might have
provided an explanation for the differences observed in the dynamical evolution of the two types of
waves. However, we also find that, for a common choice of the Brill-wave seed function, all higher-
order moments vanish identically, rendering the (linear) Brill initial data surprisingly similar to the
Teukolsky data for a similarly common choice of its seed function.

I. INTRODUCTION

Critical phenomena in gravitational collapse, first re-
ported by Choptuik [1], refer to properties of solutions
to Einstein’s equations close to the threshold of black-
hole formation. Specifically, Choptuik considered spheri-
cally symmetric massless scalar fields minimally coupled
to Einstein’s equations. Evolving several one-parameter
families of initial data numerically, he observed the exis-
tence of a critical parameter η∗ that separates supercriti-
cal data, which ultimately form a black hole, from subcrit-
ical data, which do not. Critical phenomena, with sur-
prising resemblance to similar phenomena in other fields
of physics, emerge close to the critical parameter η∗. For
super-critical data, for example, the black-hole mass will
follow an approximate power-law

M ' (η − η∗)γ , (1)

where the critical exponent γ depends on the matter-
model, but not on the initial data. For massless scalar
fields, for example, Choptuik found γ ' 0.37. Also, close
to criticality the evolution of the initial data will, at in-
termediate times, follow a self-similar critical solution
with, depending on the matter model, either discrete or
continuous self-similarity.

Following Choptuik’s original announcement, numer-
ous authors have studied critical phenomena in gravita-
tional collapse, both numerically and analytically, for a
number of different matter models, symmetry assump-
tions, and asymptotics (see [2, 3] for reviews). As a re-
sult of these studies, critical collapse is now well under-
stood in the context of spherical symmetry. For example,
the power-law scaling for dimensional quantities, like the
mass in (1), can be explained from perturbations of a
unique self-similar critical solution, with the inverse of
the Lyapunov exponent of a single unstable mode yield-
ing the critical exponent γ (see, e.g., [4–6]).

The situation is much less clear in the absence of spher-
ical symmetry, which includes what is perhaps the most

intriguing case of critical collapse, namely the gravita-
tional collapse of vacuum gravitational waves. Critical
phenomena in this collapse were first reported by [7, 8],
but, despite significant effort by a number of authors (see,
e.g., Table I in [9] for a summary of attempts), it has been
difficult to reproduce these results (but see [10, 11] for
recent progress). Some of the problems associated with
these calculations appear to be numerical in nature, but
others may also be conceptual issues that arise in the
absence of spherical symmetry (see also [12]).

Different authors have adopted different types of ini-
tial data for simulations of vacuum gravitational waves.
One type of initial data are often called “Teukolsky
waves” ([13], see Section II A below). These data repre-
sent quadrupolar, linear perturbations of the Minkowski
spacetime, which can be “dressed up” in different ways to
yield non-linear solutions to Einstein’s constraint equa-
tions. A second type of initial data are so-called “Brill
waves” ([14], see Section II B below). Constructing Brill
waves entails solving one elliptic equation (see eq. 10 be-
low), whose solution then provides a nonlinear vacuum
solution to Einstein’s constraint equations. Both Teukol-
sky and Brill waves allow for an arbitrary “seed func-
tion”, for which many authors have adopted Gaussian
profiles.

One of the mysteries emerging from the study of criti-
cal collapse of gravitational waves is that the above types
of initial data appear to behave differently when evolved
numerically. The authors of [11] report that different ini-
tial data will result in different critical exponents γ, and
hence, presumably, different threshold solutions. Several
authors have also observed that the evolution of Brill
wave initial data is less stable numerically than that for
Teukolsky waves; the authors of [9] pose the question
“Why is it so difficult to evolve Brill wave data?”, while
the authors of [11] report that “those [data] most defy-
ing our bisection attempts were the Brill initial data”. It
would therefore be desirable to gain some understanding
of what characteristics distinguish the two types of initial
data, and how they affect the dynamical evolution.
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In an independent approach to exploring the effects of
the absence of spherical symmetry, the authors of [15, 16]
studied the critical gravitational collapse of electromag-
netic waves. In this case the initial data are constructed
by adopting an axisymmetric spherical electromagnetic
wave (which is linear by nature) of a given multipole
moment `, at the moment of time-symmetry, and then
solving Einstein’s constraint equations. The non-linear
terms in Einstein’s equations will couple different multi-
poles, of course, but one nevertheless expects the initial
data to be dominated by the linear “seed” data. Accord-
ing to these studies, initial data for different multipole
moments will result in qualitatively different threshold
solutions, suggesting the absence of a unique critical so-
lution. For dipole data, with ` = 1, for example, the
authors of [15] found a center of collapse at the origin,
while for quadrupole data, with ` = 2, the authors of
[16] found two separate centers of collapse on the axis
of symmetry. The latter is consistent with the findings
of [10, 11] for gravitational waves. Moreover, the evolu-
tion of higher-order multipoles appears to be increasingly
difficult, even apart from the need for higher angular res-
olution.

This latter observation suggests a possible explana-
tion for the differences in the evolution between the Brill
and Teukolsky gravitational-wave initial data, namely in
terms of multiple moments. In this paper we therefore
construct analytical, linear solutions describing small-
amplitude Brill waves, and compare these directly with
Teukolsky waves. We compare the resulting data, for
given choices of the seed functions, in three different
ways: (i) we compare the data directly by transform-
ing the Brill data to the TT-gauge of the Teukolsky data
(Section III A), (ii) we compute the gauge-invariant Mon-
crief functions of different orders ` (see Section III B),
and (iii) we compute and compare the (gauge-invariant)
Kretschmann scalar (Section III C). As we will find
in Section III below, linearized Brill data are, in gen-
eral, linear combinations of different multipole moments,
and may therefore be more complicated to evolve than
Teukolsky data, which are purely quadrupolar by con-
struction. To our surprise, however, all multipoles higher
than quadrupole vanish exactly for a common choice for
the Brill-data seed function (see [17]). For this choice, the
two sets of initial data are in fact quite similar qualita-
tively (assuming a Gaussian seed function for the Teukol-
sky waves). We therefore conclude that the root causes
for their differences in nonlinear evolution probably can-
not be found at the linear level, at least not in terms of
the multipole moments.

II. LINEAR GRAVITATIONAL-WAVE INITIAL
DATA

A. Teukolsky waves

Quadrupolar vacuum gravitational-wave solutions to
the linearized Einstein equations are commonly referred
to as Teukolsky waves [13] (see also [18] for a generaliza-
tion to higher multipoles, as well as [19] for a textbook
treatment). Using geometrized units with c = 1 the met-
ric, expressed in transverse-traceless gauge (see eqs. 29
below), may be written in the form

ds2 = −dt2 + dr2
{

1 +Afrr
}

+ r drdθ
{

2Bfrθ
}

+

r sin(θ) drdφ
{

2Bfrφ
}

+ r2 dθ2
{

1 + Cf
(1)
θθ +Af

(2)
θθ

}
+

r2 sin(θ) dθdφ
{

2(A− 2C)fθφ
}

+

r2 sin2(θ) dφ2
{

1 + Cf
(1)
φφ +Af

(2)
φφ

}
, (2)

where the fij are angular functions (which, for ` = 2
and m = 0, we list in eq. A2 of Appendix A) and the
the coefficients A, B, and C can be constructed from a
seed function F (t, r) (see, e.g., Section 9.1.2 in [19] for
details). A common choice for this seed function is a
linear combination of Gaussians

F (t, r) = ATλ
4
(

(t− r) e−((r−t)/λ)
2

−

(r + t) e−((r+t)/λ)
2
)
, (3)

for which t = 0 becomes a moment of time symmetry.
In (3) the dimensionless constant AT parametrizes the
amplitude of the wave, while λ, a constant with units
of length, determines its wavelength. Adopting this seed
function for axisymmetric data with m = 0, the functions
A, B, and C take the form given by (A3) and the metric
(2), evaluated at t = 0, becomes

ds2 = −dt2 + dr2
{

1 +AT

(
72 sin2(θ)− 48

)
e−(r/λ)

2
}

+

r2dθ2
{

1+

24AT

(
sin2(θ)

(
− r

4

λ4
+

4r2

λ2
− 3

)
+ 1

)
e−(r/λ)

2
}

+

rdθdr
{

48AT sin(θ) cos(θ)

(
3− 2

r2

λ2

)
e−(r/λ)

2
}

+

r2 sin2(θ)dφ2
{

1+

24AT

(
sin2(θ)

(
r4

λ4
− 4r2

λ2

)
+ 1

)
e−(r/λ)

2
}
. (4)

Note that, as a vacuum solution at a moment of
time symmetry, the metric (4) satisfies even the nonlin-
ear momentum constraint of Einstein’s constraint equa-
tions identically, so that constructing valid (nonlinear)
gravitational-wave initial data from (4) requires solving
the Hamiltonian constraint only. This can be accom-
plished, for example, by adopting the spatial part of the
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metric (4) as a conformally related metric in the Hamil-
tonian constraint, solving this equation for the conformal
factor, and then constructing a new spatial metric from
the two.

In this paper, however, we focus on linear data only.
In particular, we read off the spatial “Teukolsky” metric
γTij from (4), and identify from these the metric pertur-
bations

hTij = γTij − ηij , (5)

where ηij is the flat metric (here in spherical polar co-
ordinates). The coefficients hTij can be read off from the
metric (4) above, but we also list them in Appendix A
for completeness.

B. Brill waves

Alternatively, fully non-linear, axisymmetric vacuum
gravitational-wave initial data can also be constructed
following the procedure suggested by Brill [14]. Specifi-
cally, the spatial line element for such “Brill waves” at a
moment of time symmetry is assumed to take the form

γijdx
idxj = ψ4

(
e2q(dr2 + r2dθ2) + r2 sin2(θ)dϕ2

)
(6)

where q = q(r, θ) is a seed function. Following Holz et
al. [17] as well as numerous other authors we will adopt
the choice

q(r, θ) = ABr
2 sin2(θ)σ−2e−(r/σ)

2

= ABρ
2σ−2e−(ρ

2+z2)/σ2

, (7)

where AB is again an amplitude and σ a measure of the
wavelength. Expressing the angular dependence of q(r, θ)
in terms of spherical harmonics we may also write the
seed function (7) as

q(r, θ) = q00(r)Y00(θ) + q20(r)Y20(θ), (8)

where

q00(r) =
√
π

4AB

3

( r
σ

)2
e−(r/σ)

2

(9a)

q20(r) = −
√
π

5

4AB

3

( r
σ

)2
e−(r/σ)

2

. (9b)

Not surprisingly, the expansion of the axisymmetric func-
tion q requires the spherical harmonics with m = 0 only,
which, in turn, depend on θ only.

Given the assumption of time-symmetry, the momen-
tum constraint is satisfied identically, and the Hamilto-
nian constraint can be shown to take the form

∇2ψ = −ψ
4
τ, (10)

where the function τ = τ(r, θ) is given by

τ ≡ ∂2q

∂ρ2
+
∂2q

∂z2
(11)

and where ∇2 denotes the flat Laplace operator. For our
choice (7) we have

τ(r, θ) =
2AB

σ6
e−(r/σ)

2
(

2r4 − 6r2σ2 + σ4−

2r2(r2 − 3σ2) cos2(θ)
)
, (12)

which we may express as

τ(r, θ) = τ00(r)Y00(θ) + τ20(r)Y20(θ) (13)

with

τ00(r) =
√
π

4AB

3σ6
e−(r/σ)

2 (
4r4 − 12r2σ2 + 3σ4

)
(14a)

τ20(r) = −
√
π

5

16AB

3σ6
e−(r/σ)

2 (
r4 − 3r2σ2

)
. (14b)

In general, the Hamiltonian constraint (10) does not
permit analytical solutions, and therefore has be solved
numerically. For our purposes of a direct comparison
with the (linear) Teukolsky waves of Section II A, how-
ever, it is sufficient to consider linear solutions to (10).
Towards that end we write the conformal factor as

ψ = 1 + u, (15)

in which case the Hamiltonian constraint (10) becomes

∇2u = −1

4
τ (16)

to linear order in the amplitude AB. Similarly, the line
element (6) becomes

γijdx
idxj = dr2 + r2(dθ2 + sin2 θdϕ2)+ (17)

(4u+ 2q)(dr2 + r2dθ2) + 4ur2 sin2(θ)dϕ2

to linear order.
Using the Green function G(r, r′) = 1/|r− r′| we may

write the solution to the linear Hamiltonian constraint
(16) as

u(r, θ, ϕ) =
1

16π

∫
τ(r′, θ′, ϕ′)d3x′

|r− r′|
. (18)

We now expand the Green function as

1

|r− r′|
=

4π

r>

∑
`,m

1

2`+ 1

r`<
r`>
Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ), (19)

where r> (r<) is the greater (smaller) of the two radii
r and r′, and insert this together with (13) into (18) to
find

u(r, θ, ϕ) =
1

4

∫ (
τ00(r′)Y00(θ′, ϕ′) + τ20(r′)Y20(θ′, ϕ′)

)
∑
`,m

1

2`+ 1

r`<
r`+1
>

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ)d3x′.

(20)
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We now write the volume element as d3x′ = r′2dr′dΩ′2

and carry out the angular integration using the orthogo-
nality of the spherical harmonics,∫

Y ∗`m(θ′, ϕ′)Y`′m′(θ′, ϕ′)dΩ′2 = δ`,`′δm,m′ , (21)

to obtain

u(r, θ) = u00(r)Y00 + u20(r)Y20 (22)

with

u00(r) =
1

4

∫ ∞
0

τ00(r′) r′2dr′

r>
(23a)

u20(r) =
1

4

∫ ∞
0

r2<τ20(r′) r′2dr′

r3>
. (23b)

The integrals in equations (23) have to be split into two
parts in order to account for r′ being either smaller or
greater than r, e.g.

u00(r) =
1

4r

∫ r

0

τ00(r′) r′2dr′ +
1

4

∫ ∞
r

τ00(r′) r′dr′. (24)

Inserting the coefficients (14) and carrying out the inte-
grations then yields

u00(r) = −
√
π

6σ2
ABe

−(r/σ)2 (2r2 + σ2
)

(25a)

u20(r) = −
√
π

5

AB

24r3σ2

(
3
√
πσ5erf

( r
σ

)
− (25b)

2re−(r/σ)
2 (

2r2σ2 + 4r4 + 3σ4
) )

where the error function erf(z) is defined as

erf(z) ≡ 2√
π

∫ z

0

e−t
2

dt. (26)

The leading-order terms in a Taylor expansion of erf(z)
about z = 0 are given by

erf(z) =
2√
π

(
z − z3

3

)
+O(z5), (27)

so that u20(r) remains finite as r → 0.
Finally, we assemble the spatial metric by inserting

the expressions (8) and (22) into the line element (17),
which, together with the assumption of time symmetry,
completes the construction of (linear) Brill wave initial
data γBij . As for the Teukolsky waves, we then define the
Brill wave perturbations from

hBij = γBij − ηij . (28)

III. COMPARISONS

Superficially, the Teukolsky wave initial data γTij of Sec-

tion II A and the Brill wave data γBij of Section II B ap-
pear different; for example, the (rθ) component of the

spatial metric vanishes for Brill data, γBrθ = 0, but does
not for Teukolsky data. Such a direct comparison is not
meaningful, however, because the data appear in different
gauges. We therefore adopt three different approaches
to make such a comparison: in Section III A we trans-
form the Brill data directly into the transverse-traceless
(TT) gauge of the Teukolsky data, in Section III B we
employ the gauge-invariant Moncrief formalism, and fi-
nally, in Section III C, we construct and compare the
Kretschmann scalar for both sets of data.

A. Gauge transformations

The Teukolsky data of Section II A adopt TT gauge,
which, for the purely spatial metric perturbation hTij ,
means that

ηijhij = 0, (29a)

∂jhij = 0 (29b)

(cf. eqs. (2) and (3) in [13]). Note that we will adopt
Cartesian coordinates in this Section, so that ηij =
diag(1, 1, 1) and covariant derivatives associated with ηij
become partial derivatives. Note also that both the
Teukolsky and the Brill data satisfy the linearized vac-
uum Hamiltonian constraint

∂i∂jhij − ∂i∂ihkk = 0 . (30)

Our goal is now to transform the Brill data of Section
II B into TT gauge.

The linearized spatial gauge freedom is generated by a
spatial one-form ξi and can be expressed as

hB
′

ij = hBij − 2∂(iξj), (31)

where hB
′

ij represents the Brill wave perturbations in the
new gauge. Applying the condition (29b) to this new
gauge we obtain

∂j∂jξi + ∂i∂
jξj = ∂jhBij . (32)

We may solve this equation by decomposing ξi according
to

ξi = ξ̂i + ∂iϕ , (33)

with

∂i∂iϕ =
1

2
hB , (34a)

∂j∂j ξ̂i = ∂jhBij − ∂ihB (34b)

where hB ≡ ηijhBij .
Taking the divergence of (34b) we see that

∂j∂j(∂
iξ̂i) = ∂i∂jhij − ∂i∂ihkk = 0 , (35)
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where we have used the Hamiltonian constraint (30) in
the last step. Given suitable boundary conditions, this

implies that the divergence of ξ̂i vanishes everywhere,

∂iξ̂i = 0. (36)

so that the decomposition (33) splits the generator ξi into
transverse and longitudinal parts. Finally, we may take
the trace of (31) to see that

hB
′

= hB − 2∂iξi = hB − 2 ∂i∂iϕ = 0, (37)

where we have used (36) in the second equality and (34a)
in the third. This shows that, with the decomposition
(33) of ξi satisfying equations (34), the new metric (31)
will indeed satisfy both TT conditions (29).

We invert the Laplace operators in (34) using the same
approach as in Section II B. We solve equation (34b) for

Cartesian components of ξ̂i, but carry out the integration
over the Green function using spherical polar coordinates

together with the expansion (19). Once ξ̂i and ϕ have
been found, we assemble ξi from (33) and compute the
Brill initial data in TT gauge from (31). Quite remark-
ably, after carrying out the transformation to TT gauge,
the Brill initial data for the seed function (7) can also
be expressed in the form (A1) of a Teukolsky wave, but
now with the coefficients AB, BB, and CB, given by the
expressions (A4).

In Fig. 1 we compare these coefficients with those for
the Teukolsky perturbations. We see that, with a suitable
rescaling of the amplitudes, AT = AB/80, the qualitative
features of the two sets of initial data, for the given seed
functions, indeed appear quite similar.

We note, however, that the transformation of the lin-
earized Brill wave initial data to TT gauge results in a
purely quadrupolar Teukolsky wave only for the specific
angular dependence of the seed function (7). In gen-
eral, linearized Brill wave initial data are superpositions
of waves with different multipole moments, as one might
have suspected, but for the seed function (7) all mul-
tipoles different from the quadrupole moment are sup-
pressed. We will explore this result in more detail below.

B. Gauge-invariant Moncrief formalism

As a second approach to comparing the Teukolsky and
Brill data we employ the gauge-invariant Moncrief for-
malism (see [20]; see also [21] for a review as well as Sec-
tion 9.4.1 in [19] for a textbook treatment). In general,
the Moncrief formalism assumes that the spacetime met-
ric can be decomposed into a background metric gBab given
by the Schwarzschild metric and a perturbation hab. In
our specific case the background metric is flat, and hence
corresponds to a zero-mass Schwarzschild spacetime. The
perturbation hab is then decomposed into scalar, vector,
and tensor spherical harmonics of even or odd parity,
from which the gauge-invariant Moncrief functions R`m
can be computed for each mode ` and m.

Brill

Teukolsky

1 2 3 4 5
r/σ

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

A/AB

Brill

Teukolsky

1 2 3 4 5
r/σ

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

B/AB

Brill

Teukolsky

1 2 3 4 5
r/σ

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

C/AB

FIG. 1. Comparisons of the functions A (top panel), B (mid-
dle panel, and C (bottom panel) for Teukolsky waves and
Brill waves, both expressed in TT gauge. From these func-
tions, which are listed in eqs. (A3) and (A4), respectively, the
initial spatial metric γij can be computed from (A1). For the
purposes of these comparisons we adopt AT = AB/80 and
σ = λ, and show the functions A, B, and C divided by AB

for both sets of data.

For both the Teukolsky and the Brill data, only even-
parity contributions enter the decomposition of the per-
turbative metric, for which we may follow the prescrip-
tion starting with eq. (9.77) in [19]. Specifically, we com-
pute, for both the Teukolsky data γTij and the Brill data

γBij , the projections H2`m, h1`m, K`m, and G`m from
eqs. (9.78) through (9.81). In these integrals, the compo-
nents of the tensor spherical harmonics can be expressed
in terms of functions W`m and X`m, which we list in
Appendix B 1. For example, we compute G`m from

G`m =
1

2(`− 1)`(`+ 1)(`+ 2)

1

r2

∫
γ−W

∗
`m dΩ (38)
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Brill

Teukolsky

2 4 6 8 10
r/σ

-0.05

0.05

0.10

0.15

R20/AB

FIG. 2. The gauge-invariant Moncrief function R20/AB for
Teukolsky (orange dashed line) and Brill (blue continuous
line) waves. As in Fig. 1 we choose AT = AB/80 and λ = σ
and plot both functions in units of the amplitude AB.

(where γ− ≡ γθθ − γφφ/ sin2 θ, and where we have as-
sumed γθφ = 0).

In the next step, we find the functions k1`m and k2`m
from (9.88) and (9.89) in [19]. Finally, these functions can
be combined into the gauge-invariant Moncrief functions
R`m as in (9.87) in [19].

For the Teukolsky waves of Section II A, we list all
intermediate results in Appendix B 2. Since these data
are constructed as an axisymmetric, purely quadrupolar
wave, it is not surprising that the only non-vanishing
terms are those with ` = 2 and m = 0. The final result
for the gauge-invariant Moncrief function RT

20 is

RT
20 = −

√
π

5

8AT

λ4
r3e−(r/λ)

2 (
2r2 − 7λ2

)
(39)

The Brill waves of Section II B, on the other hand, are
not purely quadrupolar by construction. In Section III A
we have already seen that, for the special choice of the
seed function (7), a transformation of the data to TT
gauge again results in a purely quadrupolar Teukolsky
wave. It is therefore not surprising that, in this case,
the only non-vanishing Moncrief function is again that
with ` = 2 and m = 0. Alternatively, we may apply the
Moncrief formalism to the Brill wave in its original gauge
of Section II B. In this case, the intermediate results for
the projections H2`m, h1`m, K`m, and G`m as well as the
functions k1`m and k2`m are listed in Appendix B 3. The
Moncrief function R20 is, by construction, independent
of gauge, and given by

RB
20 =

√
π

5
AB

[
1

6rσ2
e−(r/σ)

2 (
4r4 + 2r2σ2 + 3σ4

)
−

√
π

4

σ3

r2
erf
( r
σ

)]
(40)

Both (39) and (40) can also be written in the form

R20 =
r

6

√
π

5
(r∂rA− 6A− 6B + 12C) , (41)

with the functions A, B, and C given by (A3) for Teukol-
sky waves, and by (A4) for Brill waves (see also exercise
9.7 in [19]).

In Fig. 2 we compare the Moncrief functions (39) and
(40). While the two results for Teukolsky and Brill wave
evidently differ quantitatively, their general qualitative
features are, in fact, quite similar – which is consistent
with our findings of Section III A.

Finally, it is instructive to consider multipole moments
with ` > 2 for the Brill wave initial data. Starting
with these data in the gauge of Section II B, the pro-
jections H2`m, h1`m, and K`m must all vanish identically
for ` > 2, but G`m, given by (38), could be nonzero. To
evaluate this term for Brill waves we observe that, from
(17), we have γ− = 2q, which contains both monopole
and quadrupole terms (see eq. 8). We also note that the
functions W`0 can be written as a linear combination of
spherical harmonics Y`′0 with `′ ≤ ` (see Appendix C).
Using (C12), the integral in (38) may therefore be written
as

1

r2

∫
γ−W

∗
`0 dΩ = 4

√
2`+ 1

∫
q(
√

5Y20 + Y00) dΩ

= 4
√

2`+ 1
(√

5 q20 + q00

)
, (` > 2 even) (42)

where we have employed the decomposition (8) in the last
step. In general, this integral will therefore not vanish,
and will instead give rise to multipole moments higher
in order than ` = 2. For the seed function (7), however,

we have q20 = −q00/
√

5 (see eqs. 9), leading to an exact
cancellation in (42), and therefore to a vanishing of all
higher-order multipole moments. This result is consistent
with our finding in Section III A that, when transformed
to TT gauge, Brill waves become purely quadrupolar if
the seed function has the angular dependence of (7).

C. Kretschmann scalar

As a third way of comparing the Teukolsky and Brill
data we compute the Kretschmann scalar

I = (4)Rabcd (4)Rabcd, (43)

where (4)Rabcd is the (four-dimensional) spacetime Rie-
mann tensor of the spacetime. For our time-symmetric
vacuum data, the Kretschmann scalar can be expressed
in terms of the (three-dimensional) spatial Ricci tensor
Rij only,

I = 8 γijγklRikRjl. (44)

We compute the Kretschmann scalar I for both the
Teukolsky data of Section II A and the Brill data of Sec-
tion II B to leading order (i.e. quadratic) in their respec-
tive amplitudes. We compare the results in Fig. 3. As
in our previous comparisons, we see that all qualitative
features are very similar.
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FIG. 3. The Kretschmann scalar I for both Teukolsky waves (left panel) and Brill waves (right panel). As in Figs. 1 and 2 we
adopt AT = AB/80 and λ = σ, and show I divided by AB

2 for both waves.

FIG. 4. The ratio IT/IB between the Kretschmann scalars
for Teukolsky and Brill waves. As in the previous figures we
adopt AT = AB/80 and λ = σ.

As a more direct way of comparing the Kretschmann
scalars IT and IB we show their ratio in Fig. 4. Evi-
dently, this ratio is defined only up to a constant related
to the ratio between the two amplitudes AT and AB;
as in the previous figures we fix this ratio by adopting
AT = AB/80 in Fig. 4. Given that the ratio shows some
spatial variations, we see that the Kretschmann scalars
IT and IB are indeed different quantitatively, despite the
similarity in their qualitative features.

IV. SUMMARY AND DISCUSSION

We compared, at the linear level, two common ap-
proaches that have been adopted in the construction of
gravitational wave initial data, namely Teukolsky data
[13] (see Section II A) and Brill data [14] (see Section
II B). Both approaches employ a seed function, for which

we chose, following numerous other authors, the Gaus-
sian profiles (3) and (7). While the Teukolsky waves are
constructed as purely quadrupolar ` = 2 waves, the Brill
waves are not.

Since the two sets of initial data appear in different
spatial gauges, they cannot be compared directly. In-
stead we adopted three different approaches to compare
the data: we transformed the Brill data into the TT
gauge of the Teukolsky data (Section III A), computed
the gauge-invariant Moncrief functions (Section III B),
and evaluated the Kretschmann scalar (Section III C).

To our surprise we found that, while linearized Brill
waves will in general not be purely quadrupolar, and will
instead be superpositions of waves with different multi-
pole moments, for special seed functions with the angu-
lar dependence of (7) all higher-order moments cancel
out exactly, casting the Brill waves again as a purely
quadrupolar wave. While these waves are not identical
to Teukolsky waves with the seed function (3), they share
many qualitative features in all our comparisons.

Teukolsky and Brill wave data play an important role
in the context of vacuum critical collapse, where they
have been adopted by a number of different authors. Our
study was motivated by the observations that (a) the
two types of data appear to lead to different threshold
solutions (with different critical exponents γ; see [11]),
and also appear to behave different numerically (see also
[9]), and (b) initial data with different multipole moments
lead to quantitatively different threshold solutions in the
critical collapse of electromagnetic waves (see [15, 16]).
The latter suggests that higher-order multipole moments
present in the Brill data might result in the observed dif-
ferences in their evolution from those of Teukolsky data.
However, as we discussed above, for precisely the seed
function typically employed for Brill waves those higher-
order multipole moments vanish exactly. We therefore
conclude that the multipole structure of Brill waves can-
not be held responsible for the observed differences.

We note, however, that even for our choices of the seed
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functions the data are not identical. We have discussed
before that they appear in different gauges; moreover,
while a Brill wave with the seed function (7) is quadrupo-
lar, it corresponds to a seed function that is different from
(3). While it may well be worth exploring whether either
one of these differences is related to the observed differ-
ences in the evolution of the data, it is also possible that
the latter are related to nonlinear effects, which we have
ignored in our analysis here.
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Appendix A: Expressions for the spatial metric in
TT gauge

When expressed in TT gauge, the non-vanishing initial
metric perturbations for the Teukolsky data of Section
II A and Brill data of Section II B, expressed in spherical
polar coordinates, can be written in the form

hrr = Afrr, (A1a)

hrθ = rBfrθ, (A1b)

hθθ = r2(Cf
(1)
θθ +Af

(2)
θθ ), (A1c)

hφφ = r2 sin2 θ(Cf
(1)
φφ +Af

(2)
φφ ). (A1d)

In (A1), the angular functions are those for ` = 2 and
m = 0,

frr = 2− 3 sin2(θ) (A2a)

frθ = −3 sin(θ) cos(θ) (A2b)

f
(1)
θθ = 3 sin2(θ) (A2c)

f
(2)
θθ = −1 (A2d)

f
(1)
φφ = −f (1)θθ (A2e)

f
(2)
φφ = 3 sin2(θ)− 1. (A2f)

For Teukolsky data, with the seed function F (t, r) given
by (3), the coefficients A, B, and C, evaluated at the
moment of time symmetry t = 0, are given by

AT = −24ATe
−(r/λ)2 , (A3a)

BT =
8AT

λ2
e−(r/λ)

2

(2r2 − 3λ2), (A3b)

CT =
8AT

λ4
e−(r/λ)

2

(r4 − 4r2λ2 + 3λ4). (A3c)

For Brill data, once transformed to TT gauge as de-
scribed in Section III A, these coefficients take the form

AB =
ABσ

2

8r5

[
2re−(r/σ)

2 (
4r2 + 9σ2

)
+

√
πσ
(
2r2 − 9σ2

)
erf
( r
σ

) ]
, (A4a)

BB = − AB

12r5

[
2re−(r/σ)

2 (
4r4 + 6r2σ2 + 9σ4

)
−

9
√
πσ5erf

( r
σ

) ]
, (A4b)

CB =
AB

96r5σ2

[
2re−

r2

σ2
(
16r6 + 36r2σ4 + 63σ6

)
+

3
√
πσ5

(
2r2 − 21σ2

)
erf
( r
σ

)]
. (A4c)

Appendix B: Construction of Moncrief functions

1. Auxiliary angular functions

In the construction of the gauge-invariant Moncrief
functions it is useful to express the components of the
tensor spherical harmonics in terms of the functions

W`m =

(
∂2θ − cot θ ∂θ −

1

sin2 θ
∂2φ

)
Y`m (B1a)

X`m = 2∂φ (∂θ − cot θ)Y`m (B1b)

(see, e.g., Section 9.4.1 and Appendix D in [19]). For
` = 2 and m = 0, these functions reduce to

W20 =
3

2

√
5

π
sin2(θ) (B2a)

X20 = 0 (B2b)

2. Teukolsky waves

As one might expect for an axisymmetric, purely
quadrupolar wave, the only non-vanishing terms for the
Teukolsky wave of Section II A are those with ` = 2 and
m = 0. From eqs. (9.78) through (9.81) in [19] we com-
pute the functions H220, h120, K20, and G20 to be

HT
220 = −96

√
π

5
ATe

−(r/λ)2 (B3a)

hT120 =

√
π

5

16AT

λ2
re−(r/λ)

2 (
2r2 − 3λ2

)
(B3b)

KT
20 = 48

√
π

5
ATe

−(r/λ)2 (B3c)

GT
20 = −

√
π

5

8AT

λ4
e−(r/λ)

2 (
2r4 − 8λ2r2 + 3λ4

)
. (B3d)
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Following (9.88) and (9.89) we can then combine these
functions to form

kT120 =

√
π

5

32ATr
2

λ6
e−(r/λ)

2 (
2r4 − 15λ2r2 + 21λ4

)
(B4a)

kT220 = −
√
π

5

48ATr
2

λ6
e−(r/λ)

2 (
2r4 − 13λ2r2 + 14λ4

)
.

(B4b)

Finally, the gauge-invariant Moncrief function R20 for the
Teukolsky wave of Section II A, computed from (9.87) in
[19], is given by

RT
20 = −

√
π

5

8ATr
3

λ4
e−(r/λ)

2 (
2r2 − 7λ2

)
(B5)

(see also exercise 9.7 in [19]).

3. Brill waves

For the Brill waves of Section II B we compute

HB
220 =

√
π

5

AB

r3

[e−(r/σ)2
3σ2

(4r5 + 2r3σ2 − 3rσ4)−

√
π
σ3

2
erf
( r
σ

) ]
(B6a)

hB120 =0 (B6b)

KB
20 =

√
π

5

AB

6r2

[
2e−(r/σ)

2 (
2r2 + 3σ2

)
−

3
√
πσ3

r
erf
( r
σ

) ]
(B6c)

GB
20 =

√
π

5

2AB

3σ2
r2e−(r/σ)

2

, (B6d)

and then combine these functions to find

kB120 = −
√
π

5

AB

6r3σ4

[
3
√
πσ7erf

( r
σ

)
+ (B7a)

e−(r/σ)
2 (

16r7 − 40r5σ2 − 4r3σ4 − 6rσ6
)]

kB220 =

√
π

5

AB

4r3σ4

[
−3
√
πσ7erf

( r
σ

)
+ (B7b)

e−(r/σ)
2 (

16r7 − 24r5σ2 + 4r3σ4 + 6rσ6
)]
.

The gauge-invariant Moncrief function R20 is then
given by

RB
20 =

√
π

5

AB

12r2σ2

[
2re−(r/σ)

2 (
4r4 + 2r2σ2 + 3σ4

)
−

3
√
πσ5erf

( r
σ

)]
. (B8)

Appendix C: Expansion of W`0 in terms of spherical
harmonics Y`0

The functions W`m may also be written as

W`m = `(`+ 1)Y`m + 2∂2θY`m (C1)

(see, e.g., eq. D.12 in [19]). Since the second derivative
of Y`m with respect to θ can be expressed in terms of
spherical harmonics Y`′m with `′ = `− 2, `′ = `− 4 etc.,
we see that, for even (odd) `, the W`m can be written
as a linear combination of all Y`′m’s with even (odd) `′

satisfying ` ≥ `′ ≥ m. In axisymmetry, i.e. for m = 0,
we can derive this linear combination from the proper-
ties of Legendre polynomials P`, which are related to the
axisymmetric spherical harmonics by

Y`0 =

√
2`+ 1

4π
P`. (C2)

We start with the Legendre equation, which we may
write in the form

d2P`
dθ2

= −cos θ

sin θ

dP`
dθ
−`(`+1)P` = x

dP`
dx
−`(`+1)P` (C3)

where x ≡ cos θ in the last step. We then use the recur-
rence relation

xP ′` = P ′`−1 + `P` (C4)

(see, e.g., Eq. 12.25 in [22]) to find

d2P`
dθ2

= P ′`−1 − `2P` (C5)

Now we can use the identity

P ′n+1 = P ′n−1 + (2n+ 1)Pn (C6)

(see, e.g., 12.23 in [22]) repeatedly. Starting with n =
`− 2, eq. (C5) becomes

d2P`
dθ2

= P ′`−3 + (2`− 3)P`−2 − `2P`, (C7)

next we use (C6) for n = ` − 4 etc.. Starting with an
even `, we at some point end up with a term P ′3, which
we write as

P ′3 = P ′1 + 5P2 = 5P2 + P0, (C8)

where we have used P ′1 = 1 = P0. We may therefore
write

d2P`
dθ2

=

`−2∑
n=0

(2n+ 1)Pn − `2P` (` > 2 even, n even).

(C9)
Using (C2) again we then have

∂2θ Y`0 = −`2Y`0 +
√

2`+ 1

`−2∑
n=0

√
2n+ 1Yn0

(` > 2 even, n even), (C10)
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which we may insert into (C1) to obtain

W`0 = ` Y`0 + 2
√

2`+ 1

`−2∑
n=0

√
2n+ 1Yn0

(` > 2 even, n even). (C11)

Since the function q in (8) contains only monopole and
quadrupole terms, only the last two terms in this expan-
sion,

W`0 = . . .+ 2
√

2`+ 1
(√

5Y20 + Y00

)
(` > 2 even),

(C12)
can yield a contribution in the integral (42) for ` > 2.
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