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The nuclear symmetry energy plays a key role in determining the equation of state of dense,
neutron-rich matter, which governs the properties of both terrestrial nuclear matter as well as
astrophysical neutron stars. A recent measurement of the neutron skin thickness from the PREX
collaboration has lead to new constraints on the slope of the nuclear symmetry energy, L, which can
be directly compared to inferences from gravitational-wave observations of the first binary neutron
star merger inspiral, GW170817 In this paper, we explore a new regime for potentially constraining
the slope, L, of the nuclear symmetry energy with future gravitational wave events: the post-merger
phase a binary neutron star coalescence. In particular, we go beyond the inspiral phase, where
imprints of the slope parameter L may be inferred from measurements of the tidal deformability, to
consider imprints on the post-merger dynamics, gravitational wave emission, and dynamical mass
ejection. To this end, we perform a set of targeted neutron star merger simulations in full general
relativity using new finite-temperature equations of state, which systematically vary L, while keeping
the magnitude of the symmetry energy at the saturation density, S, fixed . We find that the post-
merger dynamics and gravitational wave emission are mostly insensitive to the slope of the nuclear
symmetry energy. In contrast, we find that dynamical mass ejection contains a weak imprint of L,
with large values of L leading to systematically enhanced ejecta.

I. INTRODUCTION

Determining the equation of state (EoS) of dense,
neutron-rich matter is a common goal in both modern
nuclear physics and astrophysics. One of the key ingre-
dients to the neutron-rich EoS is the nuclear symmetry
energy, which is a parameter of the nucleon-nucleon in-
teraction and which characterizes the difference in en-
ergy between symmetric nuclear matter and pure neutron
matter [1] . The symmetry energy is often represented as
a series expansion in density, with leading-order coeffi-
cients related to the value of the symmetry energy at the
nuclear saturation density, S, and its slope, L, according
to

Esym(n) = S +
L

3
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n

nsat
− 1

)
+O

[(
n

nsat
− 1

)]2

(1)

where nsat = 0.16 fm−3 is the nuclear saturation density
[2].

A wide range of experimental efforts have placed con-
straints on S and L, including from fits to nuclear masses,
measurements of the giant dipole resonance and electric
dipole polarizability of 208Pb, and observations of isospin
diffusion or multifragmentation in heavy ion collisions
[3–5]. Recently, the Lead Radius Experiment (PREX-
II) reported new constraints on the neutron radius of
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208Pb which, when combined with results from the origi-
nal PREX-I experiment [6, 7], imply a neutron skin thick-

ness of R
208Pb
skin = 0.283 ± 0.071 fm [8]. From this result,

Ref. [9] proposed a new constraint on the slope of the
symmetry energy of L = 106 ± 37 MeV, which is larger
than many previous constraints from microscopic calcula-
tions or experimental measurements [3–5, 10]. Although
constraining L with such experimental data relies on a
number of theoretical assumptions, the details of which
are beyond the scope of this work [e.g., 11], this new
measurement has already motivated a number of recent
studies investigating its impact on the neutron star EoS.

Neutron stars, which contain neutron-rich matter and
probe densities around and above the nuclear saturation
density, are an ideal laboratory for studying the sym-
metry energy. It has long been known that the slope
of the symmetry energy correlates strongly with neu-
tron star radius ([12], see also Fig. 1). The radius in
turn correlates with the neutron star tidal deformability
[13–16]. Perhaps not surprisingly then, L can also affect
the gravitational wave emission during a binary neutron
star inspiral (e.g., [17]). Measurements of these astro-
physical quantities can thus, in principle, provide con-
straints on L that are complementary to those inferred
from laboratory-based experiments.

To illustrate this behavior, we show the inter-
correlations between R1.4, Λ1.4, and the slope of the
symmetry energy in Fig. 1, where R1.4 and Λ1.4 are the
characteristic radius and tidal deformability of a 1.4 M�
neutron star, respectively. Figure 1 was generated from
a large sample of piecewise polytropic EoSs, which were
constructed to uniformly sample the pressure at densities
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above half of the nuclear saturation density (see Sec. II A
and Ref. [18] for further details). Figure 1 shows that, al-
though R1.4 and Λ1.4 are indeed well correlated, there is
significant scatter in the relationship, which depends sen-
sitively on the value of L in an approximately monotonic
fashion. For example, for fixed values of Λ1.4 . 500, the
corresponding value of R1.4 can vary by nearly a kilome-
ter, with L likewise varying from . 40 MeV to more than
100 MeV. While these correlations hold for the radii of in-
termediate mass stars, the dependence on L breaks down
for higher-mass stars (M > 1.8 M�), which are governed
less strongly governed by saturation physics [19].

FIG. 1: Correlations between R1.4 and Λ1.4 for a sample of
> 10, 000 piecewise polytropic EoSs. Each EoS has five poly-
tropic segments, spaced log-uniformly in density between 0.5
and 7.4nsat, with uniformly-drawn pressures. All EoSs sup-
port a maximum mass of at least 1.97 M�. The symmetry
energy slope is extracted according to eq. (6). We find that,
although R1.4 and Λ1.4 are well correlated, there is a sig-
nificant scatter in the trend, which depends approximately
monotonically on the value of L.

Taking advantage of the types of correlations shown
in Fig. 1, as well as correlations between Λ1.4 and the
higher-order symmetry energy coefficients, many stud-
ies have used the measurement of the tidal deformabil-
ity from GW170817 [20, 21] to derive new constraints
on the nuclear symmetry energy [22–28]. For exam-
ple, Ref. [25] demonstrated that, for a mono-parametric
family of EoSs, GW170817 implies small values of 9 .
L . 65 MeV. In a recent study combining astrophys-
ical data from GW170817, NICER, and the existence
of massive pulsars, together with theoretical constraints
from chiral effective field theory, Ref. [29] confirmed that
the astrophysically-inferred slope of the symmetry energy
(L = 52+20

−18 MeV) is in mild tension with the PREX-II
result. For a recent review on the status of astrophysi-
cal and laboratory constraints on the symmetry energy
in light of GW170817 and the PREX-II experiment, see
[10].

In this work, we explore a new regime for probing the

nuclear symmetry energy: the post-merger phase of a bi-
nary neutron star merger. The post-merger phase probes
higher densities and larger temperatures (T > 40 MeV)
than in the inspiral. As a result, astrophysical observ-
ables of the post-merger phase provide an ideal labora-
tory for probing the properties of hot, dense matter. In
the past, several observables related to post-merger dy-
namics have been suggested as potential probes of the
EoS. For example, the gravitational waves (GWs) emit-
ted by the post-merger remnant are expected to precisely
probe the cold EoS and the neutron star radius [30–37],
with additional corrections from the finite-temperature
part of the EoS [38, 39]. It has also been suggested that
neutron star post-merger GW might be sensitive to high
density degrees of freedom, such as hyperons [40, 41] or
quarks [42–45]. The dynamics of the post-merger phase
will also influence the quantity, velocity, and composition
of the mass ejecta , which can in turn influence the asso-
ciated kilonova, if detectable [46–49]. Additionally, the
amount of disk mass formed in the post-merger phase
might provide a secondary probe of the tidal deforma-
bilities of the initial stars [50, 51], providing additional
constraints on the neutron star radius [52]. The evolu-
tion of the post-merger phase of GW170817 has also been
used to constrain the neutron star maximum mass [53–
57]. Modeling all of these effects and understanding the
associated modeling uncertainties requires accurate nu-
merical relativity simulations of the post-merger phase
that account for all relevant physical processes, includ-
ing weak-interactions and finite temperature effects, see
e.g. [37] for a recent review.

Whereas most early studies resorted to ideal-fluid de-
scriptions for the finite temperature part of the EoS and
neglected nuclear composition entirely, many recent stud-
ies have instead made use of a limited number of publicly
available EoS tables1 that enable self-consistent finite-
temperature effects and out-of-(weak) equilibrium com-
position effects. The recently developed frameworks of
e.g., [58–60], are further expanding the available library
of finite-temperature EoSs. One drawback of using ex-
isting, tabulated EoSs, however, is that these models can
vary from one another in multiple nuclear parameters si-
multaneously, rendering systematic studies of the impact
of individual nuclear parameters on merger simulations
nearly impossible.

In this work, we take a third approach, enabled by
a recently-developed framework for extending arbitrary
cold EoSs to finite-temperatures and arbitrary compo-
sitions. The finite-temperature part of this EoS frame-
work utilizes a Fermi Liquid Theory approach for includ-
ing the leading-order effects of degeneracy, while the ex-
trapolation to non-equilibrium compositions is based on

1 E.g., from the CompOSE database,
https://compose.obspm.fr/, or from
https://stellarcollapse.org/.
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a parametrization of the nuclear symmetry energy [61].
The ability of this framework to model finite-temperature
effects in neutron star merger simulations was recently
explored by Ref. [39]. In summary, this framework allows
for the construction of new parametric, finite-temperature
EoSs, which are ideally suited for systematic investiga-
tions of EoS imprints in neutron star mergers.

In particular, many previous studies have found that
the post-merger GW emission or mass ejecta depend on
the characteristic radius or tidal deformability of the un-
derlying EoS [32, 33, 35–37, 47, 49]. These interconnected
dependencies typically would make it difficult to disen-
tangle variations in these macroscopic properties from
any variations in the nuclear model, e.g., in L. To start
to resolve this problem, in this work, we explicitly con-
struct a set of seven new EoS models that fix R1.4 or Λ1.4,
while systematically varying in L. In this way, we aim to
disentangle the role of these macroscopic properties from
the possible role of L in determining the post-merger ob-
servables, for a fixed value of S .

To further restrict the comparison of the EoSs to the
supranuclear part, where L plays a role, we construct
each EoS to have an identical finite-temperature compo-
nent and to follow the same tabulated EoS at densities
below half of the nuclear saturation density (SFHo, [62]).
In this way, we ensure that the only difference in these
new EoSs is in the cold physics at supranuclear densi-
ties, while also capturing low density effects, such as the
formation of bound nuclei, by using a tabulated nuclear
model.

In order to study the role of L in the post-merger
phase, we perform numerical simulations of binary neu-
tron star mergers in full general relativity using each of
these new EoSs. Our simulations follow the last few
orbits of the binary inspiral, and continue through the
merger and until ∼25 ms post-merger. We use these
simulations to explore, in particular, the post-merger dy-
namics, post-merger gravitational wave emission, and dy-
namical mass ejection. We find that the slope L of the
symmetry energy does not leave clear imprints in the
post-merger dynamics or GW emission, but rather find
that these processes depend more sensitively on the high-
density part of the EoS. In contrast, we find some first
indication that the amount of dynamically ejected ma-
terial correlates with the slope of the symmetry energy,
with large values of L leading to the production of sig-
nificantly more dynamical ejecta. These links between L
and the ejecta may affect aspects of the electromagnetic
counterpart to the merger, such as an X-ray rebright-
ening [63], as has recently been observed for GW170817
[64, 65].

The outline of the paper is as follows. We start in
Sec. II A by describing the construction of the EoSs
used in this work. We describe the numerical setup of
our simulations in Sec. II B and the initial conditions in
Sec. II C. In Sec. III, we present the results of our merger
simulations, discussing the properties of the post-merger
remnant in Sec. III B, the dynamical ejecta in Sec. III C,

and the gravitational wave content in Sec. III D.

Unless explicitly stated, we adopt units of c = G =
kB = 1.

II. METHODS

In the following, we give a detailed overview on the con-
struction of the EoSs used in this work. We also briefly
summarize the numerical methods and setup used to per-
form our simulations.

A. Equations of state

In order to explore the impact of L on the post-merger
phase of a binary neutron star coalescence, we construct
a set of seven new EoS tables, which systematically vary
the slope L of the symmetry energy while keeping par-
ticular macroscopic properties fixed. In this section, we
summarize the framework used to construct these EoSs,
starting with a brief overview of our approach.

For all models, we start with an identical, finite-
temperature EoS table (SFHo, [66])2, which we use to
describe the matter at densities up to half the nuclear
saturation density, nsat. At these low densities, the SFHo
EoS table uses the statistical model of [67] to describe the
non-uniform (i.e., bound) matter in nuclear statistical
equilibrium, while the unbound nucleons are described
by the SFHo model for relativistic mean field interac-
tions. At densities above 0.5nsat, we switch to a piecewise
polytropic framework to represent the EoS of cold, dense
matter in β-equilibrium. This choice provides us with
maximum flexibility for exploring a wide region of the
zero-temperature EoS parameter space. We then use the
framework of [61] to extrapolate the cold, β-equilibrium
EoS to finite temperatures and arbitrary electron frac-
tions. Throughout this paper, we limit our consideration
to compositions of pure neutron-proton-electron matter.
Although hyperons may appear at high densities and/or
temperatures [68–71], we note that the assumption of
n-p-e matter is consistent with current state-of-the-art
EoSs commonly used in merger simulations (e.g., LS220
[72], SFHo [62], TNTYST [73], and DD2 [67, 74]). Cru-
cially, the low-density physics and the finite-temperature
part of the EoSs are held constant between all models,
in order to ensure a systematic comparison of the cold
supranuclear regime and, hence, of L.

2 The SFHo table was provided by stellarcollapse.org.
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FIG. 2: Equations of state included in our sample. The top
panel shows the zero-temperature, β-equilibrium pressure; the
middle panel shows the mass-radius relation; and the bottom
panel shows the tidal deformabilities. The dashed lines in-
dicate EoSs with R1.4 ' 11 km, which were constructed to
have identical Λ1.4=193. The solid lines correspond to EoSs
with R1.4 = 12 km, and the dotted lines correspond to the
R1.4 = 13 km EoSs.

1. Cold EoS in β-equilibrium

We model the zero-temperature, β-equilibrium EoS at
densities above 0.5nsat with piecewise polytropes, as in
Refs. [18, 75–77]. We use five polytropic segments, which
are spaced uniformly in log n between 0.5 and 7.4 nsat.
In order to ensure a smooth matching between the low-
and high-density EoSs, we fix the polytopic pressure at
0.5nsat to that of SFHo. The pressures at the remaining
fiducial densities serve as free parameters, which we vary
to construct EoSs with particular values for the slope of
the symmetry energy, the neutron star radius, and the
neutron star tidal deformability. We require that the
maximum mass of each EoS is at least 2M�, in order
to satisfy observational constraints from massive pulsars
[78–81]. Additionally, we require that each EoS remains
causal, and we set a lower limit on the pressures at the
first two fiducial densities (P (0.86nsat) > 1.07 MeV/fm3

and P (1.5nsat) > 3.96 MeV/fm3 ), which correspond to
pressures obtained from the Argonne AV8 two-body po-
tential [82]. This provides a lower limit to the low-density
pressure, under the assumption that the three-nucleon in-
teraction is always repulsive. Because the expansion of
nuclear interactions to few-body potentials breaks down
at higher densities, we only impose these constraints on
our first two fiducial densities. Additionally, for one EoS
in our sample (R1.4 = 10.8 km, L =40 MeV; see below),
we relax the lower limit at P (1.5nsat) by 20%, in order to
explore a broader region of parameter space. For addi-
tional details on the choice of these EoS constraints, see
[18, 83].

Even though this parameterization is an agnostic way
of describing the EoS, the polytropic pressure at nsat

still uniquely determines L, which we show as follows.
We start with the general expression for the energy per
baryon of zero-temperature nuclear matter,

Enucl(n, Ye, T = 0) = E0(n) + Esym(n)(1− 2Ye)
2 (2)

where n is the baryon number density, Ye is the electron
fraction, and E0(n) is the energy of symmetric nuclear
matter. The corresponding pressure is thus

P (n, Ye, T = 0) = n2

[
∂E0(n)

∂n

]
+

n2

[
∂Esym(n)

∂n

]
(1− 2Ye)

2. (3)

In this derivation, we neglect the contribution of elec-
trons, which add a . 10% correction into the determi-
nation of L below. At the nuclear saturation density,
∂E0(n)/∂n is zero by definition, and so the first term in
eq. (3) vanishes. In order to simplify the second term,
we use the fact that, for matter in β-equilibrium, the
electron fraction is completely determined by the sym-
metry energy, i.e., Ye,β = Ye,β(n, S, L), to leading-order
in the symmetry energy expansion [see, e.g., Appendix A
of 61]. Following [25], we approximate the β-equilibrium
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neutron excess as

(1− 2Ye,β)
2

= a+ bu+O(u2) (4)

where u ≡ (n/nsat) − 1, a = a(S), b = b(S,L), and
we have suppressed the dependencies of Ye,β on the den-
sity and symmetry energy parameters for clarity. With
this approximation, we thus have (1 − 2Ye,β)2|nsat

≈ a.
Finally, we can further simplify eq. (3) by substituting
in L ≡ 3nsat (∂Esym/∂n) |nsat

, which follows from the
definition in eq. (1). Combining these results, the β-
equilibrium pressure at nsat is given by

P (nsat, Ye,β , T = 0) =
ansatL

3
, (5)

or

L =
3P (nsat, Ye,β , T = 0)

ansat
. (6)

For a similar derivation, see [25].
Although there exist correlations between S and L

[e.g., 3, 84, 85], for simplicity, we fix S=32 MeV for all of
the EoSs constructed in this paper. This simplification
enables us to focus directly on the impact of L in the
post-merger phase, without the added complication of a
second varying parameter. The value of S = 32 MeV
is chosen in order to be consistent with recent theo-
retical and experimental constraints [10]. Accordingly,
a(S) = 0.833 [25]. However, it should be noted that set-
ting L > 100 MeV together with S = 32 MeV pushes
these models to an extreme part of the parameter space.
The fact that S remains fixed is an important caveat of
the present work. From eq. (5), it is clear that multiple
combinations of S and L can yield the same pressure at
nsat; that is, different choices of S and L could be at-
tached to the same β-equilibrium EoS. Whether varying
the combinations of S and L can affect the merger out-
comes is an important question, and should be explored
in a future study.

Using eq. (5), we vary the pressures in our piecewise
polytropic model to fix L to either 40, 100, or 120 MeV.
These values were chosen in order to span the range of
constraints from astrophysics and from the recent PREX-
II measurement [10]. Fixing L effectively sets the pres-
sures at the first two fiducial densities, which bracket
nsat. We then vary the remaining pressures in the poly-
tropic model to construct sets of EoSs that match in ei-
ther R1.4 or Λ1.4. We show the resulting sample of seven
EoSs in Fig. 2, along with the corresponding mass-radius
and tidal deformability curves.

Our final sample of EoSs contains three subsets which
are designed for systematic comparison. In the first sub-
set, we construct three EoSs that all predict R1.4 =
12 km, but that span the full range of L = 40, 100,
and 120 MeV. Because we span all three values of L for
this sample, these models will be the main focus of this
paper. We additionally construct a set of two stiffer EoSs
that predict a larger radius of R1.4 = 13 km, for L = 100

and 120 MeV. We find that it is not possible to construct
a model with R1.4 = 13 km and L = 40 MeV without vi-
olating causality, within the particular polytropic frame-
work used in this work. As a result, the R1.4 = 13 km
EoSs span just the larger values of L = 100 and 120 MeV.
Finally, we construct a set of softer EoSs, which were
designed to match exactly in Λ1.4, rather than in their
radii. This allows us to study whether varying the tidal
deformability, radius, or L has a larger impact on the
post-merger properties. For the softer set of EoSs, we
focus on L = 40 and 100 MeV, with Λ1.4 = 193 for both
cases, and R1.4 = 10.8 and 11.2 km, respectively. The
complete sample is shown in Fig. 2, and their character-
istic properties are summarized in Table I.

2. Extrapolation to finite temperatures and arbitrary
electron fraction

The piecewise polytropic framework is used to charac-
terize zero-temperature, β-equilibrium matter at densi-
ties above 0.5nsat. However, in a neutron star merger,
the post-merger temperatures can reach several tens of
MeV and the electron fraction can also deviate from the
initial β-equilibrium composition [e.g., 87–90]. In this
section, we describe the key features of our extrapolation
of the piecewise polytropes to finite temperatures and ar-
bitrary electron fraction, which follows the framework of
Ref. [61]. For complete details on how the pressure and
energy are calculated at fixed n, T , and Ye, see Boxes I
and II of that work.

We extrapolate to finite-temperatures using the M∗-
model, which provides an approximation of the thermal
pressure, including the leading-order effects of degener-
acy at high densities [61]. For all EoSs constructed in
this paper, we use an identical set of M∗-parameters,
n0=0.12 fm−3 and α = 0.8, which are consistent with
the values inferred from a sample of nine of finite-
temperature EoS tables [61].

The extrapolation from β-equilibrium to arbitrary Ye
utilizes the leading order expansion coefficients of the
symmetry energy, S and L, as well as an additional pa-
rameter γ, which characterizes the density dependence
of interactions between the particles. For all EoSs in our
sample, we fix S=32 MeV, as described in Sec. II A 1.
The slope L is set according to eq. (6), and we choose
γ = 0.6, which is consistent with the range of values in-
ferred from tabulated EoSs [61].

We note that, for n . 0.5nsat, the nuclear symme-
try energy framework breaks down, due to the forma-
tion of bound nuclei. This complicates the extrapolation
from β-equilibrium to arbitrary Ye, which is grounded
in the symmetry energy formalism. In order to avoid
these issues, we switch to the tabulated EoS SFHo at
densities below 0.5nsat. The transition between this
low-density EoS and our high-density, finite-temperature
models is performed following the free-energy matching
method of Ref. [58], which ensures a thermodynamically-
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Approx. radius Mtot[M�] q L [MeV] R1.4 [km] R1.8 [km] Λ1.4 Λ̃ Mmax [M�]
40 10.8 10.8 193 237 2.14

R ' 11 2.72 0.85 100 11.2 11.1 193 241 2.14
40 12.0 12.3 425 517, 537 2.47

R = 12 2.72, 2.71 0.85, 1 100 12.0 11.9 311 394, 395 2.25
120 12.0 11.6 287 364, 372 2.20
100 13.0 12.5 557 699 2.14

R = 13 2.72 0.85 120 13.0 12.6 522 662 2.23

TABLE I: Summary of equation of state (EoS) and binary configurations explored in this work.

Here, Mtot is the total gravitational mass at infinite separation of the binary, q its mass ratio and Λ̃ its effective tidal deforma-
bility of the binary, defined as in eq. (5) of [86] . The EoS parameters are given by the slope, L, of the nuclear symmetry
energy; the radii, R1.4 and R1.8, of a 1.4 and 1.8,M� neutron star (NS), respectively; the tidal deformability of 1.4M� NS,
Λ1.4; and the maximum mass of a nonrotating NS, Mmax .

consistent EoS. The low-density portion of the EoS,
which is given by SFHo, is already provided at finite
temperatures and non-equilibrium compositions. For the
high-density portion of the EoS in this matching, we
use the three-dimensional version of our parametric EoS,
which has been extrapolated to finite-temperatures and
non-equilibrium compositions as described above. We
perform the matching across a transition window from
n = 6.3×10−5 to 0.08 fm−3, across which the Helmholtz
free energies of the low- and high-density models, at a
given T and Ye, are smoothly combined. (For additional
details, see Sec. VII A of Ref. [58]; for a similar imple-
mentation, see also Ref. [42].) Additionally, across this
transition window, we switch from the complete model
for Esym(n) to a decaying power-law function, with pa-
rameters that are chosen to ensure that the extrapolation
to arbitrary Ye remains realistic across the window. For
additional details on this treatment of the symmetry en-
ergy , see Appendix A.

The nuclear symmetry energy expansion formalism is
also expected to break down at very high densities of a
few times nsat, where additional degrees of freedom may
become important. We do not account for non-nucleonic
degrees of freedom in this paper, and leave the explo-
ration of such effects to future work.

Finally, we note that in addition to the pressure, en-
ergy, and sound speed (which are all calculated following
Ref. [61]), the numerical evolution also requires input
for the chemical potentials, which are used to model the
neutrino transport (see Sec. II B). We describe the cal-
culation of the chemical potentials in Appendix B.

B. Numerical Setup

In this work, we simulate the final orbits, merger, and
post-merger phase of a binary neutron star coalescence.
This requires us to model both the evolution of the
fluid as well as the self-consistently coupled dynamical
evolution of the space-time. For the latter, we solve the
equations of general relativity using the Z4c [91, 92]
formulation, which is based on the Z4 formulation
[93], that allows for a dynamical damping of constraint

violations to the Einstein field equations [94]. Following
[95], we choose damping parameters κ1 = 0.02 and
κ2 = 0. The gauge conditions adopt moving puncture
gauges, i.e. 1+log slicing with Gamma-driver conditions
[96], with damping parameter η = 0.5. We further find it
beneficial to add an inverse radial fall-off to the damping
parameters outside of a sphere of r = 500 km, to preserve
numerical stability [97]. To damp high-frequency noise
in the gravitational field sector, we add Kreiss-Oliger
dissipation [98].

On the dynamically evolved background, we solve
the equations of ideal general-relativistic (magneto-
)hydrodynamics (GRMHD) [99, 100], in the limit of
vanishing magnetic field strength. Weak interactions are
included following the leakage prescription outlined in
[101, 102], which accounts for local energy losses and
composition changes due to neutrino interactions.

We solve these equations using the Frankfurt-
/IllinoisGRMHD code (FIL) [42, 103], which is de-
rived from the publicly available IllinoisGRMHD code
( ILGRMHD ) [104]. To solve the Einstein equations, FIL
provides a fourth-order accurate numerical implementa-
tion of the Z4c system using the methods outlined in
[105].
Different from ILGRMHD, FIL utilizes a fourth-order ac-
curate conservative finite-difference algorithm based on
the ECHO scheme to solve the GRMHD equations [106].
Crucially for this work, FIL provides its own microphysics
infrastructure, which can handle fully tabulated EoSs.
The codes makes use of the publicly available Einstein
Toolkit infrastructure [107] and specifically the Carpet
moving boxes refinement code [108]. Specifically, we set
up our simulation domain to extend to an outer bound-
ary of 3022 km in each direction and to consist of 8 refine-
ment levels of doubling resolution, where the finest one
covering the stars has a resolution of 262 m. For compu-
tational efficiency, we employ reflection symmetry across
the vertical z-direction.
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FIG. 3: Two-dimensional spatial distributions of the rest-mass density ρ, temperature T , electron fraction Ye, and entropy s
per baryon. Shown are meridional (top) and equatorial (bottom) views for three different values of the slope L of the nuclear
symmetry energy. The results shown are for the R1.4 = 12 km models with mass ratio q = 0.85 at time t = 25 ms after merger.

C. Initial conditions

We model the initial irrotational neutron star bina-
ries in quasi-circular equilibrium [109] using the LORENE
code.3 The two neutron stars are placed at an initial
separation of 45 km and are constructed for each of the
EoSs outlined in Sec. II A. The binary parameters are
modelled after the GW170817 event [110, 111]. In par-
ticular we adopt two mass ratios q = [0.85; 1.0], where
the latter is only used with R1.4 = 12 km EoSs. This
fixes the total mass M of the system, via the chirp mass

M = Mq3/5/ (1 + q)
6/5

= 1.186M� [111].

III. RESULTS

We now turn to the results of our simulations, with
an emphasis on the unequal mass case (q = 0.85),
which most closely matches the masses inferred from
GW170817. The outline and key findings of this section
are as follows: We start with a description of the
general dynamics and properties of the merger, for

3 https://lorene.obspm.fr

various choices of the slope of the symmetry energy
L. In Sec III B, we describe the morphology of the
hypermassive neutron star remnant, which we find
does not uniquely depend on L, but is instead sensitive
to differences in the high-density part of the EoS. In
Sec. III C, we describe the dynamical ejecta from our
simulations. We find a first indication that the quantity
of dynamical ejecta carries an imprint of L, with larger
values of L leading to enhanced mass ejection. Finally,
we analyze the gravitational wave emission from our
simulations in Sec. III D and find that it is relatively
insensitive to L, instead depending again more strongly
on the EoS at higher densities.

A. Overview of merger properties

Since the main goal of this paper is to determine how L
affects the early post-merger phase, we focus our atten-
tion on the dynamics in the first few tens of milliseconds
after merger. During this time, high temperatures will
be reached during merger [87–90], post-merger bounces
can drive an early mass ejection [112], and the rotat-
ing remnant will emit significant GWs. At the end of
this process, the former two neutron star cores will have
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FIG. 4: Temperature T in the equatorial plane at t ' 20 ms after merger for unequal mass (q = 0.85) mergers with EoSs having
a characteristic radius of R1.4 = 12km. The green lines indicate contours of constant rest-mass density, with values labelled
with respect to the nuclear saturation density. The different panels show results for varying slope parameter L from 40 to
120 MeV.

fused into a single core, with continued, diminishing grav-
itational wave emission leading to an axisymmetrization
of the remnant. This newly formed massive neutron star
will be hot and rapidly, differentially rotating [113], un-
less strong shear viscosity is present [114, 115]. This rem-
nant will set the stage for long-term mass ejection and
neutrino emission.

For all EoSs considered in this paper except one, we
find that the remnants survive until the end of our simu-
lations (t ' 25 ms post-merger). The sole exception is the
EoS with L = 40 MeV and R1.4 = 10.8 km, which col-
lapses after 15 ms. When comparing to this EoS, we will
accordingly limit our comparisons to the first 15 ms post-
merger. For all other EoSs, we will present results from
the end of our simulations (about 25 ms post merger),
unless otherwise specified.

In order to provide a first indication of how the post-
merger remnant and early mass ejection depend on the
slope of the symmetry energy, Fig. 3 shows equatorial
and meridional cuts of the rest-mass density, ρ, specific
entropy, s, and electron fraction, Ye, about 25 ms after
merger. To aid the comparison, we focus here on models
with radii R1.4 = 12 km. Starting out with the rest-mass
density, in the equatorial plane (bottom row of Fig. 3 )
we can see clear differences in the total amount of mass
ejection. The L = 120 MeV case shows extended shock
fronts with densities ρ < 1010 g cm−3, that are reduced
in size for the L = 40 MeV case. Additionally, the L =
40 MeV profiles are much more axisymmetric than for
higher values of L.

Looking at the electron fractions Ye, we find that the
disk and most of the ejecta are very neutron rich, i.e.
Ye < 0.02 (green regions) for the large L EoSs, whereas
the proton fraction is slightly enhanced, Ye ' 0.1, for
low L. The electron fractions in the polar region are
overall comparable between the EoSs, but are slightly

more proton rich in the L = 40 MeV, which is related to
much higher shock heating, as evidenced by the enhanced
specific entropies s for this EoS. Specifically, we also find
differences in the specific entropies reached for each of
our EoSs, as shown in the pink panels of Fig. 3. We find
that the merger with L = 100MeV reaches the highest
specific entropy, in both the equatorial plane and along
the polar axis. However, for all values of L, we find that
s can exceed 10 kB/baryon, in the low-density outflows.
Since s is a proxy for the amount of shock heating taking
place, we are led to conclude that shock heating will be
important for all values of L, for theR1.4 = 12km models
in our sample. We discuss these properties of the ejecta
in further detail below.

B. Remnant properties

We now turn to the general properties of the hyper-
massive neutron star remnant, and how it is impacted
by differences in the slope L of the nuclear symmetry
energy. Since we have three different slope values
available for the R1.4 = 12km case (see Sec. II A), we
will mainly focus on these models in this section.

We begin by discussing the overall structure and ther-
modynamic conditions present in the hypermassive neu-
tron star. Figure 4 shows the temperature and density
distribution in the equatorial plane, at ' 20 ms after
merger. We can see that there are several differences be-
tween the models. Starting for the L = 40 MeV model
(left panel), we see that after merger temperatures of
about 40 MeV are reached in a hot ring with densities
between 1−2nsat. Surprisingly, despite starting from an
initially asymmetric merger, the system has quickly cir-
cularized. This behavior will be more closely examined in
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4.

Sec. III D in the context of the associated gravitational
wave emission and the decay of the m = 1 component.
For the L = 100 and 120 MeV cases, we instead find
that the hot ring is highly asymmetric, with tempera-
tures > 60 MeV being reached in parts of the hot ring.
Similar to what has been found by varying the finite-
temperature part of the EoS [39], we find that changes in
L lead to different temperatures in the colder center of
the star. This suggests that, at least within some part of
the parameter space, finite temperature effects might be
degenerate with changes to the cold EoS, in determining
the thermal profile of the remnant. Such temperature
differences might be crucial when determining the micro-
physical conditions necessary for (bulk-) viscous effects
to become important [116], and may also influence the
local neutrino emissivity of the remnant and, as a result,
the cooling and eventual neutrino irradiation of the disk.

Overall, we find that the maximum temperatures
reached in the merger correlate strongly with the initial
neutron star radius, as summarized in Table II. Mergers
with R1.4 = 11 km reach temperatures above 120 MeV
at merger, whereas those with R1.4 = 13 km only reach

temperatures . 100 MeV. This is consistent with pre-
vious findings that more compact neutron stars collide
with higher impact velocities [117], and thus would be
expected to experience stronger shock heating. At late
times within the massive neutron star remnant, how-
ever, the temperatures are less strongly correlated with
R1.4, as can be seen in Fig. 4, where for all EoSs with
R1.4 = 12 km, the maximum temperatures vary be-
tween 40 . Tmax

final . 70 MeV. Instead, we find that
the maximum temperature of the late-time remnant cor-
relates weakly with the radii at high masses, i.e. for
M ≥ 1.8M�. That is, EoSs with smallR1.8 overall reach
temperatures above 60 MeV, whereas EoSs with larger
(R1.8 > 12 km), only reach temperatures < 50 MeV.
Therefore, it seems likely that the late-time remnant tem-
peratures are, at least in part, governed by the high den-
sity part of the cold EoS. We list the values of R1.8 in
Table I for reference, while the maximum merger and
late-time temperatures are summarized in Table II.

We continue our description of the remnant tem-
perature by studying the distribution of temperatures
in terms of the densities at which they occur, again
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focusing on the R1.4 = 12 km models. Previous studies
have considered these conditions either in the general
thermodynamics of the merger [90, 118] or the appear-
ance of a hot quark-matter phase [44, 45, 119]. In
the top row of Fig. 5, we now directly compare the
thermodynamic conditions present at a given density.
We can see that due to differences in the cold EoS, and
hence in L, different densities are reached. In particular,
the L = 40 MeV merger probes lower densities of around
3 nsat, while higher values of L lead to densities beyond
4 nsat being probed in the post merger. This is a
direct result of the overall stiffness of these EoSs. Most
strikingly, in the case of the L = 40 MeV EoS, the
temperature distribution is very narrow, and follows an
almost univariate profile with the density. On the other
hand, the temperatures probed in the L ≥ 100 MeV
cases are more broadly distributed, with temperatures
of up to 70 MeV being reached. Also in these cases, a
simple mapping between n and T is no longer possible,
as the range in temperatures can be quite broad for
a given density, e.g. 30 MeV differences for matter at
n ' 3nsat.

At the same time, we can also compare how the elec-
tron fraction of the system varies, which would be a proxy
for out-of-weak-equilibrium effects. While initially the
electron fraction in the inspiral will be fixed at cold β-
equilibrium, at high temperatures the conditions for β-
equilibrium are modified. Indeed, we can see that for
the coldest case, which corresponds to L = 40 MeV, the
electron fraction is almost constant with a very narrow
distribution, with Ye ' 0.05. For higher values of L, Ye
increases to higher densities, as expected from cold β-
equilibrium, and also attains a considerable spread, as a
result of the large spread in T for these EoSs. Neverthe-
less, even for the highest values of L considered here, the
electron fraction remains low, Ye < 0.2.

To reinforce these observations, Fig. 4 also shows
the lepton chemical potential µl, which vanishes in β-
equilibrium.4 From this, we can see that indeed out-of-
equilibrium effects are likely small for the L = 40 MeV
case, but may be significant for matter above 2nsat for
larger L. This could have implications on the long-term
thermal evolution and neutrino cooling of the remnant
[120, 121].

C. Mass ejection

In this section we focus on the mass dynamically
ejected during the merger process, see e.g. [47, 122–124].
Although this is in most cases only a small contribution

4 We note that the sign change in µl indicates a relative increase or
decrease of the electron fraction Ye relative to its β-equilibrium
value.

to the overall amount of ejecta from the system [125], the
exact details typically depend on the EoS and the mass
ratios used in the simulation [122]. Additionally, the re-
cent observation of an X-ray rebrightening [64, 65], po-
tentially associated with the presence of relativistic fast
ejecta [63, 126], has resulted in a recent interest into the
properties of dynamical mass ejection.

In this work, we extract the amount of mass ejecta on
a spherical detector placed at a radial coordinate r =
295 km from the merger site. We record the mass flux

Ṁej =

∮

r= 295 km

√
γρui dSi , (7)

temperature T and electron fraction Ye of the ejecta as
the pass through the surface S. Here ρ is the rest-mass
density, ui the spatial component of the fluid four-
velocity, and γ is the determinant of the 3-metric. In
order to determine whether a fluid element crossing the
detector is unbound, we use the ut < −1 criterion [127].
We point out that this will slightly underestimate the
amount of unbound ejecta, as it neglects the contribution
of the internal energy.

We then time integrate the the mass flux to compute
the amount of mass ejection dMej/dΩ per solid angle.
Additionally, we also compute the mass-weighted elec-
tron fraction as an indicator for average nuclear compo-
sition.

The resulting spatial and compositional distributions
of the ejecta for the unequal mass mergers (q = 0.85)
are shown in Fig. 6 using Mollweide projection. Start-
ing with the reference case of R1.4 = 12 km, we observe
the following differences between the small L = 40 MeV
case and the L > 100 MeV cases. First, the L = 40 MeV
case features a rather spatially isotropic distribution of
mass ejecta. Additionally, the electron fraction reaches
the highest average values in all three values of L, hav-
ing Ye > 0.25 for large parts of the mass ejection, for
the R1.4 = 12 km EoSs. With increasing slope parame-
ter L, we find that the ejection becomes more equatorial,
with the largest amounts of ejecta in the L = 120 MeV
case. Consistent with the increase of equatorial ejection,
which is likely tidally driven [128], the electron fraction
of the ejecta decreases to values below Ye < 0.1 in those
regions. Overall the electron fraction reaches lower val-
ues also in polar regions for large L, compared to the
L = 40 MeV cases. For unequal mass mergers, these
trends are inversely correlated with Λ1.4, whereas for
equal masses the trend is less clear. From Fig. 2, we
can see that there are strong variations in radius of the
secondary star (M2 = 1.25M� for the unequal mass bi-
nary). As a result, we find that for those systems, tidal
effects take over that correlate more strongly with the
compactness. For those mass ratios, the larger L models
tend to produce more equatorial ejetca, despite having
smaller tidal deformabilities. Albeit somewhat counter
intuitive, there have been previous examples in the lit-
erature in which tidal disruption was better captured in
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FIG. 6: Time-integrated ejected mass Mej and mass-weighted average electron fraction Ye projected onto a sphere at radius
r = 295 km from the origin. The data is shown using Mollweide projection for the unequal mass models.

terms of the compactness, than with the tidal deformabil-
ity [129]. These results suggest that perhaps the picture
is more complicated than either a single compactness or
Λ parameter can generically capture. Qualitatively, the
same behaviour also applies to the R1.4 ' 11 km cases
(Fig. 6, left column), where the L = 100 MeV simulation
features enhanced neutron rich outflows in the equatorial
plane compared with the L = 40 MeV case, despite the
fact that these EoSs have an identical Λ1.4. Finally, as
we saw for the R = 12 km models, the ejection in the
R1.4 = 13 km cases is very similar for L=100 MeV com-
pared to 120 MeV.

In order to provide a more quantitative description
of the mass ejection, we next consider one-dimensional
histograms of the entropy per baryon, s , electron
fraction, Ye, and velocity, v, 5 for the dynamical ejecta.
These are shown in Fig. 7. Starting with the average
electron fraction we can see the overall distributions
for the R1.4 = 12 km EoSs are surprisingly similar. As
discussed for Fig. 6, there are differences for the lowest
Ye bins, with large L models containing slightly more
mass at small Ye < 0.05, but the fall-off at large Ye is
nearly identical for all values of L. This behaviour is very
similar for the R1.4 ' 11 km cases. Interestingly, the

5 We estimate the velocity from the local Lorentz factor of the
fluid element.

difference between the L = 100 MeV and L = 120 MeV
at intermediate electron fractions Ye > 0.15 is more
pronounced for large stars with R1.4 ' 13 km; however,
these differences remain small.

This insensitivity of the ejecta composition to the EoS
stands in contrast to previous studies, which have found
much larger variations when comparing results from dif-
ferent tabulated EoSs, especially among the ejecta with
electron fractions Ye > 0.2 (e.g. [47, 124, 128]). Dif-
ferent from essentially all previous studies (see e.g. Refs.
[32, 37, 130] for a review), our EoS are specifically con-
structed to vary only in the high-density part, while also
using the same finite-temperature model (see Sec. II A).
In all cases, the low density EoS is, however, the same.
Given the large insensitivity of the results to changes in
high-density physics between the models, this leads us to
conjecture that the composition of the ejecta is largely
determined by low density EoS, which governs the outer
regions of the stars from which they are ejected.

In contrast, when considering the distribution of en-
tropies s per baryon for the mass ejecta, we find a small
trend with L. Specifically, we find that in all cases an
ordering is present, where larger L slope parameters can
lead to a suppression of highly shocked material with
large, s > 40 kB / baryon.

Finally, we comment on the prospect for high veloc-
ity ejecta, which is especially relevant in the context of
the recently observed X-ray rebrightening of GW170817
[63]. We find that, in all cases, high velocity tails with
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v > 0.6 c are present, which constitute about 1% of the
overall mass ejecta. Different from the specific entropy
s, no concrete ordering in terms of L can be inferred
from our data. For large stars (bottom row of Fig. 7),
higher values of L lead to a suppression of fast ejecta.
On the other hand, for R1.4 = 12 km models, large and
small values of L produce almost identical distributions,
except at very low velocities. It, therefore, seems that
the dependence of fast ejecta on nuclear parameters is
more complicated, as already anticipated in earlier works
[64, 126, 131].

D. Gravitational waves

Finally, we consider the gravitational wave (GW) emis-
sion from the various EoSs in our sample. While several
previous studies have used the inspiral of GW170817 to
constrain L [e.g., 25–27, 29], the dependence of the post-

merger GW signal on L has never before been systemat-
ically explored. Consistent with the rest of this paper,
we thus focus our analysis in this section on the post-
merger GW emission. Details on the analysis methods
are summarized in Appendix C.

1. Gravitational wave signals

We start by showing the ` = m = 2 component of the
plus-polarized GW strains, h+

2,2, for the q = 0.85 binaries
in Fig. 8. These signals correspond to a face-on merger
located at 40 Mpc. In all panels, we have aligned the
signals at the time of merger, tmer, which we define as

the time at which
∣∣∣h2,2

+

∣∣∣ reaches a maximum. Although

the EoSs are constructed with fixed radii R1.4, their tidal
deformabilities can differ significantly, see Table I. This
leads to considerable phase difference of the waveforms
by the time of merger. Only the EoSs with R1.4 ' 11 km
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R1.4 [km] q L [MeV] Mdyn
ej

[
10−3 M�

]
〈v〉 [c] 〈Ye〉 Tmax

mer [MeV] Tmax
final [MeV]

40a 2.2 0.34 0.10 136 63
R1.4 ' 11 0.85 100 5.3 0.36 0.07 120 66

40 0.6 0.30 0.12 89 40
0.85 100 2.5 0.30 0.08 95 60

120 6.2 0.31 0.07 85 68
R1.4 = 12

40 1.2 0.28 0.09 97 46
1.0 100 0.7 0.27 0.13 106 61

120 0.8 0.31 0.13 129 52
100 1.9 0.28 0.09 94 50

R1.4 = 13 0.85 120 2.1 0.28 0.08 85 46

aNote: the R1.4 ' 11 km, L = 40 MeV binary undergoes a delayed
collapse ∼15 ms after merger.

TABLE II: Summary of remnant temperatures and the mass-averaged dynamical ejecta properties. Mdyn
ej is the total amount of

dynamical ejecta, while 〈v〉 and 〈Ye〉 are the mass-averaged velocity and electron fraction of the dynamical ejecta, respectively.
Tmax

mer is the maximum temperature achieved at densities above nsat at the time of merger and Tmax
final is the maximum temperature

in the remnant (n > nsat) at the end of our simulations.
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have equal values of Λ1.4, and these resulting binaries indeed have identical inspirals.
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FIG. 9: Same as Fig. 8, but for the equal-mass binaries.

FIG. 10: Characteristic strain, including all `=2, 3 modes, for a face-on merger at 40 Mpc. The top two and bottom left panels
are for the q = 0.85 binaries, while the bottom right panel corresponds to the equal-mass binary. The vertical solid line marks
the dominant f2 spectral peak, while the dotted lines indicate the location of the secondary peaks f1 and f3. The markers
indicate the approximate location of spectral peaks associated with the m = 1 mode, which are expected to occur at ' f2/2
where present. Finally, the R1.4 = 12 km, L = 40 MeV EoS is also plotted in the lower left panel with the faded, dashed pink
line, to illustrate the similarity of this spectrum with the R1.4 = 13 km spectra. The gray dash-dot and dotted lines indicate
the design sensitivity curves for advanced LIGO [132] and Einstein Telescope [133], respectively.

From Fig. 8, we observe significant differences in both the amplitude and beat frequencies of the decaying post-
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merger GWs for the various EoSs in our sample. We find
differences between EoSs both with common R1.4 = 12
or 13 km, and also between EoSs with identical tidal de-
formabilities (corresponding to the R1.4 ' 11 km mod-
els, shown in the first column of Fig. 8). This suggests
already that the values of R1.4 or Λ1.4 do not uniquely
govern the post-merger GW emission. We also find dif-
ferences in the post-merger GWs from the equal-mass
binaries with R1.4=12 km, which are shown in Fig. 9.

We explore the spectral content of these post-merger
GWs in more detail by calculating their characteristic
strain via eq. (C3), which we show in Fig. 10, again for a
face-on merger located at 40 Mpc. The spectra in Fig. 10
show several well-defined peaks, which we highlight with
vertical lines. The dominant peak, which is marked with
a solid vertical line and which we call f2, is located in
each spectra at ∼ 2800−3200 Hz. We also find secondary
peaks located to either side of f2, which we call f1 and
f3 and which we mark with dotted vertical lines. Finally,
in a subset of the EoSs, we find a possible peak located
at ∼ f2/2, which we call fm=1 and we mark with a cross.
We summarize the location of all peaks in Table III.

We note that the f2 spectral peak is typically associ-
ated with quadrupolar oscillations of the remnant, while
the origin of the secondary peaks remains under debate
[31–35, 134]. We do not distinguish between the pro-
posed origins in the present work, but rather treat the
secondary peaks agnostically, reporting simply the rela-
tive alignment of the peaks for each EoS. Additionally, we
note that for some EoSs in our sample, these secondary
peaks are only weakly resolved, and their exact align-
ment should be interpreted with a grain of salt. In the
following, we, therefore, focus in particular on the domi-
nant peak, f2, and we return to a discussion of fm=1 in
Sec. III D 4.

In order to further quantify the differences of the grav-
itational waveforms in the post-merger phase, we com-
pute detector-dependent overlap integrals, O, assuming
the design sensitivity of Advanced LIGO [132] and a face-
on source located at 40 Mpc (see Appendix C for details).
The overlap integral is defined such that O . 0.992 is
required to marginally distinguish two waveforms with
SNR of 8 [135, 136]. For the R1.4 ' 11 km EoSs, we find
that the post-merger GW signals are indistinguishable
(O = 0.999). The top left panel of Fig. 10 shows that lo-
cation of the dominant spectral peaks are nearly identical
as well (to within .30 Hz). These two EoSs have simi-
lar R1.4 and identical Λ1.4 = 193, yet differ substantially
in L, ranging from 40 to 100 MeV. We plan to further
explore this similarity of the GW emission for these two
EoSs in a follow-up paper. We note, for now, that the
similarity of these spectra suggests that L does not have
a clear imprint on the post-merger GW signal for this
EoS.

The weak dependence of the post-merger GW signal
on L extends to larger values of L as well. From the
R1.4=13 km EoSs, which have larger, albeit more sim-
ilar, values of L = 100 and 120 MeV, we find that

the post-merger GWs are only marginally distinguish-
able (O = 0.97) with Advanced LIGO at design sensi-
tivity. Additionally, the maximum difference in f1, f2,
and f3 for these EoSs is . 90 Hz, suggesting again only
a weak imprint of L on the post-merger signal.

In contrast, for the R1.4=12 km EoSs, we find a large
difference between the GW signals for the L = 40 MeV
EoS compared to the EoSs with either L = 100 or
120 MeV. These differences hold for both the equal and
unequal-mass binaries. For the case of the unequal mass
binary, the overlap integral between the L = 40 and
100 (120) MeV EoSs is 0.57 (0.34), while we addition-
ally find differences of up to 490 Hz in the location of f2

between these EoSs. The waveforms for these EoSs are
thus clearly distinguishable for Advanced LIGO at design
sensitivity. For the R1.4 = 12 km EoSs with L = 100 and
120 MeV, the overlap integral is still 0.88, indicating that
even these signals can be distinguished with the sensitiv-
ity of Advanced LIGO. We find similar results for the
equal mass binary, although for this case, the L = 100
and 120 MeV spectra are only marginally distinguishable
(O = 0.992; see also Fig. 9).

R1.4 [km] q L [MeV] f1 [kHz] f2 [kHz] f3 [kHz]
40a 2.09 3.43 4.99

R1.4 ' 11 0.85 100 1.73 3.40 7.29
40 1.31 2.70 3.68

0.85 100 2.40 3.03 4.43
120 2.59 3.19 4.50

R1.4 = 12
40 1.60 2.65 3.99

1.0 100 2.02 3.07 4.36
120 2.10 3.12 4.36
100 1.87 2.80 3.90

R1.4 = 13 0.85 120 1.82 2.71 4.01

aNote: the R1.4 ' 11 km, L = 40 MeV binary undergoes a delayed
collapse ∼15 ms after merger.

TABLE III: Summary of post-merger GW frequencies. See
the description in the text for further details.

2. Correlation of f2 with the high-density EoS

We therefore find that, although varying L leads to
significantly different GW emission for the EoSs with
R1.4 = 12 km, there is no clear trend between L and
the post-merger GWs that persists for all EoSs in our
sample. Instead, we find that f2 correlates more strongly
with the high-density EoS, as we show in Fig. 11. The
three panels of Fig. 11 shows f2 as a function of R1.4,
R1.8, and the pressure at 3× the nuclear saturation den-
sity, P (3nsat). We find differences of up to ∼500 Hz in
f2 for R1.4 = 12 km. In contrast, the scatter in f2 is
substantially reduced by instead plotting against R1.8 or
P (3nsat). In other words, we find a stronger correlation
between f2 and either R1.8 or P (3nsat), than with R1.4.
This is consistent with previous studies that have also
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FIG. 11: Correlations between the peak frequency f2 and the radii R1.4 and R1.8 of 1.4M� and 1.8M� neutron stars,
respectively. We also show correlations with the pressure P at density n = 3nsat. The different colors correspond to the value
of L, while the different symbol shapes indicate R1.4 for our chosen EoSs. The hatched symbols correspond to the results
from the equal-mass binaries, while the solid-fill symbols correspond to the q = 0.85 binaries. We find a significant scatter
in the correlation between f2 and R1.4, and that f2 instead correlates more closely with the high-density part of the EoS,
parameterized here either with R1.8 or P3nsat .

found that f2 correlates better with R1.6 than with R1.4

or even R1.8 [137, 138]. We find a similar strength of
correlation with R1.6 (not shown) as with R1.8.

While L is set by the pressure at nsat (eq. 5), the pres-
sure near 3 − 4 nsat primarily governs the slope of the
mass-radius curve [75]. We thus find that f2 may, in
fact, be sensitive to the slope of the mass-radius curve.
While the number of simulations performed here is in-
sufficient to provide new fitting formulae for f2(P3nsat

),
these correlations suggest that f2 may be able to probe

FIG. 12: Inferred radius as a function of the true (inputted)
radius, for each of the binaries in this work. The color scheme
and symbols are as in Fig. 11. We calculate R1.6(f2) using
the universal relationship from eq. (21) of [137]. We find that
using this standard fitting formula with these more extremal
EoSs leads to inferred errors of up to 0.86 km in the radius
for the EoSs included in this work.

the higher-density part of the EoS more cleanly than it
probes R1.4.

This dependence on the high-density pressure also ex-
plains the large scatter in f2 for the R1.4 = 12 km EoSs.
In order for an EoS to have L = 40 MeV, the pres-
sure at nsat must be relative soft. For that EoS to still
reach R1.4 = 12 km, it must undergo a rapid stiffen-
ing of the pressure, which in turn predicts larger radii
for high-mass neutron stars (as shown in Fig. 2). The
R1.4=12 km, L =40 MeV EoS actually has a similar high-
mass radius to the R1.4=13 km EoSs (as can be seen in
Fig. 2, and in Table I). The similarity of R1.8 for these
different EoSs results in very similar spectra, as shown
in the bottom left panel of Fig. 10, where we overlay
the R1.4 = 12 km, L = 40MeV spectrum (dashed, pink
line) against the R1.4=13 km spectra. We find that the
R1.4 = 12 km, L = 40 MeV EoS effectively masquerades
as an R1.4 = 13 km spectrum. In other words, based on
the spectrum alone, one might infer that the GWs from
the R1.4 = 12 km, L =40 MeV EoS actually corresponds
to a 13 km EoS, resulting in a 1 km error.

We can see this potential for error more clearly in
Fig. 12, in which we plot the true (inputted) radius
against the radius inferred from f2, which is calculated
using the universal relations of Ref. [137]. We show the
relationship for R1.6 (f2), which was found in that work
to produce smaller residuals than R1.4 (f2) or R1.8 (f2).
Indeed, we find slightly smaller residuals between the true
and inferred radii when comparing with R1.6, than with
the fit formulae for R1.4. Nonetheless, we still find errors
of up to 0.86 km in the inferred radius, with the largest
residual corresponding to the R1.4 = 12 km, L = 40 MeV
EoS in the equal-mass configuration.

Understanding how to minimize the scatter in the rela-
tionship between f2 and the R is of critical importance if
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FIG. 13: Gravitational wave energy (∆EGW) and angular momentum losses ∆J for the unequal mass mergers q = 0.85.
Different colors correspond to different slope parameters L.

we are to achieve the long-standing goal of constraining
the neutron star EoS with post-merger GWs [32, 33, 35–
37]. For the Advanced LIGO/Virgo network operating
at design sensitivity, the statistical measurement uncer-
tainty on the radius inferred from f2 may be as small as
100 m, for a merger at 20 Mpc [139]. The error budget
of such a measurement is thus likely to be dominated by
the systematic uncertainty of the f2 − R universal rela-
tionship [139, 140]. The number of detections required
to constrain the radius to such an accuracy may also de-
pend on the stiffness of the EoS [141] and the distance
of the source [142]. Of the models explored in this work,
the largest scatter in this relationship comes from the
R1.4 = 12 km, L = 40 MeV EoS. This EoS is a par-
ticularly interesting example, as it exhibits an extreme
stiffening in the pressure and, accordingly, has a charac-
teristic back-bend in the mass-radius relation (see Fig. 2).
Such EoSs are not commonly included in the simulations
used to fit for the various f2 − R universal relations re-
ported in the literature [31, 137]. Rather, those samples
tend to be dominated by EoSs with more vertical mass-
radius relations. Our findings thus provide additional
motivation to continue to systematically expand the li-
brary of EoSs used in neutron star merger simulations to
explore a wider range of EoS phenomenology, in order to
better quantify the uncertainties in the f2 −R universal
relations.

3. Energy- and angular momentum loss

We next focus on the amount of of energy, ∆EGW,
and angular momentum, ∆J , carried away by gravita-
tional wave emission. Understanding this loss of angular
momentum, and in particular how quickly the neutron
star remnant symmetrizes, has profound implications on
the long term stability of the remnant. Small gravita-
tional wave losses would aid a long lifetime of the (hyper-
)massive neutron star, while very efficient emission could
lead to an early collapse [54, 56, 57]. It is interesting to
ask whether changes in L affect this emission, thus, lead-
ing to possible imprints of nuclear parameters onto the
remnants life time.

To this end, we show these losses for our unequal mass
mergers (q = 0.85) in Fig. 13. Focusing first on the
R1.4 = 12 km cases, we find that the L = 40 MeV
merger leads to the least amount of energy and angular
momentum loss, with the emission essentially shutting off
after 5 ms post-merger. This indicates an extremely fast
axisymmetrization and a suppression in GW luminosity
compared to previously studied EoSs [143], and also dif-
fers from the slow, but continued emission for all other
EoSs in this work. For example, this trend with L does
not hold up for other radii, with the L = 40 MeV sys-
tem featuring the largest amount of emission at R1.4 =
11 km. In the R1.4 = 13 km we do not find a clear trend
with of L, with the L = 120 MeV EoS leading to larger
losses at early times and the L = 100 MeV EoS leading
to larger losses at late times.
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This strongly hints that the behavior of the post-
merger remnant, which is governed by densities of several
times nsat, is no longer strictly correlated with the behav-
ior at nsat, and hence L. This is also consistent with the
correlations we found between the f2 frequencies and the
high-density EoS in Fig. 11.

4. One-arm instability

Finally, we comment on the presence of a one-arm
(m = 1) spiral instability in the remnants. If saturated,
this instability can lead to the development of a dense
core that is offset from the remnant’s center of mass.
The resulting m = 1 deformation in the density distri-
bution drives the production of (`,m) = 2, 1 GW modes,
which, in turn, generate a spectral peak located at∼ f2/2
[144]. First identified in the context of binary neutron
star merger simulations in [144–146], this instability has
since been studied for a range of EoSs and binary config-
urations [147, 148]. It also also been suggested, that the
continued presence of m = 1 instability can inject energy
into the disk and aid the production of spiral-wave winds
on longer timescales [149].

In Fig. 10, we find a clear, albeit weak, peak at
fm=1 ≈ f2/2 in the spectra for some of the R1.4 = 12 and
13 km EoSs, for the unequal-mass binaries. We mark the
location of these peaks with an “x”. For theR1.4 = 11 km
EoS, we do not find any peak within 10% of f2/2, al-
though this may be a result of the lower resolution in
these spectra.

In order to further study the development of the m = 1
mode, we show in Fig. 14 the (`,m) = 2, 1 and (`,m) =

2, 2 modes of ψ`,m4 (t) (see Appendix C for details). Fig-
ure 14 is shown for an edge-on merger, which enhances
the visibility of the m = 1 mode [e.g., 145, 146] and fo-
cuses again on the R1.4=12 km EoSs. While the m = 1
mode is subdominant to the m = 2 mode in all cases, we
find clear evidence of the one-arm instability developing
at merger for each value of L, as evidenced by the rapid
rise in ψ2,1

4 . Similar results are found for R1.4 ' 11 km
and 13 km EoSs. For the q = 1 binaries, this mode
quickly decays following merger. In contrast, for the
unequal-mass binaries, the m = 1 mode tends to sat-
urate shortly after merger and remains persistent, even
as the m = 2 mode fades. The exception to this trend
again comes from the R1.4 = 12 km, L = 40 MeV EoS.

For the R1.4 = 12 km, L = 40 MeV EoS, Fig. 14 shows
that the m = 1 mode decays more quickly than any of the
other, unequal-mass binaries. This is matched by a more
rapid decay of ψ2,2

4 in the same figure, as well as in the
overall decay of the GW strain seen in Fig. 8. This damp-
ing of the GW emission suggests that the remnant quickly
becomes axisymmetric. Indeed, the density contours in
Fig. 4 show that the R1.4 = 12 km, L = 40 MeV EoS
is nearly axisymmetric, while the L = 100 and 120 MeV
EoSs still show a strong m = 1 deformation at late times.
We conjecture that this rapid axisymmetrization may be

FIG. 14: Amplitude of the spherical harmonic components
of the GW signal for an edge-on merger at 40 Mpc, for the
R1.4 = 12 km EoSs. The solid and dotted lines correspond
to the (`,m) = (2, 1) and (2,2) modes, respectively. For the
q = 0.85 binary (top panel), we find that the m = 1 mode
saturates within a few milliseconds of merger for the values
of L > 100 MeV, but that the m = 1 mode quickly decays for
the L = 40 MeV EoS, indicating that this binary is rapidly
becoming axisymmetric. In contrast, for the equal-mass bi-
naries (bottom panel), the m = 1 mode is in general weaker,
and decays quickly for all values of L.

related to the extreme stiffening of this particular EoS.
We leave further exploration of this finding to future
work.

IV. DISCUSSION AND CONCLUSIONS

In this work we have investigated the impact of sys-
tematically varying the slope L of the nuclear symmetry
energy on the post-merger dynamics, mass ejection, and
gravitational wave emission of a binary neutron star co-
alescence. We have considered seven new EoSs, which
were constructed to have R1.4 ' 11 km (with identical
Λ1.4), or R1.4 = 12 , 13 km, and to vary systematically in
L from 40 to 120 MeV, while keeping the value of S fixed
at 32 MeV .

Concerning the properties of the post-merger rem-
nant, we have found that for our baseline models with
R1.4 = 12 km varying the slope of L significantly affects
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the temperatures probed in the remnant. In particular,
we found that the EoS with R1.4 = 12 km, L = 40 MeV
reaches lower temperatures T . 40 MeV in the post-
merger phase, whereas larger values of L > 100 MeV
for the same radius can reach T & 60 MeV. While the
exact temperatures reached in the post-merger remnant
are expected to also strongly depend on the total mass of
the binary and the mass ratio, our results reported here
are representative for a GW170817-like event and indi-
cate a new sensitivity of the post-merger phase to the
underlying EoS.

This increase in temperature for large L can be under-
stood in terms of the compressibility of the EoS around
nsat. High temperatures in a merger are only produced
during the post-merger bounces of the neutron star cores.
These bounces drive compressions of the outer layers
of the stars and, as a result, should correlate strongly
with the radii of the stars. To be more precise, we find
that the temperatures probed during the merger itself
are inversely proportional to R1.4, whereas the late-time
temperatures in the remnant are more correlated (still
inverse-proportionally) to R1.8. Same concern as in the
results; this does not correlate well with R1.8.

We have also found that the post-merger remnant be-
comes more rapidly axisymmetric for the R1.4 = 12 km,
L = 40 MeV EoS, compared to EoSs with identical R1.4

and larger L. In particular, we found that the m = 1
deformation that is naturally induced in an asymmetric
merger, e.g. with mass ratio q = 0.85 considered here,
is rapidly dampened for this small L EoS. We do not
find evidence of a similar damping in any other EoS we
studied, including the R1.4 ' 11 km, L = 40 MeV EoS;
leading us to conjecture that the effect may in fact stem
from the high-density EoS, rather than the specific value
of L. Further studies with additional EoSs will be needed
to clarify this behaviour.

Since post-merger gravitational wave signals are very
promising probes of the dense matter EoS [32, 33, 35–37],
we also performed a detailed analysis of the GW emission
extracted from our simulations. Interestingly, we found
that the R1.4 = 12km EoSs exhibit significantly different
post-merger GW emission for the three values of L, which
may be distinguishable with Advanced LIGO at design
sensitivity. In particular, we found that for the EoSs
with R1.4 = 12 km, the L = 40 MeV and L = 100 MeV
EoSs differ in f2 by more than 300 Hz for both equal-
and unequal-mass binaries, and differ by nearly 500 Hz
for the L = 40 MeV EoS compared to the L = 120 MeV
EoS.

In contrast, for the R1.4 ' 11 km EoSs, we found no
significant differences in the post-merger GWs between
the L = 40 and 100 MeV cases, and we found only mi-
nor differences between the R1.4 = 13 km EoSs, strongly
hinting that L is not uniquely imprinted in the gravi-
tational wave signal. More precisely, whereas L governs
the behavior of the EoS around nsat, our findings suggest
that the large differences in these EoSs at densities above
2nsat might be playing a stronger role in the dynamics

of the post-merger system.

To further illustrate this point, we compared the re-
sults from our post-merger GW spectra to known quasi-
universal relations that relate the post-merger peak fre-
quencies to the neutron star radius [137] and found that
using the standard relations to map from f2 to the R1.6

can lead to errors in the inferred radii of up to ∼ 1 km,
for the EoSs considered in this work. As shown in Fig.
11, we found that while the correlation between f2 and
R1.4 is weak, a better result may be obtained by com-
paring f2 with either the radius at higher masses, R1.8,
or by correlating f2 with the pressure at 3nsat. This un-
derscores the importance of the high-density EoS, rather
than L, in governing the post-merger GW spectrum.

Finally, we also considered the dynamical ejection of
matter during the merger. Since this material is ejected
from the outer parts of the star, we expect to here find
the strongest correlation with L, as L affects the EoS
around nsat. Indeed, or the q = 0.85 binaries, we found
that smaller values of L lead to a systematic (and mono-
tonic) reduction in mass ejection (Tab. II), with a corre-
sponding, systematic increase in shock heating (Fig. 7).
However, this trend is less clear in the subset of equal-
mass binaries. In contrast, the compositional properties
of the ejecta are similar in all cases and we only find
minor differences in the fast tails of the ejecta velocities.

This insensitivity of the ejecta composition and ve-
locity to the EoS differs from earlier simulation of BNS
mergers (e.g. [47, 124, 128]), where much stronger dif-
ferences were found, especially at electron fractions Ye >
0.2. Since those simulations were performed using a set
of EoS that simultaneously varied EoS parameters in all
density regions, these simulations may still be consistent
with our findings. In fact, since our results systemati-
cally vary L while keeping the low-density EoS fixed, the
absence of strong differences in the nuclear composition
of the ejecta is indicative for other parameters either at
higher or lower densities than saturation governing that
behavior. Future work varying the EoS systematically
across the entire parameter range will be needed before
further conclusions can be drawn.

Although only indicative at this point, due to the lim-
ited set of EoSs, the two mass ratios, and the single value
of S considered here, we plan to follow up on these po-
tential trends with L in future works. This preliminary
correlation between L and the mass ejected may have im-
plications on the feasibility of such systems to produce an
X-ray and radio rebrightening years after the merger, as
has recently been suggested for GW170817 [64, 65], and
may provide a new pathway for constraining the slope of
the nuclear symmetry energy from observations of future
electromagnetic counterparts. Determining the feasibil-
ity of such constraints, and the precise dependence on
the mass ratio, will be the focus of future work.

We note again that these trends with L have been de-
termined using a fixed value of S=32 MeV. Understand-
ing the full dependence of the post-merger phase on the
nuclear symmetry energy will require further simulations,
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exploring variations in S and L in tandem, and poten-
tially also the contributions from higher-order terms in
the symmetry energy expansion. This paper provides a
crucial first step towards systematically understanding
this parameter space. Additionally, we have restricted
ourselves to the modelling of npe-matter. While the poly-
tropic EoS model at T = 0 can capture all degrees of
freedom, the enhancement of exotic degrees of freedom,
such as hyperons, at finite temperature have not been in-
cluded in these initial models. Hyperons might be copi-
ously produced after the merger [40, 41, 119], and might
lead to similar finite temperature corrections as does the
appearance of quarks [42]. We plan to address this point
in future work.

In conclusion, although the post-merger dynamics and
GWs do not show a clear signatures of the slope of the
nuclear symmetry energy, we find a potential new corre-
lation between L and several properties of the dynamical
ejecta, for a fixed value of S . Our work also showcases
the need for targeted EoS modelling, to systematically
vary nuclear matter parameters while keeping the finite-
temperature part of the EoS fixed, as was utilized in this
study. Such targeted modelling will be crucial for better
understanding systematic variations in the f2−R univer-
sal relations, as well as the differences in symmetrization
timescales for post-merger remnants with different EoSs.
Systematic construction of new EoSs will also allow us
to follow-up on the tantalizing trends uncovered in this
work, between L and the properties of the dynamical
ejecta, which may one day allow for new, astrophysical
on the nuclear symmetry energy.
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Appendix A: Low-density symmetry energy

At densities below 0.5nsat, nuclei start to form and
the nuclear symmetry energy expansion formalism breaks
down. Accordingly, we start the transition from our an-
alytic, high-density EoSs to a tabulated low-density EoS
at n = 0.5nsat, as described in Sec. II A. However, across
the transition window, between 6.3×10−5 and 0.08 fm−3,
the total energy is given by a combination of the tabu-
lated EoS and the analytic model. In this regime, we
therefore need a reasonable extrapolation of the symme-
try energy model to combine with the low-density EoS
table. In this appendix, we describe the treatment of the
symmetry energy in this low-density regime.

We empirically choose a power-law decay model for
the symmetry energy extrapolation, to ensure that Esym

(1) remains positive and real, (2) provides a diminish-
ing contribution to the overall energy, and (3) predicts
Ye,β ∈ (0, 0.5], with Ye,β approaching that of SFHo at
low densities.

For n < 0.5nsat, we thus adopt the following model for
the symmetry energy,

Esym,low(n) = [1− χ(n)]Efl + χ(n)EPL(n) (A1)

where EPL(n) is a power-law function and Efl is an energy
floor that we set to 11.22 MeV. This floor corresponds to
Esym(0.5nsat)/2, calculated with the best-fit parameters
for the SFHo EoS (S = 31.47 MeV, L = 47.10 MeV,
γ = 0.41; [61]). In this expression, χ(n) is a smoothing
function that we define as

χ(n) =
1 + tanh [X (n− n0)]

2
, (A2)

where we choose X = 40 and n0 = 0.025 fm−3, such
that χ(n) ≈ 1 at 0.5nsat (to within 1% accuracy), and
χ(n) decreases at lower densities. These parameters and
the value of Efl were empirically chosen to ensure Yp,β(n)
approximately matches that of SFHo across this density
regime, for the EoSs explored in this work.

In order to ensure continuity in the symmetry energy
and the corresponding pressure, we define the power-law
energy extrapolation according to

EPL(n) = Esym(nt)+
Psym(nt)

nt(γPL − 1)

[(
n

nt

)γPL−1

− 1

]
,

(A3)

where nt = 0.5nsat, the power-law index is given by

γPL =
∂Psym(n)

∂n

∣∣∣∣
nt

[
nt

Psym(nt)

]
, (A4)
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and Psym(n) = n2∂Esym(n)/∂n.
In calculating the corresponding model for the low-

density symmetry pressure, we neglect the density-
derivatives of χ(n), which introduce unphysical density-
dependences. Instead, we calculate the pressure in the
two asymptotic limits, and use χ(n) to smoothly connect
these regimes, i.e.,

Psym,low(n) = n2

(
∂Efl

∂n

)
[1− χ(n)] + n2

(
∂EPL(n)

∂n

)
χ(n)

(A5)

= PPL(n)χ(n)

where the first term disappears because Efl is a constant
and the remaining term is given simply by

PPL(n) = Psym(nt)

(
n

nt

)γPL

. (A6)

Appendix B: Chemical potentials

In this appendix, we describe the calculation of the
chemical potentials, which are used to determine the neu-
trino transport opacities within our numerical evolutions
(following Appendix A of [150]).

Because chemical potentials cannot be straightfor-
wardly calculated within the original M∗-framework of
Ref. [61], we here introduce an approximate calculation
for the chemical potentials. We take advantage of the
fact that the neutrino opacities depend primarily on the
difference between the nucleon chemical potentials,

µ̂(n, Yp, T ) ≡ µn(n, Yp, T )− µp(n, Yp, T ), (B1)

where µn and µp are the neutron and proton chemical po-
tentials, respectively. The individual nucleon potentials,
µn and µp, do not enter the calculation of the absorption
opacities, and they enter the scattering opacity only via a
term that accounts for Pauli blocking among the degen-
erate nucleons [150]. Moreover, because Pauli blocking
is relevant only at high densities, where the bulk of the
matter is already expected to be optically thick to neu-
trino transport [e.g., 151], we do not expect the exact
treatment of µn and µp to significantly affect the final
optical depth of the remnant, as long as µ̂ is modeled
accurately.

We, therefore, construct a self-consistent model for µ̂
at high-densities, based on the nuclear symmetry en-
ergy model used throughout this paper. We then de-
fine the individual chemical potentials relative to the val-
ues from the SFHo EoS table, such that µn(n, Yp, T ) =
µn,SFHO(n, Yp, T ) and µp(n, Yp, T ) ≡ µn,SFHO(n, Yp, T )−
µ̂(n, Yp, T ). Because we are already matching to the full
SFHo table at low densities, using this EoS provides max-
imum consistency in our calculations. We again stress
that this is mostly done for convenience with respect to
the existing numerical infrastructure. Except for Pauli-
blocking, the values for µn and µp never enter separately

in our simulations. Furthermore, β−equilibrium is solely
determined by the difference, µ̂.

We calculate µ̂ from the symmetry energy as follows.
The chemical potential of species i is defined as

µi ≡
∂Ei
∂Yi

∣∣∣∣
S,n

(B2)

where Ei is the energy per baryon of that species, Yi is
the corresponding number fraction, and S is the entropy.
For uniform n-p-e matter, this implies

∂Etot(n, Yp)

∂Yp
= µp + µe − µn, (B3)

where Etot represents the total energy, including con-
tributions from neutrons, protons, and electrons. We
have here assumed charge neutrality and conservation
of baryon number, which require that Ye = Yp and
Yp = 1− Yn, respectively. As in eq. (2), the total energy
for zero-temperature n-p-e matter can also be written in
terms of the symmetric matter energy and a symmetry
energy correction, i.e.,

Etot(n, Yp, T = 0) = E0(n)+Esym(n)(1−2Yp)
2+Ee(n, Ye),

(B4)
where we have additionally included the energy contri-
bution from electrons, Ee(n, Ye). Differentiating with re-
spect to Yp, we find

∂Etot(n, Yp, T = 0)

∂Yp
= −4(1− 2Yp)Esym(n) + µe. (B5)

Combining eqs. (B3) and (B5), the zero-temperature dif-
ference in chemical potentials for neutrons and protons
is then

µ̂(T = 0) = 4(1− 2Yp)Esym(n). (B6)

Equation (B6) thus ensures that µ̂ is consistent with the
complete EoS model, for a given set of Esym parameters.
We note that this approach assumes that the thermal
part of the chemical potential is the same for neutrons
and protons. While this is an approximation, it is con-
sistent with the overall decomposition of thermal effects
from composition-dependent effects in the EoS frame-
work of Ref. [61], where it was found that adding in the
composition correction to the thermal model had a neg-
ligible effect on the total energy of the EoS (see [61] for
further discussion).

Finally, we use the tabulated values from SFHo for the
electron chemical potentials, which are simply given by
the normal chemical potential for the Fermi-Dirac distri-
bution function [67].6

6 See also the EoS manual from the webpage of M.
Hempel, https://astro.physik.unibas.ch/en/people/matthias-
hempel/equations-of-state/.
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We reiterate that, on the short timescales (∼ 25 ms)
considered in this paper, the high-density matter is ex-
pected to remain optically thick to neutrinos [151]. Thus,
we do not expect this high-density approximation for the
chemical potentials to affect the outcomes of our evo-
lutions or any of the conclusions in this paper. Densi-
ties below saturation are not affected in any case, since
those use the full SFHo chemical potentials. However, for
longer-term evolutions, for example to simulate cooling
of the neutron star remnant, this approximation may not
be sufficient and should be further tested before use.

Appendix C: Details on the gravitational wave
analysis

Finally, in this appendix, we detail our methods for
analyzing the GW emission. We extract the GW signal
from our simulations using the Newman-Penrose scalar
ψ4, which is related to the GW strain according to
ψ4 = ḧ+ − iḧ×, where h+ and h× are the plus- and
cross-polarizations of the GW strain and the dots indi-
cate derivatives with respect to time. We decompose ψ4

into s = −2 spin-weighted spherical harmonics on spheres
of large radius (r = 300 M�), according to

ψ4(t′′, r, θ, φ) =

∞∑

`=2

∞∑

m=−`

ψ`,m4 (t, r)−2Y`,m(θ, φ) (C1)

where t is the time and the angles θ and φ are defined
with respect to the angular momentum axis. The total
strain is then given by

h(t) ≡ h+ − ih× (C2)

=

∫ t

−∞
dt′
∫ t′

−∞
dt′′ψ4(t′′, r, θ, φ),

where to calculate the double time integral, we use the
fixed frequency integration (FFI) method of [152].

In order to study the spectral features of the post-
merger signals, we additionally calculate the characteris-
tic strain, which is conventionally defined as

hc(f) = 2fh̃(f), (C3)

where f is the frequency and h̃(f) is the Fourier trans-

form of h(t) [153]. To calculate h̃(f), we first window
ψ4(t) between tmer + 1.5 ms and the maximum time
evolved for the binaries used in a particular compari-
son. We start the window shortly after tmer in order to
exclude the turbulent merger phase from the resulting
spectra. For example, the R1.4 ' 11 km, L = 40 MeV
EoS collapsed after ∼ 15 ms. Thus, in the spectral com-
parisons of the R1.4 ' 11 km EoSs, we window both EoSs
to the ∼14 ms window following merger, to ensure they
have the same spectral resolution. For all other EoSs,
the remnants do not collapse until the end of the evo-
lution, so the windows are typically ∼ 24 ms. We then
compute the Fourier transform of the windowed ψ4(t),
using Welch’s method with 8 overlapping segments for
the longer-duration signals, and 7 overlapping segments
for the R1.4 ' 11 km EoSs. Each segment is windowed
with a Hann window and zero-padded to contain a total
of 4,096 points. From ψ̃4(f), we then calculate h̃(f), us-
ing the FFI technique of [152]. In this paper, we calculate
hc(f) including all ` = 2, 3 modes.

Finally, we calculate the distinguishability of the post-
merger GW signals using the overlap integral [135, 136],
defined as

O(h1, h2) =
〈h1, h2〉√

〈h1, h1〉 〈h2, h2〉
, (C4)

where 〈hi, hj〉 is the inner product of two waveforms,
given by

〈hi, hj〉 = 4Re

∫ fmax

fmin

h̃i(f)h̃∗j (f)

Sn(f)
df, (C5)

Sn(f) is the power spectral noise of the detector, and
∗ indicates the complex conjugate. For the noise curve,
we use the design sensitivity curve for Advanced LIGO
[132], bounded between frequencies fmin=1000 Hz and
fmax = 5000 Hz. Values of the overlap integral smaller
than 1−1/(2ρ2) are distinguishable, where ρ is the signal-
to-noise ratio (SNR). We consider the threshold SNR for
detectability to be 8, in which case the criteria for dis-
tinguishability is O . 0.992.
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