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We examine nonrelativistic particles that decay into relativistic products in big rip, little rip,
and pseudo-rip models for the future evolution of the universe. In contrast to decays that occur in
standard ΛCDM, the evolution of the ratio r of the energy density of the relativistic decay products
to the energy density of the initially decaying particles can decrease with time in all of these models.
In big rip and little rip models, r always goes to zero asymptotically, while this ratio evolves to
infinity or a constant in pseudo-rip models.

The evolution of decaying particles in the context of
the expanding universe has long been a topic of inter-
est [1–12]. In the early universe, when the expansion is
dominated by either radiation or nonrelativistic matter,
exponential decay always leads to the same general re-
sult: the disappearance of the initial decaying particles
and the production of the corresponding decay products,
with the density of the latter always eventually dominat-
ing the former. However, Ref. [13] provided an inter-
esting caveat to this result. If the decaying particles are
nonrelativistic, with density ρM , and the decay products
are relativistic, with density ρR, then in a ΛCDM uni-
verse, the ratio r of the density of the decay products to
the density of the decaying particles,

r ≡ ρR/ρM , (1)

need not asymptotically approach infinity, as it always
does in a radiation or matter dominated expansion. In-
stead, for a sufficiently long decay lifetime, this ratio ap-
proaches a constant value. When this constant is less
than 1, the energy density of the decay products never
dominates the energy density of the decaying particles.
Here we extend this work to expansion laws correspond-
ing to big rip, little rip, and pseudo-rip models and un-
cover similarly unusual behavior: in all three models, the
value of r can decrease with time, and in big rip and little
rip models, r always asymptotically approaches zero.
For a nonrelativistic component with density ρM de-

caying with lifetime τ into a relativistic component with
density ρR, the equations governing the evolution of the
decaying particle and its decay products are [10]

dρM
dt

= −3HρM − ρM/τ, (2)

dρR
dt

= −4HρR + ρM/τ, (3)

where H is the time-dependent Hubble parameter:

H ≡
ȧ

a
=

(

8πGρ

3

)1/2

, (4)

with ρ being the total energy density and a the scale
factor, and we assume a flat universe throughout. (For
other types of energy exchange, see Ref. [14]).

Eqs. (2)−(3) can be combined to yield an equation for
r:

dr

dt
=

1

τ
+

(

1

τ
−H

)

r. (5)

When the universe is dominated by matter or radiation,
H decreases with time, so we necessarily have r → ∞ as
t → ∞, as expected.
However, when the universe enters a vacuum-energy

dominated state, H approaches a constant value, HΛ,
given by

HΛ =

(

8πGρΛ
3

)1/2

, (6)

where ρΛ is the (constant) vacuum energy density. Defin-
ing the time tΛ ≡ 1/HΛ and substituting H = 1/tΛ into
equation (5), this equation can be solved analytically to
yield [13]

r =

(

tΛ
tΛ − τ

)[

exp

([

1

τ
−

1

tΛ

]

t

)

− 1

]

, (7)

where we have taken r = 0 at t = 0.
As noted in Ref. [13], Eq. (7) corresponds to two very

different types of evolution, depending on the ratio of τ to
tΛ. For lifetimes short compared to tΛ, i.e., when τ < tΛ,
Eq. (7) gives r → ∞, just as in the case for decays during
a radiation or matter dominated expansion phase. In this
case, the energy density of the decaying particles becomes
infinitesimally small compared to the energy density of
the decay products. However, when τ > tΛ, the value of r
in equation (7) asymptotically approaches a constant, so
that the density of the decaying nonrelativistic particles
never disappears relative to the decay-produced radia-
tion (although both go to zero in the limit of large t).
Furthermore, when τ > 2tΛ, the asymptotic ratio of the
density of the decay-produced radiation to the density of
the decaying particles never exceeds 1, so that the decay
products never even dominate the decaying particles.
This result may seem counterintuitive, but Ref. [13]

provides a simple explanation. The radiation redshifts
relative to matter as one extra power of the scale fac-
tor, which corresponds, in a vacuum-dominated universe,
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to an exponential function of time. Then in calculating
the ratio of decay-produced radiation to decaying matter,
this exponential factor cancels the exponential decay of
the matter, resulting in a constant final ratio of matter
to radiation.
Given this unusual behavior, we are motivated to con-

sider more extreme expansion laws that have been pro-
posed for the future evolution of the universe, all of which
involve values for H that increase with time. While the
current expansion is dominated by a combination of dark
matter and dark energy, we will be interested in a future
epoch in which the dark energy is completely dominant
and the dark matter can be neglected. Our results will
then be equally valid regardless of whether it is the dark
matter itself that is decaying (as was assumed in Ref.
[13]), or some other nonrelativistic component.
The three models we consider are the big rip model

[15, 16], the little rip model [17, 18], and the pseudo-
rip model [19]. These models are all characterized by a
value of H that increases with time, but with different
final outcomes. In the big rip, the value of H goes to
infinity at a finite time, resulting in a future singularity.
In the little rip, H increases monotonically and becomes
arbitrarily large, but it never becomes infinite at a finite
time. Finally, in the pseudo-rip, H increases monotically
but asymptotically approaches a constant value.
Since the time derivative of H is given by

Ḣ = −
1

2
ρ(1 + w), (8)

all three of these types of behavior require a dark energy
component with w < −1, which violates the weak energy
condition (see Ref. [20] for a detailed discussion). Hence,
from that standpoint all of these models are a priori less
plausible than either ΛCDM or dark energy models with
w > −1. However, observations by themselves do not
rule out w < −1. In a flat universe, and using Planck

2018 data, weak lensing, baryon acoustic oscillation, and
supernova data, Ref. [21] finds

w = −1.028± 0.031, (9)

at the 68% confidence level. While the central value of
w < −1 should not be taken too seriously, this result il-
lustrates that observations are far from ruling out these
more exotic models. Furthermore, it is possible for mod-
els to approximate ΛCDM arbitrarily closely at present,
but then to evolve into any of the three types of future
evolution considered here; a variety of examples of such
models are discussed in Ref. [22]. Thus, observational
data can never entirely rule out future big rip, little rip,
or pseudo-rip evolution.
Consider first the big rip model [15, 16]. Big rip evolu-

tion can arise if the dark energy has a “phantom” equa-
tion of state parameter, w (the ratio of the dark energy
pressure to density), such that w < −1. Then the phan-
tom dark energy density increases with a, instead of de-
creasing as is the case for all fluids with w > −1. The

evolution of the scale factor in a universe containing both
matter and phantom dark energy is given by [15]

a = a(tm)[−w + (1 + w)(t/tm)]2/3(1+w), (10)

where tm is the time at which the matter and phan-
tom dark energy densities are equal. Big rip models are
characterized by a future singularity: as t approaches
[w/(1+w)]tm, the scale factor and phantom energy den-
sity both go to infinity in a big rip. It is more natural to
express the scale factor in terms of the time at which this
singularity occurs, namely trip = [w/(1 + w)]tm. Then
the Hubble parameter in the big rip model is

H = −
2

3(1 + w)(trip − t)
. (11)

Using this form for H , we have numerically integrated
Eq. (5) for w = −1.05 and τ/trip = 0.1, 0.3, and 1.0;
the results are shown in Fig. 1. The evolution of r for
the big-rip cosmology is strikingly different from its evo-
lution in ΛCDM. As is the case for ΛCDM, r initially in-
creases, but instead of increasing to arbitrary large values
or asymptotically approaching a constant value (the two
possibilities for ΛCDM), it reaches a maximum value and
then decreases, approaching zero as t reaches trip. Thus,
in the big-rip cosmology, the decay-produced radiation
density is always asymptotically subdominant compared
to the density of the decaying particles, and the ratio be-
tween these two quantities becomes arbitrarily small as
t → trip.
Big rip evolution represents a rather extreme case, re-

sulting as it does in a future singularity. A less extreme
class of models, dubbed the “little rip”, occurs when
H → ∞ not at a finite time, but as t → ∞ [17, 18].
While they do not result in a future singularity, little rip
models do lead to the dissolution of all bound structures
as H becomes arbitrarily large. In general, these models
correspond to dark energy with a density that increases
with the scale factor, but more slowly than a power law
(e.g., logarithmically). In terms of the time evolution of
the scale factor, any expansion law of the form

a = ef(t), (12)

where f̈ > 0 and f(t) is a nonsingular function of t, will
correspond to a little rip [17]. There is an infinite set
of such models, so we will examine one of the simplest,
namely

a = a0e
(1/2)(t/t0)

2

. (13)

Here a0 and t0 are a fiducial scale factor and time, re-
spectively. Then H is given by

H =
t

t20
. (14)

Using this value for H in Eq. (5), we have generated
curves for r as a function of t/τ , which are shown in Fig.
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FIG. 1: The ratio r of decay-produced relativistic energy den-
sity to the density of decaying nonrelativistic matter as a func-
tion of the time t measured in units of the decaying particle
lifetime τ for a big-rip cosmology with w = −1.05 and a fu-
ture singularity at the time trip. From top to bottom, the
curves correspond to τ/trip = 0.1 (red), 0.3 (blue) and 1.0
(black).

2 for several values of τ/t0. We see that even for the
case of the little rip, the generic late-time evolution is a
ratio of ρR to ρM that decreases with time. In this case,
however, the ratio goes to zero as t → ∞.
Finally, we consider the pseudo-rip [19]. In these mod-

els, H is always an increasing function of time, as in the
case of the big or little rip models, but it asymptotically
approaches a constant, as in ΛCDM. Just as in the case
of the little rip, there are an infinite set of such models, so
we will choose a single representative model to examine
here, namely

H = H1 + (H2 −H1) tanh(t/t0). (15)

In this model, when t ≪ t0, the universe is in a de Sitter
phase with constant Hubble parameter, H = H1. When
t ∼ t0, H increases with time, asymptotically approach-
ing H2, where we take H2 > H1. The time t0 simply
specifies the characteristic time at which this transition
takes place.
Taking (somewhat arbitrarily) t0 = τ , we have inte-

grated Eq. (5) for this model; the corresponding behavior
of r as a function of t is shown in Fig. 3. The behav-
ior of r in this pseudo-rip model is quite similar to the
case of ΛCDM. Note that the asymptotic value of H in
this model is H2. When this asymptotic value satisfies

FIG. 2: The ratio r of decay-produced relativistic energy den-
sity to the density of decaying nonrelativistic matter as a func-
tion of the time t measured in units of the decaying particle
lifetime τ for the little rip model given by Eq. (14) with, from
top to bottom, τ/t0 = 1.0 (red), 2.0 (blue) and 3.0 (black).

H2τ < 1, the value of r evolves to infinity, just as for
ΛCDM. On the other hand, when the H2τ > 1, r evolves
to a constant value. The difference from ΛCDM is that
r can undergo an earlier phase in which it decreases with
time, just as in the case of the big rip and little rip mod-
els; such behavior is impossible for a universe dominated
by a cosmological constant or any fluid with w > −1.
As we have investigated only a single set of example

models for each type of future evolution, it is reasonable
to question the extent to which our results are generic.
From Eq. (5), we see that at early times, when (Hτ −

1)r < 1, the value of r necessarily increases with time,
as is evident in all three types of evolution (as well as
in standard ΛCDM). In the case of the big rip and little
rip, H increases at late times to arbitrarily large values.
When H becomes larger than 1/τ , the ratio r begins
to decrease. Finally, when H ≫ 1/τ , Eq. (5) has an
approximate analytic solution, namely

r ≈
1

Hτ
. (16)

In big rip models, H → ∞ at trip, so Eq. (16) tells us
that r → 0 at trip as well. Similarly, since H increases
to arbitrarily large values in little rip models, we have
r → 0 in those models. Eq. (16) has a simple physical
interpretation: if matter is decaying at a rate 1/τ , then
at a given Hubble time 1/H , the fraction of the matter
that has decayed into radiation is just (1/τ)(1/H).
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FIG. 3: The ratio r of decay-produced relativistic energy
density to the density of decaying nonrelativistic matter as
a function of the time t measured in units of the decaying
particle lifetime τ for the pseudo-rip model given by Eq. (15)
with t0 = τ . From top to bottom, the curves correspond to
H1τ = 0.125, H2τ = 0.5 (red), H1τ = 0.5, H2τ = 2.0 (blue)
and H1τ = 2.0, H2τ = 8.0 (black).

The case of the pseudo-rip more closely resembles
ΛCDM. Since H asymptotically goes to a constant at late

times, the pseudo-rip evolves asymptotically to ΛCDM.
Hence, r will be given by Eq. (7) at late times, with tΛ
corresponding to the asymptotic value of 1/H . This is
apparent in Fig. 3, in that the asymptotic behavior of r
depends entirely on the value of H2τ . However, the evo-
lution of H at earlier times allows r to evolve differently
from its behavior in ΛCDM. In particular we can have
intervals over which r decreases with time; such behavior
is impossible in ΛCDM.
In summary, the late-time evolution of the ratio r of

the energy density of the relativistic decay products to
that of the initially decaying particles depends on the
asymptotic evolution of H . In models for which H is
an unbounded increasing function of t (big rip and little
rip) the value of r reaches a maximum and decreases
asymptotically to zero, in sharp contrast to the behavior
of r in ΛCDM. Pseudo-rip models, in contrast, exhibit
a value for r that goes to either infinity or a nonzero
constant at late times.
Of course, in all of these models, both the decaying par-

ticle energy density and the density of the decay products
rapidly go to zero, and neither has an effect on the overall
expansion rate. What is interesting is the way that the
evolution of these quantities violates our intuition from
particle decays in the early universe, when the expansion
is dominated by matter or radiation, and the decaying
particle density rapidly becomes subdominant compared
to the density of the decay products.
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