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Faster likelihood evaluation enhances the efficiency of gravitational wave signal analysis. We
present Mode-by-mode Relative Binning (MRB), a new method designed for obtaining fast and ac-
curate likelihoods for advanced waveform models that include spin-orbit precession effects and multi-
ple radiation harmonics from compact binary coalescence. Leveraging the “twisting-up” procedure
of constructing precessing waveform modes from non-precessing ones, the new method mitigates
degrade of relative binning accuracy due to interference from superimposed modes. Additionally,
we supplement algorithms for optimizing the choice of frequency bins specific to any given strain
signal under analysis. Using the new method, we are able to evaluate the likelihood with up to an
order of magnitude reduction in the number of waveform model calls per frequency compared to the
previously used relative binning scheme, and achieve better likelihood accuracy than is sufficient for
obtaining source parameter posterior distributions that are indistinguishable from the exact ones.

I. INTRODUCTION

Astrophysical information about gravitational wave
sources is commonly extracted via parameter infer-
ence within the Bayesian framework. This process re-
quires thorough sampling of a high-dimensional param-
eter space (e.g. with a total of 10–15 source parame-
ters), and hence a huge number (typically on the order
of 107–108) of likelihood evaluations. To map either the
likelihood function or the posterior distribution, it is im-
portant to accurately evaluate the likelihood function on
manageable timescales.

Brute-force calculation of the likelihood is often costly.
In order to be compatible with Fast Fourier Trans-
form (FFT), it requires evaluating the frequency-domain
model waveform on a uniformly sampled, sufficiently fine
grid that has ∼ T fmax frequencies, where fmax is the
highest frequency that includes information and T is the
duration of the gravitational wave signal in the sensi-
tive frequency band of the detector. The computational
cost can be especially prohibitive if T is long or if fmax is
large. Even non-uniform frequency sampling still requires
a large number of grid points, as the waveform phase
typically evolves over a large number of cycles across the
sensitive frequency band. For GW parameter inference
with sophisticated waveform models, model calls at indi-
vidual frequencies often dominate the runtime. For many
frequency domain waveform models, the computational
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time of a likelihood evaluation scales nearly linearly with
the number of queried frequencies [1].

A number of methods have been developed to approx-
imate the likelihood with fewer frequency evaluations,
trading an insignificantly amount of accuracy degrade for
substantial speedup. Reduced order quadrature (ROQ)
[1] is one such method, which pre-computes a reduced
basis for a given waveform model, and approximates any
physical waveform with an interpolant in the linear space
spanned by this basis. This method only needs as many
independent evaluations as there are basis elements, and
has been applied to reduce the computational time of a
variety of waveform models [2–5].

Relative binning [6–8], originally developed for non-
precessing waveforms in the dominant (2, 2) radiation
mode, is another method to achieve the same goal. In
relative binning, the ratio between a given waveform and
an appropriately chosen fiducial waveform is considered.
If the fiducial waveform is a decent fit of the data, only
waveforms that resemble the fiducial one need to be ex-
amined in parameter inference, for which the waveform
ratio conveniently has a milder frequency dependence.
For this reason, the waveform ratio can be well approx-
imated as a piecewise-linear function in the frequency
domain, which only requires waveform model calls at the
edges of a reduced number of frequency bins.

For simple waveform models with only one harmonic
such as IMRPhenomD [9], this method has been shown to
require fewer waveform evaluations than ROQ for the
same error tolerance [6], and has been routinely used
in independent analysis of public LIGO/Virgo data [10–
14]. An earlier and somewhat similar method referred
to as heterodyne, which also samples the ratio between
two waveforms using fewer grid points, was proposed in
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Ref. [15].

Many gravitational wave sources carry a strong imprint
of the effects of precession of the orbital plane, which
are neglected in simpler models like IMRPhenomD. These
precession effects are often accounted for by effective pre-
cession parameters that well approximate the effects with
minimal additional complexity or dimensionality [16–18].
However, more sophisticated waveform models that fully
incorporate the effects of spin-orbit precession with mis-
aligned spins and higher harmonic modes [19–23] have
begun to be widely applied in parameter inference. Com-
pared to many of the non-precessing models, which only
incorporate the dominant (2, 2) radiation mode, these
advanced models have yielded better fits to numerical
simulations [24], better fits to the detected LIGO/Virgo
gravitational wave signals [25], higher SNR, more pre-
cision, and more accuracy in parameter estimation for
injected signals [26–28], and in some cases have led to
the intriguing discovery of new solutions [29–32].

Additionally, information in higher modes is crucial
in tracking the recoil kicks of the GW sources [33],
and this information should be reliably extractable once
LIGO/Virgo reach their design sensitivities [34].

In the original implementation of relative binning pre-
sented in Ref. [6], the key assumption is that the ratio be-
tween a waveform under examination over a fiducial one
has significantly smoother frequency dependence than
the waveform themselves do. The quality of this assump-
tion however degrades for precessing waveforms with
the full symphony of harmonics, as both the precession-
induced wobbling of the binary orbital plane and the su-
perposition of multiple harmonics give rise to additional
oscillations with the frequency in the observed waveform.
It is pivotal to realize that a precessing waveform can be
decomposed into a linear combination of contributions
from individual radiation harmonics in the co-precessing
frame [35], and our schemes deal with ratios evaluated for
these modes individually and hence only have to sample
functions that are smoother in the frequency space. Our
scheme builds a likelihood from piecewise linear inter-
polants of these smooth quantities. As an explicit exam-
ple, we demonstrate this strategy using the phenomeno-
logical waveform model IMRPhenomXPHM [21, 24, 36].

In this paper, we present two improved relative bin-
ning schemes specially designed for precessing waveforms
with multiple harmonics, which we jointly refer to as
the Mode-by-mode Relative Binning (MRB). We give
explicit formulae to approximate the likelihood, and we
introduce practical algorithms to choose appropriate fre-
quency bins. We find theoretical speedup of MRB rela-
tive to the original relative binning method by up to an
order of magnitude, which is due to a reduced number of
frequency bins required, for the same tolerable absolute
accuracy ∼ 0.1 in the log likelihood.

The rest of the paper is organized as follows. In Sec-
tion II, we review the “twisting-up” procedure for build-
ing precession waveforms and introduce the basic defi-
nitions that will be used in the MRB schemes. In Sec-

tion III, we present the technical details of the two MRB
schemes, including introducing piecewise linear approx-
imation for quantities that are smooth functions of the
frequency, as well as new methods to optimize the fre-
quency bins. In Section IV, we study the required num-
ber of frequency bins as a function of accuracy tolerance
by applying MRB to real and injected gravitational wave
signals, with a comparison to the old relative binning
method without using mode decomposition. Finally, we
provide discussion of our results in Section V and con-
cluding remarks in Section VI.

II. MODE DECOMPOSITION FOR
PRECESSING WAVEFORMS

To understand how relative binning can be best applied
to waveforms that describe precessing binary systems,
we start by discussing the general structure of precessing
waveforms. Many precessing models with higher modes
are built using an approximate mapping from a non-
precessing system to a precessing system, often referred
to as the “twisting-up” procedure [35, 37]. This includes
state-of-the-art phenomenological [20, 21] and effective
one body [22] waveform models. Under the twisting-up
scheme, the non-precessing waveforms resemble the grav-
itational radiation emitted by a non-precessing source, as
if an imaginary observer is fixed relative to the wobbling
orbital plane of the binary [35].

The specific prescription for twisting-up the non-
precessing waveforms that we use is developed in [37] and
is fully detailed for the IMRPhenomXPHM model in [21].
Here, we note the most important aspects of this pre-
scription that will allow us to explain our schemes. A
general waveform model outputs the frequency domain
waveform of both polarizations, i.e. h+(f) and h×(f).
Models that use the twisting-up procedure include a pre-
scription for a non-precessing waveform as what a ficti-
tious observer would see in the co-precessing frame. This
non-precessing waveform can be decomposed into build-
ing blocks, hL`,m′(f), following the spin-weighted spherical
harmonic expansion. Since the binary orbital timescale is
typically significantly shorter than the timescale of spin-
orbit precession, the precession effects on the waveform
can be well captured by a time-dependent Euler rotation
of the non-precessing waveform [37]. After transform-
ing from the time domain into the frequency domain un-
der the stationary phase approximation, the model also
provides three frequency-dependent Euler angles, α(f),
β(f) and γ(f), which parameterize a rotation from the
frame co-precessing with the orbital angular momentum
vector (the L-frame) to the approximately inertial frame
defined by the total angular momentum vector (the J-
frame). Using the definitions introduced in Ref. [21], it
is a straightforward derivation that both polarizations
can be expressed as a linear combination of the L-frame
modes hL`,m′ . We follow their convention that m is used

to label the J-frame modes, and m′ is used to label the
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L-frame modes.

h+(f) =
∑
`,m′

C+
`,m′(f)hL`,m′(f), (1a)

h−(f) =
∑
`,m′

C×`,m′(f)hL`,m′(f). (1b)

Often, only a few subdominant modes are included in
this sum as the contribution of almost all higher order
modes are negligibly small. The dominant (`, m′) =
(2, 2) mode is always included, and the leading subdom-
inant modes (`, m′) = (2, 1) and (`, m′) = (3, 3) are
usually included. Our implementation and the LALSuite
implementation [38] of the IMRPhenomXPHM model use
these modes and the (`, m′) = (3, 2) and (`, m′) = (4, 4)
modes. Hence, the overall waveform observed in the iner-
tial frame is reduced to a short list of basis modes, which
have simpler frequency dependence individually.

The frequency-dependent coefficients C+
`,m′(f) and

C×`,m′(f) incorporate an in-plane rotation by a frequency-
independent angle ζ, which depends on the orientation of
the binary, to correct for the difference between the com-
puted spin-weighted spherical harmonics defined with re-
spect to the total angular momentum vector, and the
conventional parameterization of the waveform defined
with respect to the reference orbital angular momentum
vector.

C+
`,m′(f) = cos(2ζ) C̃+

`,m′(f) + sin(2ζ) C̃×`,m′(f), (2a)

C×`,m′(f) = cos(2ζ) C̃×`,m′(f)− sin(2ζ) C̃+
`,m′(f). (2b)

The tilded coefficients are specified in terms of the
frequency-dependent Euler angles α(f), β(f) and γ(f),
as well as θJN , the constant angle between the total an-
gular momentum vector and the line of sight:

C̃+
`,m′(f) =

1

2
eim

′γ(f)
∑
m

(
A`m,−m′(f) + (−1)`

[
A`m,m′(f)

]∗)
,

(3a)

C̃×`,m′(f) =
i

2
eim

′γ(f)
∑
m

(
A`m,−m′(f)− (−1)`

[
A`m,m′(f)

]∗)
,

(3b)
where ∗ stands for complex conjugation, and we intro-

duce the following coefficient to describe the mixing be-
tween the L-frame modes and the J-frame modes under
precession:

A`m,m′(f) = e−imα(f) d`m,m′(β(f))−2 Y`,m(θJN , 0). (4)

Here, d`m,m′(β(f)) is the Wigner small d-matrix element

evaluated at the Euler angle β(f), and −2Y`,m is the spin-
weighted spherical harmonic.

Finally, the observed strain h(f) at a given detector is
a linear combination of the two wave polarizations h+(f)
and h×(f). The linear coefficients are given by the de-
tector response coefficients, F+ and F×, which are de-
pendent on the sky position of the gravitational wave
source and the orientation of the detector at the time
of the gravitational wave event. The detector response
coefficients depend on three extrinsic parameters: right
ascension α, declination δ, and the polarization angle ψ.
In the frequency domain, the arrival time t0 of the event
introduces a phase that scales linearly with the frequency.

h(f) = (F+(α, δ, ψ)h+(f) + F×(α, δ, ψ)h×(f)) e−2πift0 .
(5)

The overall result is that the strain observed at a given
detector can be cast into the following linear combination
of the non-precessing modes,

h(f) =
∑
`,m′

C`,m′(f)hL`,m′(f) e−2πift0 , (6)

where

C`,m′(f) = F+(α, δ, ψ)C+
`,m′(f) + F×(α, δ, ψ)C×`,m′(f).

(7)
Two additional definitions are convenient for discussion
in the following sections. First, we can absorb the arrival
time dependence into the L-frame mode to define the
time-dependent quantity

ĥ`,m′(f) = hL`,m′(f) e−2πift0 , (8)

for which we simply have

h(f) =
∑
`,m′

C`,m′(f) ĥ`,m′(f), (9)

Second, we can incorporate the coefficient C`,m′ and de-
fine the full mode component

h`,m′(f) = C`,m′(f)hL`,m′(f) e−2πift0 . (10)

The observed waveform then has the simple decomposi-
tion

h(f) =
∑
`,m′

h`,m′(f). (11)

III. MODE-BY-MODE RELATIVE BINNING
SCHEMES

As mentioned in Section I, the original relative binning
scheme assumes that the full waveform divided by a fidu-
cial waveform is smooth in frequency space so that it can
be well approximated by a piecewise linear interpolant.
This scheme was developed for non-precessing waveform
models that only account for the dominant (2, 2) mode.
When applied to these waveform models, the assumption
of the original relative binning scheme is only that the
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ratio of the (2, 2) mode evaluated for any given param-
eters over the (2, 2) mode evaluated at a fiducial set of
parameters is a smooth function of the frequency. If the
original relative binning method is applied to a precessing
waveform comprised of multiple modes, this assumption
is being extended to the sum of all modes, which is a
stronger assumption. Instead, we improve our accuracy
by not extending this assumption and only applying it to
individual non-precessing modes.

At a fixed orbital frequency, the various L-frame modes
produced by a binary source have different frequencies,
and hence their superposition exhibit interference fea-
tures. This leads to a jagged ratio for the overall wave-
form, h(f), as a function of the frequency, as we exem-
plify in the top panel of Figure 1. The lower three panels
in Figure 1, by contrast, show the smoother quantities

h`,m′ , defined in Eq. (10), ĥ`,m′ , defined in Eq. (8), and
C`,m′ , defined in Eq. (7), which are associated with in-
dividual L-frame modes. We will instead approximate
these quantities or their ratios over fiducial counterparts
by piecewise linear interpolants in our two schemes.

A. Scheme 1

In the first scheme, we handle each time-dependent L-

frame mode ĥ`,m′(f) as we handle the full waveform in
the original relative binning method. To this end, we
decompose the fiducial waveform as

h0(f) =
∑
`,m′

C0
`,m′(f) ĥ0`,m′(f). (12)

In this scheme, we suitably create frequency bins which
we label by b. Within each frequency bin, the ratio of the
time-dependent L-frame mode over some fiducial one is
well approximated by a linear interpolant:

r`,m′(f) =
ĥ`,m′(f)

ĥ0`,m′(f)
≈ r0`,m′(h, b)+r1`,m′(h, b) (f − fc(b)) ,

(13)
where fc(b) is the frequency at the bin center. The co-
efficients r0`,m′(h, b) and r1`,m′(h, b), defined for every fre-
quency bin, are found by computing the waveform ra-
tio at the bin edges. The speedup of relative binning
hence comes from the fact that it suffices to evaluate at
the bin edges for an excellent approximation of the likeli-
hood. To obtain the full waveform h(f), we also need the
frequency dependent coefficients, which we also linearize
within each frequency bin:

C`,m′(f) ≈ C0
`,m′(h, b) + C1

`,m′(h, b) (f − fc(b)) . (14)

The constant coefficient in the piecewise linear inter-
polant of C (C0

`,m′(h, b) ) is not to be confused with the

fiducial C (C0
`,m′(f) ). We disambiguate by showing that

the former is a function of bin b and waveform h, and
the latter is a function of frequency f . Likewise, the

FIG. 1. Functional smoothness as a function of frequency for
the components or ratios that are approximated by piecewise
linear functions in different relative binning methods. Shown
are the real part of these complex-valued quantities, evalu-
ated at the LIGO Hanford detector as an example. The fidu-
cial waveform and one sample waveform are chosen from the
posterior samples collected from our MultiNest run on the
gravitational wave event GW190814. The harmonics (`, m)
shown are the 5 modes that are included by default in the the
waveform model IMRPhenomXPHM. The original relative bin-
ning method linearizes the full waveform, as shown in the top
panel. Mode-by-mode relative binning linearizes the time-
dependent L-frame mode ratios and their coefficients (bottom
two panels) under Scheme 1, and the strain component ratios
(second panel) under Scheme 2.
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coefficients C0
`,m′(h, b) and C1

`,m′(h, b) can be computed

from C`,m′(f) evaluated at the bin edges. In practice,
we find that both quantities are smooth functions of the
frequency, as shown in Figure 1. We then need to com-
pute the likelihood in terms of these linearized ratios and
coefficients. The log likelihood for the data series, d(f),
given a signal series h(f), is given by:

lnL = ReZ[d, h]− 1

2
Z[h, h], (15)

where Z[· · · ] is the notation for the standard complex-
valued overlaps defined via a summation over only posi-
tive frequencies f > 0:

Z[d, h] = 4
∑
f

d(f)h∗(f)

Sn(f)/T
, (16a)

Z[h, h] = 4
∑
f

|h(f)|2

Sn(f)/T
, (16b)

where Sn(f) is one-sided power spectral density (PSD)
of the detector noise, and T is the length of time series
analyzed.

To approximate the above overlaps, we introduce a
number of summary data for each frequency bin. The
A coefficients are used in the overlap Z[d, h] and are as-
sociated with a single L-frame mode because they are
linear in the strain h. The B coefficients are used in the
overlap Z[h, h] and are associated with a pair of L-frame
modes because they are quadratic in the strain h.

A0
`,m′(b) = 4

∑
f∈b

d(f) ĥ0∗`,m′(f)

Sn(f)/T
(17a)

A1
`,m′(b) = 4

∑
f∈b

d(f) ĥ0∗`,m′(f)

Sn(f)/T
(f − fc(b)) (17b)

B0
`,m′,˜̀,m̃′(b) = 4

∑
f∈b

ĥ0`,m′(f) ĥ0∗˜̀,m̃′(f)

Sn(f)/T
(17c)

B1
`,m′,˜̀,m̃′(b) = 4

∑
f∈b

ĥ0`,m′(f) ĥ0∗˜̀,m̃′(f)

Sn(f)/T
(f − fc(b)) (17d)

These summary data only depend on the data series d(f)
and the chosen fiducial waveform, and hence can be com-
puted in advance of the large number of likelihood eval-
uations required in the sampling process. To obtain the

log likelihood at each sampled set of waveform parame-
ters, we approximate the overlaps up to linear order in
(f − fc(b)), using the following sums over frequency bins

Z[d, h] =
∑
b

∑
`,m′

[
A0
`,m′(b) r0∗`,m′(h, b)C0∗

`,m′(h, b) +A1
`,m′(b)

(
r1∗`,m′(h, b)C0∗

`,m′(h, b) + r0∗`,m′(h, b)C1∗
`,m′(h, b)

)]
, (18a)

Z[h, h] =
∑
b

∑
`,m′

∑
˜̀,m̃′

{
B0
`,m′,˜̀,m̃′(b) r

0
`,m′(h, b) r0∗˜̀,m̃′(h, b)C

0
`,m′(h, b)C0∗

˜̀,m̃′(h, b)

+B1
`,m′,˜̀,m̃′(b)

[
C0
`,m′(h, b)C0∗

˜̀,m̃′(h, b)
(
r0`,m′(h, b) r1∗˜̀,m̃′(h, b) + r0∗˜̀,m̃′(h, b) r

1
`,m′(h, b)

)
+r0`,m′(h, b) r0∗˜̀,m̃′(h, b)

(
C0
`,m′(h, b)C1∗

˜̀,m̃′(h, b) + C0∗
˜̀,m̃′(h, b)C

1
`,m′(h, b)

)]}
. (18b)

To summarize, the summary data Eq. (17) can be pre- computed from the data and the chosen fiducial wave-
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form; then to approximate the log likelihood using
Eq. (18) and Eq. (15), r0`,m′(h, b), r1`,m′(h, b), C0

`,m′(h, b),

and C1
`,m′(h, b) only need to be evaluated at the bin edges.

B. Scheme 2

Scheme 1 involves the multiplication of two quantities,
both of which are separately approximated as piecewise
linear functions. One might wonder if this strategy ac-
cumulates excessive errors. Hence, we consider an alter-
native scheme, which we refer to as Scheme 2. In this
scheme, we linearize the ratio of the entire mode compo-
nent over its fiducial counterpart. To do so, we decom-
pose the fiducial waveform h0(f) as in Eq. (11):

h0(f) =
∑
`,m′

h0`,m′(f) (19)

Within the frequency bin b, we make the approximation

r`,m′(f) =
h`,m′(f)

h0`,m′(f)
≈ r0`,m′(h, b)+r1`,m′(h, b) (f − fc(b)) .

(20)
This quantity is also much smoother than the ratio for
the observed waveform, which is linearized in the original
relative binning method, as one can see in Figure 1. In
this scheme, our summary data are very similar, but they
use the full fiducial mode components:

A0
`,m′(b) = 4

∑
f∈b

d(f)h0∗`,m′(f)

Sn(f)/T
(21a)

A1
`,m′(b) = 4

∑
f∈b

d(f)h0∗`,m′(f)

Sn(f)/T
(f − fc(b)) (21b)

B0
`,m′,˜̀,m̃′(b) = 4

∑
f∈b

h0`,m′(f)h0∗˜̀,m̃′(f)

Sn(f)/T
(21c)

B1
`,m′,˜̀,m̃′(b) = 4

∑
f∈b

h0`,m′(f)h0∗˜̀,m̃′(f)

Sn(f)/T
(f − fc(b))

(21d)
Now that there is only one linearized quantity, the over-

laps have shorter expressions:

Z[d, h] =
∑
b

∑
`,m′

[
A0
`,m′(b) r0∗`,m′(h, b) +A1

`,m′(b) r1∗`,m′(h, b)
]
,

(22a)

Z[h, h] =
∑
b

∑
`,m′

∑
˜̀,m̃′

[
B0
`,m′,˜̀,m̃′(b) r

0
`,m′(h, b) r0∗˜̀,m̃′(h, b)

+B1
`,m′,ẽll,m̃′(b)

(
r0`,m′(h, b) r1∗˜̀,m̃′(h, b) + r0∗˜̀,m̃′(h, b) r

1
`,m′(h, b)

)]
.

(22b)

Again, the pre-computed summary data Eq. (21) can
be substituted into Eq. (22) to compute the overlaps
Eq. (16) up to linear order in (f − fc(b)). The coef-
ficients r0`,m′(h, b) and r1`,m′(h, b) only require evaluat-
ing the model waveform at the edges of the frequency
bins. Although Scheme 2 have simpler expressions than
Scheme 1, it is not meaningfully faster in terms of the
computation runtime, as all evaluations needed for com-

puting C`,m′(f) and ĥ`,m′(f) are also needed for comput-
ing h`,m′(f).

C. Bin Selection

Previously, a prescription to determine the frequency
bins for the original relative binning method is presented
in Ref. [6]. Motivated by the post-Newtonian expan-
sion, this prescription selects frequency bins to bound
the differential phase changes assuming a phenomenolog-
ical ansatz in the form of a sum over power-law phases.
Although the prescription has the advantage that it is
independent of the specific compact binary coalescence
signals under analysis, it may not be the optimized bin
selection on the event-by-event basis. In particular, for
high binary masses, the merger and ringdown signals may
dominate the sensitive frequency band of the detector,
and the corresponding gravitational wave signal may be
poorly described by the post-Newtonian expansion.

In this work, we present a new bin selection algorithm
that is adaptive to any given gravitational wave signal
under investigation. Since the linearized quantities as-
sociated with individual modes have smoother frequency
dependence than the observed waveform, we can afford
fewer frequency bins to achieve a comparable accuracy
for the log likelihood. Since the bottleneck in the com-
putational time cost is still the large number of likeli-
hood evaluations, we can afford to adjust the frequency
bins event by event via an algorithm that is more time-
consuming than the one that is adopted in Ref. [6]. We
choose a representative waveform (different from the fidu-
cial waveform) for an estimate of the binning errors. We
can then test out various binning choices on this repre-
sentative waveform. Methods for choosing this waveform
are discussed in Section V.

Our algorithm determines the frequency bins by start-
ing with the entire frequency range as a single bin and
iteratively bisecting the frequency bins. In this iterative
process, we compute, for each existing frequency bin, the
error contribution to the log likelihood due to mode-by-
mode relative binning. We keep bisecting the bins until
the overall absolute error in the log likelihood is smaller
than a empirically set threshold. We iterate the whole
procedure and update the target number of bins to the
number of bins achieved in the previous run, until the
resulting number of bins and the target number of bins
converge. This algorithm is detailed in Algorithm 1.

The algorithm consistently converges to a fixed num-
ber of bins independent of the initial target number of
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Algorithm 1 Bin Selection

1: function getBins(η, targetN=200, testParams)
2: targetBinError = η/targetN
3: candidateBins = bisectBinSearch(targetBinError,

testParams, fullFrequencyGrid)
4: nBins = numberOfBins(candidateBins)
5: if nBins = targetN then
6: return candidateBins
7: else
8: return getBins(η, targetN=nBins, testParams)
9: end if

10: end function

11: function bisectBinSearch(targetBinError, test-
Params, candidateBin)

12: if logLikelihoodError(testParams, candidateBin)
≤ targetBinError then

13: return candidateBin
14: else if candidateBin is minimum size then
15: return candidateBin
16: else
17: return bisectBinSearch(targetBinError, test-

Params, leftHalf) + bisectBinSearch(targetBinError,
testParams, rightHalf)

18: end if
19: end function

bins (targetN), so we set this number arbitrarily to 200.
By varying the total allowed error η on the test param-
eters, we trade computational cost (number of bins) for
accuracy. We tested similar algorithms that unevenly di-
vide the bins, but found that such methods are slower
and did not improve accuracy.

IV. TESTING METHODS AND RESULTS

We tested the accuracy and efficiency of both mode-by-
mode relative binning schemes on several real and syn-
thetic compact binary coalescence events. We computed
likelihoods of the IMRPhenomXPHM model using LALSuite
[38] and gathered posterior samples using the MultiNest
sampler [39].

To test our method, we consider gravitational wave
signals with either strong spin-orbit precession or large
contributions from the subdominant modes, or a com-
bination of both, as their parameter estimation can be
greatly improved with IMRPhenomXPHM or other precess-
ing models with higher modes that exploit the twisting-
up procedure. Precession occurs most dramatically in
binaries that have large spin vectors misaligned with the
binary orbital angular momentum vector (i.e. large in-
plane spin components) [40]. Odd parity subdominant
modes such as (3, 3) are important when there is a large
asymmetry between the two components, e.g. when the
mass ratio q = m2/m1 < 1 is small. Also, subdominant
modes are larger in the late stage of the merger. For low

mass mergers, the most sensitive LIGO/Virgo frequency
band corresponds to the early inspiral of the merger. On
the contrary, for heavy mass mergers, the most sensitive
frequency band corresponds to the merger stage when
subdominant modes are stronger. For these reasons, we
study events with large in-plane spin components, or a
small mass ratio q, or a large total mass.

We consider one real LIGO/Virgo event, GW190814,
and four injected events. GW190814 is chosen because
the original analysis shows strong Bayesian evidence fa-
voring a model that includes the (3, 3) mode over one
that has only the dominant (2, 2) mode [30]. The four
injections are chosen as the following. Two are chosen to
resemble the inferred source properties of two interesting
LIGO/Virgo detections for which new source solutions
have been recently reported from independent reanaly-
ses using the IMRPhenomXPHM model: GW151226 [31, 41]
and GW190521 [32, 42]. Both of these newly found so-
lutions indicate a large spin misaligned with the orbital
angular momentum on the primary mass and a low mass
ratio q < 1. The GW151226 reanalysis showed that the
new low-q solution were absent from the posterior distri-
bution of the source parameters when either the higher
modes or the precession effects were neglected [31]. The
original analysis of GW190521 used the IMRPhenomPv3HM
model [20], which had higher modes and precession, but
not the improved calibration of the subdominant modes,
and particularly not in the low-q regime [32, 42]. The
other two injections are artificially made to have a high
total mass and large in-plane spins: one with a high mass
ratio q < 1 and another with a low mass ratio. The pa-
rameters used for the injections are listed in Table I.

To start with, we need posterior source parame-
ters for which we can evaluate the log likelihood both
approximately using our new mode-by-mode binning
method and exactly. The samples are collected us-
ing MultiNest with nlive = 2000. For these runs,
the log likelihoods are evaluated using the original rel-
ative binning method of Ref. [6]. We use the param-
eter choice ε = 0.03 for the maximum allowed differ-
ential phase (see Eq. 10 of Ref. [6] for the definition
of ε), which is sufficient for obtaining accurate poste-
rior samples. For the injected events, the injected pa-
rameters are used to set the fiducial waveform. For the
real GW190814 event, fiducial parameters are found us-
ing scipy’s differential evolution [43], a global op-
timization routine to (approximately) find the maximum
likelihood fit to the data.

We obtain the strain data containing GW190814, as
well as those used as the noisy background for our injec-
tions, from the public database GWOSC [44]. For each
event, we collect a 16-second time series centered on the
GPS time listed in Table I with a sampling rate of 1024
Hz. The injections are added at the 8 second mark into
the noisy 16-second time series. PSDs are measured using
Welch’s method from a 128-second time series centered
at the same GPS time with overlapping 16 s segments.
We only include frequencies from 20 Hz to 512 Hz in the
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TABLE I. The parameters injected for the 4 injections used in this work, and the fiducial parameters for GW190814 found
by using the global optimization algorithm differential evolution provided in scipy. We generated waveforms using the
IMRPhenomXPHM model with these parameters and injected them at the 8 s mark of a 16 s stream centered at the GPS time
collected at a sampling rate of 1024 Hz.

High q Low q GW151226-like GW190521-like GW190814 (fiducial)
Primary mass m1 [M�] 30.0 100.0 29.3 168.0 24.4

Secondary mass m2 [M�] 20.0 10.0 4.3 16.0 2.7
χ1,x 0.700 0.700 0.600 0.641 0.024
χ1,y 0.000 0.000 -0.200 0.000 0.039
χ1,z 0.000 0.000 0.500 -0.559 0.002
χ2,x 0.000 0.000 0.000 0.000 -0.305
χ2,y 0.700 0.700 0.000 0.000 -0.574
χ2,z 0.000 0.000 0.000 0.000 -0.067

Luminosity distance DL [Mpc] 496.91 496.91 457.00 400.00 283.28
Line of sight θJN [rad] 1.200 1.200 0.403 0.500 2.408

κ a 0.200 0.200 0.000 0.000 2.730
Right ascension α [rad] 3.000 3.000 3.831 3.340 0.412

Declination δ [rad] 0.100 0.100 -0.819 0.600 -0.574
Polarization angle ψ [rad] 0.500 0.500 2.698 0.000 2.962

GPS time 1242443867.4 1242443867.4 1135137260.6 1242443867.4 1249852257.0

a As defined in Appendix C of Ref. [21]

likelihood evaluation, as there is negligible SNR contri-
bution outside this frequency range.

We make a comparison between the original relative
binning method using the original bin selection algorithm
(with the parameter ε = 0.03 as defined in Ref. [6]),
and the mode-by-mode relative binning method using our
new bin selection (for a range of η values), evaluating for
2000 parameter combinations randomly drawn from the
posterior distribution derived for each event or injection.
The bin selection algorithm uses a random posterior sam-
ple selected as the test waveform. We study the absolute
errors in the log likelihood computed for these samples,
which are shown in Figure 2 and Figure 3.

Figure 2 and Figure 3 show the cumulative distribution
function (CDF) for the absolute error in the log likelihood
for the 2000 posterior samples collected for each event.
We compare the original relative binning method with
mode-by-mode relative binning, testing both our approx-
imation schemes and varying η. The varying numbers of
bins result from using different η values. The number
of frequency bins is one less than the number of required
frequency-domain waveform evaluations, which dominate
the runtime, so the bin number is a good proxy for the
runtime. In all examples we show, the original relative
binning method uses the same number of frequency bins
because the bin selection prescription only depends on
the frequency range and the maximum differential phase
ε, which do not change from event to event.

In Appendix A, we investigate the tolerable size of the
absolute error in the log likelihood for obtaining accurate
posterior distributions. Conservatively, we conclude that
the log likelihood error should be no greater than ∼ 0.1
as random errors with a standard deviation of 0.1 appear
to have unnoticeable effect in the posterior.

For the high q injection, and using only 148 bins with

FIG. 2. CDFs for the absolute error in the log likelihood
from the original relative binning and the mode-by-mode rel-
ative binning (MRB), evaluated for 2000 posterior samples
collected for two synthetic signals we analyze. Different lines
for the same scheme correspond to different values of η, which
result in different numbers of bins. Both MRB schemes are
able to outperform the original relative binning for the worst
samples with fewer bins.
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FIG. 3. Same as Figure 2 but for the GW151226-like in-
jection, the GW190521-like injection, and GW190814. We
see better results from Scheme 1 in all test cases except the
GW190521-like injection.

Scheme 1, the errors with mode-by-mode relative binning
(MRB) are smaller than those with the original relative
binning method using 1027 bins at all percentiles. Using
about 300 bins, both Scheme 1 and Scheme 2 are able
to achieve this. Notably, these three cases have the log
likelihood error no greater than 0.1 for all samples.

Similarly, for the low q injection, the MRB error de-
rived from about 125 bins strictly outperforms that of
the original relative binning. The error distribution has a
larger standard deviation than in the high q case, but this
is due to most of low error samples having even smaller
errors.

For all methods, the samples for the GW151226-like in-
jection have larger errors, but using 117 bins with Scheme
1 the error is less than 0.1 for 60% of the samples, and
using more bins the spread of the worse errors is signif-

icantly reduced, and the error is nearly always less than
0.2 for roughly twice the number of bins.

The GW190521-like injection is the only example stud-
ied here where Scheme 2 achieves lower errors than
Scheme 1 does using comparable number of bins. Never-
theless, Scheme 1 achieves lower errors than the orig-
inal relative binning scheme with 430 bins. For the
GW190814 event, 90% of the errors are less than 0.1,
when using 300–400 bins with both Scheme 1 and Scheme
2. The errors are roughly a factor of two to four larger
using only 73 bins under Scheme 1. In the 317 bin case,
Scheme 1 reduces the error by nearly an order of magni-
tude at one third of the computational cost when com-
pared with original relative binning.

Overall, both MRB schemes achieve lower errors with
fewer bins at all percentiles above 50% when compared
with the original relative binning method. In all cases,
MRB achieves a median absolute error of 0.1 using sub-
stantially reduced number of bins.

V. DISCUSSION

In all cases except the GW190521-like injection,
Scheme 1 outperforms Scheme 2. We believe this is be-
cause the quantities linearized in Scheme 1 are usually
smoother functions of the frequency than those linearized
in Scheme 2, which reduces the required number of bins
for a given accuracy goal. This can be seen in Figure 1.
In fact, the ratio linearized in Scheme 2 is related to the
one linearized in Scheme 1 through

[r`,m′(f)]Scheme 2 =
h`,m′ (f)

h0
`,m′ (f)

=
C`,m′ (f)ĥ`,m′ (f)

C0
`,m′ (f)ĥ

0
`,m′ (f)

=
C`,m′ (f)

C0
`,m′ (f)

[r`,m′(f)]Scheme 1 . (23)

The ratio linearized in Scheme 1 is similar to the ratio
linearized in the original relative binning method applied
to non-precessing waveform models. The L-frame mode
components are equivalent to the J-frame components
for a non-precessing waveform, and it has already been
demonstrated that the ratio of non-precessing waveforms
are smooth in the frequency space. However, the ratio
C`,m′(f)/C0

`,m′(f) can exhibit large oscillations or even

sharp peaks when the denominator C0
`,m′(f) becomes

small. This situation may arise because the coefficient
C`,m′(f) is a linear combination of terms that may nearly
cancel (see construction of C`,m′(f) in Section II).

However, it can also happen that Scheme 2 outper-
forms Scheme 1. When the aforementioned issue regard-
ing C0

`,m′(f) does not arise, Scheme 2 may have an advan-
tage because there are fewer quantities to be linearized
so as to avoid compounding error. This appears to be
the case in the GW190521-like injected event. The lin-
earized quantities evaluated for one posterior sample of
this event are compared in Figure 4. In this example,
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Scheme 1 is not advantageous over Scheme 2 in terms of
frequency-space smoothness of the linearized quantities.

Overall, we conclude that Scheme 1 is more robust be-
cause it accounts for the difficult case of small C0

`,m′(f),
and more often yields better relative binning results, es-
pecially in the case of GW190814. In practice, the pre-
ferred scheme can be empirically determined alongside
the process of choosing suitable fiducial and test wave-
forms.

To use mode-by-mode relative binning in practice, one
has to set a fiducial waveform for computing the sum-
mary data, and a test waveform for determining the fre-
quency bins. If the experimental collaboration has al-
ready provided full parameter inference results for the
event under analysis, the reported parameters can be
used as the fiducial parameters. If the signal under analy-
sis is uncovered by a search pipeline, crude source masses
and spins are typically reported, and can be used as the
initial choice for the fiducial parameters. If not all pa-
rameters are reported, or are only reported for simpli-
fied waveform models, then the fiducial parameters can
be obtained via global maximization of the exact likeli-
hood. For well measured parameters, global optimiza-
tion should be performed within the small vicinity of the
reported values. For poorly measured parameters, opti-
mization can performed over the entire physically allowed
region.

If global optimization using the exact likelihood is com-
putationally too slow, it is feasible to couple the relative
binning approximation to the optimization. If the like-
lihood errors from using the initial choice of ficudial pa-
rameters are still too large, the fiducial parameters can be
iteratively updated, just like what has been practiced us-
ing the original relative binning method [6, 7]. As a mat-
ter of fact, there is great flexibility in setting the fiducial
parameters, as many extrinsic parameters enter the indi-
vidual modes only through frequency independent factors
which do not degrade the accuracy of mode-by-mode rel-
ative binning.

Our results are minimally affected when changing
which sample is used as the test waveform for the se-
lection of frequency bins. This suggests that any set of
test parameters in the support of the posterior distribu-
tion would be satisfactory. In practice, we recommend
obtaining the test parameters by running a few itera-
tions of a sampler starting from the fiducial parameters.
The test parameters can be obtained by a few Metropolis-
Hastings iterations, or a few steps of a more sophisticated
sampler running on the exact log likelihood.

VI. CONCLUSION

In this paper, we address faster likelihood evaluations,
one important aspect of speeding up gravitational wave
parameter inference among several factors including sam-
pling efficiency and parallel capabilities. We have devel-
oped the mode-by-mode relative binning method as an

FIG. 4. Same as Figure 1 but for the GW190521-like injec-
tion. This is an example where Scheme 1 is not advantageous
over Scheme 2. Again, mode-by-mode relative binning lin-
earizes the time-dependent L-frame mode ratios and their co-
efficients (bottom two panels) under Scheme 1, and linearizes
the strain component ratios (second panel) under Scheme 2.
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efficient approximation of the likelihood function, and
have demonstrated its enhanced accuracy and theoreti-
cal speedup compared with the original relative binning
method that does not take advantage of the multi-modal
structure of the waveform.

The existing implementation can be found
in our git repository at https://github.com/
nathaniel-leslie/modebymode-relative-binning.
With an optimized implementation applied to spin-orbit
precessing waveforms including multiple harmonic
modes, we expect the mode-by-mode relative binning
method to run faster than comparable reduced order
quadratures. An ROQ has been built for IMRPhenomXPHM
using a code called PyROQ [45]. To evaluate the like-
lihood with ROQ, one must evaluate the linear and
quadratic overlaps, which correspond to Eq. (16a)
and Eq. (16b) respectively. Each overlap requires an
interpolant to be evaluated, which requires the number
of waveform evaluations that is equal to the number
of basis functions for each interpolant. In Table III
of [45], it is shown that the total number of basis
functions in their ROQ for IMRPhenomXPHM with a signal
up to 1024 Hz ranged from 600 to 1100, depending
on the parameter ranges. As shown in Figure 2 and
Figure 3, mode-by-mode relative binning can achieve
the conservative target of absolute errors in the log
likelihood error being around 0.1 on all test events with
only around 100–200 frequency bins.

Another benefit of mode-by-mode relative binning is
the ability to vary η to flexibly trade speed for accu-
racy. This only requires recomputing bins by rerunning
Algorithm 1 with a new value of η, which takes a few
seconds. If one achieves sufficient accuracy for a specific
problem and can afford to sacrifice some, η can be in-
creased, which reduces bin count and runtime. Similarly,
if one requires higher accuracy and can afford some ad-
ditional runtime, η can be decreased, which increases bin
count and runtime but also improves accuracy.

Our conclusions about runtime are based on the reduc-
tion in the number of waveform evaluations, and nearly
equivalently, the number of frequency bins. As we have
mentioned previously, this is justified by the observation
that waveform evaluation calls dominate the computa-
tional time of the likelihood evaluation. In the code
used in this work, and for the IMRPhenomXPHM wave-
form model as an example, we have computed the L-
frame modes hL`,m′(f) and the Euler angles α(f), β(f),

and γ(f) by calling the available LALSuite routines [38].
These routines take approximately 3/4 of the time of a
full likelihood evaluation using the full LALSuite rou-
tines for obtaining h+ and h×. The remaining time is
primarily spent on computing the twisting factors C+

`,m′

and C×`,m′ , which involves a significant amount of evalu-
ations of trigonometric functions and scales linearly with
the bin number. Our current Python implementation of
mode-by-mode relative binning is still inefficient due to
overhead; it takes a few milliseconds to compute these
twisting factors even for a few frequencies. The exist-

ing LALSuite routines for obtaining h+(f) and h×(f)
are sufficient for implementing the original relative bin-
ning method, which do not require computations of the
twisting factors in Python. For this method, with 1027
bins, each likelihood evaluation takes roughly ∼ 4-5 ms
on a 2018 MacBook Pro with a 2.6 GHz Intel i7 pro-
cessor. The time that it takes to evaluate the L-frame
modes and Euler angles at the original bins is also about
3/4 of this time. We expect that an optimized routine
coded in C, Julia, optimized Python packages, or in some
other programming languages could realize such a perfor-
mance. For the 133 bin evaluation shown in Figure 3, the
L-frame modes and Euler angles took approximately 0.7
ms. Assuming optimized implementation of the twist-
ing factors, the same extrapolation suggests that sub-
millisecond likelihood evaluations are achievable.

The fast evaluation times of the LALSuite code relative
to our Python implementation demonstrate that the the-
oretical speed improvements of our code are realizable. In
order to realize the full potential of mode by mode rela-
tive binning, this optimization must be performed. Once
this is achieved, this method shows promise for substan-
tially reducing the computational cost of parameter esti-
mation for precessing waveforms with higher modes.

This method has only been tested on IMRPhenomXPHM,
but we expect it to be similarly effective for other
frequency-domain models with higher modes and preces-
sion. A simple application of this method to native time-
domain models like TEOBResumS [46] runs into a number
of difficulties. Transforming these models into the fre-
quency domain can be prohibitively slow, so one would
hope to evaluate the likelihood in the time domain. In
the time domain, the likelihood function becomes more
than a simple frequency sum, as stationary noise pro-
duces a non-diagonal covariance matrix in the time do-
main. This particularly becomes difficult for relative bin-
ning with the Z[h, h] term, as it would necessarily require
sums over two time indices for each sampled waveform.
New techniques will be needed to leverage the advan-
tages of relative binning for these kinds of models. We
are currently developing such relative binning methods
for these time-domain models, and we hope to present
tests of these methods in a following paper.
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Appendix A: Target Log Likelihood Error

The absolute error in the log likelihood from mode-
by-mode relative binning should be small enough not to
bias the obtained posterior distribution for the source
parameters. In this appendix, we study the impacts of
log likelihood errors on the posterior distributions, using
the high-q injection as an example.

Our posterior samples have been obtained using the
original relative binning method with finite likelihood er-
rors. To obtain the exact (full FFT) posterior distribu-
tion, we use the method of importance sampling (IS). Let
sample i have the exact posterior

Pexact[i] =
Lexact[i] pi[i]

Z
, (A1)

where Lexact[i] is the exact likelihood, p[i] is the prior,
and Z is the evidence. Using the original relative binning
method, we have

PORB[i] =
LORB[i] pi[i]

Z
, (A2)

where LORB[i] is the relative binning likelihood. Impor-
tance sampling requires that samples are weighted by the
ratio of the desired distribution over the sampled one, so
to get samples of the exact posterior, each sample has
the weight

w[i] =
Pexact[i]

PORB[i]
=
Lexact[i]

LORB[i]
= elnLexact[i]−lnLORB[i].

(A3)
We can also use importance sampling to simulate spe-

cific errors in the log likelihood. The distribution of the
log likelihood errors due to either relative binning method
is approximately Gaussian, so we can model these errors
as Gaussian random variables. Let these errors be called

δ[i]; one is drawn for each sample from a Gaussian distri-
bution. Then our simulated log likelihood with this error
is

lnLsim[i] = lnLexact[i] + δ[i]. (A4)

So following Eq. (A3), the weight for the sample from
this simulated distribution is

wsim[i] =
Lsim[i]

LORB[i]
= elnLexact[i]−lnLORB[i]+δ[i]. (A5)

The above weights can be used to generate altered pos-
teriors for comparison with an exact posterior. Such com-
parisons along with a histogram of the log likelihoods are
shown for our high q posterior in th top 4 panels of Fig-
ure 5. When the errors have a standard deviation of 0.1,
they make virtually no visible impact in the posterior
whatsoever. The simulated posteriors with log likelihood
errors of standard deviation 0.5 and 1.0 have small incon-
sistencies, but their contours are generally unaltered in
shape. However, once the standard deviation of the sim-
ulated error reaches 2.0, the contours are substantially
distorted.

Additionally, in the bottom left of Figure 5, the ac-
tual posterior gathered from the original relative binning
method and the importance weighted exact (full FFT)
posterior do not differ at all. As can be seen in the
blue histogram in the bottom right panel of Figure 5,
the spread of the original relative binning errors log like-
lihood is a about 0.1.

In this example, we see that original relative binning
error with a spread of about 0.1 is sufficiently small to
not impact the posterior. Additionally the effect of the
Gaussian error was negligible on the posterior at the same
scale, and minimal up to an order of magnitude higher.
Because this is only one event, we will be conservative,
and use 0.1 as our target threshold, which is well justified
by all of these results.
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FIG. 5. The top 4 panels show the effect on the posterior distribution from zero-mean Gaussian random errors of various
standard deviations in the log likelihood function. We apply the random errors to the high-q injection as an example. The
contours enclose 68%, 95%, and 99.7% of the two-dimensional joint posterior samples. The bottom two panels concern actual
errors from the various methods on the high q injection. The bottom left panel compares the posterior samples obtained from
the original relative binning to the importance weighted posterior samples using the exact log likelihood. The bottom right
panel shows the log likelihood errors for original relative binning, and our two relative binning schemes for the choice of η = 0.1.
The errors are not entirely dissimilar from Gaussian, and the original relative binning error shown makes no noticeable effect
on the posterior distribution.
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