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With a laser interferometric gravitational-wave detector in separate free flying spacecraft, the only
way to achieve detection is to mitigate the dominant noise arising from the frequency fluctuations
of the lasers via postprocessing. The noise can be effectively filtered out on the ground through
a specific technique called time-delay interferometry (TDI), which relies on the measurements of
time-delays between spacecraft and careful modeling of how laser noise enters the interferometric
data. Recently, this technique has been recast into a matrix-based formalism by several authors,
offering a different perspective on TDI, particularly by relating it to principal component analysis
(PCA). In this work, we demonstrate that we can cancel laser frequency noise by directly applying
PCA to a set of shifted data samples, without any prior knowledge of the relationship between
single-link measurements and noise, nor time-delays. We show that this fully data-driven algorithm
achieves a gravitational-wave sensitivity similar to classic TDI.

I. INTRODUCTION

Gravitational waves can be detected through a constel-
lation of satellites forming a network of laser interferom-
eters that probe phase differences in beams exchanged
between spacecraft. This concept is the core of future
space-based detectors like the Laser Interferometer Space
Antenna (LISA) [1] and TianQuin [2]. It was soon re-
alized [3] that the noise caused by the stochastic fluc-
tuations of laser frequencies cannot be canceled at the
photometric detectors onboard the satellites. The rea-
son lies in the difference between the delays they expe-
rience when being transmitted along two interferometric
arms. Rather, interferometry must be performed once
the telemetry is retrieved on the ground. By taking ad-
vantage of the fact that several delayed versions of the
same noise component appear in different measurements,
it is possible to cancel laser noise by combining and in-
terpolating the received data streams at the right times-
tamps. We call this post-processing technique time-delay
interferometry (TDI) [4]. TDI has been undergoing a
constant development to account for increasing degrees
of complexity, including optical bench motion noise [5],
varying armlengths [6, 7], noise correlations [8], on-board
filtering [9], clock jitters [10] and the preferred represen-
tative units of the processed data (phase or fractional-
frequency) [11]. Other efforts focused on finding new
noise-canceling combinations [12].

Romano and Woan [13] showed that we could think of
TDI combinations as low-variance principal components
of the laser noise covariance matrix. This idea relied on
a matrix representation of the interferometric measure-
ments and was also explored in Ref. [14]. Computing
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TDI variables is equivalent to projecting the data onto
the null space of the covariance. Recently, this concept
regained interest in the community. Vallisneri et al. [15]
presented a similar algebraic computation (called TDI-
∞) where they perform the singular value decomposition
(SVD) of the design matrix M , i.e., the matrix translat-
ing individual laser noise sources c into measured noises
y so that y = Mc. They approximate the model likeli-
hood by restricting it to the dominating terms, using the
singular vectors that correspond to the null space of M .
Concomitantly, we derived a frequency-domain version of
the covariance eigenvector decomposition [16] called PCI
(for principal component interferometry), where we fo-
cused on the orthogonalization of the data with respect
to secondary (i.e., non-laser) noises. We showed that this
method generalizes the A, E, and T TDI variables [8] and
can bring an improvement in signal-to-noise ratio (SNR)
when the levels of the noises affecting the single-link mea-
surements are unequal. Although the implementation
details are still under debate [17–19], the matrix repre-
sentation of TDI is a powerful tool for data analysis, as
it allows one to express the model likelihood directly in
terms of single-link measurements and readily account
for data gaps.

TDI and the extensions cited above rely on accurate
modeling of the dependence of the measurements on the
various laser noise sources. TDI stems from a set of
equations modeling every interferometer, from which one
derives the sequence of combination and delaying opera-
tions needed to precisely cancel laser noise terms. Equiv-
alently, TDI-∞ assumes perfect knowledge of the design
matrix, while PCI assumes a model of the noise covari-
ance. In addition, these methods need precise estimates
of the time-delays, which can be obtained independently
from the telemetry [20] or directly estimated from the
data using noise power minimization [21] or, as it was
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recently shown, by Bayesian inference [16, 22]. However,
LISA is a complex apparatus involving many control
laws, couplings, and frequency planning inducing corre-
lations among lasers. Inaccurate modeling can lead to
imperfect cancellation or even no laser noise suppression
at all [9, 10]. In this work, we present a fully data-driven
approach to cancel laser noise in space interferometry,
with no prior assumption on the noise structure. The
method (that we name aPCI for automatic PCI) relies
on the principal component analysis (PCA) of a matrix
directly constructed from the measurements.

PCA is usually used to reduce the dimensionality of a
problem by decomposing the data into an orthogonal ba-
sis whose vectors are called principal components. Then,
one keeps only the vectors that contain the most infor-
mation about the data by restricting the analysis to the
components having the largest variance. However, when
the noise overwhelmingly dominates the signal of inter-
est, as this is the case for gravitational waves (GW) by
about a factor 108, we can use PCA with the opposite
objective: to retain the components having the lowest
variance.

In most problems, the decomposition is performed on
a collection of n different realizations of the same p-
dimensional measurement, forming a matrix of size n×p.
However, in a gravitational-wave observatory like LISA,
the data is instead made of different channels affected by
different noises and measuring different projections of the
same signal. To build a data matrix that we can process
with PCA, we can draw inspiration from the technique
used to form the TDI combinations [23], which relies on
interpolators like Lagrange filters to produce delayed ver-
sions of the measured data. The measurement estimate
at a given point in time is interpolated by linearly com-
bining nearby data samples. Thus, we build a n× p data
matrix whose rows are versions of the same data shifted
by an integer number of samples. Then, we compute the
PCA of this matrix to obtain components organized in
decreasing order of variance. The lowest variance compo-
nents correspond to combinations where laser noise is sig-
nificantly reduced. Projecting the data onto these com-
ponents yields data streams that are readily usable for
gravitational-wave searches.

We first detail the principle of the aPCI method in
Section II, and present the theoretical framework. In
Section III, we provide a means to evaluate the method
performance by deriving the sensitivity of aPCI combi-
nations to monochromatic GWs in the case of LISA. In
Section IV, we use a numerical simulation of LISA data
to demonstrate laser noise suppression, and also compare
aPCI with classic TDI by computing their sensitivities
averaged over sky location and orientation. Finally, in
Section V we discuss important aspects of this approach
and pave the way for future studies.

II. PRINCIPAL COMPONENT ANALYSIS
THEORETICAL FRAMEWORK

A. Construction of the data matrix

Space-based gravitational-wave detector data include
the outputs of several interferometers, which can be ex-
pressed in relative frequency deviations. We denote the
corresponding measurements as sij(t) to conform to the
official convention (see, for example, Ref. [11]), where i
is the index of the satellite hosting the optical bench,
and j is the index of the sending spacecraft. In practice,
we measure a discrete version of sij(t) with N samples
spaced every τs seconds. Therefore, we can form a vec-
tor sij with N entries given by sij(tn), where the time
stamps are tn = nτs, n ∈ [0, N − 1]. Hence, we have

sij ≡ (sij(t0), . . . , sij(tN−1))
†
. We will stick to the LISA

example, where the detector is made of a constellation of
3 satellites, each of them carrying 2 optical benches on
board. If we consider the science measurements only,
then we have 6 measurements that we can stack into a
N × 6 matrix Y as

Y ≡ (s12, s23, s31, s13, s21, s32) . (1)

Classical TDI algorithms usually operate in two steps.
First, they compute delayed versions of discrete signals,
interpolated at specific times depending on the light
travel time delays along the constellation arms. In a sec-
ond step, they combine these interpolated time series in
such a way that laser noise terms vanish.

We would like to form laser-noise canceling combina-
tions of the data without knowing the delays nor the
way they enter the measurements. We know that the
first step of TDI is usually performed through fractional-
delay filter techniques which use linear combinations of
samples at times before and after the target date [23].
In this process, one must choose the number of samples
nh to use before and after the desired interpolation time.
In principle, the larger nh, the better the interpolation
accuracy, but the longer the computation time. To pro-
vide a fully data-driven algorithm with the ingredients
necessary to automatically find the correlations among
the data, we can therefore start from shifted versions of
the measurement vector s. Let us assume that we have
measured data over a time span from t = 0 to t = Tobs,
sampled every τs. We can build a matrix X containing
Y itself, along with nh backward-shifted versions of it
and nh forward-shifted versions, resulting in a matrix of
size N × 6(2nh + 1) such that:

X ≡ (D−nh
Y , D−nh+1Y , . . . , Dnh

Y ) , (2)

where we defined the integer delay matrix Dm of size
N ×N which acts on any vector s as

Dmsn =

{
sn−m if n ∈ [nmin, nmax]

0 otherwise,
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with nmin ≡ max(0,m) and nmax ≡ min(N − 1, N −
1 + m). This way, the matrix X is formed of sub-
vectors including 6 interferometric measurements, where
a sub-vector is shifted by one time sample with respect
to the previous one. In this form, the data is ready to
be processed through PCA. In the following, we will set
p ≡ 2nh + 1 as the number of subchannels.

B. PCA decomposition of the data matrix

PCA aims at finding a transformation of the data ma-
trix into a new set of variables which are as independent
as possible with respect of the information they carry,
measured in terms of variance. This is done by comput-
ing a set of vectors called principal components (PCs)
representing orthogonal directions that are ordered from
the one that best fits the data, to the one that is less
representative. In the problem we study, the data matrix
variance overwhelmingly represents laser noise. The first
PCs will therefore better fit the laser noise. On the con-
trary, the last PCs should be more independent of laser
noise, representing the remaining information present in
the data.

We can compute the PCs through singular value de-
composition (SVD):

X = USV ᵀ, (3)

where U is a N ×N unitary matrix of left-singular vec-
tors, S is a N × 6p rectangular diagonal matrix whose
non-zero elements are the singular values, V is a 6p× 6p
unitary matrix of right-singular vectors, and ᵀ is the ma-
trix transpose operator. The PCs are given by the vectors
forming the columns of V .

Note that, in regular PCA, the columns of the ma-
trix we decompose correspond to different features (like
different sensor outputs) and the rows correspond to dif-
ferent realizations of the measurement. In the way we
apply it to laser noise processing, the matrix columns in-
clude not only different interferometer outputs, but also
different shifts, while the rows correspond to particular
times at which the data is measured. Therefore, to draw
a comparison between TDI and what we do here, the el-
ements of particular PC vector could be interpreted as
the kernels of several fractional delay filters.

The principal component decomposition of X is there-
fore the matrix T resulting in the transformation

T ≡XV . (4)

The rows of T are usually called the scores, but we will
refer to them as the PCA (or aPCI) combinations in the
following.

In this problem, we are interested in the q lowest-
variance components of the decomposition, below some
threshold where the laser noise is significantly sup-
pressed. Let us rewrite V in two parts: a part Vq =
VΠq, where Πq ≡ (0, Iq)

ᵀ
is the 6p × q matrix that

projects the last q low-variance PCs, and the comple-
mentary part V\q containing the first 2p− q PCs related
to large variance:(

T\q
Tq

)
≡X

(
V\q Vq

)
, (5)

where we split V =
(
V\q, Vq

)
. To a good approximation,

the low-variance transformation Tq should be all we need
to search for the signals of interest, i.e. gravitational
waves.

A key effect of the PCA is that the transformation from
X to T diagonalizes the data matrix sample covariance
Σ̂X = 1

NX
ᵀX and transforms it to the diagonal matrix

Σ̂T = 1
N T

ᵀT = 1
NS

ᵀS. Here we are primarily inter-
ested in the inverse covariance, which the low-variance
decomposition allows us to write as:

Σ̂−1T =

(
V ᵀ
\qΣ̂

−1
X V\q V

ᵀ
\qΣ̂

−1
X Vq

V ᵀ
q Σ̂−1X V\q V ᵀ

q Σ̂−1X Vq

)

≈
(

0 0

0 V ᵀ
q Σ̂−1X Vq

)
= Πᵀ

qΠqΣ̂
−1
T Πᵀ

qΠq (6)

where in the last line we used the diagonality of Σ̂T and
neglected the first 6p − q inverse variances compared to
the q last ones. Here our reverse-ordered preference for
the nominally least-significant principal components has
the effect of selecting the most significant parts of the
inverse covariance matrix.

C. Relation of the PCA process with the model
covariance

As is common in gravitational-wave data analysis, we
assume our noise is Gaussian and stationary (over the
relatively short timescales relevant for laser noise.) Sta-
tionarity allows us to assume that frequency bins are ap-
proximately uncorrelated in the Fourier domain. For any
vector z, we will label as z̃(f) its discrete Fourier trans-
form (DFT) element at frequency f . Similarly, we will

denote by Σ̃z(f) its Fourier-domain covariance, which
fully characterizes the (zero-mean) noise.

The construction of the data matrix in Eq. (2) can be
rewritten in the frequency domain as

X̃(f) = ỹᵀ(f)
(
D̃−nh

(f), . . . , D̃+nh
(f)
)
, (7)

where ỹ(f) is now a 6 × 1 column vector, and X̃(f) is
a 1× 6p row vector. Here we approximate the mth inte-
ger delay operator involved in Eq. (2) by a multiplicative
complex exponential phase in the Fourier domain, en-
coded by a 6× 6 diagonal matrix D̃m(f) with entries

D̃m,pq(f) = δpqe
−2iπfmτs , (8)
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where i =
√
−1 is the complex number and δpq is the

Kronecker symbol (δpq = 1 if p = q and δpq = 0 other-
wise).

Similarly, we can write a frequency-domain version of
the projection in Eq. (4) by defining t̃(f) as the 6p × 1
vector formed by stacking the 6p PCA combinations at
frequency f . Then, we have

t̃(f) = V ᵀX̃ᵀ(f) = W (f)ỹ(f), (9)

where we set W̃ (f) ≡ V ᵀ
(
D̃−nh

(f), . . . , D̃+nh
(f)
)ᵀ

the 6p × 6 matrix transformation which encodes, in the
Fourier domain, the construction of the data matrix and
its PCA transformation.

The transformation matrix W̃ has useful properties:

W̃ †W̃ =
(
D̃†−nh

. . . D̃†+nh

)
V V ᵀ

D̃−nh

...

D̃+nh


=

+nh∑
m=−nh

D̃†mD̃m = pI6, (10)

where we used the fact that V is unitary. Note that
here we took the Hermitian transpose †, because W̃ is a
complex-valued matrix.

We denote by Σ̃x ≡ E
[
x̃x̃†

]
the covariance of any

zero-mean complex random vector x̃. Then from Eq. (9)
we can write the 6p× 6p covariance of t̃ as

Σ̃t = W̃ Σ̃yW̃
†, (11)

where we dropped the dependence on f to lighten the
expressions.

We seek a similar expression relating the inverse co-
variances. Because the transformation t̃ = (1/p)W̃ †ỹ
involves a projection from 6p dimensions down to 6, we
do not have a useful inverse identity involving W̃W̃ †.
Consequently it is not straightforward to find an expres-
sion for the inverse covariance by solving AΣ̃t = I6p.

However, if we set A = (1/p2)W̃Σ−1y W̃ †, we can verify

that Σ̃tAΣ̃t = Σ̃t and AΣ̃tA = A and that both AΣ̃t

and Σ̃tA are Hermitian, thus establishing that A is the
pseudoinverse of Σ̃t, which we simply denote as

Σ+
t = (1/p2)W̃Σ−1y W̃ †. (12)

Using the explicit properties of W̃ , we can then invert
this expression to find

Σ−1y = W̃ †Σ+
t W̃ . (13)

If the sample variance from the PCA data matrix pro-
vides a sufficient estimate of the (generally distinct) data
variance as regards the laser noise, then as in Section II B
we can estimate Σ̃+

t ≈ Πᵀ
qΠqΣ̃

+
t Πᵀ

qΠq. Thus

Σ̃−1y ≈ W̃ †
qΠqΣ̃

+
t Πᵀ

qW̃q. (14)

where we set W̃q ≡ ΠqW̃ .

This approximation amounts to ignoring the negligible
terms depending on laser noise when computing the in-
verse covariance, through a suitable transformation that
allows us to restrict the analysis to the terms that are
relevant for the GW parameter inference.

D. Bayesian inference

Gravitational-wave signals are usually analyzed using
Bayesian inference. We consider the frequency-domain
data ỹ comprising six channels evaluated at frequency
bin f . We drop the explicit dependence on f for more
clarity. For a model parameterized by θ, the posterior
distribution given ỹ is

p (θ|ỹ) =
p (ỹ|θ) p (θ)

p (ỹ)
, (15)

where p (ỹ|θ) is the likelihood, p (θ) is the prior distribu-
tion of the parameters, and the evidence p (ỹ) provides
normalization.

For zero-mean Gaussian noise, the likelihood has the
form:

p (ỹ|θ) =

exp

{
− 1

2

(
ỹ − h̃

)†
Σ̃−1y

(
ỹ − h̃

)}
√

(2π)6
∣∣∣Σ̃y

∣∣∣ , (16)

where † denotes the Hermitian conjugate, h̃ is the con-
tribution to the data ỹ expected from the gravitational
wave signal implied by parameters θ, and Σ̃y is the
6N×6N covariance. At this level the covariance includes
all the noise processes including dominant contributions
from the laser noise.

Bayesian analysis is clearest, when the data repre-
sented in the analysis comes directly from the basic mea-
surements. In practice though some pre-treatment or
approximating assumptions can be important to make
the analysis practical. For LISA, the challenge is that
the basic problem represented in Eq. (16) is dominated
by the uninteresting laser noise. TDI processing is one
approach to recast the problem without this dominant
part.

Here we propose to apply our PCA treatment instead.
To see how this works, we first plug the approximation for
the inverse covariance derived in Eq. (14) into Eq. (16)
and take the logarithm to obtain:

ln p (ỹ|θ) ≈ −1

2

(
ỹ − h̃

)†
W̃ †

qΠqΣ̃
+
t Π†qW̃q

(
ỹ − h̃

)
−1

2
ln
(

(2π)6
∣∣Π†qW̃ Σ̃yW̃

†Πq

∣∣). (17)

Then, we use the transformation in Eq. (9) to write
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the log-likelihood as a function of t̃:

ln p (ỹ|θ) = −1

2

(
t̃q − t̃hq

)†
Σ̃−1tqtq

(
t̃q − t̃hq

)
−1

2
ln
(

(2π)6
∣∣Σ̃tqtq

∣∣), (18)

where we have also defined Σ̃−1tqtq
≡ ΠpΣ̃

+
t Πp, t̃q ≡ W̃qỹ

and t̃hq ≡ W̃qh. As a result, decomposing the data with
PCA and keeping only the lowest variance components is
equivalent to restricting the likelihood to its most signif-
icant terms (i.e., the terms that are the most relevant for
GW parameters inference). The data-driven PCA pro-
cess outlined here is similar to the TDI analysis, which
has already been shown to be equivalent to an approxi-
mation of the likelihood [13, 15, 16]. Depending on the
choice of q, Eq. (18) can be considered as a family of ap-
proximations for Eq. (16). We have argued that we ex-
pect that small q will provide a sufficient approximation,
but the result become exact in the limit that q → 6p.

E. Orthogonalization of aPCI streams with respect
to secondary noises

To further simplify the computation of the log-
likelihood in Eq (17), it is more convenient to manipulate
streams which are orthogonal with respect to the noise,
including its non-laser part. Therefore, we need a process
equivalent to the generation of A, E, T combinations [8]
in TDI. We already have generalized this operation in a
previous work [16], where we simply compute the eigen-
vectors of the covariance matrix:

Σ̃t(f) = Φ(f)Λ(f)Φ(f)†, (19)

where Φ(f) is the matrix of eigenvectors, and Λ(f) is the
diagonal matrix of eigenvalues. Note that we perform
this decomposition for each frequency. Ultimately, the
orthogonal PCA combinations are given by

t̃⊥(f) = Φ(f)†t̃(f), (20)

and their PSDs are given by the diaogonal elements of
Λ(f) . We have now a process to compute the noise levels
necessary to derive the gravitational strain sensitivities.

III. EVALUATION OF APCI PERFORMANCE

The right quantity to assess the performance of the
PCA process to analyse gravitational-wave measure-
ments is the sensitivity of the PC projections, which we
derive in this section.

A. Orbit assumptions

We assume that the LISA spacecraft follows Keplerian
orbits approximated to first order in eccentricity, with

e = 4.8237× 10−3. We assume that the spacecraft form
an equilateral triangle whose center follows a circular or-
bit around the Sun, such that its position at any time t
is given by

r0 = (R cosφT , R sinφT , 0)
ᵀ
, (21)

where R = 1 au is the distance between the Sun and the
center of the constellation, and φT (t) is the flight path
angle.

B. Derivation of gravitational-wave responses

Here we derive the aPCI variables response to
gravitational-wave signals, which is needed to compute
their sensitivities. At the time of reception t, the re-
sponse of gravitational waves in a single link ij is given
in fractional frequency by [24]:

yGW
ij (t) =

Hij

(
tj − k·rj(tj)

c

)
−Hij

(
t− k·ri(t)

c

)
2 (1− k · n̂ij)

, (22)

where we labeled the GW projection onto arm ij as Hij ,
the spacecraft i position vector as ri, the unit vector
along arm ij as n̂ij = (ri − rj) /‖ri − rj‖ and the time
of emission as tj = t − Lij/c, which depends on Lij ,
the effective distance between the sending spacecraft j
and the receiving spacecraft i. We compute the vectors
ri from the orbital motion postulated in Section III A. In
this equation, we also defined k as the direction of GW
propagation, which can be expressed as a function of the
source’s ecliptic latitude β and longitude λ:

k = − (cosλ cosβ, sinλ cosβ, sinβ)
ᵀ
. (23)

The GW projection can be written as a function of
antenna pattern functions F+ and F× such that

Hij(τ) = h+(τ)F+ (ψ,k, n̂ij) + h×(τ)F× (ψ,k, n̂ij) ,
(24)

where hα is the strain deformation in the source frame
for the polarization mode α. The antenna pattern func-
tions depend on the GW polarization angle ψ, the wave
propagation vector k and the link vector n̂ as

F+ (ψ,k, n̂) = cos(2ψ)ξ+ (k, n̂)− sin(2ψ)ξ× (k, n̂) ;

F× (ψ,k, n̂) = sin(2ψ)ξ+ (k, n̂) + cos(2ψ)ξ× (k, n̂) ,
(25)

where ξ+ and ξ× are modulation functions defined as

ξ+ (k, n̂) = (u · n̂)
2 − (v · n̂)

2
;

ξ× (k, n̂) = 2 (u · n̂) (v · n̂) . (26)

The vectors u and v in the above equation form the
source localization basis (u, v, k), with

u = (sinλ, − cosβ, 0)
ᵀ

;

v = (− sinβ cosλ, − sinβ sinλ, cosβ)
ᵀ
. (27)
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To write the response as a function of the source fre-
quency, it will be useful to express the GW strain in terms
of its Fourier transform h̃α(f):

hα(t) =

∫ +∞

−∞
h̃α(f ′)e2iπf

′tdf ′. (28)

We plug Eq. (28) into Eq. (22) to get

yGW
ij (t) =

∑
α=+,×

∫ +∞

−∞
h̃α(f ′)e2iπf

′tdf ′
Fα (ψ,k, n̂ij)

2 (1− k · n̂ij))

×
[
e−2iπf

′(Lij+k·rj(tj))/c − e−2iπf
′k·ri(t)/c

]
.

(29)

In the following, we assume that the gravitational wave
is monochromatic, with frequency f . Choosing a null
phase, the Fourier transform of hα(t) can then be writ-

ten as h̃α(f ′) = 1
2Aαδ (f ′ − f) for positive frequencies.

Inserting this into Eq. (30) gives

yGW
ij (t, f) =

∑
α=+,×

1

2
Aαe

2iπft Fα (ψ,k, n̂ij)

2 (1− k · n̂ij))

×
[
e−2iπf(Lij+k·rj(tj))/c − e−2iπfk·ri(t)/c

]
.

(30)

The modes amplitudes Aα can be expressed as a function
of the inclination ι of the system with respect to the line
of sight:

A+ = A
(
1 + cos2 ι

)
;

A× = −2A cos ι, (31)

where A is the amplitude of the source, that we consider
constant in our monochromatic assumption.

We can now derive the response of PCA projections to
GWs using the time-domain equivalent of Eqs. (9):

tGW(f) = V †

y
GW(t+ nhτs, f)

...
yGW(t− nhτs, f)


†

, (32)

where yGW(t, f) is simply the vector of single-link GW
responses

yGW(t, f) ≡


yGW
12 (t, f)
yGW
23 (t, f)
yGW
31 (t, f)
yGW
13 (t, f)
yGW
21 (t, f)
yGW
32 (t, f)

 , (33)

whose entries are given by Eq. (30).

C. Computation of sky-averaged sensitivity

In Sec. II C we derived the frequency-domain covari-
ance of the aPCI combinations as a function of the single-
link data covariance Σ̃y, while in Sec. III B we derived
their response to gravitational waves. Following Babak
et al. [25], we define the instantaneous strain sensitivity
of a given component m as its noise PSD divided by its
response averaged over all sky locations and orientations:

Sh,m(f) = A2 S⊥,m(f)

〈|tGW
⊥,m(f)|2〉

, (34)

where tGW
⊥ ≡ Φ(f)†tGW is the GW response in the or-

thogonalized aPCI combinations, S⊥,m(f) ≡ Λmm(f) is
the noise PSD given by the diagonal elements of matrix
Λ(f) in Eq. (19), and the brackets denote the averaging
over sky location angles, polarization and inclination:

〈|tGW
⊥,m|2〉 =

1

4π

∫
k

1

2π

∫ 2π

0

1

2

∫ +1

−1
|tGW
⊥,m|2d3kdψd cos ι.

(35)

In this definition, the sensitivity corresponds to the level
of strain noise within an infinitesimal frequency band df
(as stated in, e.g., [26]). Note that we include the factor
A2 in front of Eq. (34) to cancel the one present in the
denominator via Eqs. (31), making the sensitivity inde-
pendent of the amplitude, as it precisely determines the
variance of A. We can sum the sensitivity over a subset
of components between mmin and mmax:

Sh(f) =

[
mmax∑

m=mmin

S−1h,m(f)

]−1
, (36)

where the terms in the sum are the inverse sensitivities
of each component, which can be viewed as their SNR
per unit time and unit amplitude. In the following, we
compute this sensitivity on a given example and compare
it with its TDI analog.

To evaluate the sensitivity in Eq. (34), we need an ana-
lytical model for the PSD of the single-link data, at least
under some assumptions. This will then allow us to de-
rive an expression for the PSD of the PCA combinations
S⊥,m(f). We assume that LISA’s single-link measure-
ments include two main sources of noise: a large term
due to laser frequency fluctuations and a much smaller
term due to other instrumental noises. We assume that
the signals measured by the two optical benches on-board
spacecraft 1 are given by the equations

s12(t) = p21(t− c−1L12)− p12(t) + n12(t)

s13(t) = p31(t− c−1L13)− p13(t) + n13(t), (37)

where pij are laser noises, nij are secondary noises, and c
is the speed of light, labeling by the convention noted in
Section II A. We obtain the other measurements on-board
spacecraft 2 and 3 by permuting the indices (modulo 3)
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in Eq. (37). To simplify the analysis, we assume that
the two lasers onboard each spacecraft i are identical, so
that pij = pik. This amounts to assuming that the sij are
equal to the vectors of intermediate variables ηij in the
TDI pre-processing (see, e.g., Ref. [27]). In this model,
the measured laser noises can be seen as the result of the
mixing (and delaying) of a vector of laser noise sources
p = (pᵀ12, p

ᵀ
23, p

ᵀ
31)

ᵀ
. We consider the 6N column-vector

version of the N × 6 matrix Y in Eq. (1), which stacks
all the measurements as

y ≡ (sᵀ12, s
ᵀ
23, s

ᵀ
31, s

ᵀ
13, s

ᵀ
21, s

ᵀ
32)

ᵀ
. (38)

This mixing is represented by a 6N × 3N design matrix
M , such that the model for y is

y = Mp+ n, (39)

where we set n ≡ (nᵀ
12, . . . , n

ᵀ
32)

ᵀ
, using the same order-

ing as in Eq. (38). Using this assumption, we have

M =


−1 D12 0
0 −1 D23

D31 0 −1
−1 0 D13

D21 −1 0
0 D32 −1

 , (40)

where Dlm represents the fractional delay operator
acting on any discretized signal x(tn) as Dlmx|n ≈
x (t− Llm/c).

In the following, we assume that pij and nij are zero-
mean stationary Gaussian noises vectors of size N de-
scribed by PSDs Sp,ij(f) and Sn,ij(f), respectively. We
further assume that these entries are uncorrelated. Since
the laser noise level is much larger than the other noises,
we have Sp,ij(f) � Sn,ij ∀i, j. For this reason, we will
refer to n as the vector of secondary noises.

D. Practical implementation

For a number of aPCI variables, we compute the orien-
tation and sky-averaged sensitivity following Eqs. (36).
We perform the integration with respect to the polar-
ization angle analytically, which is equivalent to setting
ψeq = π/4 (as it corresponds to equal contributions be-
tween the + and × modes). We also use an analytical
result for the integration over inclination, as it amounts
to multiplying the squared response by 4/5 [28]. Finally,
we average over sky locations numerically by randomly
drawing 3000 values of the source ecliptic latitude β and
longitude λ from a uniform distribution in the interval
[0, π]× [0, 2π].

Suppose we have computed the SVD decomposition.
Among the 6p PCs provided by the algorithm, let us
consider only q of them. For each sky location (λ, β)
and each GW frequency f , we compute the response by
following 3 steps:

1. Compute the arm responses yGW
ij using Eq. (30);

2. Form the q PCA projections tGW
m with Eq. (32);

3. Orthogonalize the projections using Eq. (20);

To get a baseline for comparison, we also compute
the sensitivity of first-generation TDI, as defined in, e.g.,
Ref. [29]. The computation steps follow a similar scheme
as above. The first step is the same: we calculate the arm
response to harmonic GWs exactly as before. Step 2 is
replaced by the computation of the Michelson TDI com-
binations X, Y and Z. This is done by applying the TDI
1.5 transfer function to the single-link response vector

tGW
TDI = V †TDIy

GW, where VTDI can be written as

VTDI ≡


D13D31 − 1 (1−D23D32)D21 0

0 D21D12 − 1 (1−D31D13)D32

(1−D12D21)D13 0 D32D23 − 1
1−D12D21 0 (D32D23 − 1)D31

(D13D31 − 1)D12 1−D23D32 0
0 (D21D12 − 1)D23 1−D31D13

 . (41)

Then, Step 3 is replaced by forming the A, E and T
combinations from X, Y and Z, as defined in Ref. [4].
Finally, we compute the TDI sensitivity over all channels
with a calculation similar to Eq. (36).

IV. NUMERICAL SIMULATIONS AND
RESULTS

In this section, we verify that the aPCI algorithm
yields a significant noise subtraction. Then we check the
PSD model derived in Section II C against realizations of
the noise. Finally, we compute averaged sensitivities to
gravitational waves, and compare them with Sagnac TDI
observables A, E and T.



8

A. Laser noise subtraction

We test the aPCI algorithm on simulated LISA data
streams. We adopt the same assumptions as in Ref. [16].
To generate the noises, we assume that the laser sources
of two optical benches belonging to the same spacecraft
are the same, and that the light travel time delays be-
tween spacecraft are constant and equal to L/c, where
L = 2.5× 109 m is the mean inter-spacecraft distance.

We simulate the science measurement time series sij
from Eq. (37). We generate noises from zero-mean Gaus-
sian stationary processes in the frequency domain de-
scribed by PSDs Sp(f) and Sn(f) given by:

Sp(f) =

(
28.2 Hz.Hz−1/2

ν0

)2

;

Sn(f) =
Sa(f)

(2πfc)
2 +

(
2πf

c

)2

Soms(f), (42)

where ν0 = c · (1064× 10−9m)−1 is the central frequency
of the lasers, Sa(f) is the test-mass acceleration noise
PSD (in m2s−4Hz−1) and Soms(f) is the PSD represent-
ing all other pathlength noises in the measurement (in
m2Hz−1). Their expressions are given in Appendix A,
where we adopted assumptions made for the LISAN-
ode simulator [30]. Likewise, we apply light travel time
delays in the frequency domain. To prevent any artifi-
cial periodicity, we generate 2N samples corresponding to
Fourier frequencies ±kfs/(2N) before transforming the
generated noise to the time domain, and discarding the
second half of the data to get a time series of size N .

We choose the duration of the time series to be 12
hours, with a sampling rate of fs = 2 Hz, which allows
us to cover the frequency band between 0.1 mHz and 1
Hz. We choose the half-stencil size nh so that the sten-
cil spans the duration of one complete turn around the
constellation nh = b3Lfs/cc = 25. Note that we did not
find significant changes in the results presented in the
following when choosing larger values for N and nh. A
full assessment of the impact of data and stencil sizes
is left for future work. We form the data matrix fol-
lowing Eq. (2) and compute its PCA as in Eq. (4) with
the algorithm provided by the Python package Scikit-
learn [31]. In this example, the decomposition yields
306 PCA components.

We can analyze the relative amount of noise present in
each component m by calculating the variance quantity
S2
m,m/(N − 1), where S is the singular value matrix in

Eq. (3). We report these values for all m on Fig. (1). We
see that the variance decreases with increasing values of
m, with a drop spanning 15 orders of magnitudes. This
plot is a good hint about the ability of the algorithm to
separate large noise from low noise components.

Now let us order the aPCI variables from the lowest
variance to the largest variance, so that index m = 1 cor-
responds to the rightmost end of Fig. 1, and m = 6p cor-
responds to the leftmost end. We project the data vector

0 50 100 150 200 250 300
Component index

10 41

10 38

10 35

10 32

10 29

10 26

Va
ria

nc
e

FIG. 1. Variance associated to PCA components in decreasing
order. Instead of selecting the largest variance components
like in classic PCA, here we are interested in the lower end of
the plot, i.e. the less noisy components at the right-hand side
of the red dashed line.

y onto the last 3 singular vectors using Eq. (4), obtain-
ing 3 data projections whose periodograms are plotted
in Fig. 2 in red for m = 1, in orange for m = 2, in blue
for m = 3. We define the cross-periodogram of two time
series x and y of size N as

Pxy(f) = x̃(f)ỹ∗(f), (43)

where x̃ refers to the windowed discrete Fourier transform
of x normalized as

x̃(f) ≡
√

2τs
N

N−1∑
n=0

wnxne
−2iπfnτs . (44)

As a comparison, we plot the periodogram of link 12
(gray curve). The difference between the gray and col-
ored curves shows that the noise is significantly sup-
pressed by several orders of magnitude. In addition, we
verify that the noise model derived in Eq. (11) accurately
predicts the noise levels in the periodograms. To do so,
we include the added contributions of laser noise and sec-
ondary noises to the aPCI residuals.

Besides, we analyze the correlations among the aPCI
variables by comparing the cross-periodograms Ptmtl(f)
with the cross spectral density (CSD) model provided
by the non-diagonal terms of the covariance in Eq. (11).
As an example, we plot in Fig. 3 the CSD of the
pairs (m, l) = (2, 3) in blue, (3, 1) in brown, (2, 1)
in turquoise. They are all consistent with the cross-
periodogram (lighter colors) averaged over 25 realiza-
tions of the noise. We see that the aPCI variables are
strongly correlated, with CSD levels comparable to the
PSDs. There is no reason why this should not be the
case, as the PCA decomposition is built mainly from the
dominant laser noise statistics. In addition, the matrix
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10 4 10 3 10 2 10 1

Frequency [Hz]
10 25

10 23

10 21

10 19

10 17

10 15

10 13
PS

D
 [H

z
1/

2 ]

link 12
aPCI component m = 1
aPCI component m = 2
aPCI component m = 3

FIG. 2. Periodograms (light colors) of the three least noisy
PCA projections as a function of frequency. We also plot
the theoretical PSDs (dark colors) obtained with Eq. (11),
expressed in units of relative frequency deviation. To compare
with the input noise, we plot in gray the periodogram of the
raw measurement from laser link 12, which is overwhelmed
by laser noise.

X we decompose is formed from the data itself, not from
the actual covariance of the data Σy. As a result, the
process does not give exactly orthogonal data streams by
construction. That is why an extra diagonalization step
can be applied, as described in Section II E, to account
for secondary noises.

10 4 10 3 10 2 10 1 100

Frequency [Hz]
10 24

10 23

10 22

10 21

10 20

10 19

|C
SD

| [
Hz

1/
2 ]

S2, 3

S3, 1

S2, 1

FIG. 3. Averaged cross-periodograms of the 3 aPCI vari-
ables of lowest variance (thin light lines), along with the cor-
responding analytical CSD model (darker solid lines). Corre-
lations among components are comparable to their individual
PSDs (plotted in Fig. 2).

While the noise levels in the aPCI streams tm give us
an indication about the amount of laser noise that is sup-
pressed, there is little sense in comparing them directly

to the TDI PSDs. It is rather preferable to compute GW
sensitivities, which we do in the next section.

B. Comparison of aPCI and TDI sensitivities

In this section, we arrange the aPCI variables in in-
creasing order of variance, i.e. we start from the lower
end of the curve in Fig. 1. We define the sensitivity of the
q variables of lowest variance as the sensitivity obtained
by accumulating the SNRs of their orthogonal transfor-
mations, as outlined in the steps of Section III D.

We plot the sensitivities for a number of components
ranging from q = 1 to q = 6 in Fig. 4. Each blue dashed
line corresponds to a value of q, with darker colors for
larger q. To better distinguish the levels, we fill the areas
in between two levels with related shades of blue. For
example, the uppermost, lightest curve is the sensitivity
obtained with a single aPCI variable (q = 1), i.e. the one
with lowest variance. The curve that comes just below
(q = 2) is the sensitivity obtained by using the two vari-
ables of lowest variance, and so on. As expected, we can
see that the larger the number of components we include,
the better the sensitivity.

10 4 10 3 10 2 10 1 100

Frequency [Hz]
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10 18
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FIG. 4. Comparison of aPCI (blue dashed lines) and TDI
(thick orange line) sensitivities summed over combinations.
The lightest, uppermost blue dashed line corresponds to the
sensitivity obtained with a single aPCI component, chosen
to be the one with the smallest singular value. The darker
curve just below corresponds to the accumulated sensitiv-
ity obtained by including an additional component (corre-
sponding to the next smallest singular value). Darker blue
dashed curves beneath are constructed similarly, by adding
more components. The lowermost dashed blue curve is the
sensitivity reached with 6 components, which almost perfectly
fits the orange line representing the accumulated AET TDI
sensitivity.

We also plot in Fig. 4 the summed sensitivity of TDI
channels A, E and T with a thick, solid orange line. Re-
markably, the figure shows that we reach the same sen-
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sitivity as orthogonal TDI with 6 aPCI variables, as we
can see from the superimposition of the lowest dashed
blue line and the orange solid line. We have checked that
adding more aPCI variables does not improve the sensi-
tivity any further, as they are too much dominated by
laser noise.

C. SNR distribution and statistical behavior

Fig. 4 suggests that we need 6 aPCI variables to reach
the exact same sensitivity as the 3 orthogonal TDI com-
binations. To analyse the extent to which this is true,
we can assess the fraction of sensitivity, or rather equiv-
alent squared SNR, contained in each component. We
do so by defining the squared SNR as simply the inverse
sensitivity integrated over the frequency band:

SNR
2

m ≡
∫ fmax

fmin

S−1h,m(f)df, (45)

where Sh,m(f) is given by Eq. (34), fmin = 10−4 Hz
and fmax = 1 Hz. We are not using the term “SNR”
in the usual way here, as the inverse sensitivity is just a
proxy for the SNR of a monochromatic source. It can be
thought of as a SNR per unit time and unit strain. Then,
the squared SNR fraction of componentm relative to TDI

is simply SNR
2

m divided by the total SNR2 achieved by
variables A, E, T.

Besides, since the PCA is performed on noisy data,
singular vectors are random variables with a variabil-
ity depending on the particular realization of the noise
present in y. Therefore, to study how the sensitivity
is distributed between different components, we need to
consider several noise realizations and examine this dis-
tribution on average.

For this purpose, we generate 100 realizations of the
12-hour long vector y, and compute the aPCI variables
for each of them, along with their theoretical PSDs. We
gather the results in Fig. 5, where we plot the mean PSDs
for the three variables with lowest singular values (the
same as in Fig. 2), along with their 68% confidence in-
tervals. This plot reveals the significant variability of the
relative noise levels within each component.

For each noise realization, we compute the sensitivity
of the 6 lowest variance aPCI variables, and the SNR2

fraction (relative to TDI) carried by each variable. In
Fig. 6, we plot the distribution of cumulative SNR2 frac-
tion as a function of the number of components in the
form of box plots (blue), using the seaborn package [32].
We range the components from largest to smallest SNR2.
As a reference, we plot the TDI combinations’ cumulative
SNR2 when adding A, E and T in this order (horizontal
yellow dashed lines).

We see that in average, most of the SNR2 (about 94%)
is concentrated in the 3 most sensitive aPCI variables
(boxes on the left-hand side of the figure). While the
first component always gather about 50% of the SNR2,
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m = 3

FIG. 5. Impact of noise realizations on the three least noisy
aPCI variables noise PSDs. The solid lines correspond to the
mean PSDs accross 100 noise realizations, while the colored
areas around each line represent the 1-σ region. The indexing
m is ordered along increasing variance, from m = 1 (lowest
variance) to m = 3 (third lowest variance).
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FIG. 6. Distributions of cumulative fraction of SNR2 (in
percent) as a function of the number of variables, ordered
in decreasing SNR2 fractions. The blue boxes correspond to
aPCI variables and are made of 3 line showing the 3 quartiles,
while the vertical lines on both sides extend to the extreme
values of the distribution. The yellow horizontal lines show
the cumulative SNR2 fraction of TDI variables A, E, T. The
distributions are obtained from 100 realizations of the data
vector y.

the heights of the boxes indicate a significant spread of
the SNR2 fraction around the median when adding com-
ponents 2 and 3. The 3 last components (4, 5, 6) have
marginal SNR concentrations, since their total fraction
is about 6% on average. It should be noted that the
last box is almost flat, which means that the total SNR
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(or sensitivity) hardly changes from one realization to an-
other. It fluctuates around 99.99751(7)% of the TDI total
SNR. Therefore, the SNR contained in the last 6 aPCI
variables is virtually equal to the cumulative SNR of the
orthogonal TDI variables. The model independence re-
sults in negligible SNR loss, however the gravitational
wave signal is diluted across more than the traditional 3
TDI variables.

D. Impact of gravitational waves

The PCA process outlined in this work acts directly on
the measurements, hence the combinations that we derive
depend on the content of the data. A natural question
that arises is the impact of the presence of gravitational-
wave signals onto the PC vectors, and thus on the overall
sensitivity of the aPCI variables.

The core property which distinguishes the laser noise
as we isolate it for cancellation is just that it is loud. If a
sufficiently large gravitational-wave signal is present, we
should expect that our process will cancel that as well,
but how loud does the signal have to be for such losses
to be significant?

Here, we take a first step in answering that question
by simulating a quasi-monochromatic signal from a ultra-
compact galactic binary, whose amplitude A is allowed to
vary. For the purpose of this assessment, we consider ar-
bitrary and unphysical amplitude values chosen to give
the source particular SNRs, ranging from 1 to 109. We
choose a fixed GW frequency equal to 1 mHz, as well as
a fixed sky location. For each value of the amplitude,
we create a data set by injecting the GW signal into the
phasemeter measurements, in addition to a noise realiza-
tion which remains the same for all sets. The duration
of the time series is the same as in the previous sections,
i.e. 12 hours.

For each measurement set containing the GW signal,
we build the data matrix, compute its PCA decomposi-
tion, and derive the corresponding averaged sensitivity
that we denote by SGW

h . We compare these sensitivities
to the signal-free sensitivity (derived with data contain-
ing only noise) denoted by Sh by computing their relative
error maximized over the frequency range:

γ = max
f

{∣∣SGW
h (f)− Sh(f)

∣∣
Sh(f)

}
. (46)

We report the results in Fig. 7 where we plot γ as a
function of the source SNR. The relative error in sensi-
tivity remains below 1 % for SNR values below or equal
to 107. Beyond SNR = 108, the error becomes signif-
icant, reflecting the fact that the PCA decomposition
starts to be affected by the presence of the injected sig-
nal. This demonstrates the robustness of the method in
the presence of deterministic signals, as the chosen SNRs
are extremely large relative to typical GW sources, espe-
cially given the short observation time we consider. As

a comparison, the total GW SNR accumulated over the
mission duration should be of order ∼ 104, which is way
below the threshold where it starts to affect the PCA
decomposition.

100 102 104 106 108

GW source SNR
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FIG. 7. Impact of a 1 mHz monochromatic GW source onto
the aPCI sensitivity: relative difference of the sensitivity ob-
tained with the presence of the source relative to the source-
free sensitivity.

V. DISCUSSION

We outlined a method designed to process space-borne
interferometer telemetry and minimize laser frequency
noise for data analysis purposes. This method, aPCI, is
completely blind: it does not rely on any model describ-
ing the measurements. The only implicit assumption is
that there exists some unknown linear relationship over
short times between the various measurements. We be-
gin by building a data matrix by stacking integer-shifted
versions of all single-link measurements; then we com-
pute its PCA decomposition. Projecting the data onto
the components with lowest variances yields data streams
that are almost free from laser noise, and are directly us-
able for gravitational-wave searches. We demonstrate its
equivalence with Bayesian inference based on TDI. This
approach is a robust, complementary alternative to ex-
isting TDI techniques which depend on a specific model
of the data (the laser noise equations) and on physical
parameters (the time delays). This model-independent
technique could be an important tool to ensure the ro-
bustness of the data analysis in missions such as LISA.

We demonstrated the effectiveness of the method to
remove laser noise using simulated LISA single-link mea-
surements, assuming fixed armlengths. We showed that
the accumulated GW sensitivity of the 6 lowest-variance
PCA projections is always effectively equal to the sen-
sitivity of first-generation Michelson TDI combinations,
and that the major part of the SNR concentrates in the
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2 most sensitive channels.

This work lays the foundation for future investigations
to build a fully data-driven approach to space-based in-
terferometer data-analysis. Many aspects remain to be
studied in more detail. First, the ability of the method to
process measurements obtained with time-varying arm-
lengths and other realistic details should be tested. Sec-
ond, even though we showed that the method is robust
against loud monochromatic gravitational-wave signals,
we should extend this assessment to the presence of var-
ious sources across the full sensitive bandwidth, as ex-
pected in LISA. Third, one should investigate how aPCI
can be further improved towards a better compression
of the GW information, using orthogonality with respect
to the sensitivity. Fourth, similar to TDI, aPCI would
have to face data artifacts like instrumental transients
and data gaps expected in LISA-like detector measure-
ments. We should study the impact of these perturba-
tions on aPCI performance and test its combination with
mitigation techniques such as imputation [33]. Finally,
an important step to take is to fully develop and demon-
strate Bayesian inference analysis using this approach.

Appendix A: Pathlength noises

We provide here the analytical forumlas for the sec-
ondary noise PSDs used in this study. The acceleration
noise PSD is given by

Sa(f) = a2TM

[
1 +

(
f1
f

)2
][

1 +

(
f

f2

)4
]

(A1)

where aTM = 3 × 10−15 ms−2, f1 = 4 × 10−4 Hz and
f2 = 8× 10−3 Hz. The OMS noise PSD is

Soms(f) = a2oms

[
1 +

(
f3
f

)4
]
, (A2)

where aoms = 15×10−12 mHz−1/2 and f3 = 2×10−3 mHz.
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