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A problematic feature of low energy scale inflationary models, such as Starobinsky in-
flation, in a spatially closed universe is the occurrence of a recollapse and a big crunch
singularity before inflation can even set in. In a recent work it was shown that this problem
can be successfully resolved in loop quantum cosmology for a large class of initial conditions
due to a non-singular cyclic evolution and a hysteresis-like phenomena. However, for certain
highly unfavorable initial conditions the onset of inflation was still difficult to obtain. In this
work, we explore the role of dissipative particle production, which is typical in warm inflation
scenario, in the above setting. We find that entropy production sourced by such dissipative
effects makes hysteresis-like phenomena stronger. As a result, the onset of inflation is quick
in general including for highly unfavorable initial conditions where it fails or is significantly
delayed in the absence of dissipative effects. We phenomenologically consider three warm
inflation scenarios with distinct forms of dissipation coefficient, and from dynamical solutions
and phase space portraits find that the phase space of favorable initial conditions turns out
to be much larger than in cold inflation.

I. INTRODUCTION

Inflation is a finite period of quasi-de Sitter accelerated expansion in the early universe which
elegantly predicts the minimal late-time curvature as well as reproduces the adiabatic, nearly-
Gaussian, and quasiscale-invariant spectrum of primordial density fluctuations in accordance with
the observational cosmological data. An important issue in inflationary models is that of right initial
conditions for the inflaton to successfully yield sufficient e-foldings to confirm with observations.
This issue becomes more relevant in the case of low energy inflationary models such as with
Starobinsky potential [1] which are favored by observations [2, 3]. Starting from Planck regime,
the potential energy is suppressed in low energy inflation models and inflaton starts with kinetic
energy domination [4, 5]. If the universe is spatially closed then such a model can undergo a
recollapse before the onset of inflation and encounter the big crunch singularity. It has been
expected that a quantum theory of gravity may shed some insights on this issue. Since the main
problem in above scenario is the existence of a recollapse followed by a big crunch singularity, if
quantum gravity effects can resolve the big crunch singularity and result in a non-singular cyclic
evolution then one can hope that in subsequent cycles conditions on dominance of kinetic versus
the potential energy alter in such a way that recollapse can be avoided and inflation can begin.

Before we investigate the above problem in this manuscript, it is important to make some
remarks to set the right context of this study and discuss alternative strategies to solve above
problem. Our study is based on assuming a positive spatial curvature of the universe. It has
been noted earlier that one requires a high degree of fine tuning to start inflation in low energy
models with a positive spatial curvature [6]. Thus, in a sense we take the most difficult case to
understand the initial conditions problem because if the universe is spatially-flat or spatially open
the recollapse caused by intrinsic curvature is absent. In fact, the initial condition problem in such
cases, especially with a compact topology, becomes much easier to address [4, 7, 8]. Though it has
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been recently claimed that a primordial spatial curvature may partially account for the observed
anomaly in the temperature anisotropy spectrum at low multipoles [9], and a small amount of
late-time curvature consistent with current observational data has the potential to explain the
current discrepancy between dataset probing early universe and those exploring late-time universe
properties [10–12], when Planck results are combined with baryon acoustic oscillations data one
finds that the current observations are consistent with a spatially-flat universe [3, 13]. But the
almost spatial flatness of the universe in current epoch does not imply that it was spatially flat
in the pre-inflationary epoch. Thus it is worthwhile to study all the cases of spatial curvature to
understand the problem of initial conditions. Let us also note that if the universe has a positive
spatial curvature, the problem of recollapse can be avoided in low energy inflationary models by
considering an additional field in a quadratic potential or a similar potential which drives inflation
in the beginning which is carried over by the low energy inflation.1 In such a model, the additional
field starts from initial conditions which are potential dominated at Planck density such that the
problem of recollapse is completely avoided before the low energy inflation onsets. This strategy is
expected to work for any other low energy inflation model with an additional scalar field sourced
by a potential allowing the first phase of inflation to start near Planck density. Another possibility
is to consider alternatives to low energy inflation models, such as a chaotic inflationary model with
additional cubic and quartic terms which turn out to be consistent with the Planck data [4, 5].

While above strategies exist to alleviate the problem of initial conditions in low energy inflation
models, our objective in this study is to understand whether quantum gravity effects when included
can resolve this problem without any additional fields which start inflation near Planck density.
Since the big crunch singularity caused by a recollapse in the pre-inflationary phase is a roadblock
to solve this problem, it is pertinent to incorporate quantum gravity modifications which resolve
the big crunch singularity to understand the onset of inflation in low energy inflation models.
This problem was recently addressed using non-perturbative quantum gravitational effects in loop
quantum cosmology (LQC) [14]. It was shown that although a large class of unfavorable initial
conditions do not result in inflation in the classical theory and lead to a big crunch singularity in
a few Planck seconds, the universe successfully goes through an inflationary phase after multiple
non-singular cycles of expansion and contraction due to quantum gravity effects. The goal of the
current work lies in the same direction with an aim to improve and generalize these results to
demonstrate that inclusion of dissipative particle production in LQC results in a rather quick, and
more robust onset of inflation even for those extreme initial conditions where inflation does not
occur with above quantum gravity effects.

Let us recall that the non-perturbative loop quantum gravitational effects resolve the big
bang/big crunch singularities replacing them by a non-singular bounce when energy density reaches
Planckian values [15–17]. For the spatially-closed model, singularity resolution results in multiple
non-singular cycles of expansion and contraction [18–20]. It is to be noted that loop quantum
gravity effects are only dominant near the classical singularities and diminish quickly at smaller
energy densities resulting in classical dynamics at the macroscopic scales. In an effective space-
time description of these quantum gravity effects, modified Friedmann equations can be obtained
which have been shown to capture the underlying quantum dynamics to an excellent approximation
[16, 18, 21, 22]. From these modified Friedmann equations, one can show a generic resolution of
all strong curvature singularities in isotropic and anisotropic models in LQC [23] including in the
presence of spatial curvature [24]. Given that LQC robustly solves the problem of singularities, it
provides an excellent stage to address the problem of resolution of onset of inflation in low energy
inflationary models in presence of a positive spatial curvature.

An interesting feature of cosmic expansion/contraction which leads to a novel hysteresis like

1 We thank the anonymous referee for pointing out this possibility.
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phenomena in non-singular cyclic evolution is the difference in pressure during expansion and
contraction stages [25]. This phenomena occurs even in the absence of dissipative effects for suitable
scalar field potentials [26]. Hence, the universe posses an arrow of time due to an asymmetric
equation of state during expansion-contraction phase [27] rather than entropy production due to
viscous pressure as it was the case in Tolman’s model [25]. Of course, the most challenging issue
to build such models is to overcome big bang/crunch singularities and to achieve a non-singular
evolution. This task was completed in LQC where hysteresis-like phenomena was demonstrated
for chaotic φ2 inflation [28], a result which was recently generalized for Starobinsky inflation [14].
An interesting feature of such hysteresis-like period is that although the universe may fail to inflate
at first, conditions improve in subsequent cycles for the onset of inflation because the ratio of
kinetic to potential energy decreases and subsequent equation of state ω, defined as the ratio of
total pressure and energy density, becomes less than −1/3. This causes a phase of accelerated
expansion and as a result the recollapse is avoided. This phenomena of occurrence of non-singular
cyclic evolution followed by inflation turns out to be a feature of a large class of initial conditions
for φ2 and Starobinsky inflation models [14]. However, for the latter the onset of inflation is found
to require a much larger number of cycles in contrast to the φ2 inflation and for certain highly
unfavorable initial conditions, inflation was not found to occur even after numerous non-singular
cycles of expansion and contraction [14]. The reason for this was tied to the weak hysteresis for
low energy inflation models.

To overcome the problem of onset of inflation in such cases we note that dissipation is an indis-
pensable part of any physical system interacting with its environment, and there are two different
dynamical realizations for inflation: cold inflation and warm inflation [29], depending on whether
non-equilibrium dissipative particle production processes due to the couplings of the inflaton field
with other field degrees of freedom are negligible or not during inflation. In fact, dissipative pro-
cesses determine the way ultimately the vacuum energy density, stored in the inflaton field, ends
up converting into radiation, thus allowing the universe to transit from the accelerating phase
to the radiation-dominated epoch. In the standard inflationary or cold inflation scenarios, dissi-
pative effects are typically ignored during the inflationary phase if any pre-inflationary radiation
energy density is diluted. The universe then ends up in a supercooling phase requiring a reheat-
ing mechanism [30], where the inflaton starts oscillating around the minimum of its potential and
progressively dissipates its energy into other relativistic light degrees of freedom, to heat up the
universe again as required by the standard big bang cosmology. On the contrary, dissipative ef-
fects may be strong enough during inflation where pre-inflationary radiation energy density can be
sustained during inflation and also become dominant at the end of inflation whereby the universe
smoothly enters into radiation dominated epoch without a need for a separate reheating period
[31]. Such dissipative effects bring about much richer dynamics for inflation at both background
and perturbative levels (for reviews see for eg. [32]) introducing warm inflation as a promising
complimentary version of cold inflation by addressing some of long-lasting problems related to
(post-)inflationary picture in cold inflation scenarios.

For a comparison with cold inflation it is useful to recall some of the features of warm infla-
tion. It is interesting to note that dissipative effect appears as a supplementary friction term in
background equations allowing embedding of steeper potentials in warm inflation solving so-called
η-problem [33]. Also it leads to several different possibilities for graceful exit depending on the
form of potential, form of dissipation coefficient, and whether the dynamics is in strong or weak
dissipative regime [34]. Moreover, dissipative effects also modify primordial spectrum of curvature
perturbations, resulting in a smaller energy scale of inflation, and reconciling steeper potentials
with observational data [35]. Such appealing features of warm inflation allows it to simultaneously
satisfy the so-called swampland conjectures, provided warm inflation can occur in sufficiently strong
dissipative regime [36–38]. Although it is enormously challenging to achieve a strong dissipative
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regime in warm inflation, two models were successfully constructed to push warm inflation into
strong dissipative regime with inspiration from particle physics [39, 40]. Furthermore, the inflaton
itself can be a source and responsible for cosmic magnetic field generation [41] and in combination
with the intrinsic dissipative effects lead to a novel dissipative baryogenesis scenario during infla-
tion [42]. More recently, it was shown that warm inflation enables a stable remnant of inflaton in
the post-inflationary epoch which can behave either like cold dark matter accounting for all the
dark matter in the universe [43] or like a quintessence at late time generating the present phase
of accelerated expansion [44] (see also [45, 46] for unifying all conventional ingredients of modern
cosmology using dissipative effects).

The goal of this manuscript is to investigate the dissipative particle production effects2 on pre-
inflationary dynamics of k = 1 LQC and understand their role on the hysteresis-like phenomena and
the onset of inflation for Starobinsky potential starting from highly unfavorable initial conditions.
Our goal will be to consider those cases which failed to lead to inflation in absence of dissipative
effects. In Sec. II, we give a brief review of the effective dynamics of k = 1 LQC and the
warm inflation and discuss the way dissipative effects are implemented in k = 1 LQC. In Sec.
III, we solve dynamical system of equations in the presence of dissipative effects and show that
even small amount of dissipation enlarges the phase space of initial conditions for which inflation
occurs. We phenomenologically investigate these solutions for three models of warm inflation: the
warm little inflaton (linear temperature dependent dissipation coefficient), variant of warm little
inflaton (inverse temperature dependent dissipation coefficient) and minimal warm inflation (cubic
temperature dependent dissipation coefficient). Moreover, we also investigate some features of the
qualitative dynamics using phase-space portraits. These results show that in presence of dissipation
the hysteresis-like phenomena becomes much stronger and results in a quick onset of inflation for
even those initial conditions where inflation could not start in absence of dissipation. We conclude
the manuscript with a summary of our results in Sec. IV.

II. EFFECTIVE DYNAMICS IN k = 1 LQC AND WARM INFLATION

In this section we first briefly review the effective dynamics of spatially closed loop quantum
cosmology in the holonomy quantization [18]. This is followed by a discussion of the dynamical
equations in the warm inflation scenario and the way warm inflation can be implemented in the
effective spacetime description of k = 1 model in LQC.

A. Effective dynamics of k=1 LQC

LQC is a canonical quantization based on Ashtekar-Barbero variables – the connection Aia and
its conjugate triad Eia which due to homogeneity and isotropy, symmetry reduce to c and p for the
k = 1 FriedmannLemâıtreRobertsonWalker (FLRW) model . In the improved dynamics or the µ̄
scheme of LQC [16], it turns out that an equivalent set of variables defined as b = c|p|−1/2 and
v = |p|3/2 are more convenient to obtain the quantum and effective description. Here v denotes
the physical volume of the unit sphere spatial manifold and is related to the scale factor of the
universe as v = 2π2a3. The phase space variables b and v satisfy {b, v} = 4πGγ where γ denotes
the Barbero-Immirzi parameter whose value is generally taken to be γ ≈ 0.2375 in LQC following
the calculations of black hole thermodynamics in loop quantum gravity.

The effective Hamiltonian in the holonomy based quantization of the k = 1 model in LQC for
the lapse chosen as unity is given by

2 For brevity, we label these effects in the following as dissipative effects. We note that the source of such dissipative
effects is particle production.



5

Heff = − 3

8πGγ2λ2
v
[
sin2(λb−D)− sin2D + (1 + γ2)D2

]
+Hmatt ≈ 0 (2.1)

where D =
(
λ(2π2)1/3

)
)/v1/3 and λ2 = 4(

√
3πγ)`2pl. Here we have ignored the modifications

from the inverse volume effects which turn out to be negligible in comparison to the holonomy
modifications [18].3 Before we examine the dynamics resulting from this Hamiltonian let us note
that there exists another quantization of the k = 1 model in LQC which is known as the connection
based quantization [20]. Though there exist some qualitative differences in the way singularity
resolution occurs in this prescription as compared to the holonomy based quantization [20, 49], the
main features of dynamics remain the same. Especially, the existence of hysteresis which plays an
important role in the onset of inflation is robust in both the quantization prescriptions and the
difference between the two approaches turn to be small for inflationary dynamics [28]. For this
reason we consider only the effective dynamics for the holonomy quantization in this analysis.

Using Hamilton’s equations, the equation of motion for volume turns out to be

v̇ = {v,Heff} =
3

γλ
v sin(λβ −D) cos(λβ −D) (2.2)

which results in the following modified Friedmann equation

H2 =
v̇2

9v2
=

8πG

3
(ρ− ρmin)

(
1− ρ− ρmin

ρflat
max

)
. (2.3)

Here ρflat
max = 3/(8πGγ2λ2) denotes the energy density at the bounce for the spatially-flat model in

LQC and

ρmin = ρflat
max

[
(1 + γ2)D2 + sin2(D)

]
(2.4)

denotes the minimum allowed energy density in the evolution. In the classical universe this value
coincides with the value of energy density at which a classical recollapse occurs. The maximum of
the energy density is given by

ρmax = ρmin + ρflat
max . (2.5)

Note that in the quantum regime depending on the initial conditions, a bounce as well as a
recollapse can occur at ρmin as well as at ρmax [14].

The Hamilton’s equations for phase space variable conjugate to v is given by

ḃ = {b,Heff} = −4πGγ [ρ+ P − ρ1] (2.6)

with

ρ1 =
ρflat

maxD

3

[
2(1 + γ2)D − sin(2λβ −D)− sin(2D)

]
(2.7)

where P denotes the pressure which equals P = −∂Hmatt/∂v. The dynamical equations for the
scalar field matter variables with a potential V (φ) are

φ̇ = {φ,Heff} =
pφ

p3/2
(2.8)

ṗφ = {pφ,Heff} = −p3/2V,φ . (2.9)

3 Note that a non-singular dynamics results solely from inverse volume modifications too in k = 1 model in LQC
[47], which has been used to understand conditions for the onset of inflation [48].
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Using above equations it is straightforward to show that Klein-Gordon equation follows along with
the standard conservation law for matter energy density.

Above dynamical equations encode non-perturbative quantum gravitational effects which result
in a non-singular bounce of the universe in the Planck regime [14, 18, 28]. This results in non-
singular cycles of expansion and contraction if the matter does not violate strong energy condition
i.e. has equation of state ω = P/ρ greater than −1/3. For latter type of matter content, the
universe undergoes a recollapse at late times resulting in a contraction and a big crunch singularity
in the classical theory. This singularity is avoided in LQC resulting in a bounce and another phase
of expansion and a possible recollapse if the equation of state w > −1/3 in the expanding phase.
If the recollapses occur at the macroscopic scales, the difference in the volumes of two consecutive
recollapses is found to be [28]

δv1/3
rec =

−
∮
Pdv

(2π2)2/3ρflat
maxγ

2λ2
. (2.10)

This implies that in each cycle of expansion and contraction the maximum volume vrec changes.
This occurs because of the asymmetry of the pressure during different phases of a given cycle which
results in a hysteresis-like phenomena [26, 28]. This hysteresis-like phenomena has been shown to
be responsible for alleviating problems with onset of inflation for different potentials, especially low
energy scale models [14]. Before we examine this phenomena in presence of radiation production
in warm inflationary scenarios, we summarize the latter and obtain the relevant equations in LQC.

B. Warm inflationary dynamics in LQC

The dynamical realization of warm inflation is different from the cold inflation due to the
presence of radiation as well as the possibility of energy exchange between inflaton and radiation
energy density. Hence, the total energy density of the universe in warm inflation reads

ρ = ρφ + ρr (2.11)

where ρφ = 1
2 φ̇

2 + V (φ) is scalar field energy density with V (φ) being some potential function
and ρr is the radiation energy density. The inflaton field φ and the radiation energy density form
a coupled system in warm inflationary dynamics due to dissipation of energy out of the inflaton
system and into radiation. The background evolution equations are respectively given by [34]

φ̈+ 3Hφ̇+ V,φ = −Υ(φ, T )φ̇ (2.12)

ρ̇r + 4Hρr = Υ(φ, T )φ̇2. (2.13)

Here Υ(φ, T ) is the dissipation coefficient which can be a function of both inflaton and temperature,
depending on the specifics of the microscopic physics behind the construction of a warm inflation
model. For a radiation or a bath of relativistic particles, the radiation energy density is given by
ρr =

(
π2g/30

)
T 4, where g is the effective number of light degrees of freedom (g is fixed according

to the dissipation regime and interactions form used in warm inflation). Such radiation production
results in entropy production where the entropy density s is related to radiation energy density
by Ts = (4/3)ρr, i.e., is related to temperature as s =

(
2π2g/45

)
T 3, where we have considered a

thermalized radiation bath as is typically the case in warm inflationary scenarios. Then, eq. (2.13)
can be written in terms of entropy as follows [38]

T (ṡ+ 3Hs) = Υφ̇2. (2.14)
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As we will see in next section, such entropy production significantly changes the hysteresis-like
phenomena. In fact, the term 3Hs, which is positive in expanding universe (H > 0) and negative in
contracting universe (H < 0), produces a larger difference in pressure during expansion/contraction
stages making hysteresis-like phase stronger in comparison with the case without dissipative effects.

Let us note that the richer dynamics of warm inflation sharpened the interest for finding explicit
models aiming at overcoming two important issues found in earlier particle physics realizations of
warm inflation. First, the requirement of large field multiplicities so as to be able to sustain a nearly-
thermal bath and, second, the difficulty to achieve strong dissipative regimes (Υ � H), due to
the interplay between inflaton and radiation fluctuations, leading to appearance of growing modes
in the scalar curvature power spectrum and that can render it inconsistent with the observations.
The former problem was first solved with an introduction of a new class of warm inflation model
building realization motivated from the ingredients used in “Little Higgs” models of electroweak
symmetry breaking where the inflaton is a pseudo-Nambu Goldstone boson of a broken gauge
symmetry and its potential is protected against large radiative corrections by symmetry obeyed
by the model while still having enough interactions to allow thermalization of light degrees of
freedom. This results in enough dissipation even if the mediators are very light with respect to
ambient temperature. In such a model also known as warm little inflaton, the dissipation coefficient
is given by [50]

Υlin = ClinT. (2.15)

We refer to the above Υlin as the linear dissipation coefficient. Although warm little inflaton was
successful in producing sustainable thermalized radiation bath utilizing just a few mediator fields,
it could not obtain strong dissipative regime, which allows steeper potentials to be embedded in
warm inflation by making energy scale of inflation smaller. To this end, a concrete model of warm
inflation, the so called minimal warm inflation [39], was recently constructed in which the inflaton
has axion-like coupling to gauge fields. Since the inflaton is an axion, its shift symmetry protects
it from any perturbative backreactions and thus from acquiring a large thermal mass. Hence, the
thermal friction from this bath can easily be stronger than Hubble friction even for small number
of fields. The corresponding axion friction coefficient turn out to be as

Υcub = CcubT
3. (2.16)

Hereafter, we refer to the above Υcub as the cubic dissipation coefficient. In this regard, another
model was also recently proposed inspired from an idea used in warm little inflaton where the
inflaton is directly coupled to light scalar bosonic fields rather than fermionic fields which is known
as a variant of warm little inflaton [40]. Although the exact form of dissipation coefficient is
complex, the leading behaviour of dissipation, when the effective mass is dominated by thermal
part, varies as

Υinv = CinvT
−1. (2.17)

Hereafter, we refer to the above Υinv as the inverse dissipation coefficient. We should note that
Cinv � Clin � Ccub since it should be fixed in such a way that the condition for sustainable thermal
bath, i.e. T > H, is satisfied during inflationary phase.

Taken together, to consider the dissipative effects during both pre-inflationary and inflationary
phases all the way from the bounce until the end of inflation, we phenomenologically implement dis-
sipative effects into the effective equations of spatially closed model LQC. The resulting dynamical
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equations are,

v̇ =
3

γλ
v sin(λb−D) cos(λb−D) (2.18)

ḃ = −4πGγ

[
p2
φ

v2
+

4

3
ρr − ρ1

]
(2.19)

φ̇ = −
pφ
v

(2.20)

ṗφ = −v V,φ −Υ(φ, T ) pφ (2.21)

ρ̇r = −
[

4

γλ
sin(λb−D) cos(λb−D)

]
ρr +

Υ(φ, T ) p2
φ

v2
. (2.22)

In the next section, we will first discuss the way such dissipative effects, or equivalently entropy
production, change the dynamics of pre-inflationary phase and also enlarge the phase-space of
initial conditions which result in a (warm) inflation. Then, we perform a qualitative analysis of
the dynamical equations to understand the attractor behavior of the solutions and gain insights
on the way dissipative effects help in the onset of inflation even starting from highly unfavorable
initial conditions.

III. DISSIPATIVE EFFECTS ON PRE-INFLATIONARY DYNAMICS OF K=1 LQC

In this section we investigate the consequences of dissipative effects in LQC to address the
problem of onset of inflation for the Starobinsky potential. We discussed in Sec. 2 the way non-
singular cycles of expansion and contraction result in a hysteresis-like phenomena which arises due
to differences in pressure during expansion and contraction stages of cosmic evolution. Due to this
difference in pressure, the work done during one cycle can be positive or negative depending on the
potential function. For sufficiently flat potentials, the work can be positive resulting in increasing
the size of the universe in the successive cycles. Because of this even if the inflaton starts with a
kinetic energy dominated conditions and an equation of state close to unity, the equation of state
decreases in each cycle and eventually becomes less than −1/3 which leads to an onset of inflation.
Hence, if the universe fails to inflate after the first cycle, it can do so after subsequent cycles
enlarging the phase-space of initial conditions which results in inflation [28]. Recently it was shown
that for Starobinsky potential universe can inflate for a large part of initial conditions, however,
it should go though numerous cycles of expansion and contraction [14]. Further, for some of the
initial conditions the inflation does not commence even after a large number of non-singular cycles.
As we will see the dissipation or entropy production, leads to larger differences in pressure during
expansion-contraction phase resulting in larger amplitude of the cycles. Therefore, we expect that
entropy production due to radiation particle production make the hysteresis phenomena stronger
leading into the universe with bigger size in successive cycles, causing the universe to inflate after
small number of cycles. In the following we first obtain the background solutions demonstrating
above phenomena which is followed by discussion of phase space portraits in qualitative dynamics
of this model.

A. Dissipative effects for Starobinsky potential

Starobinsky inflation is a prominent example of low energy inflation models favored by current
observations. In classical cosmology, this model results from adding R2 term to action which
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translates to adding the following potential in the Einstein frame

U(φ) =
3m2

32π

(
1− e−

√
16π
3
φ(t)
)2

. (3.1)

But in LQC, the above potential is not obtained from an R2 term in the action, since the covariant
action in LQC does results in higher order curvature terms but in a Palatini framework [51]. As
in previous works in LQC, we consider above potential as a phenomenological input in effective
dynamics.

In Starobinsky model the inflation is supposed to start at energy scales far lower than Planck
scale and as a result the initial conditions in the Planck regime are such that kinetic energy domi-
nates the potential energy. If one numerically solves the classical cosmological dynamics of above
potential one finds that the universe undergoes a recollapse before potential energy can dominate
and encounters a big crunch singularity [4, 5]. We would see that this situation changes dramat-
ically in the effective dynamics in LQC. Below we numerically solve dynamical equations (2.18)
for various initial conditions, using explicit Runge-Kutta algorithm and stiff-switching method in
Mathematica with accuracy and precision goals set to eleven. The initial value of b (the conjugate
to volume v) is fixed by the vanishing of the effective Hamiltonian constraint. Moreover, we also
set the initial value of pφ using the condition for the bounce, i.e. ρ = ρmax. Therefore, we are
left with just three initial conditions on volume (v0), scalar field (φ0) and initial radiation energy
density (ρr0). We choose initial conditions such that the radiation energy density is sub-dominated
in comparison with both the kinetic energy density and potential energy density of the inflaton
field and the bounce happens with kinetic dominated initial conditions (ρr0 � U(φ0)� φ̇2

0/2).

FIG. 1. The evolution of volume for different values of cubic dissipation coefficient. Initial conditions are
chosen at the bounce with v0 = 5× 107, φ0 = −1, ρr0 = 10−12, and g = 17.

In the following we first solve the dynamical equations for the case of minimal warm inflationary
model i.e. with a cubic dissipation coefficient. In this case inflaton has an axionic coupling to a non-
abelian gauge theory and the sphaleron transitions between gauge vacua, existing at sufficiently
high temperatures. And, if the corresponding non-Abelian gauge theory has gauge group SU(3),
there are 8 gauge bosons, each of which contribute two relativistic degrees of freedom. Including
the inflaton itself, there are in total 17 relativistic degrees of freedom. So we set the number of
relativistic degree of freedom g = 17 [37]. In Figs. 1 and 2, we plot the evolution of volume and
equation of state for three different values of Ccub in LQC. For the initial conditions v0 = 5× 107,
φ0 = −1, ρr0 = 10−12 the dynamical evolution is non-singular for all the considered values of
Ccub. The initial conditions are chosen such that in absence of dissipation, inflation does not start
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FIG. 2. The evolution of equation of state for cubic dissipation coefficient and same initial conditions as in
Fig. 1.

after various cycles of non-singular evolution. As can be seen, in case of Ccub = 0 (dissipationless
universe), the universe does not enter an inflationary phase even after many cycles of non-singular
evolution. This is because the hysteresis-like phenomena is not large enough to set scalar field at
the flat part of potential function in subsequent cycles. However, dissipative effects make hysteresis
phase stronger (decreasing the number of cycles and increasing its amplitudes) whereby the universe
begins inflationary phase after small number of cycles. This is evident in the dynamical evolution
for Ccub = 0.4 and Ccub = 1000. We see from the former case that even a small non-zero value of
Ccub, resulting in small dissipative effects, has substantial effects on the hysteresis-like phenomena
and the onset of inflation. We find from the volume and equation of state plot that a phase of
inflation starts after a few non-singular cycles when volume grows exponentially and equation of
state becomes less than −1/3. But such a small value of dissipation coefficient can not sustain the
thermal bath during inflation and one needs a larger value of Ccub. As one increases the value of
Ccub, the dissipative effects make hysteresis phase very strong and inflationary phase starts just
after just one bounce. This is shown in Fig. 1 for the case of Ccub = 1000. Here we should note
that the curves for Ccub = 0.4 and Ccub = 1000 start from the same initial volume but because
of the use of logarithmic scale in the plot, the figure does not show the same value of volume for
both the curves. We note that the evolution of equation of state in Fig. 2 shows that for Ccub = 0,
the equation of state oscillates between 1 and 0.5 for the entire range of evolution, however for
non-vanishing dissipation coefficients it decreases quickly below w = −1/3 and becomes w ≈ −1
indicating an onset of slow-roll inflation. As one can see, the equation of state becomes −1 much
earlier for larger dissipation coefficient.

We now discuss the case of warm little inflaton in LQC. In Figs. 3 and 4, we plot evolution of
volume and equation of state for linear dissipation coefficient and three different values of Clin for
initial conditions v0 = 107, φ0 = −1.5, and ρr0 = 10−11. We also fix g = 12.5 using analysis in
[50]. We consider non-zero values of Clin as 0.00004 and 0.00008 which are typical values for warm
inflation to happen in spatially-flat spacetime. As before, the chosen initial conditions correspond
to the unfavorable ones where inflation does not start in LQC even after various cycles of non-
singular evolution when dissipation is absent. This can be seen from the curve corresponding to
Clin = 0, where universe oscillates in non-singular evolution but there is no onset of inflation since
equation of state never becomes less than −1/3. However, when we add dissipative effects, the
hysteresis becomes stronger and we see that the universe experiences an inflationary phase after
a small number of cycles. We see that the equation of state becomes less than −1/3 after a few
cycles for Clin = 0.00004 and Clin = 0.00008. As we increase the value of Clin, the number of cycles
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FIG. 3. The evolution of volume for different values of linear dissipation coefficient. Initial conditions are
chosen at the bounce with v0 = 107, φ0 = −1.5, ρr0 = 10−11, and g = 12.5.

FIG. 4. The evolution of equation of state for linear dissipation coefficient and same initial conditions as in
Fig. 3.

prior to onset of inflation decrease and the amplitude of the cycles become larger.

Finally, we consider the variant of warm little inflaton with inverse dissipation coefficient which
is shown in Figs. 5 and 6. As in previous cases, initial conditions are chosen such that there is no
inflationary phase even after many cycles in absence of dissipative effects. But choosing a non-zero
dissipation coefficient, even if small, leads to a striking difference in dynamics and results in a
stronger phenomena of hysteresis. In these figures we choose Cinv = 3× 10−11 and 6× 10−11 and
fix g = 12.5. The chosen values of Cinv are smaller than two other cases as we discussed previously.
We find that as we increase the value of Cinv, the number of cycles decrease and the amplitude of
the cycles become larger and the universe enter into inflationary phase sooner.

To summarize the results so far, we have found the dissipative effects resulting in radiation
production, make the hysteresis phenomena stronger and setting the condition for inflation to
happen sooner for dissipation coefficients which have cubic, linear and inverse relationship to
temperature. Though we discussed a sample of initial conditions, our results are robust to changes
in initial conditions. To gain some insights on the qualitative dynamics and robustness of results
we study the phase-space portraits in the following.
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FIG. 5. The evolution of volume for different values of inverse dissipation coefficient. Initial conditions are
chosen at the bounce with v0 = 2.5× 106, φ0 = −2, ρr0 = 10−9, and g = 12.5.

FIG. 6. The evolution of equation of state for inverse dissipation coefficient and same initial conditions as
in Fig. 5.

B. Qualitative dynamics in phase-space portrait

It is useful to understand the phase space portraits for qualitative dynamics by introducing
following variables,

X(t) = χ0

(
1− e−

√
16πG

3
φ(t)
)

(3.2)

Y (t) =
pφ(t)

v(t)
√

2ρmax
Z(t) =

√
ρr(t)

ρmax
(3.3)

where χ0 = m
√

3
32πGρmax

and ρmax denotes the maximum energy density (2.5) determined by

the initial conditions. Our goal will be to find the inflationary attractors for different choices of
dissipation coefficients and initial conditions. These have been studied earlier for cold inflation in
detail in LQC [52]. The inflationary attractor lies at (X = 0, Y = 0) which corresponds to the
reheating phase in cold inflation and the beginning of radiation epoch in warm inflation.

Starting with the cubic dissipation in Fig. 7, the left plot shows the projection of entire phase
space region on plane Z = 0 and the right plot zooms in on the attractor near the origin. The
vertical dashed black line corresponds to X = χ0 and all real solutions lie to the left of this line.
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FIG. 7. Projection of 3 dimensional phase space portrait on Z = 0 plane for cubic dissipation coefficient
with m = 0.62, Ccub = 7.5, v0 = 35, ρr0 = 10−3 and seven distinct initial conditions for φ0.

FIG. 8. Evolution of energy components as well as equation of state for cubic dissipation coefficient with
m = 0.62, Ccub = 7.5, v0 = 35, ρr0 = 10−3 and φ0 = 0.5 (gray curve in Fig. 7).

For a better visualization of the qualitative features it is useful to consider a large value of inflaton
mass which is here chosen to be m = 0.62. The solid black circular curve corresponds to the energy
density of the first bounce at t = 0 where the initial conditions are set. The left plot in Fig. 7
shows curves corresponding to seven distinct initial conditions for φ0, while other parameters are
fixed, for which the universe undergoes inflation in presence of dissipative effects. For the same
initial conditions in absence of dissipative effects the universe goes through many cycles without
onset of an inflationary phase. It should be noted that we chose Ccub large enough to see the end
of inflation and also post-inflationary phase. So in most of the cases, the hysteresis-like phenomena
go away and universe experience an inflationary phase after just one bounce.

We expand on details of above dynamics in Fig. 8, where the evolution of the potential energy
density V (φ), kinetic energy density φ̇2/2 and the radiation energy density ρr are shown for gray
curve in Fig. 7. We can see from the figure that the universe starts from a bounce in the kinetic
dominated regime (initial condition with equation of state ω ≈ 1), with φ̇2/2� U(φ)� ρr, and the
kinetic energy very soon dilutes away since it behaves as a−6. In the subsequent evolution we find
that radiation energy density becomes important in comparison to kinetic and potential energies.
Such radiation dominated regime before the inflationary phase has also been reported for warm
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FIG. 9. Projection of 3 dimensional phase space portrait on Z = 0 plane for linear dissipation coefficient
with m = 0.62, Clin = 0.8, v0 = 35, ρr0 = 10−3 and seven distinct initial conditions for φ0.

FIG. 10. Evolution of energy components as well as equation of state for linear dissipation coefficient with
m = 0.62, Clin = 0.8, v0 = 35, ρr0 = 10−3 and φ0 = 1.55 (gray curve in Fig. 9).

inflation in spatially-flat LQC [53] (see also [54] for review on warm inflation in spatially-flat LQC).
After some cycles, when the hysteresis-like phenomena causes an onset of inflation, the radiation
energy density becomes subdominant in evolution. Note that contrary to cold inflation, radiation is
concurrently produced during inflationary phase and it may reach an equality with potential energy
density at the end of inflation if dissipative effects are strong enough to sustain the thermal bath,
and the universe smoothly enters into radiation dominated epoch without subsequent (p)reheating
phase. However, as it is clear in Fig. 8, the universe does not enters into radiation dominated epoch
at the end of inflation. This is because the considered value of Ccub, chosen due to computational
constraints, is not large enough and hence the inflationary phase is a cold-type and a reheating
mechanism is a must. Hence, although small dissipation coefficient could not sustain thermal bath
during inflation leading to warm-type inflation but it has substantial effect on pre-inflationary
dynamics and the onset of inflation which is evident from the existence of a ω ≈ −1 phase from
the plot of equation of state. We further note that if dissipation coefficient is chosen large enough
the warm inflation starts quickly and the radiation energy density reaches similar values as the
potential energy density at the end of inflation.

Fig. 9 illustrates the projection of the entire phase-space portrait on Z = 0 plane for linear
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FIG. 11. Projection of 3 dimensional phase space portrait on Z = 0 plane for inverse dissipation coefficient
with m = 0.79, Cinv = 0.2, v0 = 30, ρr0 = 10−3 and six distinct initial conditions for φ0.

FIG. 12. Evolution of energy components as well as equation of state for inverse dissipation coefficient with
m = 0.79, Cinv = 0.2, v0 = 30, ρr0 = 10−3 and φ0 = 2.2 (brown curve in Fig. 11).

dissipation coefficient and m = 0.62. The left plot shows that seven distinct initial conditions
(different values of φ0 while other parameters are fixed) starting from the first bounce all exhibit
an attractor behaviour and come to the center of circle (fixed point). In Fig. 10, the evolution
of energy density components shows that inflation ends in radiation dominated epoch due to
dissipative effects. Although such dissipative effects are large enough to sustain thermal bath
during inflation, they are not large enough to suppress kinetic energy during inflation and terminate
the universe in a radiation dominated epoch. Hence, there is very short kinetic dominated regime
before the universe transits into radiation epoch which is typical in warm inflation scenario when
the dissipation effect is small (such kinetic dominated regime after warm inflation has also been
seen in [45]). However, such a kinetic dominated regime does not have any adverse implications
since it is very short. Moreover, since in this model such kinetic dominated regime occurs around
the minimum of potential, we see spiral behavior which is typical in cold inflation due to reheating
phase. However, this oscillatory phase plays no role in making the universe hot and the universe
enters into a radiation dominated regime due to radiation production during inflation and not a
reheating phase. We also find that there is a radiation dominated regime before inflation phase as
it was seen in case of cubic dissipation coefficient.
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In Fig. 11 we illustrate the projection of the entire phase-space portrait on Z = 0 plane for
inverse dissipation coefficient and m = 0.79. We find that in this case although there is an attractor
behaviour and all initial conditions starting from the first bounce come to the center of the phase
space plot, there is no spiral behaviour. This is because the universe enters into radiation dominated
regime due to strong dissipative effects. There is no oscillatory behaviour which is typical of cold
inflation or what is found for previous cases of dissipation coefficient. In particular, the kinetic
energy always remain sub-dominated during inflation due to strong dissipative effects and inflation
ends when radiation becomes equal with potential energy. Furthermore, we find that there is also a
radiation dominated regime before inflationary phase as it was seen for cubic and linear dissipation
coefficients.

IV. SUMMARY

Onset of inflation in low energy inflationary models in classical theory is challenging in spatially
closed models because of the recollapse of the universe before inflation can set in. Indeed one
requies a high degree of fine tuning of initial conditions for the onset of inflation in such a case [6].
On the other hand if the spatial curvature is zero or negative this problem is non-existent and onset
of inflation becomes highly probable [4, 7, 8]. The recollapse in spatially closed model causes a big
crunch singularity and a closed universe ends in a big crunch singularity in a few Planck seconds
before the beginning of an inflationary phase. This is a long standing problem whose resolution
becomes important given that current observational data favors low energy inflation models and
a slight positive spatial curvature of the universe. There are various ways to overcome this issue
in classical cosmology. Apart from the case of considering models with spatially flat and spatially
open universe, one can consider a low energy inflation model coupled with an additional scalar field
which drives an early phase of inflation near Planck density which is taken over later by low energy
inflation. Further one can introduce additional higher order terms in quadratic potential to fit with
Planck data [4, 5]. But if one aims to understand this issue for a single field set up in low energy
inflation models, two issues need to be addressed simultaneously. The first is a successful and
a generic resolution of singularities, and the second a mechanism to create favorable conditions
for inflation to begin. The challenges underlying the first problem are well known and require
insights from non-perturbative quantum gravity. The latter problem is also non-trivial given that
inflation in low energy inflation models begins at very small energy scales compared to Planck
scale due to which initial conditions in the Planck regime are kinetic energy dominated which
lead to a recollapse of the universe. The above problem was recently analyzed in LQC [14] where
non-perturbative quantum gravity effects are known to result in a generic resolution of all strong
curvature singularities [23]. In particular, the big bang/big crunch singularities are resolved and
replaced by a non-singular bounce [15, 16, 18]. It was found that for Starobinsky inflation potential,
the universe in LQC cycles through various periods of expansion and contraction resulting in an
onset of inflation even when inflaton starts from kinetic energy dominated initial conditions which
result in a big crunch in a few Planck seconds. At the heart of this resolution likes a hysteresis-like
phenomena which changes the ratio of kinetic and potential energy in subsequent cycles in such
a way that the equation of state even when starting from ω ≈ 1 becomes less than −1/3. The
universe then enters a phase of accelerated expansion, a recollapse is avoided and inflation sets in.

Although hysteresis-like phenomena can enlarge the phase-space of initial conditions for plateau-
like potential, with Starobinsky potential as the most known one, the inflationary phase either
occurs after many cycles or does not happen due to flatness of potential for some unfavorable
initial conditions [14]. A pertinent question is whether there exists a mechanism which can result
in onset of inflation in LQC even for such unfavorable initial conditions. The goal of the paper
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was to successfully answer this question. Motivated by Tolman’s model in which the hysteresis-like
phase happens due to entropy production sourced by viscous pressure and also warm inflationary
dynamics, we considered spatially closed LQC in which the scalar field concurrently dissipates its
kinetic energy into radiation field starting from the first bounce. Hence, there are two contributions
for work done in each cycle; one from an asymmetric equation of state of scalar field during
expansion-contraction phase and the other from entropy production due to dissipative effects. Due
to dissipative effects one expects the phenomena of hysteresis to become much stronger and inflation
to set in far more easily.

We worked in the setting of effective spacetime description in LQC and obtained Hamilton’s
equations with non-perturbative quantum gravity corrections in presence of dissipative effects for
k = 1 model using holonomy quantization. The Hamilton’s equations were numerically solved for
Starobinsky potential and three different dissipation coefficients inspired from quantum field theory
all the way from the first bounce until the end of inflation. These were with cubic, linear and inverse
temperature dependence. We found that even a small value of dissipation makes the hysteresis-like
phenomena strong. The effect is such that inflation sets in not only a few cycles but also for
those initial conditions which are extremely unfavorable for inflation to begin even in LQC without
radiation production. Moreover, we find that as we make the dissipative effects large enough the
hysteresis-like phenomena goes away and the universe inevitably enters into inflationary phase after
just one bounce. To gain insights on the qualitative dynamics of the universe from the bounce
until the end of inflation we studied the phase-space portraits for different initial conditions and
all three dissipation coefficients. In all three cases, we found that all initial conditions experience
an attractor dynamics showing that the universe goes through inflationary phase. In other words,
the universe starting from the first bounce with stiff-like initial conditions dilutes its kinetic energy
due to both Hubble friction and dissipative effects and transfers it to radiation field, as opposed
to dissipationless universe, whereby after some cycles the radiation energy density becomes the
dominant energy component. However, such radiation dominated epoch continues only for a very
short period since radiation energy density decays as a−4. Then the potential energy becomes
dominant resulting in inflationary phase. Moreover, if the dissipative effects are large enough,
the inflationary phase will be of warm-type whereby the universe smoothly enters into radiation
dominated epoch without the need for separate reheating epoch. Our analysis shows that with
presence of dissipative effects, non-singular quantum gravitational dynamics results in an onset
of inflation for low energy inflationary models even from highly unfavorable initial conditions. In
comparison to the cases where dissipation is absent, we find hat inflation is set in much quicker
due to stronger hysteresis-like phenomena. Since our results establish phenomenological viability
of low energy inflationary models in spatially-closed universes at the level of background dynamics,
it will be interesting to investigate the model at perturbative level to confront its predictions with
observational data.
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