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Inferring the source properties of a gravitational wave signal has traditionally been very compu-
tationally intensive and time consuming. In recent years, several techniques have been developed
that can significantly reduce the computational cost while delivering rapid and accurate parameter
inference. One of the most powerful of these techniques is the heterodyned likelihood, which uses a
reference waveform to base-band the likelihood calculation. Here an efficient implementation of the
heterodyned likelihood is presented that can be used for a wide range of signal types and for both
ground based and space based interferometers. The computational savings relative to direct calcula-
tion of the likelihood vary between two and four orders of magnitude depending on the system. The
savings are greatest for low mass systems such as neutron star binaries. The heterodyning procedure
can incorporate marginalization over calibration uncertainties and the noise power spectrum.

I. INTRODUCTION

Full parameter inference [1, 2] for gravitational wave
signals can be very computationally intensive, with runs
on single systems taking days or weeks using contem-
porary hardware. This inefficiency has motivated the
development of novel approaches to speed up the pro-
cess. Some of these methods work by speeding up the
calculation of waveform templates using singular value
decomposition [3, 4] or reduced-order modeling [5, 6].
Other methods speed up the likelihood evaluation us-
ing techniques such as heterodyning [7–10]; waveform de-
composition and pre-computation [8, 9, 11, 12]; reduced
order quadrature [13, 14]; and variable frequency band-
ing [15]. Hardware based acceleration has also been in-
vestigated [16–18], as has machine learning [19–21].

The heterodyning approach, first introduced in
2010 [7], and later re-branded under the unfortunate term
“relative binning” [10], has yet to be widely adopted, de-
spite it being widely applicable, easy to implement and
incredibly fast. The goal of this paper is to present an effi-
cient implementation of the heterodyned likelihood using
discrete Legendre polynomial expansions on adaptively
spaced frequency grids. The speed and accuracy of the
heterodyning approach is demonstrated, along with a dis-
cussion of how it can be used when marginalizing over
calibration and noise models.

II. THE HETERODYNED LIKELIHOOD

The idea behind the heterodyned likelihood is very
simple [7]. To match the signal well enough to give a
decent likelihood, the phase and amplitude evolution of
the waveform template has to closely match that of the
signal. Thus if h̄(f) = Ā(f)eiΦ̄(f) is a reference template
with high likelihood and h(f) = A(f)eiΦ(f) is another
template with high likelihood, the ratio ζ(f) = h(f)/h̄(f)
will be a slowly varying function. For signals made up of
multiple harmonics the same reason applies harmonic by

harmonic. The terms that appear in the log likelihood,

lnL = (d|h)− 1

2
(h|h), (1)

where d is the data and (a|b) denotes the noise weighted
inner product, can be factored into slowly varying and
rapidly varying components:

(d|h) = 2

∫
d(f)h∗(f) + d∗(f)h(f)

S(f)
df

= 2

∫
(κ(f)ζ∗(f) + κ∗(f)ζ(f))df (2)

where κ(f) = d(f)h̄∗(f)/S(f) is rapidly varying and ζ(f)
is slowly varying. Similarly,

(h|h) = 2

∫
h(f)h∗(f) + h∗(f)h(f)

S(f)
df

= 4

∫
df |ζ(f)|2σ(f)df (3)

where σ2(f) = |h̄(f)|2/S(f) is rapidly varying and
|ζ(f)|2 is slowly varying (the rapid variation of σ(f) is
due to spectral lines). The heterodyning procedure uses
a low order polynomial expansion of the slow terms to
dramatically decrease the computational cost of comput-
ing the likelihood. The accuracy of the approximation
can be improved by writing the likelihood as

lnL = ln L̄− (r̄|∆h)− 1

2
(∆h|∆h), (4)

where ln L̄ is the likelihood computed using the refer-
ence waveform, r̄ = d − h̄ is the reference residual, and
∆h = h̄− h. Since the terms involving ∆h are generally
small, the fractional error introduce by approximating
the integrals results in a smaller absolute error than ap-
proximating the full integrals (d|h) and (h|h). The slow
varying term is now ∆ζ(f) = ∆h(f)/h̄(f) = 1− ζ(f).

A. Legendre Expansion

In practice, the integrals become sums over frequency
that can be efficiently computed using an expansion in
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discrete Legendre polynomials Pnk where n denotes the
polynomial order and k = 0, 1, .., N denotes the fre-
quency bin. The Pnk satisfy the orthogonality condition

PnkPmk = δnmαnN , (5)

where αnN is a normalization factor [22] and we have
used the Einstein summation convention. The first few
Pnk have the form

P0k = 1

P1k = 1− 2k

N

P2k = 1− 6k

N
+

6k(k − 1)

N(N − 1)
. (6)

Note that the shape of the polynomials depends on the
number of frequency bins, N + 1. The higher order poly-
nomials can be generated efficiently using a recursion re-
lation [22].

A function gk = g(fk) can be expanded:

gk = γnPnk , (7)

where n = 0, 1, ..N and

γn =
Pnkgk
αnN

. (8)

In this way, a term in the likelihood such as (d|h) can be
written as

(d|h) = 2αnN (κRn ζ
R
n + κInζ

I
n) (9)

where, for example, {κRn , κIn}, denote the expansion coef-
ficients of the real and imaginary parts of κ(f). The ex-
pression (9) is exact, it is simply a re-writing of the origi-
nal sum. As it stands, (9), actually represents an increase
in the computational cost from O(N) to O(N2) (though
there are fast Chebyshev–Legendre transforms [23] that
reduces the cost to O(N(logN)2/ log logN)). The sav-
ings come by restricting the sum over n in (9) to a small
number of coefficients. This can be done with little loss
of accuracy since the high order terms in the expansion
of the slowly varying components diminish very quickly
with increasing n.

The sum (9) can be most efficiently approximated by
breaking the full sum into smaller segments. The sum
can be restricted to frequencies where the reference wave-
form contributes significantly to the signal-to-noise. The
efficiency is further improved by adaptively determining
the width of the segments such that the slow terms can
be accurately covered by polynomials of some chosen or-
der J . The coefficients of the fast varying terms have
to be computed at the full frequency resolution, but this
can be done once and the results stored. Thus, the cost
of the heterodyned likelihood comes down to computing
the coefficients of the slow components in each frequency
band. This cost scales as J2Q, where Q are the number
of bands. The number of waveform evaluations for the

slow terms scales as M = JQ. While increasing J allows
us to use wider bands for a given error tolerance, the
increase in bandwidth scales slower than the polynomial
order J , making it more efficient to use low polynomial
order and more bands.

Denoting the slow varying terms such as ζ(f),∆ζ(f)
generically as s(f). Because s(f) is slowly varying it does
not need to be sampled at each of theN+1 frequency bins
in a given frequency band. Instead, it can be sampled on
a much sparser grid of values, s(fj), where j ∈ [0, J ] and
J is the highest order used in the polynomial expansion.
The discrete Legendre polynomials will not be orthogonal
on this sparse sub-grid, so the usual expression for the
expansion coefficients (8) can not be used. Instead, we
can start with the defining relation

s(fj) = snPn(fj) ≡ snYnj , (10)

where the polynomial expansion is restricted to n ∈ [0, J ].
The (J + 1)× (J + 1) matrix Ynj = Pn(fj) contains the
sub-sampled values of the discrete Legendre polynomials.
We can then solve for the expansion coefficients:

sn = Y −1
nj s(fj) . (11)

The frequency samples fj do not have to be evenly
spaced, but the matrix Ynj can become ill-conditioned
if the spacing of any two bins exceeds ∼ 2N/J . To en-
sure optimal accuracy it is best to space the sub-samples
uniformly across each frequency band. The matrix in-
verses for each frequency band can be computed once
and stored for later use. If greater accuracy is desired,
the number of samples in each frequency band used in
the fit (10) can be increased while keeping the polyno-
mial order fixed, with the solution for the coefficients
found using a singular value decomposition rather than
the simple matrix inverse (11).

B. Frequency Spacing

The goal is to resolve the slow varying function ∆ζ(f)
to sufficient accuracy using the smallest number of fre-
quency samples. The first thing to consider is how far
from the reference waveform any template is likely to be.
For Gaussian posterior distributions, we know that twice
the log likelihood is chi-squared distributed with D de-
grees of freedom, where D is the number of parameters in
the model. This scaling holds remarkable well even when
the posterior distributions are non-Gaussian. Thus, to
account for any waveforms that will contribute to the
posterior distribution we need to cover deviations from
the reference likelihood of order a few times the standard
deviation

√
D. As a proxy we can use the chi-squared

χ2 = (∆h|∆h) as a measure of the deviation from the
reference waveform, and so long as the frequency grid
accurately covers departures as large as χ2 ∼ 20 → 50
the parameter estimation will be reliable.
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FIG. 1: Real and imaginary parts of the heterodyned wave-
form differences, ∆ζ = (h̄ − h)/h̄, with h displaced along
successive eigendirections of the Fisher information matrix,
with the differences scaled such that χ2 = (∆h|∆h) = 50.

By perturbing any one source parameter by a suit-
able amount, it is possible to arrive at the desired chi-
squared, but the perturbation in each parameter will
lead to a different behavior for the ∆ζ(f). One way to
cover all possibilities is to consider perturbations along
the eigendirections, ~vi, of the Fisher information matrix

Γij = (∂θi h̄|∂θj h̄), such that ∆~θi = αi~vi (no sum on
the i). (Strictly speaking, Γij should only be called the
Fisher matrix if h̄ is computed at the maximum likeli-
hood point. More properly, Γij is the signal space met-
ric evaluated at the reference waveform.) In principle,
setting αi = β/

√
λi, where λi is the eigenvalue corre-

sponding to the ~vi eigenvector, should yield χ2 = β2, but
the Fisher matrix is often ill-conditioned, and the β’s
need to be iteratively adjusted to give the desired chi-
square. Figure 1 shows the real and imaginary parts of
∆ζ for the black hole binary GW150914 [24] evaluated
at the LIGO Hanford detector and using the IMRPhe-
nomD waveform model [25]. The parameters were per-
turb along each eigendirection of the Fisher matrix and
scaled to give χ2 = 50. We see that functions vary most
rapidly at low frequencies and near merger (at around
200-300 Hz).

The frequency spacing can then be determined by con-
sidering a linear fit to the ∆ζ for perturbations along
each eigenvector direction, and in each detector. Start-
ing with a frequency spacing of one frequency bin, the
spacing is steadily incremented until the difference be-
tween ∆ζ and the linear fit across the interval deviates
by more than some specified tolerance. Figure 2 shows
the frequency spacings for various error tolerances and
chi-square values. We see that the samples are concen-
trated at low frequencies. To keep the number of samples
to a minimum we can use a relative rather than absolute
error tolerance. Since the contribution to the likelihood
in each frequency band scales as σ2(f) = |h̄(f)|2/S(f),
we can achieve a desired relative error tolerance by scal-
ing the absolute error tolerance by [σ2]/σ2(f) where the
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FIG. 2: Source-adaptive frequency spacing of the waveform
samples for GW150914 using various choices of linear error
tolerance and chi-squared offset. The spacings used a relative
error tolerance, save for the one labeled “abs”, which used an
absolute error tolerance.

square brackets denotes the average value.
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FIG. 3: Source-adaptive frequency spacing of the waveform
samples for GW150914 at linear and quadratic order. The
reference spacing is also shown.

The frequency bandwidths for higher order polynomial
fits are derived from the reference linear fit by finding the
smallest frequency spacing in a given region and multi-
plying that number by the polynomial order J . This
results in slightly more samples than for the linear fit as
the wider frequency bands are less able to accommodate
to the ideal source-adaptive frequency spacing. Note that
the enveloping procedure leads to slightly more samples
being used even at linear (J = 1) order. Figure 3 com-
pares the frequency spacing for GW150914 at linear and
quadratic polynomial order to the reference linear spac-
ing. There are 32 samples at linear order, 34 at quadratic
order, as compared to 22 for the reference spacing.

The frequency spacing adjusts to account for the char-
acteristics of each system. Figure 4 compares the fre-
quency grids for three systems of decreasing total mass.
In each case the minimum frequency was set at 8 Hz and
maximum frequency was set at 1024 Hz. The time span
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FIG. 4: Comparison of the source-adaptive frequency spac-
ing for the black hole binaries GW150914 and GW151012,
and the binary neutron star binary GW170817. The hetero-
dyne used second order Legendre polynomials with a linear
fit tolerance of 0.01 and a chi-squared of (∆h|∆h) = 50.

analyzed increases with decreasing mass: 4 seconds for
black hole binary GW150914, 8 seconds for black hole
binary GW151012, and 128 seconds for the binary neu-
tron star binary GW170817 [26]. The number of fre-
quency samples in the heterodyned likelihood were 34 for
GW150914, 52 for GW151012 and just 22 for GW170817.
The small number of samples for the neutron star binary
GW170817 relative to the two black hole binaries is due
to the fact that GW170817 entered the band at 22 Hz
and exited the band prior to merger. The savings in
waveform evaluations using the heterodyned likelihood
relative to the direct likelihood the three systems are a
factor of 120 for GW150914, 156 for GW151012 and 5900
for GW170817.

FIG. 5: Difference between the full and heterodyned likeli-
hood for neutron star binary GW170817. In both cases the
heterodyne used second order Legendre polynomials with a
linear fit tolerance of 0.01 and a chi-squared of (∆h|∆h) = 50.

Figure 5 shows the difference, ∆lnL between the full
and heterodyned likelihood calculation and a function of
the likelihood for the samples collected during a Markov
Chain Monte Carlo (MCMC) run on the GW170817 data.

The absolute value of the error never exceeds 0.1, and the
average absolute error is just 1.6× 10−2.
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FIG. 6: The upper panel shows average of the absolute value
of the difference between the full likelihood and the hetero-
dyned likelihood as a function of the linear error tolerance for
GW150914 at linear, quadratic and cubic order. The lower
panel shows the number of frequency sample used in the het-
erodyne as a function of the linear error tolerance.

Smaller linear error tolerances result in more frequency
samples in the heterodyne and a reduction in error in the
likelihood. Figure 6 shows how the error in the likelihood
and the number of samples in the heterodyne scale with
the linear error tolerance. The error in the likelihood
is measured by the average of the absolute value of the
difference between the full and heterodyned likelihood,
|∆lnL|, for accepted samples in a MCMC run. The error
decreases as the tolerance is reduced from 0.1 to 0.001,
but then asymptotes or even increases. The reason for
this behavior can be traced to the error introduced in es-
timating the Legendre expansion of the slow terms using
(8). As the error tolerance is decreased, the number of
frequency bands grows as the error tolerance to the power
∼ −0.35, leading to an increase in the number of error
contributions. The errors in (8) grow with polynomial
order, as does the overall cost of computing the hetero-
dyned likelihood. The sweet spot is to use a quadratic
(J = 2) fit with an error tolerance between 0.01 and
0.001. While illustrated here for just one system, similar
behavior was found to hold across the mass spectrum.

In considering what an acceptable error tolerance for
∆lnL might be, recall that one standard deviation in the
likelihood is σlnL ' (D/2)1/2. For the IMRPhenomD
waveform model [25] used here, D = 11 and σlnL ' 2.3.
The finite sampling that occurs in any numerical ap-
proach to Bayesian inference will introduce uncertain-
ties of at least a few percent the posterior distribution,
so demanding that |∆lnL| < 0.1 should be sufficient for
most applications. Interestingly, while the heterodyning
procedure was designed to work for waveforms that are
“close” to the reference waveform, it continues to work
for waveforms that are far from the reference. This is
illustrated in Figure 7, where the error in the likelihood
is show as a function for the likelihood for both accepted
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FIG. 7: Difference between the full and heterodyned like-
lihood for GW150914 for proposed and accepted parameter
values. The heterodyne used second order Legendre polyno-
mials with a linear fit tolerance of 0.001 and a chi-squared of
(∆h|∆h) = 50.

and proposed points in a MCMC run.
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FIG. 8: The upper panel shows the average log likelihood as
a function of the inverse temperature of the chains, β, for the
full likelihood and the heterodyned likelihood for GW150914
using the same settings as Figure 7. The lower panel shows
the difference in the thermodynamic integrands.

Somewhat surprisingly, the heterodyne is accurate all
the way down to zero relative log likelihood. This means
that the heterodyned likelihood can not only be used for
parameter estimation, but also for computing the model
evidence using methods such as thermodynamic integra-
tion [27]. Thermodynamic integration requires us to com-
pute the integral

I =

∫ 1

0

< lnL >β dβ =

∫ 0

−∞
β < lnL >β dlnβ. (12)

Here < lnL >β is the average log likelihood for chains
with inverse temperature β. Figure 8 shows the aver-
age log likelihood as a function of inverse temperature
using the full and heterodyned likelihood. The lower
panel of the figure shows the difference in the integrand.
The evidence computed using the Heterodyned likelihood

agrees with the value computed using the full likelihood
to within ∆I = 0.1.
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FIG. 9: Frequency spacing for two massive black hole bi-
naries taken from the second LISA Data Challenge training
data set. Despite the difference in total mass, both system
required roughly two hundred frequency samples in the het-
erodyne. The detector frame masses of the black holes (in
units of solar mass) are given in the figure legend. The het-
erodyne used second order Legendre polynomials with a linear
fit tolerance of 10−5 and a chi-squared of (∆h|∆h) = 50.

The heterodyning approach is widely applicable. For
example, it can handle the very high signal-noise sys-
tems that are expected to be detected by the Laser In-
terferometer Space Antenna (LISA). The high SNR de-
mands a smaller linear error tolerance, but the savings
are still very large. For example, typical LISA sources
with masses in the 105 → 107M� range, such as those
shown in Figure 9, can be accurately covered by fre-
quency grids with just a few hundred points. This is
far fewer than the ∼ 106 samples that are required when
computing the regular likelihood for these sources.

The accuracy of the heterodyned likelihood, even for
LISA sources with signal-to-noise ratios in the thousands,
such as the system shown in Figure 10, is impressive:
absolute errors of order 0.02 and fractional errors of order
10−8.

C. Noise Marginalization

To produce parameter estimates that are robust
against instrument calibration uncertainties and finite
sample uncertainties in the on-source noise spectral es-
timates, it is desirable to marginalize over the calibra-
tion model and noise model. This poses a challenge for
rapid parameter estimation techniques that rely on pre-
computing quantities at full cadence. For the hetero-
dyned likelihood, calibration uncertainties pose no prob-
lem as they introduce small changes in the amplitude
and phase evolution that can be incorporated in the slow
terms, and thus have minimal impact on the computa-
tional cost. In contrast, changes in the noise model are
generally not smooth due to the presence of sharp spec-
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FIG. 10: Difference between the full and heterodyned like-
lihood for a simulated LISA black hole binary with detector
frame masses m1 = 1.02 × 106M�, m2 = 7.97 × 105M�.
A parallel tempered MCMC was used with four cold chains
and twelve hot chains, geometrically spaced in temperature
by a factor of 1.3. The signal to noise of the system was very
high: SNR = 1292. The heterodyne used second order Leg-
endre polynomials with a linear fit tolerance of 10−5 and a
chi-squared of (∆h|∆h) = 50.
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FIG. 11: Power spectral density estimates for the LIGO Han-
ford detector using 4 seconds of data surrounding the binary
merger GW151012. The light blue band indicates the 90%
credible region, while the solid dark blue lines indicates the
median.

tral lines. Figure 11 shows the median and 90% cred-
ible band for the on-source power spectrum model in
the LIGO Hanford detector using 8 seconds of data sur-
rounding the black binary hole merger GW151012. Here
the spectral model is a fixed dimension variant of the
BayesLine model [28] used by the QuickCBC [9] parame-
ter estimation pipeline.

The variations in the power spectrum look small
when viewed on a logarithmic scale, and it is tempt-
ing to try and incorporate these variations by writing
κ(f) = d(f)h̄∗(f)/S̄(f) for the fast term and ζ(f) =
S̄(f)h(f)/(S(f)h̄(f)) for the slow term, where S̄(f) is
some reference model for the PSD. Figure 13 compares
the ratio of a fair draw from the power spectrum to the
median of the spectral model. The spectral lines lead
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FIG. 12: The ratio of a fair draw from the power spec-
trum model and the reference power spectrum model for the
LIGO Hanford detector using 8 seconds of data surrounding
GW151012.

to sharp features in the ratio that prevent it from being
incorporated into the slow varying terms in the hetero-
dyned likelihood. One way of handling the lines would
be to excise the region around each line and calculate
the likelihood directly in those regions and use the het-
erodyne for the remainder. A simpler approach is to
use “blocked Gibbs” sampling, whereby the MCMC sam-
pler alternates between updating the source parameters
and the noise model parameters, with each noise model
update followed by a re-computation of the Legendre
polynomial expansion of the slow terms. This latter ap-
proach is relatively inexpensive since the reference wave-
form does not have to be recomputed, just the Legendre
expansion. Typically, the cost of the re-computation is
several times less than a standard likelihood evaluation.
Moreover, if using multiple chains in a parallel tempered
set-up, it is sufficient to limit the noise model updates
to the cold chain, and to share the update with the hot
chains. In this way, noise marginalization can be incor-
porated at little additional cost.

Figure 13 compares the posterior distributions for the
masses and distance of binary merger GW151012 with
and without noise marginalization. Marginalizing over
the noise model slightly inflates the widths of the poste-
rior distributions, and slightly shifts the peaks. Similar
small shifts were found for other systems in the LIGO-
Virgo catalog [29, 30], suggesting that noise marginaliza-
tion is probably less impactful than waveform uncertain-
ties or calibration uncertainties (a similar conclusion was
reached in Ref. [31].

The heterodyne procedure can also be applied to
data with non-stationary noise that is locally station-
ary [32, 33]. Locally stationary data can be whitened and
made stationary by transforming to the discrete wavelet
domain, and dividing each wavelet pixel by the square
root of the dynamic, or evolutionary spectrum, S(f, t).
This procedure de-correlates the noise in both time and
frequency [34]. The rescaled white/stationary data can
then be transformed to the frequency domain and used
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FIG. 13: Posterior distributions for GW151012 with (Vari-
able) and without (Fixed) marginalization over the power
spectral density. Marginalizing over the PSD slightly inflates
the spread in the posterior distributions.

in the heterodyned likelihood. The steps are illustrated
in equation (13).

d(t) →
DFT

d(t, f) →
decorr

d(t, f)√
S(f, t)

→
FT

d̃w(f) . (13)

The waveform template h̃(f) can be dynamically
whitened using the time-frequency mapping

t(f) =
1

2π

dΦ̄(f)

df
, (14)

and defining S(f) = S(f, t(f)). There will be a different

time-frequency mapping for each harmonic. Using this
procedure, non-stationary gravitational wave data can
be analyzed just as quickly as stationary data.

III. SUMMARY

The heterodyned likelihood [7] can be used to dramat-
ically speed up gravitational wave parameter inference
without sacrificing accuracy. The heterodyning proce-
dure can be efficiently implemented using discrete Leg-
endre polynomial expansions and a dynamic spacing of
the frequency samples. The method can be applied to
any waveform model and detector configuration, with
the largest savings in computational cost occurring for
low mass systems. The savings decrease as the number
of harmonics in the waveform model increase, since each
harmonic has to be be treated separately. The heterodyn-
ing approach can incorporate marginalization over cali-
bration uncertainties and variations in the noise model.
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