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The role of Lorentz symmetry in ghost-free massive gravity is studied, emphasizing features emerg-
ing in approximately Minkowski spacetime. The static extrema and saddle points of the potential
are determined and their Lorentz properties identified. Solutions preserving Lorentz invariance and
ones breaking four of the six Lorentz generators are constructed. Locally, globally, and absolutely
stable Lorentz-invariant extrema are found to exist for certain parameter ranges of the potential.
Gravitational waves in the linearized theory are investigated. Deviations of the fiducial metric from
the Minkowski metric are shown to lead to pentarefringence of the five wave polarizations, which
can include superluminal modes and subluminal modes with negative energies in certain observer
frames. The Newton limit of ghost-free massive gravity is explored. The propagator is constructed
and used to obtain the gravitational potential energy between two point masses. The result extends
the Fierz-Pauli limit to include corrections generically breaking both rotation and boost invariance.

I. INTRODUCTION

The foundational symmetries of General Relativity
(GR) include local Lorentz invariance and diffeomor-
phism invariance, which exclude the graviton from ac-
quiring a mass. In linearized gravity, a massive graviton
propagating on Minkowski spacetime can be described
by the Fierz-Pauli term [1]. However, in the limit of
vanishing mass, the Fierz-Pauli term is discontinous to
linearized GR [2, 3], as in addition to the usual graviton
modes it yields a massless scalar mode, the Boulware-
Deser ghost [4]. A theory of massive gravity reducing
to GR in the massless limit requires instead a nonlinear
completion [5]. This can be constructed using a special
nonlinear potential that eliminates the ghost mode due
to the appearance of an extra second-class constraint [6].
The action for massive gravity can be formulated using
two metrics, a dynamical metric g,,, and a nondynami-
cal fiducial metric f,, [7], combined in a five-parameter
quartic potential that removes the two ghost degrees of
freedom [8]. The theory of massive gravity and its de-
velopments, including bimetric and multimetric versions,
are reviewed in Refs. [9-11].

The nondynamical fiducial metric f,, in ghost-free
massive gravity can be viewed as a prescribed background
field that explicitly breaks the spacetime symmetries of
GR in a special way, thereby permitting a nonzero gravi-
ton mass with no ghost mode. Astrophysical constraints
require the graviton mass to be less than 10738 GeV [12],
so a nonzero value would represent a phenomenologically
tiny deviation from GR. In a broad context, small devia-
tions from a specified theory can be described in a model-
independent way using effective field theory [13]. The
general effective field theory containing all terms break-
ing the spacetime symmetries of GR and its couplings to
matter has been developed [14]. This framework provides
conceptual insights about the breaking of spacetime sym-
metries in various theories modifying GR and remains
the subject of ongoing investigation, with numerous ex-

periments performed to measure the coefficients govern-
ing the symmetry breaking [15]. For ghost-free massive
gravity, it enables the derivation of constraints on matter
couplings from searches for Lorentz violation [16].

In this work, we investigate some specific implications
of the breaking of spacetime symmetries in ghost-free
massive gravity. Our focus is primarily on properties
related to the Lorentz transformations that emerge in
approximately Minkowski spacetime, although we expect
many of the concepts to apply in other background space-
times as well. These Lorentz transformations arise from
a combination of local Lorentz and diffeomorphism trans-
formations in curved spacetime [17] and moreover are the
focus of most experimental investigations [15], so they are
of particular interest in the present context. Here, we
explore two topics along these lines. The first concerns
the static extrema and saddle points of the potential and
their Lorentz structure. We show the theory admits a
variety of solutions including ones that are Lorentz in-
variant and others that are Lorentz violating, and we
classify the patterns of symmetry breaking. We deter-
mine the local, global, and absolute stability of solutions
in the set of flat metrics, verifying that an absolutely
stable Lorentz-invariant extremum exists for special po-
tential parameters.

The second topic concerns the phenomenology of flat
non-Minkowski fiducial metrics, fu, & 7u. In ap-
proximately Minkowski spacetime, these can in princi-
ple generate observable signals of explicit Lorentz vio-
lation. We study two scenarios of potential experimen-
tal interest, gravitational waves and the limit of Newton
gravity. For gravitational waves representing excitations
about Minkowski spacetime, we demonstrate that the
five modes of massive gravity experience pentarefringence
during propagation. The modes are either superluminal
or carry negative energies in some observer frames, a re-
sult typical of Lorentz-violating theories [18]. For New-
ton gravity, we obtain the propagator and use it to de-
termine the gravitational potential energy between two



point masses. The modifications to the usual Yukawa
form for the Fierz-Pauli case include violations of both
boost and rotation invariance.

The organization of this work is as follows. In Sec.
II, we present essential preliminary material. The action
for massive gravity adopted here and the definitions of
relevant variables are presented in Sec. ITA. A summary
of the spacetime symmetries of the theory is provided in
Sec. II B, along with an outline of their implementation
in approximately Minkowski spacetime. In Sec. IIC, a
decomposition of the key matrix variable convenient for
calculational purposes is performed.

The investigation of extrema and saddle points of the
action is undertaken in Sec. III. We obtain the potential
governing static solutions and solve the resulting equa-
tions of motion for flat fiducial metrics. Three cases
are distinguished, treated in turn in Secs. IIT A, TII B,
and IIT C. The static solutions are constructed and their
Lorentz properties established. In each case, the issue of
local stability, instability, or metastability is addressed
using the technique of bordered hessians. The surface
generated by the hamiltonian constraint and the posi-
tions of the solutions on its connected sheets are used to
establish global and absolute stability properties.

In Sec. IV, the linearized limit of massive gravity is
explored. We investigate the Lorentz properties of so-
lutions of the modified linearized Einstein equation that
reduce to Minkowski spacetime for vanishing fluctuations
of the dynamical metric. Gravitational waves are consid-
ered in Sec. IVA. We construct the eigenenergies and
eigenmodes of the modified Einstein equation and study
their splitting for choices of the fiducial metric that dif-
fer from the Minkowski metric. The limit of Newton
gravity is examined in Sec. IV B. The propagator for lin-
earized massive gravity is obtained and used to determine
the gravitational potential energy between two station-
ary point masses. An overall summary of the paper is
provided in Sec. V, while Appendix A describes techni-
cal details of certain integrals required in the text. The
conventions for metric, curvature, and other signs and
factors are those of Ref. [14], Appendix A.

II. SETUP

In this section, we discuss the form of the action for
massive gravity used in the present work. We summarize
key aspects of spacetime symmetries and their violations,
and we provide a matrix decomposition for the dynamical
variable of central interest in the analyses to follow.

A. Basics

Consider the action for ghost-free massive gravity in
the form [7]

1 4 2 .
S = %/d x\/—_g(R—2m ;ﬂnen(X)) + Sm, (1)

where £k = 87G. The first term is the usual Einstein-
Hilbert action written in terms of the dynamical metric
guv and the Riemann scalar curvature R. The second
term can be understood as a nonderivative scalar po-
tential for the dynamical metric, which depends on the
mass scale m and on five dimensionless parameters [,
n =0,...,4. Only two combinations of the latter have
independent physical meaning [7]. To ensure that the
matrix of Poisson brackets of second class constraints
is invertible, the parameters satisfy the condition [19]
B+ 262+ B3 # 0.

The potential in the action (1) also involves a non-
dynamical fiducial metric f,,, which can be chosen as
desired but is often taken to be the Minkowski metric
Nuv- The fiducial metric appears in the action in the
combination X, = (1/g~1f )*,, where the matrix g~'f
is assumed to have only positive eigenvalues so that its
square root is well defined. The five invariant polyno-
mials e, (X) involve traces of powers of the argument of
X#,. They are defined by eo(X) = 1 and the recursive
relation [7]

en() = = 3 (CDMEH e k(0), ()

k=1

where [-] indicates a trace, [Z] = Z",,. It follows that

eo(X) =1,

e1X) = [X] =tr X,

ex(X) = 5 ([X]* - [X7))

ea(X) = 1 (X - 3IX][X?] +2(X%)

ea(X)=g; ([X]* - 6[X]*[X]+ 3[X*]*+ 8[X][X*] - 6[X"])

= det X. (3)

In four spacetime dimensions, e, (X) = 0 for n > 5. The
term with n = 4 is nondynamical and hence can be omit-
ted from the action (1). The action can be extended by
the addition of a matter term Sy, to describe the coupling
of matter as desired.

The analyses in the present work take advantage of a
duality property of the scalar potential [20],

V=gen(X) = v—=fean(Y), (4)
where
v, = (XY = (Vg )r (5)

For our purposes, it is advantageous to work with the
representation of the scalar potential in terms of the ma-
trix Y#, rather than X#,. This replaces the determinant



\/—g of the dynamical metric with the determinant /— f
of the nondynamical fiducial metric and thereby simpli-
fies the variational analysis. The second term in the ac-
tion (1) then takes the form —(m?/k) [ d*zv/=fV, where
the potential V is given by

4
V(Y) = Zﬁnen(y)v (6)
n=0

with

Bn = 64—71' (7)

The parameters 3,, are related to the parameters o, de-
fined in Part II of the review in Ref. [9] by

EO 0O 0 0 0 1 Qg
51 0O 0 0 -1 -4 a1
Byl=|00 1 3 6 as |, (8)
Bs 0 -1 -2 -3 —4 o3
Ba 11 1 1 1 Qy
with inverse
ap 1 1 1 11 ﬁo
o —4 -3 -2 —-10 81
a3 -4 -1 0 0 O Bs
Qg 1 0 0 0 0 Ba

The parameter aq corresponds to the cosmological con-
stant, a; to a tadpole contribution, cy to a mass term
generalizing the Fierz-Pauli action, while a3 and a4y cor-
respond to higher-order interactions.

B. Spacetime symmetries

The spacetime symmetries of the action (1) are keys
to its physical content. This subsection provides a brief
summary of some features of particular interest in what
follows. A recent discussion with more details and in a
broader context can be found in Ref. [17].

In considering spacetime symmetries of a theory, par-
ticularly one containing nondynamical backgrounds like
the fiducial metric f,, in the action (1), it is useful to
define two classes of transformations [14, 21]. Observer
transformations change the observer frame, and hence
they amount to coordinate choices that leave unaffected
the physics. Geometrically, they act on the atlas of the
spacetime manifold. Particle transformations change dy-
namical particles and fields, leaving invariant nondynam-
ical quantities and thus modifying their couplings. Ge-
ometrically, particle transformations act on the space-
time manifold and its tangent and cotangent bundles. A
physical symmetry under a particle transformation may
therefore be violated by the presence of a nondynamical
quantity even if the theory is invariant under the cor-
responding observer transformation. Note that the two

classes of transformations expressed in a coordinate basis
are mathematically similar when nondynamical quanti-
ties are absent and are then sometimes called passive and
active, but this similarity fails in the general scenario.
General coordinate transformations are prime exam-
ples of observer transformations, implementing smooth
coordinate changes and leaving invariant the action (1).
For explicit calculations, a particular set of coordinates
is often selected, corresponding to a convenient choice
of observer frame. The fiducial metric f,, behaves as
a (0,2) tensor under general coordinate transformations,
so a suitable choice of coordinates can bring it to a con-
venient form. The dynamical metric g, is also a (0,2)
tensor under general coordinate transformations, so the
choice of coordinates affects its explicit form as well.
Local Lorentz transformations are particle transforma-
tions that act on the tangent space at each point on the
spacetime manifold. They thus change quantities defined
in a local frame while leaving unaffected ones defined
in a spacetime frame. We label spacetime coordinates
by Greek indices u, v, ... and components in the local
frame by Latin indices a, b, .... The dynamical metric
guv in a local frame can be related to the nondynamical

Minkowski metric 7,5 through the dynamical vierbein e ,*

according to g,, = e#aeybnab. A local Lorentz transfor-
mation at point z described by the matrix components
A% () acts on e,®, g, and fy, as

b
e, — A%e,”,
Guv = Guv,
Juw = fuv- (10)

Combinations of objects such as the matrix Y#, inherit
the corresponding transformation properties. Since the
action (1) is specified in terms of objects defined in a
spacetime frame, it is invariant under local Lorentz trans-
formations.

Diffeomorphisms are particle transformations consist-
ing of smooth maps of the spacetime manifold into itself
and hence embody the notion of local translations, with
a spacetime point z* mapped to another point according
to zt — o't = zt + €M (x) when expressed in a fixed
coordinate system. Under a diffeomorphism, dynami-
cal quantities transform as the induced pushforward or
pullback. For infinitesimal diffeomorphisms, dynamical
quantities transform via the Lie derivative, while non-
dynamical quantities remain unaffected. For example,
under an infinitesimal diffeomorphism the vierbein, dy-
namical metric, and fiducial metric transform as

en” — e, —e, 0,80 — 5’\(’“),\6#“,

Juv = Guv — gpuaugp - g;waugj - 5)\6)\9#1/7

Juv = fuv (11)
As a result, diffeomorphism invariance is broken by all
the terms in the potential for the action (1) except the

term proportional to [y, which acts as a cosmological
constant.



Manifold Lorentz transformations are particle transfor-
mations that act both on spacetime points and on lo-
cal frames as combinations of special diffeomorphisms
and local Lorentz transformations. They are of par-
ticular interest in the present context because they are
the analogues in approximately Minkowski spacetime of
global Lorentz transformations in Minkowski spacetime
[17]. Given a fixed A in the Lorentz group, the corre-
sponding manifold Lorentz transformation consists of the
special diffeomorphism a# — 2'* = A¥ x¥ mapping each
spacetime point z* to another point z'# via the matrix
A*, in a fixed coordinate system, along with a special
local Lorentz transformation such that the vierbein and
metrics transform at each = as

e, — (A_l)p#A“bepb,
gl“/ - (Ail)pu(Ail)gugPG’a
Juw = fuv- (12)

In part of this work, we investigate features of massive
gravity in approximately Minkowski spacetime, where
the dynamical metric g,, contains only small fluctua-
tions away from the Minkowski metric 7,,,, and the man-
ifold Lorentz transformations reduce to the usual notion
of Lorentz transformations in approximately Minkowski
spacetime. Within this scenario, the action (1) is invari-
ant under Lorentz transformations whenever the fiducial
metric is constant and proportional to the Minkowski
metric, fu, X 7, because the transformation law (12)
for f,,,, then coincides with the standard Lorentz transfor-
mation under which 7, is invariant. However, for other
fiducial metrics fy, o 7., the transformation law (12)
for f,. lacks the usual action of A*, and so the action
(1) violates Lorentz invariance. We thus see that the dif-
feomorphism violation arising from the mass term tran-
scribes to Lorentz violation in approximately Minkowski
spacetime except for the special choice f., o 7,,. Note
also that violations of rotation symmetry are embedded
in Lorentz violation because rotations form a subgroup
of the Lorentz group.

CPT transformations can be understood in Minkowski
spacetime as the product of charge conjugation C, par-
ity inversion P, and time reversal T. They are closely
linked to global Lorentz transformations in Minkowski
spacetime, with the link formally being established via
the CPT theorem [22]. In curved spacetime, CPT is
challenging to define but a practical implementation ex-
ists [14]. Under this implementation, the action (1) is
CPT invariant even for nontrivial curvature. In approxi-
mately Minkowski spacetime, a CPT transformation par-
alleling the usual one can be constructed. CPT invari-
ance is then a feature of local realistic theories containing
backgrounds carrying an even number of spacetime in-
dices, which includes the fiducial metric f,,,. The action
(1) therefore exhibits CPT invariance in approximately
Minkowski spacetime as well.

We remark in passing that the implementation of the
above spacetime symmetries in alternative formulations

of massive gravity may require separate consideration.
For example, the alternative vierbein formulation [23] us-
ing the dynamical vierbein e,” and a nondynamical fidu-
cial vierbein f,* explicitly violates both local Lorentz and
diffeomorphism invariances because f,* fails to trans-
form conventionally [17]. However, if the vierbeins satisfy
the condition e”q f,°Ney = Nacfue"p, then this alterna-
tive formulation is equivalent to the action (1) [23, 24]
and so local Lorentz invariance is preserved. As an-
other example, bimetric massive gravity [20] involves two
dynamical metrics g, fu. Their background values
emerging from extremizing the bimetric action therefore
must solve the equations of motion, which implies any
Lorentz breaking is spontaneous and accompanied by
massless fluctuations [25], which are Nambu-Goldstone
modes [26]. Techniques are available for handling the re-
sulting phenomenological complications [27], and many
experiments have sought the corresponding effects [15].
Investigating the implications for bimetric massive grav-
ity of these results and of the methods discussed here
would be of definite interest but lies outside our present
scope. Note that in contrast no fluctuations are associ-
ated with the nondynamical fiducial metric f,, in the
action (1), where the Lorentz breaking is explicit. The
phenomenology of explicit breaking without fluctuations
can be explored in gravitational effective field theory [28].

Given that manifold Lorentz symmetry is generically
violated in the action (1), it is of interest to determine
the pattern of the symmetry breaking in any given sce-
nario. As an illustration of some relevant ideas consider
the analysis in Sec. III below of the extrema and saddle
points of the potential (6), which is a quartic in the ma-
trix variable Y#,. The equation determining the extrema
and saddle points is therefore a cubic, with three inde-
pendent solutions. Since Y#, has at most four different
eigenvalues, it follows that at least two of them must be
degenerate and so at most five of the six Lorentz genera-
tors can break. If three eigenvalues are degenerate, then
three Lorentz generators are broken, while if two pairs of
eigenvalues are degenerate then four Lorentz generators
break. The above line of reasoning reveals that the basic
structure of the potential (6) excludes one, two, or six
broken Lorentz generators. As we show in Sec. III, the
cubic governing the extrema and saddle points of the po-
tential (6) has degenerate roots, and so in fact the only
solutions either are Lorentz invariant or have four bro-
ken Lorentz generators. In the latter case, the pattern of
symmetry breaking is SO(1,3) — SO(1,1) x SO(2).

This pattern differs from ones known in other Lorentz-
violating models of gravity. Consider, for example, the
cardinal model [29], which is also an extension of GR con-
taining a nonlinear potential. It is constructed starting
in Minkowski spacetime with a symmetric 2-tensor that
undergoes spontaneous Lorentz violation and requiring
self-consistent coupling to the energy-momentum tensor.
In the Lorentz-invariant case, this bootstrap procedure
is known to generate GR from a massless spin-2 field
[30]. In the cardinal model, a unique combination satis-



fies the integrability condition for self consistency at each
order in the field fluctuations [31]. The potential func-
tions for the cardinal model, defined by Eq. (134) of Ref.
[29], match the polynomials (3) for ghost-free gravity but
serve as input for the differential equations satisfied by
the bootstrap potentials rather than being combined to
eliminate the ghost. The cardinal model is thus a boot-
strap theory like GR but generically contains a ghost,
while the action (1) for massive gravity is ghost free but
generically cannot be obtained via a bootstrap. Known
patterns of Lorentz breaking for the cardinal potential
exclude situations with one or two broken Lorentz gener-
ators, as before. However, they include ones with three,
five, and six broken generators [32], which cannot occur
in ghost-free massive gravity as outlined above.

C. Matrix decomposition

The analysis of extrema and saddle points in Sec. I1I is
performed using the matrix variable Y#, defined in Eq.
(5), with the special choice of fiducial metric f,, = 1.
This subsection provides a decomposition of Y#,, in terms
of variables convenient for the subsequent derivations.

The square of Y#,, can be written using the Arnowitt-
Deser-Misner decomposition [33],

- 2—N#9N; —N;
Y2)", = (ng)", = (N Ny N J), 13
(Y9)" = ("9) N, vy ) (19

where v;; = ¢;; is the spacelike part of the dynamical
metric with inverse v, N; = go; is the shift variable,
and N = (—¢%)~1/2 is the lapse. In the GR action,
the shift and the lapse appear linearly and multiply first
class constraints. In the case of massive gravity, how-
ever, the potential term in the action destroys linearity,
and the variables N, = (N, N;) acquire equations of mo-
tion determining them in terms of the dynamical fields.
This leaves 10 — 4 = 6 propagating modes, including the
Boulware-Deser ghost.

To eliminate the ghost from the spectrum, the equa-
tions of motion for N, must involve only three of the
four degrees of freedom. This means that the equations
of motion depend on only three combinations n; of the
four variables N,,, along with the metric variables v;;. It
is then natural to perform a change of variables

{Ni, Ny vigh — {ni, Ny } (14)

that eliminates the N; in favor of the n;. The n; are
auxiliary fields fixed by their own equations of motion.
The lapse N does not appear in its own equation of mo-
tion and hence acts as a Lagrange multiplier multiplying
a constraint. This constraint eliminates the Boulware-
Deser ghost. It follows that the potential must be linear
in N after performing the change of variables (14). Given
the form of the decomposition (13), the transformation
of N; must therefore be linear in N,

Ni = (5# + NDij)TLj. (15)

The matrix D;? is determined by the requirement that
the action be linear in N.

To implement this line of reasoning explicitly for Y*,,,
we take

Y*, = (Vn1lg)", = A", + NB*,. (16)
Squaring then gives
(Y2)", = (A%)", + N(AB+B.A)*, + N*(B*)",. (17)

We can compare this result with the decomposition (13),
using the expression (15). It follows that

T~.—1 T
2 _[—n"yTn —n
A_( n 7>’

2 T T —1 Lo
B:(l—nD”y Dn)<00 ,
(=nTDTy"in —nTy=tDn —nTDT
AB+B.A = < Dn 0 .
(18)

The first two of these identities determine the matrices
A and B upon taking matrix square roots, which are
uniquely defined if A2 and B? are diagonalizable with
nonnegative eigenvalues. This is indeed the case for suf-
ficiently small values of n;. We find

B=+/1-nTDTy"1Dn (10 8) : (19)
Choosing coordinates such that v;; = d;;, we also obtain
1 (—n"n —nT
A=— 1-N" |, 20
N’ n N'§ +nnT = (20)
nTn
where N’ = v/1 —nTn. Note that this expression is in-
dependent of the matrix D.
The results (19) and (20) for the matrices A and B can

now be used to find the explicit form of Y°,. This gives
T

Y% = A% + NB%, = % + NN =N,
—n'n
Y0, =A% + NB®, = —2% = 7, (21)

vV1—nTn
where we introduced the convenient variables N and 7;.
The inverse relations are

7 ~

— ___ N=+v1+aTaN+a"n, 22
iraTh #2)
from which the partial derivative with respect to N is
found to be

n; =

9 _ON9 09 9 (23)
ON ONyN ON on; ON
The partial derivative with respect to n; is a linear com-
bination of the partial derivatives with respect to n; and
N. Note that the hamiltonian constraint is obtained by
taking the partial derivative of the hamiltonian with re-
spect to the lapse N, so the result (23) implies it can
alternatively be obtained by taking the partial derivative

with respect to N = Y9,




III. STATIC SOLUTIONS

Among the solutions obtained by varying the action
(1) are static ones with vanishing curvatures for both the
metrics g,, and f,,, which can be interpreted as flat
vacuum spacetimes. In this section, these solutions are
classified and constructed. We take advantage of gen-
eral coordinate invariance to choose a special observer
frame in which the fiducial metric takes the form of the
Minkowski metric f,,, = 7., and we determine the cor-
responding solutions to the static equations of motion for
the matrix variable Y#,. The explicit form of solutions
for any other flat fiducial metric f,, ¢ 7., can then be
obtained via a suitable general coordinate transforma-
tion.

The extrema and saddle points of interest are solutions
of the equations of motion obtained by varying the po-
tential (6). Since the term with parameter 3, is constant,
it has no effect on the equations of motion and hence can
be set to zero without loss of generality in the analy-
sis. It therefore suffices to study the equations of motion
obtained from the potential

U(Y) = 3 Biea(¥). (24)

For the analysis, it is convenient to parametrize Y#,

as
yo, = (N ‘ﬁi) . (25)

n; kij

The solutions for the variables n; can be obtained directly
from their equations of motion, and we find

7 = 0. (26)

To make further progress, we diagonalize the spacelike
part k;; of Y#, by applying an othogonal transformation
Y — OYOT, which amounts to a field redefinition and
thus leaves the physics unchanged. This brings Y#, to
the form

Y#, =

N
0
0 (27)

0
0
0

coX>o
o oo

0 A

w

The potential (24) then becomes
UY) = B1(A1 + A2 4+ A3) + B2 (A1 A2 + A2 Az + Aghi)
+B3A1A2A3
“"N[Bl + B2(A1 + A2 + A3)
+B3 (M1 A2 + A2ds + AsA1) + BadidaAs],(28)

and it depends on the four field variables N, A1, A2, As.

The equation of motion for N yields the hamiltonian
constraint,

B1 4 B2(M + A2 + A3) + Bs(A1da + Aoz + Azh1)
+Bad A = 0. (29)

The equations of motion for the remaining three variables
A1, Ao and A3 are
B1+ Ba(N + X2 + A3) + B3 (N(A2 + A3) + A2 s)
BN 2N = 0,
B1+ B2(N + A1 + A3) + B3 (N(/\l + A3) + A1)
+BsNXiAs =0,
B14 Ba(N + A+ A2) 4 B3 (N(A1 4 Aa) + A1A2)
+BsNXidz = 0. (30)
The parameter §; can be eliminated from these three
equations by working instead with their differences. For

example, subtracting the second equation from the first
yields

(A2 = A1) [B2 + B3(N + A3) + BaNAs] =0. (31)

Similarly, we find
(A3 — M) [B2 + Ba(N + Xo) + BaNA2] =0,  (32)
and
(A3 = A2)[B2 + Bs(N + M) + BaNM] =0.  (33)

In what follows, we solve the system of these equations
and the hamiltonian constraint (29) for each of three
cases in turn: case A with B4 # 0, case B with 84 = 0,
B3 # 0, and case C with 4 = B3 = 0, f2 # 0. This es-
tablishes the complete set of desired static extrema and
saddle points of the action (1).

A. Case A: 34 #0

Consider first case A with 84 # 0. We obtain here the
solutions determine their local stability, and investigate
global stability for the subset of locally stable configura-
tions.

1. Static solutions

Inspection reveals that one class of solutions of Egs.
(31)—(33) is obtained by taking A\; = A2 = A3. Substitu-
tion into Eq. (29) yields the cubic equation

B1+ 3B2A1 + 3B3AF + BaAi = 0. (34)

For the case 84 # 0, this yields either one or three real
solutions for A\;. In terms of the discriminant

D = 48,453 — 36385 — 681828384 + 45153 + B1B3, (35)

the cubic (34) has three distinct real roots iff D < 0, at
least two coincident real roots if D = 0, and one real
root iff D > 0. For D = 0, three coincident roots appear



for the special case with Bg — B5B4 = 0. From the first
expression in Eq. (30) it follows that

~ B 2_ Ba )2
N Dt Oy (36)
Ba + 2831 + BaXy

The second equality is obtained by substitution of the
solution for B obtained from Eq. (34). We conclude
that these solutions obey

N =X =\ =\, (37)

with all four variables given by a single root of the cu-
bic (34). The matrix Y#, is therefore proportional to
the identity, which implies this class of solutions is man-
ifold Lorentz invariant. The existence of three real roots
ensures that three distinct solutions occur.

It can be verified from Eqs. (31)—(33) that the variables
A1, A2, Az cannot all be different. However, a second
class of solutions can be obtained by setting any two of
the \; equal, while keeping the third distinct. Suppose
for definiteness that Ay = Ay # A3. It then follows from
Eq. (32) that

N = —M, (38)
Bs + Bar
while Eq. (29) yields
3 ¥ B2
L= P+ 26:M +§3)\; (39)
B2 4 2831 + Ba)]
From Egs. (29) and (30), we find
(A3 — N) [B2 + 283\ + Ba)i] = 0. (40)

Taking the second factor in this equation to vanish leads
to a divergent expression on the right-hand side of Eq.
(39), so A3 = N is required. Combining this result with
Egs. (38) and (39) then yields the identity

B183 — B3+ (B184— B2B3) M1 + (B2B4— B3)N] = 0, (41)

with the solutions

_ B2B3 — B1Bs+ VD
2(B2B1 — B3)
Note the appearance of the discriminant (35), with the

solutions being real iff D > 0. Using Eq. (38) then reveals
that

AL = Ao (42)

~ _Bz + BsA1 B2z — BiBs F \/5

AM=N=—=—— = = (43)
B3 + Bah 2(B2B4 — B3)
The second class of solutions therefore obeys
N =X3# M =\, (44)

with the two subsets of equal variables specified as the
two roots of the quadratic (41). Since the matrix Y#,

differs from the identity, this class of solutions violates
manifold Lorentz invariance. The pattern of symmetry
breaking is SO(1,3) — SO(1,1) x SO(2). Note that we
can obtain two more pairs of analogous solutions by inter-
changing the role of A3 with A\; and A5 in turn. Note also
that the solutions are obtained assuming the form (27) for
Y#,, which is obtained by a four-dimensional orthogonal
transformation that leaves unaffected the physics. The
three-dimensional part of this transformation amounts to
a rotation and hence overlaps with a Lorentz transforma-
tion, so the two discrete Lorentz-violating solutions can
be viewed as part of a continuous rotation-degenerate
solution that describes the same physics as the discrete
pair.

To summarize, for case A with 34 # 0 we find two pos-
sibilities distinguished by the sign of the discriminant D.
Case Al has D < 0. For D < 0 it contains three Lorentz-
invariant solutions obeying the condition (37) and given
by one root of the cubic (34). For D = 0 only two distinct
Lorentz-invariant solutions survive, except for the special
case 32 — B284 = 0 when all three Lorentz-invariant so-
lutions coincide. Case A2 has D > 0. It includes one
Lorentz-invariant solution satisfying the condition (37)
and given by the sole real root of the cubic (34). This
case also includes six Lorentz-violating solutions, with
the four variables N, A1, A2, A3 combining in pairs and
specified as roots of the quadratic (41).

2. Local stability

Next, we investigate the local stability of the solutions
in the potential manifold. To establish the local sta-
bility of unconstrained systems it suffices to determine
the eigenvalues of the hessian matrix, which are posi-
tive definite at local minima, negative definite at local
maxima, and indefinite at saddle points. However, the
system of interest here is constrained, which introduces
an additional complication. An elegant way to deter-
mine the properties of the hessian on the constrained
surface is to work instead with the bordered hessian [34],
which is defined instead on an enlarged space incorpo-
rating the Lagrange multiplier for the constraint along
with the physical degrees of freedom. In the present con-
text, the method requires first finding the determinant
det Hp of the 4 x 4 bordered hessian associated with the
four variables {N, A1, A2, A3}. If det Hp < 0, then the
hessian on the two-dimensional constrained surface has
either two positive or two negative eigenvalues. If instead
det Hp > 0, then the hessian has two eigenvalues of op-
posite sign, and a principal minor must be calculated
to determine which alternative is realized. The principal
minor is the determinant det Hp 1, of the 3 x 3 matrix ob-
tained by removing from the hessian a column and a row
associated with one of the variables ;. If det Hp m < 0
then both eigenvalues of the constrained hessian are pos-
itive, while if det Hg m, > 0 then both are negative.

For case Al with D < 0 and three Lorentz-invariant



solutions, we find that the determinant of the full bor-
dered hessian Hp is

det Hp = —3(B2 + 2B3A1 + Bar})™. (45)

This is negative definite provided a quadratic combina-
tion of the variable A; is nonzero,

Ba + 2B3\1 + BaAi # 0. (46)

The zeros of this quadratic combination differ from the
solutions when the three roots of the cubic polynomial
(34) are all distinct, because the zeros correspond to the
stationary points of the cubic while the extrema and sad-
dle points of the potential correspond to its roots. Each
of the three Lorentz-invariant solutions therefore repre-
sents either a maximum or a minimum. To determine
which of these occurs, we compute the principal minor

det Hp 1 = 2(B2 + 2831 + BaA])>. (47)

The sign of this expression matches the sign of the
quadratic combination (46). The roots of the latter sep-
arate the three values of A1 corresponding to the three
solutions, so its sign alternates when they are ordered by
the value of A\;. It follows that when B4 > 0 the central
solution has negative value of det Hp ;,, and hence is a
local maximum, while the other two have positive values
with signs coinciding with that of 54 and hence are lo-
cal minima. For B4 < 0 the situation is reversed, and
the signs of det Hp , for the two outer extrema again
coincide with that of B4.

The results for case Al with D = 0 can be viewed as
limits of the above analysis. In this scenario, at least two
of the three solutions merge. When two distinct solutions
remain, the ones that merge produce a local saddle point
of the potential, while the third is either a local maximum
or a local minimum. For the special case Bg — Bofy =
0, all three solutions merge and the extremum becomes
degenerate.

Consider next the case A2, which has D > 0 with
one Lorentz-invariant and six Lorentz-violating solutions.
The Lorentz-invariant one corresponds to the sole root of
the cubic polynomial (34). The determinant of the cor-
responding bordered hessian and the principal minor are
again given by Eqs. (45) and (47). As this root lies out-
side the interval spanned by the roots of the quadratic
combination (46), the sign of the principal minor is again
given by the sign of B4. Thus, if B4 > 0 then the ex-
tremum is a local minimum, while if 54 < 0 it is a local
maximum.

For the Lorentz-violating solutions in case A2, the de-
terminant of the bordered hessian turns out to be

D2
(B2 — BaBa)”

which is positive definite. The two eigenvalues of the
constrained hessian therefore have opposite signs, so the
Lorentz-violating solutions generically correspond to lo-
cal saddle points of the potential. The divergence of the
bordered hessian at Bg = B934 represents the singular
limit that interpolates between two scenarios for case A2,
distinguished by the sign of 32 — 8234, with each scenario
having one Lorentz-invariant and six Lorentz-violating
solutions.

det Hg = (48)

3. Global and absolute stability

With the extrema and their local stability properties
in hand, the issue of their global and absolute stability
can be addressed. We call an extremum globally stable
if it is locally stable and if no locally unstable extremum
can be reached via a smooth path in field space along
which the effective potential remains finite. This notion
of global stability thus depends on the branch structure
of the potential. The point is that two locally stable
extrema on a single branch of the potential can in prin-
ciple be connected via thermal fluctuations or quantum
tunneling, whereas two locally stable extrema lying on
different branches are disconnected by an infinite poten-
tial barrier. Also, we refer to an extremum as absolutely
stable if it is globally stable and in addition lies at a lower
potential than any other globally stable extremum. To
investigate the global and absolute stability of the various
extrema, we use a combination of analytical and graphi-
cal methods. Note that our techniques are applied within
the space of flat metrics. In principle, solutions identified
as stable in this context might be unstable to dynamical
variations in the full field space. However, the potential
(6) is independent of field derivatives, so the usual stabil-
ity in the Einstein-Hilbert case can be expected to carry
over to the full theory. A detailed investigation of this
point would be of interest but lies outside our present
scope.

To set up the analytical approach, we solve the hamil-
tonian constraint explicitly for one variable, say A3, to
obtain

_Bl + BaA1 + BaAz + BsAiAe

A3 = —= = — — .
B2 + B3A1 + B3As + BaAi e

(49)

Substituting this expression into the potential (28) with

N = A3 then generates an effective potential L_{(Al,)\g)
that is a function of the two remaining variables A; and
)\27



U, A2) =UA, A2, Az(A1, A2))

_ MA2((BE = B2Ba)Ai A2 + (B2B3 — B1B8a) (A1 + A2) + B3) + (B3 — B1B3) (AL + A3) + B1B2(A1 + A2) + B2

B2+ B3(A1 + A2) + Badi Az

FIG. 1. Cubic surface for case Al, with three Lorentz-
invariant extrema.

The crucial feature in this formula is the denominator.
Any surface in field space where it vanishes represents
a singular surface in the definition of . Unless the nu-
merator vanishes as well, the behavior of I/ across this
surface is that of a first-order pole. This means that I/
tends to 400 when the surface is approached from one
side, while U tends to —oo when approached from the
other. The surface therefore serves as a separator of two
distinct branches of U.

For case A1 with D < 0 and three Lorentz-invariant ex-
trema, we have Ay = A9 and so the denominator takes the
form of the quadratic combination (46). The two zeros
of this quadratic lie between the roots of \; that define
the three extrema. We can therefore conclude that they
lie on separate branches of the potential /. This sug-
gests that no two of the three extrema can be smoothly
connected in field space. However, the above reasoning
implicitly assumes that the candidate path between the
extrema satisfies the condition A\; = Aa, so the possibility
remains in principle that a more complicated path exists
that avoids the singularity.

To check this possibility, we construct numerically a
three-dimensional plot of the cubic surface defined by
the hamiltonian constraint (29), using the parameters
B1 = 0.3, B2 = —1.3, B3 = —1, B4 = 1. See Fig. 1.
The z, y, z axes of the plot are labeled with values of
A1, A2, Az, respectively. Equipotential contours of the
effective potential U(\1, \2) are displayed in grayscale
shadings. The location of the three Lorentz-invariant

. (50)

FIG. 2. Cubic surface for case A2 and 82— 5284 < 0, with one
Lorentz-invariant extremum and six Lorentz-violating saddle
points.

extrema is indicated by white dots. Inspection of the
figure reveals that the hamiltonian constraint involves
three disconnected sheets, each containing a single sta-
tionary Lorentz-invariant extremum. This confirms that
it is impossible to transit smoothly from one extremum
to another. The two extrema in case Al that represent
local minima are therefore both locally and globally sta-
ble. Note, however, that the two globally stable extrema
generically lie at different potentials. It follows that only
the one at lower potential is absolutely stable. Since they
are separated by infinite potential barriers, neither ther-
mal fluctuations nor quantum tunneling between them
can be expected to occur.

For case A2, which has D > 0 with one Lorentz-
invariant extremum and six Lorentz-violating saddle
points, the situation depends on the sign of the com-
bination 8% — B284. When (3 — 3284 < 0, the quadratic
equation (41) has no real roots, so the cubic polynomial
in (34) has no stationary points. The effective potential
(50) cousists of just one branch, as the denominator never
becomes zero. Therefore, the solutions are connected by
a path in the \; space such that the effective potential
U varies continuously without passing through any sin-
gularity. This result is confirmed numerically in Fig. 2,
which displays the cubic surface defined by the hamil-
tonian constraint for the parameters f; = 1, By = —1,



B3 =1, B4 = 1 using the same conventions as Fig. 1. The
Lorentz-invariant extremum is indicated by a white dot,
while the Lorentz-violating saddle points are indicated by
black dots. We thus conclude that the Lorentz-invariant
extremum at a local minimum is globally unstable. The
excitation energy required to destabilize it is the differ-
ence between the energies of the Lorentz-violating saddle
points and the Lorentz-invariant local minimum.

In contrast, when Bg — B2f4 > 0, the analysis is more
involved. The cubic equation (34) has two stationary
points A_, Ay corresponding to the roots of the quadratic
combination (46). The single root of the cubic equation
must be either smaller than A_ or larger the A;. We now
claim that this root for the Lorentz-invariant extremum
and the two roots with A\; = Ay for the Lorentz-violating
saddle points are separated by A_ and A4, assuming the
three roots are ordered from small to large.

To check this claim, we first evaluate the left-hand side
C of Eq. (34) at the centerpoint (A; + A_)/2,

_ B183 — 3828384 + 253
53 '

It follows that if 3,C > 0 then the Lorentz-invariant root
Ar1 is smaller than A_, while if 54C < 0 then A1 is larger
than A;. Next, we verify that the two Lorentz-violating
roots Ary,— and Ay 4 given in the solutions (42) are
separated from Ary and each other by A_ and A;. If this
is indeed the case, then either

C (51)

AL < A < )\LV,— < )\_;,_ < )\LV7+ (52)
or
)\LV,— <A< )\LV,-',- <AL < Apg. (53)

One consistency condition for this involves the sign of
the difference between the midpoint of Ay, — and Apy, .
Calculation reveals that the difference is given by

== faC (54)
ﬁg - ﬁ254
Since $% — B934 > 0 for this case, we see that if 5,C > 0
then the midpoint between Apy,— and Apy, is larger
than (Ay + A_)/2, while if 84C < 0 it is smaller. It
therefore lies in the opposite direction from Ap; relative
to (AL + A_)/2, consistent with the claim.
To confirm that the three roots are positioned accord-
ing to the claim, we can compute explicitly the differences

ALv,— +Arvi— A+ Ay
2 2

A — A /B3 —B2ba
S YR (55)
2 |B4]
and
ALV,4+ — ALv,— VD

2 N 2(83 — B2PB1) (56)
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FIG. 3. Cubic surface for case A2 and 52— 284 > 0, with one
Lorentz-invariant extremum and six Lorentz-violating saddle
points.

The claim then follows if the conditions
313421_— 3_3233_34_4- 233 _ \/5_ _
2B4(B% — B2fB4) 2(83 — B2B4)
\/ B3 — B2B4

|Bal

VD
2(62 — B2P4)
\/ B3 — B2Pa
< - @

Bl

)

B183 — 3828384 + 253
2B4(B% — B2B4)

)

vD
2(B3 — B2f4)
\/ B3 — B2Ba
S T o
B4l
all hold. Moving the second term in each of these rela-

tions to the right-hand side and squaring, we find that
almost all terms cancel. All three inequalities reduce to

B183 — 3828384 + 253
2B4(B% — B2f4)

4(B2 — B2B4)/*[BalVD > 0, (58)

which is valid by inspection. The claim that the three
roots are separated by A_ and A; is thus verified.

The above calculation therefore suggests that for case
A2 with D > 0 and 8% — 8234 > 0 the Lorentz-invariant
stationary extremum and the two Lorentz-violating sad-
dle points with A1 = Ay lie on separate branches of the
effective potential Z/(\1, A2). A similar argument applies
for the other four Lorentz-violating saddle points. How-
ever, the same caveat applies here as for case Al, as



FIG. 4. Cubic surface for the minimal theory in Ref. [7], with
one Lorentz-invariant extremum.

we considered only paths satisfying Ay = Ay. In fact,
a graphical analysis reveals that continuous paths exist
that link the six Lorentz-violating saddle points. This
feature is manifest in Fig. 3, which plots the cubic surface
defined by the hamiltonian constraint for the parameters
B1 =1, By =3, 3 =1, B4 = 1, with the conventions
of Fig. 1. The Lorentz-invariant extremum indicated by
a white dot lies on a disconnected component of the cu-
bic surface, while the Lorentz-violating saddle points in-
dicated by black dots are clustered around the throat
of the other component. We see that a smooth transi-
tion from the Lorentz-invariant to the Lorentz-violating
saddle points is impossible, so if the Lorentz-invariant
extremum is a local minimum then it is also globally
and absolutely stable. In contrast, smooth paths do in-
deed exist between any pair of Lorentz-violating saddle
points. The passage from the situation in Fig. 2 to that
in Fig. 3, which interpolates via the limiting scenario
with 33 = 284 and a singular bordered hessian (48),
involves the separation of the sheet with the Lorentz-
invariant extremum from the sheet containing the six
Lorentz-violating saddle points and the formation of the
throat.

As a final example, we consider the minimal theory ob-
tained from the Fierz-Pauli Lagrange density by Hassan
and Rosen [7]. The corresponding the cubic surface de-
fined by the hamiltonian constraint is displayed in Fig.
4 for the parameters 81 = 82 = 0, 83 = —1, B4 = 3,
using the conventions of Fig. 1. These parameters yield
D = 0 and 32 — B264 = 1, which is a limiting situa-
tion of the previous analysis. In this case, two sheets of
the cubic surface touch at a conical singular point. The
Lorentz-invariant extremum Ao = Ay = Ay = A3 = 0

11

lies on the tip connecting the touching sheets and is
unstable. In contrast, the Lorentz-invariant extremum
Ao = A1 = A2 = A3 = 1 is positioned on a disconnected
component of the surface, as indicated by a white dot. It
has a negative determinant of the bordered hessian and a
positive value for the principal minor, so it is a local min-
imum that is globally and absolutely stable. This model
can be viewed as the limit of Fig. 1 with two of the three
sheets touching, or as a limiting case of Fig. 3 with the
throat pinching off.

B. Case B: 84, =0 and B3 #0

Consider next case B with f4 = 0, 83 # 0. For rota-
tionally invariant solutions with \; = Ay = A3, reanalysis
of Eqs. (29)—(33) reveals that the cubic (34) becomes re-
placed by the quadratic equation

B1+ 3B2A1 + 383\ =0, (59)
which has solutions
—B24\/B3— 3B18s
A= — . (60)
233

From the first expression in Eq. (30) it follows that N =
A1, confirming that the extrema satisfy the condition (37)
for Lorentz invariance. Note that they are real iff 383 —
48163 > 0.

To investigate local stability of these extrema, we ex-
amine the determinant (45) of the bordered hessian and
the principal minor (47). This shows that one extremum
is a local maximum of the constrained effective potential
U while the other is a local minimum, depending on the
sign of By + 283\;.

The effective potential in this case is the limit 84 — 0
of the expression (50). It is therefore singular along the
curve satisfying

B2+ B3(A + A2) =0. (61)

The two Lorentz-invariant extrema are separated by this
curve, so we expect them to lie on separate branches
of the effective potential. This is confirmed by numeri-
cal analysis. The double-sheeted hyperboloid defined by
the hamiltonian constraint is shown in Fig. 5 for the pa-
rameters 51 = 1, B = 3, B3 = 1, B4 = 0, using the
conventions of Fig. 1. One of the two Lorentz-invariant
extrema appears on each sheet, so they cannot be joined
by a smooth curve on the surface. The extremum that
is a local minimum of the potential is therefore globally
and absolutely stable.

For solutions without rotational symmetry, Eqgs. (31)-
(33) require at least two of the \; to be equal. Taking
)\1 = )\2 7é /\3, we find that N = —/\1 — Bz/ﬁg. Substitu-
tion into Eq. (30) then yields

—B2 + \/4B1B3 — 353
M o= = - . (62)

2[33
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FIG. 5. Double-sheeted hyperboloid for case B with two
Lorentz-invariant extrema.

Note that the solutions (60) are real iff 43,33 — 332 > 0,
contrary to the situation for the Lorentz-invariant solu-
tions. We also obtain

N —B2 F \/4B183 — 353
3 = = —

2f33

; (63)

confirming that the solutions obey the condition (44) for
Lorentz violation. Note that the roots of the solutions for
A3 and N are interchanged relative to those for A\; and
A2, as before. Two additional pairs of Lorentz-violating
solutions are obtained by sequential interchange of As
with A\; and with As.

In this case, the determinant of the bordered hessian
is obtained as the limit 84 — 0 of the expression (48),

det Hg — (363 — 3153)2- (64)

This is positive definite for 333 — 3133 # 0, so these so-
lutions have a constrained hessian with one positive and
one negative eigenvalue, corresponding to local saddle
points of the effective potential.

The Lorentz-violating saddle points are separated by
the singular curve (61). However, numerical analysis re-
veals that all six saddle points lie on a unique branch
of the effective potential. The hamiltonian constraint
in this case defines a single-sheeted hyperboloid, shown
in Fig. 6 for the parameters 1 = 1, B2 = 1, f3 = 1,
B4 = 0 with the same conventions as Fig. 1. All six sad-
dle points lie near the throat of the single-sheeted hyper-
boloid. Smooth transitions between all the saddle points
are therefore possible.
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FIG. 6. Single-sheeted hyperboloid for case B with six
Lorentz-violating saddle points.

C. Case C: B4=0F3=0and f2#0

Finally, we consider case C with 54 = B3 = 0, 52 # 0.
We find that a single Lorentz-invariant solution exists,
given by

N = /\1 = )\2 - )\3 - —Bl/(3ﬁ2) (65)

This solution is a local minimum of the effective potential
if B2 > 0 and a local maximum if 85 < 0. The solution
set of the hamiltonian constraint is a single-sheeted plane,
illustrated in Fig. 7 for the parameters B1 =1, B =3,
B3 = B4 = 0 using the same conventions as Fig. 1. As
a result, if the extremum is a local minimum then it is
globally and absolutely stable.

Note that case C with a local minimum is the only
scenario for which the potential remains bounded from
below over the entire range of field variables. Branches
of the effective potential that are unbounded below occur
when the surface of the hamiltonian constraint contains
a sheet with either a local maximum or a saddle point.
This occurs for all situations in cases A and B and for
case C with a local maximum. For these cases, a full
quantum treatment may therefore be problematic as the
path integral will probe degrees of freedom that corre-
spond to a potential taking arbitrarily negative values.
In this sense, even the existence of an absolutely stable
extremum may be insufficient to guarantee stability at
the quantum level for these cases. However, the param-
eter choices B4 = f3 = 0, B2 > 0 for case C avoid this
divergence and hence may be of particular interest in the
quantum theory. At the classical level, in contrast, it
suffices to restrict the theory via appropriate parameter
choices to an individual sheet on which the potential is



FIG. 7. Single-sheeted plane for case C with a single Lorentz-
invariant extremum.

bounded from below, so the range of viable cases is cor-
respondingly greater.

IV. LINEARIZED MASSIVE GRAVITY

Varying the action (1) with respect to the metric g,
yields an equation of motion that can be written as [7]

m? &
- Z(_l)nﬁn (gya}/i%)y + gya}/i?l)#> = K’Tl“/?

2 n=0
(66)
where TH" is the energy-momentum tensor and the ten-
sors Y(?L)V are given in matrix form by

G;uz +

Vi (%) = 30 (- 1)FK" ey (X). (67)
k=0

We are interested in linearizing this equation around
Minkowski spacetime with metric 7,,,, while allowing for
deviations d f,,,, of the fiducial metric f,, from n,,. We
therefore define

G = M + hpws v = Mpw + 6 frws (68)
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and work at first order in both h,, and df,,. To en-
sure the dynamical fluctuations h,, remain perturbative,
we take |h,,| < [0f.| < 1 where needed. The devia-
tions 0 f,, are assumed to be constants. Note that the
presence of the background Minkowski spacetime implies
that 0 f,, can nonetheless produce physical effects, as a
general coordinate transformation chosen to remove 6 f,,,,
also changes the background metric to non-Minkowski
form.

The square root X¥, = (\/¢g~1f )*, can be expressed
in terms of h,, and f,,. The expansion

X*=(n+h)" (n+0f)
~1+n ' f—nth—n"thy lof (69)
implies
X 14gn '6f =g~ hetgn = ofn h=§n " hy 8.

(70)
The nth product of X then takes the form

X"~ 1+ g (n_15f — n_lh)

—§ [ —20)n7 6 f 7 ot (0 - 20)n~ Ry~ o ]
(71)

The definition (67) contains the polynomial functions
en(X), which involve traces [X"] of powers of X. Taking
the trace of Eq. (71) yields

X7~ a4 2 (707 - I ) =6 L (72)

where the cyclic property of the trace has been used.
Using this expression, we find the polynomial functions
en(X) take the form

0= (1) +4(,2) man -

1,2 e
-1 (n : 2) [~ 0 1 [n~"hl. (73)

Substituting the results (71) and (73) in the definition
(67) yields the form of Y{,,)(X) at first order in the metric
and the fiducial metric. The modified Einstein equation
(66) becomes
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GL, + m; > ﬁn{2 (z) (1w + ) + (n 3 1) (P = 6 frwr — [0 (R = 6£)])

(30,00 (7)) s () oo

-3 (n i 1) (=t~ h]nw — 3 (n i 2) 6] [n~ "R nw

G2 ) v, ) -

where G;Iiu is the linearized Einstein tensor. This result
is a special case of linearized gravitational dynamics with
Lorentz and diffeomorphism violation [35].

It is reasonable and usual to require that the linearized
equation (74) is satisfied by the choice hy, = df., =
T, = 0. This requirement constrains the parameters 3,
according to [23]

3
3
S (D)o -mrsm+smesm-o ()
n=0

Introducing now a nontrivial fluctuation h,, # 0 while
maintaining § f,,, = T, = 0, the modified Einstein equa-
tion (74) becomes

G‘E” + m? Z (ni 1) B (hyw — [~ 'R]) = 0. (76)

n=0

If Zi:o (2;1) Brn < 0, this equation describes tachyonic
propagation and corresponds to an unstable system. If

instead Zi:o (nzl)ﬁn = 0, the mass term vanishes.

. . 3 2

We are thus interested in the case > (nfl)ﬁn > 0.
For this case, we can rescale the paraéneters Bn — afBp
and the mass m — m/y/a so that > _, (nil)ﬁn — 1,
thereby reducing the modified Einstein equation to the
Fierz-Pauli equation. In what follows, we can therefore
take

3
Z(n31)5n=51+252+53=1 (77)

n=0

without loss of generality. Note that the conditions (75)
and (77) imply that only two combinations of the four
parameters [3,, govern the physics of the system.
Suppose next that 0 f,, # 0. Now Minkowski space-
time no longer solves the modified Einstein equation (74)
when T}, = 0 because contributions from J f to the mass

(74)

term remain in the limit h,, — 0. This means that even
in the absence of matter, 7},, = 0, spacetime has nonzero
curvature whenever 0 f,,,, is nonzero. The presence of this
curvature complicates the form of solutions to the mod-
ified Einstein equation. To minimize the calculational
complexities while still permitting study of relevant phys-
ical features, we can introduce a special constant back-
ground energy-momentum tensor chosen to cancel the
h-independent terms on the left-hand side of the mod-
ified Einstein equation,

2
K/THV = _mT (6fuu — Npv [77_15f]) . (78)
Note that this is conserved in Minkowski spacetime for
the spacetime-independent ¢f,, of interest here, and
hence all its partial derivatives vanish. In the presence
of this background, a zero metric fluctuation h,, = 0
solves the modified Einstein equation (74), and so space-
time is Minkowski. Nonzero solutions for h,, can then
be interpreted in analogy with standard weak-field grav-
itational physics in GR, including gravitational waves in
flat spacetime and the Newton gravitational potential.
To analyze the physics of this system, it is convenient
to work in momentum space. We can write the linearized
Einstein equation in the form

0P hos =0 (79)
and introduce the Fourier transform
d4p —ip-x T
huy(fE) = / (27‘()4 e P huy(p) (80)

This yields the momentum-space equation of motion
6yuaﬁﬁaﬁ = Oa (81)

where

O™ = ( 00y — Wﬂ?aﬂ) (" + c1m®) = 2,06 + pupin®” + 0 p”p’

+m? (ea8( 815 + el 01100,60) + 4 (0w — mu [~ 0S1) 1 + esmud f7)

(82)



with
_ 2 __3 1
“ _;ﬂ”(n—1>’ CQ __561+Zn:ﬂ"<n—1)’
c3 = %cl — %CQ, cy = —%cl — 502, c5 = —%cl — %cz.
(83)
It is convenient to scale m so that ¢; = 1. The only

remaining independent parameter is then c,. The first
four terms in expression (82) reproduce the usual Fierz-
Pauli result [1], as expected. The tensor 6#,,0‘5 satisfies
the symmetry properties

0,,°% =0,,%° = 0,,°. (84)

Note, however, that 6,“,&/3 #* 5(1/3”,, whenever 0 f,, is
nonzero.

A. Gravitational waves

In this section, we consider the application of the lin-
earized theory of massive gravity to the propagation of
gravitational waves. We first summarize the situation for
0 fu = 0, which corresponds to the Fierz-Pauli limit in
Minkowski spacetime, and then turn to the scenario with
5fu # 0.

For 0f,, = 0, contracting the expression (81) with
p¥ and n*¥ in turn shows that it is equivalent to the
conditions

h#apa = Oa h## = 07 (p2 + m2)hl“/ = O (85)
This set of equations represents five constraints on the
10 components of h,, together with the usual disper-
sion relation p? = —m? for the five independent combi-
nations. The conditions and the dispersion relation are
both particle and observer Lorentz covariant, and the five
independent combinations correspond to the five physical
helicities of a massive spin-2 field.

The five constraint equations can be solved explicitly
by taking advantage of observer Lorentz invariance to
choose an observer frame in which the 4-momentum takes
the form

p" = (E;0,0,ps3) (86)

with E = y/m? + p3. The particle Lorentz invariance
of the system guarantees that the physical behavior is
unchanged for other momentum choices in this chosen
observer frame. The five constraint equations in Eq. (85)
can then be satisfied by choosing the five independent

variables as hi1, hao, 7L12, his, 7L23 and expressing the
remaining five components of h,, in terms of them,

TPy F D3y
hor = S hys,  hoy = —=h
01 E 13, 02 E 23,

~ E~ P33 Epsz ~ ~
hos = ——hop = ——h33 = ——(h haa). (87
03 s 00 7 s 2 ( 11+ 22) (87)
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To obtain the helicity eigenstates, we consider a rota-
tion about the three momentum p’ given by the Lorentz
transformation

hly = Ru“RyPhag, (88)
with

1 0 0 O
0 cosf sinf 0
0 —sinf cosf 0
0 0 0 1

R, = (89)

By definition, a state v, of helicity n then transforms
according to

Yl = e, (90)

Calculation with these expressions reveals that the helic-

ity eigenstates of h,, satisfying the conditions (87) are
given by

00 00
G _mt [0 1 £ 0
w9 |0 ki =1 0]
00 0O
0 p3 Fips O
qEn_ [ s 00 -F
s Fips 0 0 HiE|°
0 —-FE +=iF 0
3 02 0  -—p3E
7)) _ 0 —m /2 0 0
hw =1 ¢ 0 —m2/2 0 (91)
—ng 0 0 E2

As expected, the five physical degrees of freedom of the
massive spin-2 field include two helicity-2 components
ﬁﬁm, two helicity-1 components ﬁ&fl)
0 component EELO,,). Each component obeys the Lorentz-
invariant dispersion relation appropriate for a particle of

mass m.

, and a helicity-

1. Analysis in special observer frame

Next, we consider effects of the terms proportional to
df.v in the equation of motion (81). Selecting a special
observer frame in which the 4-momentum takes the form
(86) and contracting the equation of motion with p¥ and
n* in turn, five constraints again emerge. Working at
first order in ¢ f,,, calculation reveals they can be cast
in the form

2

a — —17 D
hyuap™ = 3puln ™00~ ] <02 T (1 a 2W>)
_%CQPQ(SJC&&%BW

a _ 17,—1 -17 — i
ha® = 30" "d0fn h]<02+64(4 2m2)>, (92)



which generalizes the five constraints in Eq. (85). Com-

bining these results with the equation of motion (81) per-

mits the latter to be expressed in the simplified form
(p* +m*(1+ caln

715f]))7lu1/ _
m2 ~ ~ ~
702 (huaéfau + 6fuahay) + Co paéfaﬁhﬁ(#py)
3[ 0L fn R (pupe + mP0),  (93)

generalizing the dispersion relation in Eq. (85).
Inspection reveals that the parameter c3 governs an
overall mass shift set by the 7,,-trace of the fluctuation
0 fu of the fiducial metric. The role of the terms on
the right-hand side of the modified dispersion relation
(93) involves a nontrivial action on the components of
hyuw, so their physical content appears more challenging
to understand. However, the structure of the modified
dispersion relation implies that it can be interpreted as

c2 c
A1z = —Em (b1 +b2), Mz = _é(mz

(b1 + bs) + pi(a+b3)),
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an eigenvalue equation, as the combined action of the co
terms must be proportional to Euu- The physical content
of the system is therefore determined by the eigenvalues
and eigenfunctions of Eq. (93), with EW constrained to
satisfy the conditions (92). Note that F can be taken

approximately equal to its unperturbed value y/m? + p3
in evaluating the action of the co terms at first order in
0 fouw-

To gain insight into the physics and for simplicity, we
suppose first that § f,,, has the diagonal form

a0 00

(0B 0 0
0w =100 b 0 (94)

00 0 bs

Calculation then reveals five distinct eigenvalues for the
¢z terms on the right-hand side of Eq. (93),

C
)\23 = —?2 (m2(b2 =+ bg) + pg(a + bg))

Ay =

—%2 <(b1 + by + b3)m? + (a + b3)ps + \/(m2 (b3 -

by + bg) st bg)) n %(bl _ b2)2m4>, (95)

For the energy eigenvalue pg, the modified dispersion relation yields

Po = \/p§+m2(1—03[n*15f]) + A= \/p§+m2 <1—

where A takes the values (95). We thus see that the
energy degeneracy between the five helicities in the Fierz-
Pauli limit becomes broken when 4 f,,,, # 0.

At leading order in 6 f,.,,, the eigenstates corresponding
to the eigenvalues Ai2, A\13, A2g are the components hlg,
h13, h23, respectively. The eigenstates corresponding to
A4 are linear combinations of h11 and h22, with param-
eters depending on m, f,,, and p3. These eigenstates
differ from the helicity eigenstates (91) of the Fierz-Pauli
spin-2 theory, instead being nontrivial linear combina-

tions of the latter. The remaining components of ﬁ;w are
defined by Egs. (87).

The situation simplifies in the ultra-relativistic limit
p3 > m. The energy shifts corresponding to the eigen-
values A13 and Aoz then become equal. The same holds
for the shifts corresponding to A2 and A_. As a re-
sult, the five distinct energy eigenvalues merge into only
three. Moreover, the corresponding eigenstates reduce to

2. [—1
)
[
the helicity eigenstates (91). Explicitly, we find
1 for helicities & 2,

p
0 1—%02(&—{-1)3)

/2 5
p3 +m 1— 2co(a+ bs)

for helicities + 1,

for helicity 0
(97)
in the ultrarelativistic limit.

Overall, the above treatment provides intriguing phys-
ical insight into the behavior of the gravitational waves
when 0f,, # 0. In general, the energies of the five
modes of the massive graviton undergo splitting. This
corresponds to a lifting of the degeneracy of the graviton
spectrum, and it generates ‘pentarefringence’ or ‘quin-
querefringence’ in propagating gravitational waves. The
pentarefringence reduces to ‘trirefringence’ in the ultra-
relativistic limit.

The pentarefringent behavior of massive gravitational
waves is analogous to the birefringence of electromag-
netic waves known to occur in Minkowski spacetime in
the presence of background coefficients for Lorentz viola-
tion [36]. The latter effects are detectable in suitable elec-
tromagnetic experiments. Although outside the scope of
the present work, it would be of definite interest to in-
vestigate the prospects of experimentally measuring the



pentarefringence of gravitational waves with existing and
future detectors.

2. Analysis in a general helicity frame

The treatment in the previous subsection is limited by
the fixed value (86) of the momentum in the chosen frame
and by the special form (94) adopted for the fluctuation
0 fuu of the fiducial metric. Next, we extend the analysis
and study the persistence of the pentarefringence effect
in the general case.

Consider first an arbitrary momentum p* = (E; ﬁ) in

a generic observer frame, where E = /m? + |p]2.
describe the corresponding helicity eigenstates, it is con-
venient to define the quantity

= (In1; (98)

H)

Provided p'# 0, which we assume to hold in what follows,
this quantity is well defined and transforms as the 4-
momentum of a particle with mass squared —m?2. We
also define two other purely spacelike four-vectors,

e = (0;51), eh = (0;52), (99)

where €; and €5 are taken to have norm m, to be mutu-
ally orthogonal, and to be orthogonal to p’ such that the
triple {€1, €2, p} represents a right-handed set of orthog-
onal basis vectors. The four 4-vectors p#, p*, el', el then
form a nondegenerate basis satisfying the relations

p-p=p-er=p-e2=0,
pre1= ﬁ62—61 ez =0,
P-P=e€1-e =ex ey =—p°> =m>. (100)

Using this basis, the helicity eigenstates (91) for general
momentum can be expressed as

1 .
h(i2) = 5(61 puely — 62#621,) F1e1 (ue2u),
h(il ( + Z.62 (u)ﬁu)a
1 1
h;(?u) = Pubv — 561 pely — 562;#321/- (101)

With these eigenstates in hand, we can revisit the de-
termination of the eigenvalues and eigenvectors of the dis-
persion relation (93), allowing now for an arbitrary mo-
mentum p* and a general form for the fluctuation 4 f,. .
Excluding the common factor cam?/2, the terms on the
right-hand side of the dispersion relation can be written
as an operator SWO"B acting on hgg,

- ~ - 2 -
Suuaﬁhaﬂ = huaéfau + 6fuaha1/ + _2pa6fa6hﬁ(,upu)

~gal 08 ) (pupy + m3nw). (102)
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Some algebra then reveals explicit expressions for the ac-
tion of S,,,*? on the helicity eigenstates (101),

SR = ARGED + DFRED — 3h§?y),
SR = DR 4 PR
1 1
3D3Fh(0 2C$h (F1)
7R = 0T + i+ L g
oo

In these results, the momentum-dependent dimensionless
quantities A, B, C*, D* represent linear combinations
of the matrix elements of the tensor ¢ f expressed in the
basis spanned by p*, p*, e, €},

A——mi( -0f-e1+ey-0f- 62)
B=——p-6f B
( 5f-el—eg-6f-62:|:2iel-5f-eg),
( 6f -pLiey-Sf-p). (104)
Note that C~ = (C*)* and D~ = (D1)*.

Using Eq. (103), we find that the operator S, /2m?
has five eigenvalues that generically are distinct. Two of
them can be written as

At =2(A+B)+ i/ (A-2B)2+3C*+C~ +12D*D~,
(105)
while the other three are the roots of the cubic polyno-

mial

4)* — 8(A + B)\?
+(5A% +12AB +4B? -~ CTC~ — D*D™)A
— A3 —4A’B —4AB? + ACTC™ +2(A+2B)D'D~
+CT (D)2 +C (DY) =0. (106)

These results establish the splitting of the energies of the
five modes for the general case and hence confirm that
gravitational waves in the theory undergo pentarefrin-
gence during propagation.

The eigenfunctions for the five modes can also be found
by explicit calculation. Their expressions are lengthy, so
we provide here for reference only the results for two spe-
cial cases for which the results are substantially simpli-
fied. The first case is the scenario with C* = 0, while the
second is the case with D* = 0. Table I displays the cor-
responding eigenvalues and eigenfunctions for these two
cases.

To gain further physical insight, consider an explicit
example for which the fluctuation d f,,, takes a compar-
atively simple form in the chosen observer frame,

dfoo =a, 0fii =0,

i=1,2,3, (107)
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TABLE I. Eigenvalues and eigenfunctions for special cases.

Condition Eigenvalue Eigenfunction
D~ A—-2B A—2B D7
+_ 1 D o _A=2b,0) _gp0 _A=2b,n P42
ct=0 1A+ B Hh o 3?3 1£ & hA’+D7h
- — D~ A — A -3 + -
A+ = 3(2(A+ B) £ /(A-2B)2 + 12D*D") E:hw—%—ﬁi—hm——( %+D7 -+Qh@
2= Ay Dl
D~ —A-B - A-B Dt
=1 — = L @ _ X+ (1 4 X+ -1y _ Y @
X+ =1(3A+2B+/(A—2B)2+12D+D") D+h DT ' + e h —h
D=0 A C~h® —ctp=2
$A+ B+ LV/CrC- ChM £ CtpY
A+ =2(A+B)£ 1\/(A-2B)2+3C+C~ C™h® +3(A—=x1)h® 4+ ctp(=2
ct,D* -0 -2 R
p
2b (a+b)m2 =D
2b—§@+ﬁﬂﬂ R(®

with other components of d f,,, being zero. Writing the
4-momentum components as p* = (F;p1, p2,p3) and as-
suming p3 + pZ # 0, we can choose the basis vectors (99)
to be

m

€ = Ovpa_p s s
1= 0 2)\/p§+p§

2= (‘P% —Pg Pip2 p1P3)$~
|P1\/P3 + 3

If p3 + p3 = 0, then an alternative choice is possible
instead, with the physical conclusions below being unaf-
fected.

In this example, the linear combinations (104) are
found to have the explicit forms

1!

sy

(108)

1

W’ Ci:Di:O.

(109)
|

A=-2b, B=-b—(a+b)

Using the results displayed in Table I for the cases C* =
0 and D* = 0, we can identify the eigenvalues of the
operator Sm,o‘ﬁ. The limit C* — 0, D¥ — 0 can be
obtained with some care from either case, along with the
corresponding eigenfunctions of SWO‘B. The results are
listed in the last three rows of Table I. The eigenfunctions
turn out to coincide exactly with the helicity eigenstates.
The eigenvalues for the helicities £1 are degenerate, as
are those for helicities 2.

The dispersion relation (93) yields the corresponding
energies as

I 2 (15 esla— 3b) — eab)

for helicity =+ 2,

E= \/|ﬁ'|2(1 — 3c2(a+b)) +m?(1+ cs(a — 3b) — czb)  for helicity + 1,

(110)

\/|]5'|2(1 — 2ca(a+ b)) +m?(1 + cs(a — 3b) — c2b)  for helicity 0,

revealing triplet splitting. Gravitational waves therefore experience trirefringence in this example. As expected, all
helicities experience a mass shift §m obeying ém? = m? (c;,»(a —3b) — ch). The helicities 1 and 0 also undergo a
shift in momentum dependence, which modifies their group velocities. Introducing the notation p = p/|p], we find the



explicit group velocities are given by

poolfloo
= —
E
., OFE 1, P |fl—oo
Y= 55 = (1-3c (a+b))ﬁ -
(1-3e(a+b) 2 5

where the expression for E in each case is given by the
corresponding result in Eq. (110).

The results (111) offer additional physical insight into
the nature of the wave propagation. For the fluctuation
0 fu of the fiducial metric to be small relative to 7,, as
required in the definition (68), it follows that |a| and |b|
must satisfy |al, |b] < 1. When the 3-momentum is also
small, |p] < m, the group velocities (111) are then always
below unity and the 4-momenta are always timelike, so
both microcausality and energy positivity hold. In the
ultrarelativistic limit, however, inspection of the group
velocities (111) reveals that in all cases the magnitude of
the group velocity obeys

| &

7, | 75 (112)

This implies that for |p] > m the group velocities
\/1— 3ca(a+0b), and

=

tend from below to the values 1,

\J1— %Q(@—i—b) for helicities +2, 41, and 0, respec-

tively. Therefore, when co(a+b) > 0 the group velocities
will be subluminal for any value of the momentum, as-
suring microcausality. However, the unconventional mo-
mentum dependence for the helicities +1 and 0 implies
that in this case the corresponding 4-momenta asymp-
tote at high |p] to a spacelike cone in 4-momentum space
and hence become spacelike, so observer frames can be
found where the energies are negative. In constrast, when
ca(a + b) < 0 the group velocities of the helicities +1
and 0 become superluminal at sufficiently high |p] and so
violate microcausality, but the 4-momenta then asymp-
tote to a timelike cone in 4-momentum space and hence
remain timelike in any observer frame. This complemen-
tary behavior of microcausality and energy positivity is
analogous to that displayed by the dispersion relation for
a Lorentz-violating Dirac spinor with positive coefficient
oo, as discussed in Sec. IV C of Ref. [18]. The superlu-
minal features found here may parallel results concern-
ing superluminal modes in ghost-free gravity obtained via
other approaches [37-39].
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for helicity =+ 2,

1—3ca(a+b)p for helicity =+ 1, (111)

1—2co(a+b)p for helicity 0,

We can confirm the generality of the above physical
interpretations by replacing the special fluctuation (107)
of the fiducial metric with the form

a d0for dfo2 dfos
dfor b1 0 0
d0foa 0 by O
dfo3 0O 0 b3

5f,uu = (113)

This represents an extension of (94) to allow nonzero val-
ues of the components 6 fo;. An arbitrary df,, can be
converted to this form by performing a suitable rotation
of the observer frame. Note that the fiducial metric (113)
with generic ¢ fp; violates both boost and rotational in-
variance even in the chosen frame, unlike the previous
example (94).

Using the expressions (104), the explicit forms of the
parameters A, B, C*, D* can be determined. For A and
B, we find

bip? + bap3 + bap3

A= |25,|2 _bl_bQ_b37
1 + +
B:_W(a|m2+2f01p1 fT;;fQ f03p3\/1m

+

bip? + bap2 + bsp?
1P1 + 025 + 03p3 (|ﬁ|2+m2))' (114)

|p1?

The expressions for C* and D* are more involved and
are omitted here for simplicity. The same is true for the
eigenvalues and eigenfunctions, as well as for the group
velocities of the individual modes.

In the ultrarelativistic limit, however, the situation
simplifies considerably. We find that the parameters A
and C* are zeroth order in large 3-momenta, while D*
is linear and B is quadratic. The dominant contribution
to the dispersion relation (93) therefore arises from the
parameter B. At first order in a and b, the dispersion
relation can be written in the form
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for helicity =+ 2,

1
iDi bip}
T 1_0_2<a+22f0p Y f) for helicity =+ 1,
= 2 1] 1] (115)
|p]— o0 29 S foipi Zb.pZ
1——(a+2 LR L ) for helicity 0.
V 3( LI
We then find the group velocities
pl o .
— for helicity =+ 2,
o R
OF i (1= 2ea(a+bi + fo - §))—3cafos
Ui = ~ ) Pill = gea(a . fo-P)—geafoi g helicity =+ 1, (116)
|p]—o0 pl(l — %Cg(a-i-bl‘f'fé ﬁ))_%chOz

where p = p/|p] as before and fo = (f01, fo2, fog).
Note that the comparatively simple relation (112) for

|Ug| still holds in all cases at first order in @ and b; in
the ultrarelativistic limit, even though ¥, is no longer
parallel to p’ for the helicities 1 and 0. The latter fea-
ture is typical in the linearized limit of theories exhibiting
explicit Lorentz violation [40]. It can be understood as
reflecting the emergence of an underlying Finsler geome-
try [41, 42], for which the notion of distance is governed
both by the metric and by other specified quantities. The
trajectories of massive modes in the presence of explicit
Lorentz violation are known to correspond to geodesics
in a Finsler geometry that can vary with helicity [43]. In

i for helicity 0,

the present instance, we expect the relevant Finsler met-
ric to be constructed from the metric 1, on the approx-
imately Minkowski spacetime together with the fiducial
metric f,,. Pursuing the details of this correspondence
would be of definite interest but lies beyond our present
scope.

The results (112) and (115) suffice to examine the de-
pendence of microcausality and positivity of the energy
on the generic fluctuation (113) of the fiducial metric.
Consider, for example, the case with cab; > coby > cobs
and c(a + bs) > 2|cz|fo|. For this situation, we find

\/1 —sco(a+by) — |C2||JE;J| <|7y|< \/1 -

1ca(a+bs) + leal|fol <1 for helicity =+ 1,

Vi 2es(atb) — Sleallfol <liyl< /1 -

An argument paralleling the one given for the rotation-
ally symmetric case then confirms that the group veloc-
ities are subluminal for any momentum, so microcausal-
ity holds. Also, whenever the group velocities are sub-
luminal in the ultrarelativistic limit, the 4-momentum
becomes spacelike, so energies turn negative in certain
observer frames. Excluding both superluminal velocities
and spacelike 4-momenta is possible ony by imposing the
conditions b; = by = bg = —a and ¢ fo; = 0. This implies
that df,, o< 1., which is the only scenario in which the
manifold Lorentz invariance remains unbroken.

B. Propagator

Given an energy-momentum tensor 7", the solution
for the corresponding metric fluctuation h,, in massive

2eo(a+b3) + 2lea||fo] <1 for helicity 0. (117)

gravity can be obtained in integral form if the propaga-
tor is known. In this section, we determine the propa-
gator DWO"B associated with the operator OWO‘B in Eq.
(82), and we use it to explore some physical features of
point-mass sources. The propagator satisfies the defining
relation

Dy "7 0g, % = 58,67

wov)?

(118)

and it shares the symmetry properties (84) of 0.

Using the relations (84) and (118), some calculation
reveals that at first order in éf the propagator can be
written as
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TABLE II. Parameters for the propagator.

Parameter Value Parameter Value
p1 —C2 P12 0
2 (2¢c2 — 3)m? — (2¢2 + 3)p? i —(c2 — )m? + p?
12m2 ! 9m1
(2¢2 — 1)m? — (2¢c2 + 1)p? C2
ps 12m2 pra TmA
p (4ca + 1)m? + (2¢2 + 1)p? p 9 (c2 — 1)m? — p?
4 15
6m* 9mS
c2 +3)m” + (2¢c2 + 3)p —(c2—1)m* +p
4z + 3)m? 4 (2¢2 4 3)p° )m? + p?
Ps 6ma P16 1 9mS
c2(2m? + p?
6 _% o1 %(202 - 3)
pr (4co — 1)m? — p? - —(6ca — 9)m* + 4(ca — 1)p*m? — 4p*
6m* 36m*
o (4co — 3)m? — 3p? o5 (2ca — 3)(2m? +p?)
6m* omA
—(c2 — 1)m? + p? —(18¢2 — 21)m* — (8ca — 20)p*m? + 8p*
09 Q—ZLP o4 2 m cz p’m D
3m 36m
o —(c2 — 3)m? + 3p? " —(18¢a — 27)m™* — (8ca — 26)p*m? + 8p*
3mS ° 36mS
2 5 (3m® + 2p*) ((4cz — 13)ma — 4p?)
pur m? ¢ 18m?8
Db 1 lsass 1, ap 2 (agh) _ 1 of g a2 a8
uv = p2 T m2 (u%) 3™ m2 PP ) 3m2 Pubvn NuvP P mgpupl/p p

m2

Cp2+m?

{pl 516,00, + P20 L + panu 07 + papupud P + p50 fuup®p” + ps p(up O fL)

+p7(8f D) (uPy1™® + P8 (O F - )PP + po(8f - 1) (upuyp™P” + Provupy (3 - p)“p?
+ o1 (0F +2) Py 0s) + pia (8 - )y 0L

+[p-0f-pl (Pu 53,00 + pramun™ + pua p(up(aéf)) + p15pupon”™” + p1s0uwp P’ + pr6pupup™p’ )

+ [n7tof] <01 5;;55)

This expression consists of the propagator for Fierz-Pauli
massive gravity corrected by terms linear in df. The
latter are governed by momentum-dependent parameters
p; and o;, the forms of which are displayed explicitly in
Table II. Note that all the terms with parameters p; are
Lorentz violating, while all the ones with o; are Lorentz
invariant.

Using the propagator (119), the solution to the metric

+ 02 0™ + 03 p(up 0L + oapupn® + 051 p*p” + 06pupLp D] > }] :

(119)
[
for a given energy-momentum tensor T+ (z) is
d4p —ip-x af
hyw () = 25 @) "Dy Tap(p),  (120)
- T
where T"¥(p) is the Fourier transform of T""(z),
d*p L~
T () = TIPETRY (), 121
@ = [ G e, a2

Assuming the energy-momentum tensor is conserved,
0,T" = 0, then the solution (120) reduces to



d4p efip-z -
huw =2 T — i ( v
v () K/(27r)4 p2+m2+ie{ pr = 3 M

m2

_p2+m2+ie
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Pubv

mQ)TV

[pléffpi)a + 020 fu T + sty (0 + T) + papyupo[0f - T) + p7(8f - p) iy T

+ p11(5f ! p)ap(ufu)a + [p : 5f ' p} (PlQT;w + panuuT + plSp,upvf)

+ [77_15f] (Ulfuu + UQU}LUT + U4p,upuf>:| }7

where T(p) = TV“H is the trace of the Fourier transform
of the energy-momentum tensor.

As an application of the above results, we consider the
gravitational field produced by a stationary point mass
M at the origin. The energy-momentum tensor for this
scenario is

T (z) = My 8564 6°(%). (123)

As required, it is conserved. The Fourier transform is
T (p) = 27 M, 665 5(po). (124)

Substitution into Eq. (122) yields the solution for the
metric fluctuation, which has the structure

8GM
hoo(x) = _B—Tle—mr +0(5),
hoi(z) = O f),
hij(x) = 4GMe” ™ [zi2;(mr® + 3mr + 3)

3m?2rd
—by7% (mr + 1)] + O(6f). (125)

The appearance of the exponential factor e™™" is the
usual Yukawa suppression arising from the graviton mass.

The O(6 f) contributions to the components of h, can
in principle be obtained by direct calculation. However,
for our present purposes it suffices to deduce the grav-
itational potential energy U(F) between the point mass
M; and a second stationary point mass Ms located at 7.
The energy-momentum tensor of the second point mass
can be written as

T8 (z) = Mo 6404 6° (% — 7). (126)

—ipF 2

d>p e 9
(27r)3 P2+ m?2 §_ﬁ2+m

U= 2:‘<&M1M2/

(122)

Since a generic energy-momentum tensor can be defined
by variation of the matter action Sy, via

—2 05m
T, =——, (127)
V=g egr
the corresponding matter Lagrange density must take the
form

Lo~ —L0T, (128)

at linear order in hy,. In the present context, this rep-
resents the interaction energy between the two masses.
Since both masses are stationary, we can directly iden-
tify U = —L,,,. We thereby obtain

U®F) = / d*z 5 (hh" (DT, () + WY (B)Ty,,, (T))

- / d*x B (2) T, 1 (2)

= Ma hq 00(7), (129)

where the second equality follows by the symmetry un-
der interchange of the two masses. Obtaining an explicit
expression for U(7) therefore requires knowledge only of
the component hj 9. Moreover, the § function in the
energy-momentum tensor (124) implies that terms in the
solution (122) proportional to p,, can be disregarded. We
thus find that the gravitational interaction energy U can
be written as the momentum-space integral

5 {—(pl +p2+p3)d foo+ [p-6.fp] (pr2+p13)+ [0 "6 ] (o1 +02)] }7 (130)

where the various parameters and their momentum dependences are given in Table II. The combinations appearing

in the integrand are found to be

=2 2 2 2
Co pe+m Co pe+m
=_=_ ) —__= 4 f "
p1+p2+p3 3 (ca+1) a2 p12 + p13 oz T o
262 -3 ﬁ2 + m2 (52 + m2)2
o1 +o0y = B + (2 —1) o2 oma .

(131)
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All the momentum integrals in the expression (130) can be evaluated explicitly using the formulae in Appendix A.

We find

. GMiMye™™"
U(Fj - 9,’,_

|:24 - 6f00((402 + 9)m7° + 8¢y + 8)

2 4
_(5f11+5f22+5f33) ((402—9)mr+202+4+—+—2 2>
mr  m2r

12

5fij:17ixj

2I£M1M2

6
2 (202mr +2¢c0 —4— — —

Note that p13 quadratic in momentum and o9 is quartic,
so the corresponding terms in the integral (130) generate
the ultralocal contributions to hoo(7) proportional to §(7)
that appear in the last term of Eq. (132).

The result (132) for the gravitational potential en-
ergy between the two masses consists of the anticipated
term proportional to exp(—ms)/r for a massive particle,
together with correction terms governed by the diago-
nal components of the fluctuation df,, of the fiducial
metric. As expected, the term independent of 6 f,, is
scaled by 4/3 relative to the gravitational potential in
GR [2]. Most correction terms depend on powers ™ with
n = —2,—1,0,1, a behavior typical of short-range correc-
tions to GR that involve Lorentz and diffeomorphism vi-
olation [27, 44]. The é-function term is analogous to the
standard d-function contribution to the field of an elec-
tromagnetic dipole [45]. Note that it can be ignored in
considering corrections to Newton’s law between masses
at distinct locations.

Some correction terms in the gravitational potential
energy (132) are independent of the parameter ¢y and
hence are insensitive to the form of the potential in the
action (1) for massive gravity, while others involve the
product of ¢ with diagonal components of § f,,,. More-
over, the dependences on ¢z and on d f,,,, that appear in
U(7) differ from those affecting the propagation of grav-
itational waves. For example, when ¢y = 0 the disper-
sion relation (93) for gravitational waves reduces to the
conventional Lorentz-invariant form with shifted mass
parameter, whereas the expression (132) for the grav-
itational potential energy retains unconventional terms
breaking Lorentz invariance. This suggests that obser-
vations of gravitational waves and laboratory tests of
gravity at short range can play a complementary role
in experimental searches for a nonzero graviton mass.
In particular, since the corrections to U(F) proportional
to 0f. generically break rotational invariance as well
as boost invariance, laboratory searches for anisotropic
modifications of the Newton inverse-square law are ap-
plicable. Recent incarnations of these experiments have
achieved impressive sensitivities to Lorentz violation [46],
so establishing the implications of short-range tests in the
current context would be of definite interest.

The manifold Lorentz invariance is preserved in the
special scenario with the fiducial metric proportional to

mr — m2r?

§3(7) {6]”00 —2(0f1r+0f22+0f33)|. (132)

9m?2

[
the Minkowski metric,

5f,uu = €Muv, (133)

with € a perturbative constant. The gravitational poten-
tial energy (132) then simplifies to

_, 4G My Moe™™"
U = —— - = (2 3 —
(7) 5o 3 ( + ¢( CQ)mr)
2:‘<&M1M2 3

At first order in €, the factor correcting the usual expo-
nential term can be absorbed in a mass shift m — m-+dm,

S8GMiMse™ (mA+8m)r

v, =

6f=en 3r
2I£M1M2 3/
+W(5 (T) €, (135)
where
Sm =e 2 5 m. (136)

It is interesting to compare this result with the parallel
analysis for gravitational waves. Substituting the special
fluctuation (133) into the constraints (92) and the general
dispersion relation (93) yields

?L,uaa = Eaa = O,
(p2 + mz)ﬁw = em2(62 + 403)EW

= em?(3 — c2)hyu. (137)

We see that the unperturbed constraints (85) are recov-
ered. Also, the dispersion relation can be written as

(P? + (m + dm)?) hy = 0, (138)

with dm given by Eq. (136). The special choice (133) for
the fiducial metric is thus seen to produce the same mass
shift both in Newton gravity and in gravitational waves.

V. SUMMARY

In this work, we investigate the role of Lorentz symme-
try in ghost-free massive gravity. Both Lorentz-invariant



and Lorentz-violating solutions of the potential are de-
termined and their local and global stability are estab-
lished. The propagation of gravitational waves and the
Newton limit of the theory are studied in approximately
Minkowski spacetime.

The main body of the paper begins in Sec. II with the
staging for the subsequent derivations. The action S for
massive gravity is provided in Eq. (1), and the poten-
tial is expressed using a matrix Y#, that is well suited
for calculation. The spacetime symmetries of the action
S and some of their features are described in Sec. II B,
using key transformations including general coordinate
transformations, local Lorentz transformations, diffeo-
morphisms, manifold Lorentz transformations, and the
CPT transformation. The decomposition of the matrix
Y#, using convenient lapse and shift variables for calcu-
lational purposes is presented in Sec. II C.

The extrema and saddle points of the potential for
ghost-free massive gravity are the focus of Sec. III. In
terms of the four field variables N, A{, A2, A3 and the
four parameters 31, B2, B3, B4, the solutions are gov-
erned by the potential U (Y) given in Eq. (28). We explic-
itly determine and classify the solutions with vanishing
curvatures for the dynamical and fiducial metrics, prov-
ing that they are either Lorentz invariant or break four
of the six generators of the Lorentz group. The tech-
nique of the bordered hessian is adopted to investigate
local stability of solutions in the set of flat metrics, re-
vealing that the Lorentz-invariant ones are either local
minima or maxima while the Lorentz-violating ones are
saddle points. To explore the issue of global stability,
the branch structure of the potential is studied. Using
a combination of analytical and numerical methods, we
determine the sheet structures of the surfaces defined by
the hamiltonian constraint (29) and the corresponding
forms of the potential. This verifies that special values of
the parameters 3, allow the existence of locally, globally,
and absolutely stable extrema.

The linearized limit of the equations of motion for mas-
sive gravity is studied in Sec. IV. Allowing for small
deviations of the dynamical metric g,, and the flat non-
dynamical fiducial metric f,, from the Minkowski metric
Ny, We obtain the modified Einstein equation (74). The
momentum-space equation of motion is constructed for
the scenario describing excitations of the fluctuation A,
of the dynamical metric in a Minkowski spacetime. One
application is to the propagation of gravitational waves.
Working first in a special observer frame with a diago-
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nal form for the fluctuation df,, of the fiducial metric,
we find the energies of the five propagating modes. This
reveals that for nonzero 0 f,,,, the gravitational waves ex-
perience pentarefringence, reducing to trirefringence in
the ultrarelativistic limit. Generalizing the analysis to an
arbitrary helicity frame verifies these results and shows
the group velocities of the gravitational-wave modes can
include superluminal and subluminal components. For
the subluminal case, the mode energies become negative
in certain observer frames. These results match typical
behaviors in other Lorentz-violating theories.

Section IV also contains an investigation of the New-
ton limit. We determine the propagator (119) for mas-
sive gravity in the linearized limit, demonstrating that it
can be written as the Fierz-Pauli propagator corrected
by terms linear in §f,,,. As an explicit example, we con-
struct the solution for the fluctuation h,, generated by
a stationary point mass and determine the gravitational
potential energy U between two point masses separated
by a distance r. Some integrals useful for this deriva-
tion are presented in Appendix A. The result (132) for
U is the usual Fierz-Pauli potential of the Yukawa form
modified by terms linear in df,,. The dependence on
0 fu differs from the one affecting gravitational waves,
suggesting that experiments in the two regimes can pro-
vide complementary measures of the physics of massive
gravity.

The results in this paper provide a guide to choices
of parameters in the potential for massive gravity that
guarantee local, global, and absolute stability of extrema
of the action. They also reveal that non-Minkowski fidu-
cial metrics generate physical effects from Lorentz viola-
tion that could be observable in measurements of gravita-
tional waves and in searches for short-range modifications
of Newton gravity. The theoretical and phenomenolog-
ical results obtained here provide directions for future
works seeking insights into the physics of this remark-
able subject.
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Appendix A: Momentum integrals

This appendix presents various euclidean-space momentum integrals used in the calculation of the gravitational
potential energy (132) in Sec. IVB. The two elementary integrals used in the derivation are

(A1)



and

/dgp e~
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The other integrals required can be expressed in terms of these. We find

/ iy / dp
(52+m2)2 "N om’ (

e~ (27)3
&p—— pip; = =L
/ P P2+ m? Pibs 3

p

ﬁ®%+mm(

= (27)353 (7). (A2)
—iT 1+mr
) pirj = 5Im(r) (5@‘ -2 wiwj) ;
24+mr 6+ 3mr+2m?r?
2r2 2rd Tty )
(A3)

Note that some of these integrals lack absolute convergence and so require care in evaluation. For example, naive
calculation of the first integral in Eq. (A3) by applying spherical coordinates, integrating over angles, and then
integrating over the modulus of the momentum produces an erroneous result. The correct expression can be derived

by adapting the techniques in Refs. [47, 48],

d3p e~ 0T PipPj
fatver

o 0 1
:L@/QS—WW_J__ _
2! pe 20p; ) 7% +m?

T4
= $In(r) (8 — (1 +mr)Z52), (A4)
whereupon contracting with x;z;/r? yields the quoted
result.
To obtain the last integral in Eq. (A3), we apply 9,0,

to both sides of Eq. (Al). Contracting the result with
x;xj/r? yields the claimed result for 7 # 0. The result at
the origin of 7 is nontrivial because the integrand remains
finite at large |p] and hence generates an extra term in-
volving §3(7). To fix this term, it suffices to adopt the
ansatz [48]

= a(r)8;; + b(r)wx; + 6> (7)d4,
(A5)

where a(r) and b(r) are functions of r and c¢ is constant.
Both sides of this equation are symmetric two-tensors
under the rotation group. Contracting with §% yields an
integral that can be determined via the expressions (A1)
and (A2), which fixes the constant ¢ and the combina-
tion 3a(r) + b(r)r?. Contracting with z;z;/r? yields the
combination a(r)+b(r)r?, establishing the desired result.

[1] M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz and
W. Pauli, Proc. Roy. Soc. (London) A 173, 211 (1939).

[2] H. van Dam and M. Veltman, Nucl. Phys. 22, 397 (1970).

[3] V.I. Zakharov, JETP Lett. (Sov. Phys.), 12, 312 (1970).

[4] D.G. Boulware and S. Deser, Phys. Rev. D 6, 3368
(1972).

[5] A.L Vainshtein, Phys. Lett. B 39, 393 (1972).

[6] C. de Rham, G. Gabadadze, and A.J. Tolley, Phys. Rev.
Lett. 106, 231101 (2011); Phys. Lett. B 711, 190 (2012).

[7] S.F. Hassan and R.A. Rosen, JHEP 07, 009 (2011).

[8] S.F. Hassan and R.A. Rosen, JHEP 04, 123 (2012); Phys.
Rev. Lett. 108, 041101 (2012); S.F. Hassan, R.A. Rosen
and A. Schmidt-May, JHEP 02, 026 (2012).

[9] C. de Rham, Living Rev. Rel. 17, 7 (2014).

[10] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).

[11] A. Schmidt-May and M. von Strauss, J. Phys. A 49,
183001 (2016).

[12] A.S. Goldhaber and M.M. Nieto, Rev. Mod. Phys. 82,
939 (2010).

[13] See, for example, S. Weinberg, Proc. Sci. CD 09, 001

(2009).

[14] V.A. Kostelecky, Phys. Rev. D 69, 105009 (2004).

[15] V.A. Kostelecky and N. Russell, Data Tables for Lorentz
and CPT Violation, Rev. Mod. Phys. 83, 11 (2011);
arXiv:0801.0287v14 (2021).

[16] R. Bluhm, H. Bossi, and Y. Wen, Phys. Rev. D 100,
084022 (2019); R. Bluhm and Y. Yang, Symmetry 13, 4
(2021).

[17] V.A. Kostelecky and Z. Li, Phys. Rev. D 103, 024059
(2021).

[18] V.A. Kostelecky and R. Lehnert, Phys. Rev. D 63,
065008 (2001).

[19] S. Alexandrov, Gen. Rel. Grav. 46, 1639 (2014).

[20] S.F. Hassan and R.A. Rosen, JHEP 02, 126 (2012).

[21] D. Colladay and V.A. Kostelecky, Phys. Rev. D 55, 6760
(1997); Phys. Rev. D 58, 116002 (1998).

[22] G. Liiders, Det. Kong. Danske Videnskabernes Selskab
Mat.-fysiske Meddelelser 28, no. 5 (1954); J.S. Bell,
Birmingham University Ph.D. thesis (1954); Proc. Roy.
Soc. (London) A 231 (1955) 479; W. Pauli, p. 30 in W.



Pauli, ed., Niels Bohr and the Development of Physics,
McGraw-Hill, New York, 1955.

[23] K. Hinterbichler and R.A. Rosen, JHEP 07, 47 (2012).

[24] C. Deffayet, J. Mourad, and G. Zahariade, JHEP 03, 86
(2013).

[25] R. Bluhm and V.A. Kostelecky, Phys. Rev. D 71, 065008
(2005); R. Bluhm, S.-H. Fung, and V.A. Kostelecky,
Phys. Rev. D 77, 065020 (2008).

[26] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960); J. Goldstone,
Nuov. Cim. 19, 154 (1961); J. Goldstone, A. Salam, and
S. Weinberg, Phys. Rev. 127, 965 (1962).

[27] Q.G. Bailey and V.A. Kostelecky, Phys. Rev. D 74,
045001 (2006); V.A. Kostelecky and J.D. Tasson, Phys.
Rev. D 83, 016013 (2011).

[28] V.A. Kostelecky and Z. Li, Phys. Rev. D 104, 044054
(2021).

[29] V.A. Kostelecky and R. Potting, Phys. Rev. D 79, 065018
(2009); Gen. Rel. Grav. 37, 1675 (2005).

[30] R. Kraichnan, MIT thesis, 1947; Phys. Rev. 98, 1118
(1955); A. Papapetrou, Proc. Roy. Irish Acad. 52A, 11
(1948); S.N. Gupta, Proc. Phys. Soc. London A65, 608
(1952); Phys. Rev. 96, 1683 (1954); Rev. Mod. Phys. 29,
334 (1957); W.E. Thirring, Ann. Phys. 16, 96 (1961);
R.P. Feynman, Lectures on Gravitation, F.B. Morinigo
and W.G. Wagner, eds., California Institute of Technol-
ogy, Pasadena, 1963; S. Weinberg, Phys. Rev. 138, 988
(1965); S. Deser, Gen. Rel. Grav. 1, 9 (1970). D.G. Boul-
ware and S. Deser, Ann. Phys. 89, 240 (1975); D.G. Boul-
ware, S. Deser, and J.H. Kay, Physica 96A, 141 (1979);
S. Deser, Class. Quant. Grav. 4, L99 (1987).

[31] A generalized bootstrap for Lorentz-violating gravity is
discussed in M.D. Seifert, Class. Quant. Grav. 37, 065022
(2020).

[32] S.M. Carroll, H. Tam and I.K. Wehus, Phys. Rev. D 80,
025020 (2009).

[33] R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 116,
1322 (1959).

[34] See, for example, R.C. Walker, Introduction to Mathe-
matical Programming, fourth edition, Pearson, London,

26

2012.

[35] V.A. Kostelecky and M. Mewes, Phys. Lett. B 779, 136
(2018).

[36] V.A. Kostelecky and M. Mewes, Phys. Rev. D 80, 015020
(2009); Phys. Rev. D 66, 056005 (2002).

[37] A. Gruzinov, arXiv:1106.3972.

[38] S. Deser, K. Izumi, Y.C. Ong, and A. Waldron, Phys.
Lett. B 726, 544 (2013); S. Deser, M. Sandora, and A.
Waldron, Phys. Rev. D 87, 101501 (2013); S. Deser and
A. Waldron, Phys. Rev. Lett. 110, 111101 (2013).

[39] P. de Fromont, C. de Rham, L. Heisenberg, and A.
Matas, JHEP 1307, 067 (2013).

[40] V.A. Kostelecky and N. Russell, Phys. Lett. B 693, 443
(2010).

[41] B. Riemann, Uber die Hypothesen welche der Geometrie
zu Grunde liegen, in R. Baker, C. Christensen, and H.
Orde, Bernhard Riemann, Collected Papers, Kendrick
Press, Heber City, Utah, 2004; P. Finsler, Uber Kur-
ven und Fldchen in allgemeinen Rdaumen, University of
Gottingen dissertation, 1918, Verlag Birkhiuser, Basel,
Switzerland, 1951.

[42] For a textbook discussion see, for example, D. Bao, S.-S.
Chern, and Z. Shen, An Introduction to Riemann-Finsler
Geometry, Springer, New York, 2000.

[43] V.A. Kostelecky, Phys. Lett. B 701, 137 (2011); B.R.
Edwards and V.A. Kostelecky, Phys. Lett. B 786, 319
(2018).

[44] Q.G. Bailey, V.A. Kostelecky, and R. Xu, Phys. Rev. D
91, 022006 (2015).

[45] See, for example, Sec. 4.1 of J.D. Jackson, Classical Elec-
trodynamics, third edition, John Wiley, New York, 1999.

[46] C.G. Shao et al., Phys. Rev. Lett. 117, 071102 (2016);
Phys. Rev. Lett. 122, 011102 (2019); V.A. Kostelecky
and M. Mewes, Phys. Lett. B 766, 137 (2017).

[47] V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii,
Quantum FElectrodynamics, Pergamon Press, Oxford,
1982, Sec. 83.

[48] G.S. Adkins, arXiv:1302.1830.



