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The use of effective-one-body (EOB) waveforms for black hole binaries analysis in gravitational-
wave astronomy requires faithful models and fast generation times. A key aspect to achieve faithful-
ness is the inclusion of numerical-relativity (NR) informed next-to-quasicircular corrections (NQC),
dependent on the radial momentum, to the waveform and radiation reaction. A robust method
to speed up the waveform generation is the post-adiabatic iteration to approximate the solution
of the EOB Hamiltonian equations. In this work, we assess the performances of a fast NQC
prescription in combination to the post-adiabatic method for generating multipolar gravitational
waves. The outlined approach allows a consistent treatment of NQC in both the waveform and the
radiation-reaction, does not require iterative procedures to achieve high faithfulness, and can be
efficiently employed for parameter estimation. Comparing to 611 NR simulations, for total mass
10M� ≤ M ≤ 200M� and using the Advanced LIGO noise, the model has EOB/NR unfaithful-
ness well below 0.01, with 78.5% of the cases below 0.001. We apply the model to the parameter
estimation of GW150914 exploring the impact of the new NQC and of the higher modes up to
` = m = 8.

I. INTRODUCTION

The continuously increasing sensitivity of
gravitational-wave (GW) detectors [1, 2] and the
associated compact binaries detections [3] motivate
work towards physically complete, precise and efficient
gravitational-wave models. The effective-one-body
(EOB) framework [4–8] is a possible approach to
the general-relativistic two-body problem that, by
construction, allows the inclusion of perturbative
(post-Newtonian, black hole perturbations) and full
numerical relativity (NR) results. It currently represents
a state-of-art approach for modeling waveforms from
binary black holes, conceptually designed to describe the
entire inspiral-merger-ringdown phenomenology of qua-
sicircular binaries [9–15] or even eccentric inspirals [16]
and hyperbolic captures [16, 17]. In the low-frequency
inspiral regime, where NR simulations are not available,
EOB it is the only alternative to improve standard
and badly convergent post-Newtonian (PN) models for
exploring systematics effects in the modeling of the
radiation reaction [18]. In the high-frequency merger
regime, EOB can generate highly faithful waveforms for
GW astronomy thank to the inclusion of NR information
[12, 13]. This paper focuses on a key aspect for EOB
models: the consistent and efficient inclusion of NR
information in the multipolar waveform.

Current EOB models are informed by NR in two sep-
arate ways: (i) on the one hand, through EOB flexibility
parameters [19] that allow to improve the conservative
part of the dynamics, i.e. typically as effective high-
order terms in the orbital, spin-orbit or spin-spin part
sector of the EOB Hamiltonian; (ii) on the other hand,
through next-to-quasi-circular (NQC) corrections to

the multipolar waveform (and flux) [20–23]. The latter
enter as multiplicative factors, that depend on the radial
motion, and correct the EOB factorized quasicircular
waveform [24, 25] multipole by multipole, so to introduce
effective, NR-tuned, modifications to both the amplitude
and the phase. NQC corrections are essential to improve
the analytical quasicircular waveform during the late
plunge up to merger; they also guarantee a smooth tran-
sition to the subsequent ringdown phase. Importantly,
NQC parameters are the largest set of data inferred from
NR. For example, the spin-aligned TEOBResumS model
uses NR information to determine 2 parameters (one
orbital and one spin-orbital)[13] for the spin-aligned
effective 5PN Hamiltonian, but 36 parameters (two for
amplitude and two for phase) for the NQC-corrected
multipolar waveform, that can have up to 9 multipoles1

completed through merger and ringdown [13]: (`, |m|) =
{(2, 2), (2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (5, 5)}.
All higher modes up to ` = 8 can also be optionally
generated by the model, although currently without the
NR-informed merger ringdown [12]. In the spin-aligned
SEOBNRv4 [26] and SEOBNRv4 HM [11] the amount of
information inferred from NR is similar, although it
is included differently. In particular: (i) there are 3
flexibility parameters entering the Hamiltonian [26] (that
is different from the TEOBResumS one [27]); (ii) for each

1 This procedure is robust as long as spins are mild, say up to
∼ 0.5. In the nonspinning case it is even possible to complete
through merger and ringdown a typically negligible mode as the
(4, 1). For large spins, some modes like (2, 1), (4, 3) or (4, 2) may
be inaccurate due to the delicate interplay between the strong-
field dynamics and the NQC factor.
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waveform multipole there are 5 NQC parameters (3 for
the amplitude and 2 for the phase2), for a total of 25 pa-
rameters since the modes completed through merger and
ringdown are (`, |m|) = {(2, 2), (2, 1), (3, 3), (4, 4), (5, 5)}.
In addition, SEOBNRv4 HM needs two more effective
corrections to the (2, 1) and (5, 5) amplitudes that are
calibrated to NR.

To achieve internal consistency between the waveform
and the radiation reaction in the EOB equations of mo-
tion, the NQC amplitude factor should be also incorpo-
rated within the radiation reaction force, i.e. the flux of
mechanical angular momentum. A possible approach to
this problem is to iterate the dynamics several time, up-
dating the values of NQC parameters at each step, until
their values are seen to converge [23, 28]. This procedure,
though necessary from the physical point of view, cannot
be part of a waveform generator for parameter estima-
tion, as it would increase the global computational time
at least by a factor four. Yet, it is important because, as
we will see below, it also yields a fractional agreement be-
tween the NR and EOB angular momentum flux . 1%
even during the late-inspiral and plunge regime. One
way out is simply to avoid this iterative procedure and
keep radiation reaction without the NQC corrective fac-
tor. This route is the one implemented in SEOBNRv4 [26],
but evidently the model lacks of self consistency between
radiation reaction and waveform3.

Reference [13] (hereafter Paper I), shows that the
(2, 2) mode of TEOBResumS with iterated NQC correc-
tions achieves an overall EOB/NR unfaithfulness for total
mass 10M� ≤ M ≤ 200M� is always below 0.5%, with
one single outlier grazing the 0.85% level. SEOBNRv4,
without the iterated NQC at most grazes 1%, although
it has been tested on only 114 spin-aligned NR wave-
forms [26] up to q = 10. This number is six time
smaller than the testing sample of TEOBResumS, that is
also pushed up to mass ratio q = 18.

In this paper, we describe the NQC fitting procedure
used in TEOBResumS in order to obtain a consistent (wave-
form and flux) NQC term without the iteration proce-
dure. This NQC treatment is the default option in the
most recent version of TEOBResumS, that incorporates
higher modes [13] and has been already used in [29], al-
though not reported before. For simplicity we will refer
to this version as v2. By contrast, the v1 tag refers to the
first implementation of TEOBResumS [10]. We also present
an updated faithfulness assessment of the TEOBResumS
` = m = 2 waveform against a large set of NR simu-

2 This is because SEOBNRv4 also imposes that the EOB and NR
amplitude curvature coincide near merger.

3 This self-consistency problem is even amplified in SEOBNRv4 HM

because the PN information incorporated in the higher wave-
form multipoles is not the same as the one present in radiation
reaction. Doing so, would have implied a new NR recalibration
of the SEOBNRv4 dynamics, a route not followed for SEOBNRv4 HM.
By contrast, this has always been the case for TEOBResumS due
to the lighter and simpler NR calibration procedure.

lations where we include for the first time: (i) the new
NQC fits; (ii) the (iterated) post-adiabatic approxima-
tion to the dynamics [9, 27, 28, 30].

The post-adiabatic (PA) approximation is a robust
method to solve the EOB Hamiltonian equations by an
iterative analytical procedure rather than solving numer-
ically the set of ODEs. The PA was shown to be cru-
cial for parameter estimation with TEOBResumS, both for
black holes and neutron stars [18, 29, 31]. In particu-
lar, the PA is a simple, flexible and robust alternative
to surrogate methods [32, 33]. By using this approach,
the dynamics computation can become up to 20 times
faster and its employment is among the reasons why the
TEOBResumS computational cost is generally one order of
magnitude smaller than the SEOBNRv4HM [11] one. This
method is implemented in the most recent stand-alone re-
lease of TEOBResumS as well as in the v1 release within the
LIGO Algorithm Library (LAL) [34]. We demonstrate
the use of the NQC fits and of the PA approximation in
parameter estimation on GW150914, notably using the
multipolar waveform with all modes up to ` = m = 8. In
particular, the possibility of doing PE with and without
NQC fits allows us to analyze in detail a very specific
source of analytical systematics in waveform modeling.

This paper is organized as follows. Section II reviews
the motivations and structure of the NQC correction and
the new fits. Sec. III discusses the validation of the pro-
duction setup of TEOBResumS with the new NQCs and
the PA against 595 SXS and 19 BAM waveforms. In
Sec. IV we give an account of the TEOBResumS waveform
generation time. Finally, Sec. V presents the application
to GW150914 analysis. After the conclusions, the paper
has two appendices: Appendix A reports the unfaithful-
ness plots of Paper I to facilitate the comparison with
the new results; Appendix B contains all the details on
the new NQC fits.

II. EOB NEXT-TO-QUASICIRCULAR
CORRECTIONS

Next-to-quasi-circular corrections were introduced in
the first EOB analysis of the transition from inspiral
to plunge, merger and ringdown in the test-particle
limit [20]. They were originally conceived as an effective
noncircular correction to the flux of mechanical angular
momentum Fϕ, so to consistently model it during the
plunge up to merger (see Fig. 2 in Ref. [20]). In subse-
quent EOB/NR works [21, 22] they were moved to the
(2, 2) waveform in order to achieve an optimal EOB/NR
amplitude and phase agreement at merger and ease the
attachment of the ringdown part. Finally, Ref. [23]
introduced the current paradigm, within TEOBResumS,
of having them in both the (2, 2) waveform and radi-
ation reaction, with the iterative procedure to consis-
tently determine the effective NQC parameters entering
the (2, 2) amplitude. More precisely, each factorized and
resummed [24] EOB waveform mode (`,m) is dressed by
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FIG. 1. Robustness of the TEOBResumS implementation with
higher modes, PA dynamics and NQC corrections fits in the
flux. Waveforms (blue markers) are generated with no failures
for 250,000 binaries with parameters uniformly sampled at
random in the ranges 1 ≤ q ≤ 1000 and −1 < χi < 1. The
spin parameter on the y-axis is defined as ã0 = χeff = (m1χ1+
m2χ2)/M .

a multiplicative contribution ĥNQC
`m as

h`m = h
(N,ε)
`m ĥ`mĥ

NQC
`m , (1)

where h
(N,ε)
`m is the Newtonian prefactor with parity ε

and ĥ`m the relativistic correction. The NQC factor is
parametrized by four parameters (a`m1 , a`m2 , b`m1 , b`m2 ),

ĥNQC
`m =

(
1 + a

(`,m)
1 n

(`,m)
1 + a

(`,m)
2 n

(`,m)
2

)
× ei(b

(`,m)
1 n

(`,m)
3 +b

(`,m)
2 n

(`,m)
4 ) , (2)

where n
(`,m)
i are functions depending on the radial veloc-

ity and acceleration [12, 28].
We use dimensionless EOB phase space variables in

polar coordinates [35] {r, pr∗ , ϕ, pϕ}, where we replaced
the conjugate momentum pr by the tortoise rescaled vari-
able pr∗ = (A/B)1/2 pr, with A and B being the EOB

potentials. In these variables, the n
(`,m)
i functions for the

` = 2 modes read

n22
1 =

(pr?
rΩ

)2

, n21
1 = n22

1 ,

n22
2 =

r̈(0)

rΩ2
, n21

2 = n21
1 Ω2/3,

n22
3 =

pr?
rΩ

, n21
3 = n22

3 ,

n22
4 = (rΩ)pr∗ , n21

4 = n21
3 Ω2/3, (3)

where Ω = dφ/dt is the EOB orbital frequency and we

defined r̈(0) as an approximation to the second time-
derivative of the radial separation along the conservative

dynamics [35] and reads

r̈(0) ≡ ṗr∗
∂ṙ

∂pr∗
. (4)

For all other modes with ` ≥ 3, we use

n`m1 = n22
1 ,

n`m2 = n22
2 ,

n`m3 = n22
3 ,

n`m4 = n22
3 Ω2/3. (5)

The parameters (a
(`,m)
1 , a

(`,m)
2 ) determine the NQC

corrections to the amplitude of the (`,m) multipole,

while (b
(`,m)
1 , b

(`,m)
2 ) determine the NQC correction to

the corresponding phase. The parameters (a
(2,2)
1 , a

(2,2)
2 )

play a special role as they are those also included in
the radiation reaction [23]. Their best values are de-
termined by a bootstrap, iterative, procedure introduced
in Ref. [23], investigated carefully in Refs. [28, 35] and
also reminded in Paper I. In brief, since NQC correc-
tions act on the quadrupolar waveform amplitude, that
in turn modifies the dynamics through radiation reaction,
the iterative procedure is necessary to ensure an (approx-
imate) self consistency between the flux computed from
the waveform itself and the mechanical force that drives
the inspiral. The parameters (a

(`,m)
1 , a

(`,m)
2 , b

(`,m)
1 , b

(`,m)
2 )

with (`,m) 6= (2, 2) are instead4 generated by solving
a set of four coupled algebraic equations and imposing
NR-informed fits of amplitude, frequency and their first
derivatives around merger [10, 12, 13, 23, 28, 36].

A. Fitting NQC parameters (a
(2,2)
1 , a

(2,2)
2 )

The high NR-faithfulness of TEOBResumS in Paper I
depends on the EOB flexibility functions ac6 and c3 (see
Sec. IIC therein for details) that are NR-informed under

the conditions that (a
(2,2)
1 , a

(2,2)
2 ) are determined from

the iterative procedure. Dropping these iterations would
imply a worsening of the global EOB/NR agreement (see
below). As a consequence, we need to construct accurate

fits of (a
(2,2)
1 , a

(2,2)
2 ) all over the parameter space so to

obtain EOB/NR unfaithfulness similar to the iterative
procedure while not requiring iterations. To do so, we

proceed as follows. First, the parameters (a
(2,2)
1 , a

(2,2)
2 )

are determined with the same iterative procedure of Pa-
per I for 2291 simulations up to mass-ratio of q = 30 with
aligned spins up to χ1 = χ2 = ±0.99. Second, the values

(a
(2,2)
1 , a

(2,2)
2 ) are fitted across the parameter space. The

latter is divided in four different regions:

4 In principle the iterative procedure should involve all multipoles
that are modified by NQC corrections and not only the ` = m =
2. The investigation of the impact of such choice is currently
under study and will be reported in future work.
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FIG. 2. Comparison between EOB/NR phase differences
∆φEOBNR

22 ≡ φEOB
22 − φNR

22 for dataset SXS:BBH:0257, con-
figuration (q, χ1, χ2) = (2,+0.85,+0.85). Waves are aligned
in the early inspiral, on the time interval indicated by the ver-
tical dash-dotted lines in the left panel. The vertical line in
the right panel marks merger time, corresponding to the peak
of the ` = m = 2 amplitude. The curves correspond to: (i)

iterated NQC parameters (a
(2,2)
1 , a

(2,2)
2 ) in radiation reaction

as in Paper I; fitted NQC parameters in radiation reaction;
no NQC parameters in radiation reaction. The correspond-
ing maximum values of the EOB/NR unfaithfulness F̄ from
Eq. (9) are 0.414%, 0.456% and 1.7% respectively. See the
corresponding F̄ (M) curves in Figs. 4 and 12 below.

(i) Nonspinning sector, χ1 = χ2 = 0

(ii) Spinning sector, equal-mass sector with ν > 0.2485

(iii) Spinning sector, 0.16 ≤ ν < 0.2485

(iv) Spinning sector, with ν ≤ 0.16.

In each region different templates are employed to better

capture the functional behavior of (a
(2,2)
1 , a

(2,2)
2 ). All fits

are done using as single spin parameter the standard spin
combination

Ŝ ≡ S1 + S2

M2
= X2

1χ1 +X2
2χ2 , (6)

where Si are the dimensionful individual spins, χi ≡
Si/m

2
i are the dimensionless spins and Xi ≡ mi/M . The

spin parameter Ŝ is actually used in the fits only for the
equal-mass case. In the other situations, it looks more
flexible to incorporate some ν-dependence and use in-
stead5

Ŝν ≡
Ŝ

1− 2ν
. (7)

All the details of the fitting procedure are in Appendix B.
To avoid excessive degradation of the fits in regions of the
parameter space that are too far from those covered by

5 This variable, called χ, is used in various fits of merger and post-
merger quantities entering the SEOBNRv4 model [26].
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FIG. 3. EOB/NR comparison of the fluxes of angular momen-
tum at infinity for a demonstrative configuration (q, χ1, χ2) =
(6.281, 0.009,−0.8) corresponding to SXS:BBH:1436 dataset.
Top panel: Newton-normalized fluxes versus the frequency
parameter x (see text). Bottom panel: EOB/NR fractional
differences. The (iterated) EOB flux with the NQC correc-
tion factor shows ∼ 10−2 fractional agreement with the NR
flux up to the EOB last stable orbit. A much larger differ-
ence is found in the absence of the NQC correction factor.
The Taylor-expanded 3.5PN flux is also shown to highlight
the power of the EOB resummation procedures. See text for
details.

NR simulations, we set a
(2,2)
1 = a

(2,2)
2 = 0 when:

ν < 0.13 ∧ Ŝν > 0.87,

ν < 0.09 ∧ Ŝν > 0.83,

ν < 0.0025. (8)

Our NQC implementation has been extensively tested
to check its robustness all over the parameter space.
Fig. 1 illustrates that the new NQC implementation
never failed for 420,000 binary configurations drawn from
random distributions of spins −1 < ã0 < +1 and mass
ratios 1 ≤ q ≤ 1000. The EOB runs in the figure are
generated with the PA method, computing the dynamics
up to the dimensionless radius r = R/GM = 14 on a grid
with dr = 0.1 using the 8th PA order [9]. The other NR-
informed EOB parameters are the same as in [13] and
corresponds to the default configuration of TEOBResumS
for parameter estimation.
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FIG. 4. EOB/NR unfaithfulness for the ` = m = 2 mode using all currently available spin-aligned SXS NR simulations and a
bunch of BAM simulations. Top row: TEOBResumS with the PA approximation for the inspiral and without NQC corrections in
radiation reaction. Bottom row: TEOBResumS with the PA approximation for the inspiral and with the NQC parameters obtained
by the fit in radiation reaction. From left to right, the columns use the following NR data: SXS spin-aligned waveforms publicly
released before February 3, 2019; SXS spin-aligned waveforms publicly released after February 3, 2019; spin-aligned BAM data;
nonspinning configurations. The quality of the EOB performance with the NQC fits is very good and essentially equivalent to
the outcome of the exact iterative procedure of Ref. [13], that is reported in Fig. 12 in Appendix for completeness.
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FIG. 5. Summary histogram of EOB/NR unfaithfulness F̄EOB/NR over the full NR database of 611 simulations, without
NQC fits (top panel) and with fits (bottom panel). The various SXS subsets, nonspinning (black online, 89 waveforms),
merger-ringdown calibration (blue online, 116 spin-aligned waveforms) and validation (red online, 388 spin-aligned waveform)
as defined in Paper I are presented separately. The plot shows the fraction (expressed in %) n/Nset, where Nset is the total
number of waveforms in a given NR-waveform set and n is the number of waveforms, in the same set, that, given a value F̄ ,
have F̄max

EOB/NR ≥ F̄ . The colored marker highlight the largest values in each NR dataset.

B. Examples: EOBNR phasing and fluxes with and
without NQC corrections

Before producing EOB/NR comparisons over the full
database of NR simulations used in Paper I, let us dis-
cuss the effect of the various NQC choices on an illustra-
tive example. We choose configuration (2,+0.85,+0.85),
corresponding to SXS:BBH:0257- TEOBResumS waveforms
corresponding to this binary are generated with three

distinct options for NQC: (i) the iterative procedure of
Paper I (here used with 4 iterations); (ii) the new fits
of Sec. II A; (iii) the absence of NQC parameters in the
flux. Figure 2 illustrates the EOB/NR phase difference
∆φEOBNR

22 ≡ φEOB
22 − φNR

22 for these three cases, plotted
versus dimensionless time t ≡ T/M . The NQC parame-
ters are typically of order unity, consistently with what
pointed out in the test-mass limit (see in particular dis-
cussion around Eq. (12) of Ref. [20]). For the iterated
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TABLE I. GW190514 analysis and main parameters intervals. We report the median and 90% credible region for the parameters
extracted from the posterior distribution. Explicitly, the total mass M , the chirp massMc, the individual masses mi, the mass
ratio q, the dimensionless spins χi ≡ Si/m

2
i and their combination χeff = ã0 = (m1χ1 +m2χ2)/M , the luminosity distance DL,

the inclination angle ι, the right ascension α and declination δ. In the last row, we show the logarithmic Bayes’ factor with its
standard deviation.

22+NQCfit 22+noNQCfit LM+NQCfit LM+noNQCfit HM+NQCfit HM+noNQCfit

M [M�] 72.11+2.79
−2.55 73.42+2.88

−2.67 72.48+3.51
−2.31 72.87+3.66

−2.85 73.30+3.18
−2.74 72.86+3.31

−2.88

Mc [M�] 31.16+1.25
−1.20 31.72+1.30

−1.31 31.39+1.50
−1.12 31.54+1.59

−1.26 31.75+1.42
−1.26 31.54+1.46

−1.25

m1 [M�] 39.67+4.31
−3.32 40.06+3.79

−3.07 38.83+3.73
−2.35 39.63+4.66

−2.97 39.31+4.72
−2.68 39.06+4.46

−2.63

m2 [M�] 32.53+3.37
−3.77 33.34+3.06

−4.04 33.66+2.86
−3.82 33.25+3.10

−3.46 33.83+3.06
−3.88 33.68+2.90

−3.68

q 1.22+0.29
−0.19 1.20+0.27

−0.17 1.15+0.26
−0.13 1.19+0.26

−0.16 1.16+0.28
−0.14 1.16+0.27

−0.14

χ1 0.01+0.28
−0.19 0.05+0.30

−0.18 0.01+0.26
−0.18 0.02+0.37

−0.22 0.02+0.27
−0.17 0.01+0.23

−0.22

χ2 −0.01+0.24
−0.30 0.02+0.30

−0.25 0.00+0.29
−0.27 0.03+0.33

−0.29 0.03+0.31
−0.25 0.02+0.28

−0.21

χeff 0.00+0.10
−0.08 0.06+0.09

−0.09 0.02+0.11
−0.09 0.05+0.11

−0.10 0.04+0.11
−0.10 0.03+0.10

−0.10

DL [Mpc] 471+130
−185 464+143

−214 495+110
−179 505+112

−179 549+112
−161 506+124

−133

ι [rad] 2.62+0.37
−0.56 2.53+0.42

−0.62 2.60+0.37
−0.58 2.68+0.32

−0.40 2.74+0.29
−0.50 2.70+0.31

−0.40

α [rad] 1.88+0.70
−0.84 1.99+0.60

−1.00 2.13+0.46
−0.85 2.01+0.56

−1.02 2.12+0.45
−1.01 1.82+0.74

−0.71

δ [rad] −1.23+0.24
−0.05 −1.22+0.25

−0.06 −1.23+0.21
−0.05 −1.23+0.22

−0.06 −1.22+0.19
−0.06 −1.24+0.20

−0.04

logBS
N 286.10± 0.15 285.27± 0.15 285.15± 0.15 285.12± 0.16 285.44± 0.16 285.10± 0.16

case, we have (a
(2,2)
1 , a

(2,2)
2 ) = (−0.2245, 1.2917), while

the fit consistently yields (−0.2368, 1.1964). The EOB
waveforms are aligned to the NR one by choosing rel-
ative time and phase shifts so to minimize the phase
difference on the dimensionless gravitational wave fre-
quency interval [MωL,MωR] = [0.034, 0.045]. The cor-
responding temporal interval is indicated by the dash-
dotted vertical lines in the left panel of the plot. The
fitted NQC parameters deliver a waveform that is per-
fectly consistent (though not strictly identical) with the
one obtained via the iterative procedure. For each one of
the three cases, the maximum EOB/NR unfaithfulness
max(F̄ ) computed in the next section using Eq. (9) is
0.414%, 0.456% and 1.7%. Note that this last number
corresponds to an accumulated phase difference ∼ 4 rad
around merger time.

The presence of iterated NQC correction is also es-
sential to yield consistency between the NR angular mo-
mentum flux and the EOB flux, i.e. the radiation re-
action force changed of sign J̇∞EOB = −Fϕ, that drives
the inspiral dynamics. Figure 3 demonstrates this fact
for a specific dataset, SXS:BBH:1436, with (q, χ1, χ2) =
(6.281, 0.009,−0.8). A more systematic analysis will be
discussed elsewhere [37]. To our knowledge, this is the
first EOB/NR flux comparison after earlier work [38].
This analysis is essential to cross check the reliability
of radiation reaction, an approach that is well consol-
idated in the test-particle limit [20, 39–41]. For com-
parable masses, it has never been exploited systemati-
cally because of the difficulty of computing it accurately
from NR simulations [38]. Figure 3 demonstrates that,
at least for the most recent SXS datasets, this is actu-
ally possible. The top panel of the figure shows Newton-

normalized angular momentum fluxes, while the bottom
panel the EOB/NR fractional differences. Specifically, we

use J̇circ
Newt = 32/5ν2x7/2, where for the EOB we define

the frequency parameter through the orbital frequency
Ω as xEOB ≡ Ω2/3, while for NR we consider the GW
quadrupole frequency ω22 so that xNR ≡ (ω22/2)2/3.
The figure reports: (i) the raw NR angular momentum
flux summed over all multipoles up to `max = 8; (ii)
the smoothed one, where the high-frequency noise (see
inset) related to residual eccentricity and extrapolation
has been eliminated with a specific fitting procedure [37];
(iii) the EOB flux, summed up to `max = 8, with the it-
erated NQC correction factor, as described in Ref. [23];
(iv) the same without the NQC correction factor. The
top panel of Fig. 3 also displays the 3.5 PN accurate
Taylor expanded flux along circular orbits. The vertical
lines mark the EOB Last Stable Orbit (LSO) as well as
the location of the NR merger. It is important to note
that this comparison does not depend on an arbitrary
time and phase shift (as it happens in waveform com-
parisons). It is an intrinsic observable, complementary
to the energy/angular momentum curves [42, 43], that in
principle could be used to improve the current knowledge
of the resummed analytical flux. When looking at frac-
tional differences (bottom panel) one sees that the inclu-
sion of NR-informed NQC corrections in the flux yields
a EOB/NR agreement at the level of the NR uncertainty
up to the LSO location. The uncertainty on the NR data
is obtained, as usual, by taking the fractional difference
between the highest and second highest resolutions avail-
able. Incorporating NR-informed NQC corrections in the
flux is thus an essential building element of TEOBResumS,
since it guarantees the physical correctness of the (self-



7

consistent) EOB dynamics driven by radiation reaction.

III. EOB/NR UNFAITHFULNESS

Paper I assessed the quality of the (2, 2) mode of
TEOBResumS by comparing it to a total set of 595 SXS
and 19 BAM waveforms. Each EOB waveform was gen-
erated using 4 to 5 iterations. The overall comparison
was done computing the EOB/NR unfaithfulness F̄ (M)
as a function of the total mass M . The unfaithfulness F̄
between two waveforms (h1, h2) is defined by

F̄ ≡ 1− F = 1−max
tc,φc

(h1, h2)√
(h1, h1)(h2, h2)

, (9)

where tc and φc denote the time and phase at coales-
cence, and the Wiener scalar product associated to the
power-spectral density (PSD) of the detector, Sn(f), is

(h1, h2) := 4 <
∫ fmax

fmax
df h̃

(
1f)h̃∗2(f)/Sn(f), where h̃1(f)

is the Fourier transform of h1(t). For the computation
of EOB/NR unfaithfulness we use fmin as the minimum
NR frequency, and the Advanced LIGO PSD [44]. The
full EOB/NR unfaithfulness calculations of Paper I was
shown in Figs. 3 and 4 therein (and it is shown again in
Fig. 12 for completeness): it is always below 0.5% ex-
cept for a single outlier that reaches the 0.85%. Here we
repeat such calculation, but with important differences:
(i) we use the fits determined in the section above for

(a
(2,2)
1 , a

(2,2)
2 ), so that we do not have to iterate on the dy-

namics but still we have an improved consistency between
the waveform and the flux; (ii) we use the post-adiabatic
approximation [9] to efficiently compute the inspiral part.
The PA dynamics is computed at the 8th PA order on a
grid with separation dr = 0.1 and stops at r = 14. The
other EOB parameters are the same as in Paper I and
corresponds to the default configuration of TEOBResumS
for parameter estimation. In addition we also compute
F̄ without the NQC correction in the flux. The results
are summarized in Fig. 4 without fits in the top row and
with fits in the bottom row. Each figure collects four
panels that refer to different subsets of the NR simu-
lations available, separated according to the convenient
classification of Paper I. From left to right, each column
of the figure uses: spin-aligned SXS waveforms publicly
released before February 3, 2019; spin-aligned SXS wave-
form data publicly released after February 3, 2019; spin-
aligned BAM data; nonspinning SXS and BAM data, up
to mass ratio q = 18. The absence of the NQC correc-
tions in radiation reaction increases max(F̄ ) up to (a still
acceptable) ∼ 3%; by contrast, when the NQC fits are
included one easily gets max(F̄ ) well below 1%, consis-
tently with the results of the iteration. The global picture
is summarized in Fig. 5 that highlights in a single figure
the improvement brought by the fits.
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FIG. 6. TEOBResumS generation time for 5000 time-domain
waveforms without final interpolation on a uniform grid.
The configurations are randomly sampled in 1 < q < 10,
10 < M [M�] < 60 and −1 < χi < 1 with starting GW fre-
quency f0 = 10 Hz. Top panel: Computation time using the
PA approximation to compute the dynamics. Bottom panel:
Speed-up with respect to the same systems solving the com-
plete ODEs.

IV. COMPUTATIONAL EFFICIENCY

In this Section we show the performance of
TEOBResumS using the PA approximation [9]. The latter
is used to avoid part of the computation of Hamilton’s
equations, that in the case of a nonprecessing system con-
sist of 4 ordinary differential equations (ODEs). Its use
can be extended to any EOB-based model, as shown in
Sec. VI of Ref. [27]. Within TEOBResumS, the 8th PA or-
der is generally used to compute the radial and angular
momenta on a radial grid, starting at the initial radius
r0, ending at dimensionless separation r = 14, with step
dr = 0.1. The other two dynamical variables, time and
phase, are then calculated through an integration on the
radial grid, essentially halving the number of necessary
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FIG. 7. TEOBResumS generation time of time-domain
waveforms interpolated on a uniform-in-time grid with rate
equal to 4096 Hz. We show the most recent iteration,
TEOBResumS v2, using either only the ` = m = 2 mode
(22) or all the modes up to ` = 8 (HM). This is also
run both employing the PA approximation (PA) or solv-
ing the full ODEs (ODE). We also show, as a comparison,
the results for the LAL implementations of SEOBNRv4HM and
TEOBResumS. The former, SEOBNRv4HM, includes the (`,m) =
(2, 1), (2, 2), (3, 3), (4, 4), (5, 5) modes; the latter, TEOBResumS
v1, only uses the ` = m = 2 mode, employs the PA and
does not include NQC corrections in the flux, neither through
iterations nor using fits. The shown configurations corre-
spond to (q, χ1, χ2) = (2,+0.50,−0.30). Top panel: 20 wave-
forms with starting frequency f0 = 30 Hz and total mass
25M� ≤ M ≤ 125M�. Bottom panel: 20 waveforms with
M = 30 M� and varying f0 between 10 and 110 Hz.

integrations. Beyond r = 14 the approximation could
become unreliable for certain configurations and hence
the full ODEs are solved in the usual way6 The compu-
tational gain of using the PA approximation to compute

6 For simplicity, we ended the PA at r = 14 as a robust, con-
servative, choice all over the parameter space. This limit could
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FIG. 8. TEOBResumS generation time of Fourier-domain
waveforms. We show the most recent iteration, TEOBResumS
v2, using either only the ` = m = 2 mode (22) or all
the modes up to ` = 8 (HM). The time-domain waveforms
of Fig. 7 are translated in the frequency domain using a
Fast Fourier Transform (FFT). We compare the computa-
tion times to the corresponding Fourier-domain approximants
SEOBNRv4 ROM and SEOBNRv4HM ROM included in LAL. Simi-
larly to its time-domain avatar, SEOBNRv4HM ROM too only uses
(`,m) = (2, 1), (2, 2), (3, 3), (4, 4), (5, 5) modes to construct
the waveforms. The shown configurations are the same of
Fig. 7.

full waveforms is preliminarily discussed in Appendices
of Refs. [30, 45], we present here a more detailed set of
results.

In Fig. 6, we show the TEOBResumS waveform genera-
tion time and the speedup with respect to configurations
when the 4 ODEs are solved for the whole evolution. As
expected, the use of the PA approximation has a greater
impact on longer waveforms (lower total mass). We can

actually be fine tuned as a function of the binary spin content
and lowered below r = 10 [9].
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also note that, even without this speedup, TEOBResumS
is already fast in the context of EOB-based models.

To put these times into perspective, in Fig. 7 we com-
pare TEOBResumS to its equivalent higher modes model
of the SEOBNR family, SEOBNRv4HM [11, 26]. This latter is
implemented within the LIGO Algorithm Library (LAL)
[34, 46] and, the time of writing, does not employ the PA
approximation. The C implementation of TEOBResumS,
denoted v2, is run with different settings: using all the
modes up to ` = 8 or just the dominant ` = m = 2
one; employing the PA approximation for the dynamics
or solving the full ODEs. These are compared to the LAL
version of SEOBNRv4HM and of the same TEOBResumS. This
older implementation, the TEOBResumS v1, already em-
ployed the PA approximation, but did not include higher
modes or NQC corrections in the radiation reaction flux
(neither through fits nor iterations). As we can expect,
models which only include the ` = m = 2 multipole
are found to be faster. At the same time, we can see
that the PA approximation (that is never employed in
TEOBResumS when systems would start at r0 < 14) im-
proves the performance for long waveforms. When com-
pared to SEOBNRv4HM, we find that TEOBResumS is gener-
ally an order of magnitude faster7.

We highlight that, in order to improve the SEOBNRv4HM
performances, a reduced order model in the frequency do-
main has been developed [33], that accelerates the wave-
form generation time by a factor of 100-200. In a sim-
ilar effort, Ref. [15] has recently applied machine learn-
ing methods to both TEOBResumS and SEOBNRv4 [26] and
built time-domain models that achieve a speedup of 10
to 50 for TEOBResumS and about an order of magnitude
more for SEOBNRv4, see Fig. 7 of Ref. [15]. This fact is
consistent with our analysis of Fig. 7: it reflects the dif-
ference in computational cost of the two baseline models.

For completeness, in Fig. 8 we compare performances
of the newer implementation of TEOBResumS, translated
in the frequency domain through a Fast Fourier Trans-
form (FFT), to the reduced order models of the SEOBNRv4
family, SEOBNRv4 ROM and SEOBNRv4HM ROM. We can see
that the TEOBResumS timing, when including higher
modes, is compatible with the SEOBNRv4HM ROM one for
high starting frequencies and progressively worsens for
lower initial frequencies, becoming almost an order of
magnitude higher around f0 ∼ 10 Hz.

In conclusion, our timing analysis indicates that the
native implementation of TEOBResumS using the PA
approximation (including the v1 implementation dis-
tributed with LAL [34]) is efficient enough to be used
for parameter estimation, as we shall demonstrate in the
following section.

7 For a comparison of the two models differences in the conserva-
tive dynamics, and the application of the PA approximation to
SEOBNRv4, see Ref. [27]

V. GW150914 ANALYSIS

We ran a PE study on GW150914 using bajes [29].
We employed the dynesty sampler with 1024 live points
and tolerance of 0.1. We extracted the data from the
GWOSC archive [47] and analyzed 16 seconds of data
around GPS time 1126259462, with a sampling rate of
4096 Hz in the range of frequencies [20, 1024] Hz. We set
the same prior distributions for all runs. The chirp mass
prior was uniform in [24, 37]M� and the mass ratio q in
[1, 8]. We only considered aligned spins with an isotropic
prior in the range [−0.99,+0.99]. We used a volumetric
prior for the luminosity distance in [100, 800] Mpc.

Separate runs are performed with TEOBResumS, either
including the new NQC fits in the radiation reaction or
not. For each of the two cases, parameter estimation
runs are performed with the (2, 2) mode only (22), the
` = m and ` ≤ 5 modes (LM), and with all the modes
up to ` = m = 8 multipoles (HM). In this case, all the
other subdominant modes except (2, 1), (3, 2), (4, 3) and
(4, 2) do not use NR information to be completed through
merger and ringdown, but only rely on the analytical
EOB waveform (see e.g. Fig. 10 of Ref. [12]). We used the
PA approximation of the dynamics for all runs, as it is the
default option for our implementation (e.g. [18, 29, 31].)
Each one of these analyses took about 2 days on 8 CPUs.
More details on the TEOBResumScomputational cost can
be found in Appendix IV.

The results of such runs are listed in Table I. The dif-
ference of using the NQC fits is highlighted in Fig. 9.
Neglecting the NQC fits in the radiation reaction, that
has a large impact on the EOB-NR unfaithfulness, has
a very small effect on parameter estimation, despite the
high SNR of GW150914. The only appreciable difference
can be seen in the χeff variable for the 22 run, which is
more skewed towards 0 when NQC fits are used. It is
interesting to note that the difference between using the
NQC fits and not employing them tends to disappear
when using more multipoles. Some effect in this direc-
tion was to be expected, since the NQC fits only affect
the ` = m = 2 mode, which has a somewhat diminished
importance when other multipoles are used.

Using the same data, we can attempt to determine
whether this analysis is sensitive to the higher modes,
given that the system is almost equal-mass and nonspin-
ning. There are no appreciable differences in the system
parameters when using higher order multipoles, apart
from a small preference for a mass ratio closer to 1. In-
stead, using modes beyond the dominant ` = m = 2
one, helps to better constrain the source distance and
inclination. In particular, the runs which employed a
larger number of modes, seem to prefer larger distances
and more face-on/away configuration. These results are
compatible with what found in Ref. [48] using the NR
surrogates NRSur7dq2 and NRSur7dq2HM. This difference
in posteriors is shown in Figs. 10 and 11.

We conclude highlighting that using Bayes’ factors, we
cannot determine a preference for any of the models used
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FIG. 9. Parameter estimation of GW150914. Comparing parameter inference with (light color lines) and without (darker
contours) NQC fits. We show runs where we used the ` = m = 2 mode only (22, orange/red lines), all the multipoles with
` = m ≤ 5 (LM, green) or all the modes summed up to ` = 8 (HM, blue). It is interesting to note that the effect of the NQC
is highly subdominant when all the higher modes are included in the waveform.

for these analyses (see again Table I).

VI. CONCLUSION

This work completes the description of the tech-
niques employed in the current TEOBResumS waveform
(v2) [10, 13] and outlines a viable path towards the use of
faithful EOB models in GW parameter estimation. Here,
we highlighted the importance of: (i) including NQC cor-
rections in the radiation reaction and (ii) using the post-

adiabatic approximation to improve the computational
efficiency of the inspiral.

The NQC fits developed here ensure an improved con-
sistency between the EOB dynamics (radiation reac-
tion flux) and the waveform without the need of an
iterative procedure to determine the NQC parameters

(a
(2,2)
1 , a

(2,2)
2 ). The EOB/NR unfaithfulness achieved

with this NQC setting and with the use of the post-
adiabatic approximation to the EOB dynamics is always
below 0.01, with 78.5% of the 611 NR waveforms below
0.001 (see right panel of Fig. 5).
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FIG. 10. Parameter estimation of GW150914 without the
NQC fits in radiation reaction. The figure compares poste-
riors of: (i) ` = m = 2 only waveform (22); (ii) multipolar
waveform with all ` = m modes summed up to ` = 5 (LM);
(iii) complete waveform with all modes up to ` = 8 (HM).

The PA approximation, together with an efficient im-
plementation, makes each version of TEOBResumS (includ-
ing v1 distributed with LAL [34]) suitable for parameter
estimation in its native form, without the need of con-
structing surrogate or machine learning representations.
The latter can provide significant further speed up [15],
but their construction becomes increasingly more com-
plex as more physics effects are included (spin precession,
eccentricity, etc).

The application of TEOBResumS to GW150914, that
still represents one of the highest signal-to-noise ra-
tio event observed thus far, indicates that the present
techniques are well suited for the unbiased analysis
of comparable-masses and moderately spinning binary
black holes signals. In particular, the analysis is not sen-
sitive to the inclusion of NQC fits in the radiation reac-
tion, despite the inconsistency and far worse EOB/NR
unfaithfulness of the model when these fits are not in-
cluded. The inclusion of higher modes beyond the ` =
m = 2 one has an appreciable effect only in giving a
more stringent constraint of the source distance and in-
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FIG. 11. Parameter estimation of GW150914 with the NQC
fits in radiation reaction. The figure compares posteriors of:
(i) ` = m = 2 only waveform (22); (ii) multipolar waveform
with all ` = mmodes summed up to ` = 5 (LM); (iii) complete
waveform with all modes up to ` = 8 (HM).

clination, as also seen with NR surrogates [48].
Future work should address the waveform systematics

effects and limitation of current EOB models for larger
mass-ratio and/or waveforms with larger spins. An im-
portant aspect in this respect, is to explore phasing, faith-
fulness and full parameter estimation altogether, as done
for tidal effects in [18], in order to identify which elements
of the model require improvements and the connection
between the phasing and the parameter estimation.

The current techniques can be immediately applied to
include precessional effects [49] and tides [45, 50]; fast
post-adiabatic multipolar waveforms with these features
can be already generated with TEOBResumS. The same
computationally efficient infrastructure of TEOBResumS
is also shared by TEOBResumSGeneral [16, 17, 51], that
deals with either eccentric inspirals (although without
the PA approximation) or hyperbolic scatterings. Future
work will also focus on rapid, and yet accurate, meth-
ods for the solution of the eccentric EOB dynamics [16,
17, 51], and on the extension of EOB to directly com-
pute frequency-domain inspiral-merger-ringdown wave-
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forms [31].
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Appendix A: NR faithfulnesses with NQC iterations

This appendix reports for completeness the faithful-
ness published in Ref. [13] (Paper I) and obtained with
the iterative NQC procedure and the full ODE integra-
tion. The plots are shown in Fig. 12 and can be directly
compared to those shown in Fig. 4 in the main text, that
are instead obtained with the fits for the NQC param-
eters (a22

1 , a
22
2 ) entering the radiation reaction and the

PA approximation to the numerical solution of the EOB
Hamilton’s equations during the inspiral. The unfaithful-
ness plots are obtained using the most recent realization
of the zero-detuned, high-power noise spectral density of
Advanced LIGO [52].

Appendix B: NQC fits of (a
(2,2)
1 , a

(2,2)
2 )

This appendix summarizes the NQC fits performed in
this work. The fits are performed hierarchically in differ-
ent sectors of the parameter. All fits have been performed
with fitnlm of Matlab. The superscript (2, 2) is dropped
in the notation in this appendix.

1. Non-spinning sector

The fits in the non-spinning sector are obtained with
a total of 27 waveforms, for mass-ratios 1 ≤ q ≤ 30. The
coefficient a1 is fitted against X2

12 = (1− 4ν)
2

with the
template

a1 =
aq=1

1

1 + ba11 X2
12 + ba12 X4

12

(B1)

with

aq=1
1 = 0.070974

ba11 = 0.786350

ba12 = −9.085105 .

The value of aq=1
1 is extracted from q = 1 NR data.

The coefficient a2 in the non-spinning sector is fitted
against X12 =

√
1− 4ν with the template

a2 = aq=1
2

1 + ba21 X12 + ba22 X2
12

1 + ba23 X12
(B2)

with

aq=1
2 = 1.315133

ba21 = −0.324849

ba22 = −0.304506

ba23 = −0.371614 .

The value of aq=1
2 is extracted from q = 1 NR data.

2. Equal-mass sector

Equal-mass data are defined by ν > 0.2485. A total of
40 waveforms with spins −0.98 ≤ χ1,2 ≤ 0.99 are used to
obtain the fits of the equal-mass region. The coefficient
a1 in the equal-mass cases is fitted with the template:

a1 = ca10

1 + ca11 Ŝ + ca12 Ŝ2 + ca13 Ŝ3 + ca14 Ŝ4

1 + ca15 Ŝ + ca16 Ŝ2 + ca17 Ŝ3
. (B3)

with the coefficients:

ca10 = 0.121187 ca11 = −5.950663

ca12 = 9.420324 ca13 = −10.601339

ca14 = 17.641549 ca15 = −5.684777

ca16 = 10.910451 ca17 = −6.867377 .

https://bitbucket.org/eob_ihes/teobresums/


13

50 100 150 200

10 -4

10 -3

10 -2

10 -1

10 0

50 100 150 200

10 -4

10 -3

10 -2

10 -1

10 0

50 100 150 200

10 -4

10 -3

10 -2

10 -1

10 0

FIG. 12. EOB/NR unfaithfulness for the ` = m = 2 mode using all currently available SXS NR simulations (left and
middle panel) and a selection of BAM simulations (right panel). as published in Ref. [13] (Paper I). The NQC parameters are
determined iteratively and included in the radiation reaction. The Hamilton equation of motion are solved numerically without
using the post-adibatic approximation. Left panel: computation using SXS waveforms publicly released before February 3,
2019. Middle panel: using SXS waveform data publicly released after February 3, 2019. F̄max

EOB/NR is always below 0.4% except
for a single outlier, red online, that however never exceeds 0.85%. The plot includes five exceptionally long waveforms, each
one developing more than 139 GW cycles before merger, SXS:BBH:1412, 1413, 1414, 1415 and 1416 (blue online). Right panel:
same computation done with a few BAM waveform data that include configurations with mass ratio q = 18. See Ref. [13] for
further details.

The coefficient a2 is fitted to the same template. The
fitted coefficients are:

ca20 = 1.331703 ca21 = −4.237724

ca22 = 1.786023 ca23 = 10.546205

ca24 = −9.698233 ca25 = −6.225823

ca26 = 13.209381 ca27 = −9.402513 .

3. Sector with mass ratio 1 < q < 4

In this sector the fit of a1 differs in two ways from the
previous: (i) the fit is factorized in a spinning part aS1
and a non-spinning part a0

1, and (ii) the fit uses the spin

variable Ŝν ≡ Ŝ/(1− 2ν). The full template is:

a1 = a0
1 · aS1 , (B4)

a0
1 = da10

1 + da11 ν + da12 ν3

1 + da13 ν
, (B5)

aS1 =
1 + da14 Ŝn + da15 Ŝ2

ν + da16 Ŝ3
ν + da17 Ŝ4

ν

1 + da18 Ŝν + da19 Ŝ2
ν + da110Ŝ

3
ν

. (B6)

The fitted coefficients take the values of a0
1 are:

da10 = 0.26132647 da11 = −4.90302367

da12 = 20.67036124 da13 = −3.17109808 .

Note these coefficients are fitted to waveforms for which
χ2 = ±0.01 and χ1 is chosen such that Ŝν = 0. This ap-
proach is taken also for all of the following non-spinning
factor fits. In total 70 waveforms with Ŝn = 0 and fur-
ther 454 with spin −0.9 < χ1,2 ≤ 0.99. Of these 160 are
focused on the high positive region, 0.8 ≤ χ1,2 ≤ 0.99.

The fitted coefficients of aS1 are:

da14 = −3.082861 da15 = 2.169948

da16 = −0.636353 da17 = 0.741419

da18 = −2.843896 da19 = 2.709697

da110 = −0.832894 .

The coefficient a2 is fitted in a factorized form as well.
Additionally, it holds an explicit dependency of aS2 on ν:

a2 = a0
2 · aS2 , (B7)

a0
2 = da20

1 + da21 ν + da22 ν3

1 + da23 ν
, (B8)

aS2 =
1 + da24 Ŝν + da25 Ŝ2

ν + da26 Ŝ3
ν + da27 Ŝ4

ν

1 + da28 Ŝν + da29 Ŝ2
ν + da210Ŝ

3
ν

, (B9)

da2i = da2i,0
(
1 + da2i,1ν

)
, for i = 4, ..., 10 . (B10)

The fitted coefficients of a0
2 are:

da20 = 1.03364144 da21 = −3.46191440

da22 = −7.86652243 da23 = −3.96268815 .

The fitted coefficients of aS2 are:

da24,0 = 0.036452 da24,1 = −64.360789

da25,0 = 0.275707 da25,1 = −34.573145

da26,0 = −0.113951 da26,1 = 0

da27,0 = −2.531304 da27,1 = −7.691661

da28,0 = −1.025824 da28,1 = 4.237539

da29,0 = 0.593579 da29,1 = 1.661809

da210,0 = −0.939736 da210,1 = −6.333442 .

da26,1 is set to 0 prior to the evaluation of the fit to improve
the convergence of the fit.
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4. Sector with mass ratio q ≥ 4

For the following fits a similar approach to was taken
as above. A total of 44 with Ŝn = 0 have been generated.
186 waveforms with −0.99 ≤ χ1,2 ≤ 0.99 have been used
to capture the q = 4 behavior accurately. 1470 further
waveforms with−0.99 ≤ χ1,2 ≤ 0.85 have been used to fit
the extrapolation of the q = 4 fit up to mass ratio q = 30.
The coefficient a1 for q ≥ 4 has an additional feature.
The explicit ν dependence is fitted through xν = ν−0.16.
The full template is:

a1 = a0
1 · aS1 , (B11)

a0
1 = ea10

1 + ea11 ν + ea12 ν3

1 + ea13 ν
, (B12)

aS1 =
1 + ea14 Ŝν + ea15 Ŝ2

ν + ea16 Ŝ3
ν + ea17 Ŝ4

ν

1 + ea18 Ŝν + ea19 Ŝ2
ν + ea110Ŝ

3
ν

, (B13)

ea1i = ea1i,0
1 + ea1i,1xν

1 + ea1i,2xν
, for i = 4, ..., 10 . (B14)

The fitted a0
1 coefficients are:

ea10 = 0.341803 ea11 = −1.350488

ea12 = −6.353357 ea13 = 2.216156 .

The coefficients of aS1 are fitted in 2 steps. First, for
q = 4 and second, an extrapolated fit from there. The
coefficients ea1i,0 are fitted to q = 4:

ea14,0 = −2.287721 ea15,0 = −0.598451

ea16,0 = 0.766069 ea17,0 = 1.857169

ea18,0 = −2.035234 ea19,0 = 0.836427

ea110,0 = 0.297476 .

The remaining coefficients model the extrapolation of the
spin dependence to larger mass ratios and are:

ea14,1 = 7.650946 ea14,2 = 7.106992

ea15,1 = −60.630748 ea15,2 = −69.630357

ea16,1 = 47.114247 ea16,2 = 5.733002

ea17,1 = −12.905707 ea17,2 = 5.045688

ea18,1 = 3.515869 ea18,2 = 1.564146

ea19,1 = 0.642864 ea19,2 = 2.947890

ea110,1 = 31.023038 ea110,2 = 1.829543 .

The coefficient a2 is fitted similarly with the template:

a2 = a0
2 · aS2 , (B15)

a0
2 = ea20

1 + ea21 ν + ea22 ν3

1 + ea23 ν
, (B16)

aS2 =
1 + ea24 Ŝν + ea25 Ŝ2

ν + ea26 Ŝ3
ν + ea27 Ŝ4

ν

1 + ea28 Ŝν + ea29 Ŝ2
ν

, (B17)

ea2i = ea2i,0
1 + ea2i,1xν

1 + ea2i,2xν
, for i = 4, ..., 9 . (B18)

The fitted a0
2 coefficients are:

ea20 = 0.929192 ea21 = 1.334263

ea22 = −26.389790 ea23 = −1.289984 .

The coefficients of aS2 are fitted in 2 steps as well. The
coefficients ea2i,0 have been fitted to q = 4:

ea24,0 = −0.886561 ea25,0 = −1.953955

ea26,0 = 1.366537 ea27,0 = 0.950212

ea28,0 = −2.531000 ea29,0 = 1.723991 .

The remaining coefficients model the extrapolation of
the spin dependence to larger mass ratios and are:

ea24,1 = 15.871482 ea24,2 = 5.066190

ea25,1 = 7.168498 ea25,2 = 6.709490

ea26,1 = 18.583382 ea26,2 = 5.764512

ea27,1 = −14.038564 ea27,2 = −17.126231

ea28,1 = 6.387917 ea28,2 = 3.438456

ea29,1 = 8.867098 ea29,2 = 2.910938 .
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