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Gravitational-wave (GW) memory effects produce permanent shifts in the GW strain and its
time integrals after the passage of a burst of GWs. Their presence is closely tied to the symmetries
of asymptotically flat spacetimes and the corresponding fluxes of conserved charges conjugate to
these symmetries. While the phenomenology of GW memory effects (particularly for compact-
binary mergers) is now well understood in general relativity, it is less well understood in the many
modifications to general relativity. We recently, however, computed asymptotically flat solutions,
symmetries, conserved quantities, and GW memory effects in one such modified theory with an
additional scalar degree of freedom, Brans-Dicke theory. In this paper, we apply our results from
this earlier work to compute the GW memory effects from compact binaries in the post-Newtonian
approximation. In addition to taking the post-Newtonian limit of these effects, we work in the
approximation that the energy and angular momentum losses through scalar radiation are small
compared to the energy and angular momentum losses through (tensor) gravitational radiation.
We focus on the tensor (as opposed to scalar) GW memory effect, which we compute through
Newtonian order, and the small differences induced by the radiation of scalar waves at this order.
Specifically, we compute the nonlinear parts of the tensor displacement and spin GW memory effects
produced during the inspiral of quasicircular, nonprecessing binaries in Brans-Dicke theory. Because
the energy radiated through the scalar dipole moment appears as a negative post-Newtonian order-
effect, then in this approximation, the displacement memory has a logarithmic dependence on the
post-Newtonian parameter and the spin memory has a relative minus-one-post-Newtonian-order
correction; these corrections, however, are ultimately small because they are related to the total
energy and angular momentum radiated in the scalar field, respectively. At Newtonian order, the
scalar radiation also gives rise to a sky pattern of the memory effect around an isolated source that
differs from that of the memory effect in general relativity.

I. INTRODUCTION

Following the first detection of gravitational waves
(GWs) in 2015 [1], Advanced LIGO and Virgo have dis-
covered almost 50 binary-merger events over their first
two and a half observing runs [2, 3]. These events al-
lowed general relativity (GR) to be studied and tested
in the dynamical and strong-field regime of the theory
that had not been well constrained prior to LIGO and
Virgo’s observations. The results of these tests of GR
are summarized in a number of papers, for example [4–
10], which have all found the observed GWs to be con-
sistent with the predictions of GR, within the statistical
(and systematic) errors of the measurements. There re-
main GW effects that are still too weak to be extracted
from the detector’s noise, but which hold promise for
revealing some of the more subtle nonlinear and dynam-
ical effects in GR. One such class of strong-field effects
(which will be the subject of this paper) go by the name of
gravitational-wave memory effects, because these effects
are characterized by lasting changes in the GW strain
and its time integrals that develop over the full history
of the evolution of the system [11–13]. Although these ef-
fects have not yet been observed, they could be detected
in a population of binary-black-hole mergers measured
by the Advanced LIGO and Virgo detectors over an ob-
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servation period of several years [14–16]; they could also
be detected from an individual event by the space-based
detector LISA [17, 18], third-generation ground-based de-
tectors like Einstein Telescope or Cosmic Explorer [19],
or pulsar timing arrays [20].

In GR, gravitational-wave memory effects are closely
related to the symmetry group of asymptotically flat
spacetimes, the Bondi-Metzner-Sachs (BMS) group [21–
23] and its generalizations. We remind the reader that
the BMS group is a semidirect product of an infinite-
dimensional group of supertranslations (which are a
kind of “angle-dependent” translations around an iso-
lated source) and the Lorentz group. The charges con-
jugate to these symmetries are the relativistic angular
momentum for the Lorentz symmetries [and angular mo-
mentum can be split into an intrinsic and a center-of-
mass (CM) part, which correspond to the rotations and
Lorentz boots symmetries, respectively] and the super-
momentum for the supertranslations symmetries (see,
e.g., [24–27]). There are more recent, and larger, symme-
try algebras studied in which the Lorentz symmetries are
extended to include all the conformal Killing vectors of
the 2-sphere [28–30] (not just the globally defined ones)
or all smooth diffeomorphisms of the 2-sphere [31, 32]. In
the first case the symmetries are called super-rotations,
and in the second, they are called super-Lorentz trans-
formations; with the appropriate notion of supertransla-
tions, they form the extended and generalized BMS alge-
bras, respectively. The conserved charges corresponding
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to superrotations (and also the super Lorentz transfor-
mations) were called superspin and super CM when de-
composed into the two parts of opposite parities [33–35].

As gravitational waves are radiated from a spacetime,
fluxes and hence changes in the charges of the (general-
ized) BMS algebra generate GW memory effects. The
displacement memory effect is produced by changes in
the supermomentum charges, and the preferred shear-
free frames before and after the burst of GWs are related
by a supertranslation (see, e.g., [33, 36]); the memory can
be measured by nearby freely falling and comoving ob-
servers, who experience a lasting relative displacement.
Memory effects associated with changes in the super-
Lorentz charges and their fluxes are called the spin and
center-of-mass (CM) GW memory effects [34, 35, 37].1

These memory effects are related to time integrals of
the GW strain [34, 35, 37], and they could be measured
by nearby freely falling observers with an initial rela-
tive velocity [39]. The (generalized) BMS flux balance
laws provide a useful way to approximately compute the
GW memory effects starting from gravitational wave-
forms without the GW memory effect, and this technique
has been applied for the displacement, spin, and CM GW
memory effects (see [35, 40–45]).

The extent to which the relationship between symme-
tries, conserved quantities, and memory effects might
hold in modified theories of gravity is not immediately
apparent. First, modified theories of gravity often ad-
mit additional polarizations of GWs [46–48], and it is
natural to suppose there would be memory effects asso-
ciated with the additional polarizations (and there are
such effects [49–52]). Second, the asymptotic fall-off con-
ditions on the fields in the modified gravity theory (i.e.,
what one defines as an asymptotically flat solution) could
conceivably differ from those in GR. Different boundary
conditions could lead to different symmetry algebras and
conserved quantities; this could in turn change both the
types of possible memory effects and their relations to
fluxes of conserved quantities. It was with these consid-
erations in mind that we recently investigated asymptotic
symmetries, conserved quantities, and memory effects in
one specific modified theory of gravity: Brans-Dicke the-
ory [53].

Brans-Dicke (BD) theory, is a so-called scalar-tensor
theory in which a massless scalar field is coupled nonmini-
mally to gravity (namely, there is a product of the scalar
field and Ricci scalar in the theory’s action). Scalar-
tensor theories appear in the context of string theory and
in phenomenological models used to explain the late-time

1 Note that the spin and CM GW memory effects are not related to
a super-Lorentz transformation between certain canonical refer-
ence frames before and after a burst of GWs. There is a memory
effect dubbed a refraction (or velocity-kick) memory that does
correspond to a super-Lorentz transition between early time and
late times [38], but such solutions do not preserve the asymptot-
ically flat boundary conditions of Bondi and Sachs [21, 22].

acceleration of the Universe [54–56] as well as cosmic in-
flation [57, 58]. The massless scalar field leads to an
additional “breathing” polarization of GWs in BD the-
ory; for a freely falling ring of particles, this breathing
mode produces a relative contraction and expansion in
the plane transverse to the direction of GW propagation.

Recently, we (in [50]) and Hou and Zhu (in [49]) inde-
pendently studied BD theory in the Bondi-Sachs frame-
work. In addition to arriving at similar boundary condi-
tions for asymptotically flat solutions in BD theory, we
both showed that the symmetry group of asymptotically
flat spacetimes in such a theory is the same as the (ex-
tended or generalized) BMS group. In [50], we observed
that in addition to the GW memory effects present in
GR, there are two more memory effects in BD theory re-
lated to the breathing-mode polarization. We will adopt
the nomenclature used in [51], which calls the GW mem-
ory effects in the tensor polarizations by the name “ten-
sor” memory effects and those associated with the breath-
ing polarization by “scalar” memory effects.2 We [50], as
well as Hou and Zhu [61], derived the conserved charges
associated with the BMS symmetries using the Wald-
Zoupas prescription, and we determined that the charges
included contributions coming from the scalar field.

Because [50] (and [49, 61]) provided the necessary
framework in which to compute and interpret the GW
memory effects in BD theory, we now turn to applying
the results of [50] to construct the GW memory wave-
form from compact binary systems (as one application
of this formalism). We will focus on the memory effects
that appear in the tensor polarizations of the GWs, be-
cause we can use the BMS flux balance laws to construct
nonlinear memory effects based on linearized (or nonlin-
ear) waveforms that do not include the memory effects.
The procedure in Brans-Dicke theory is closely analogous
to that used in GR [35, 40–45]. The two new memory
effects in the scalar polarizations of the GWs are related
to shifts in the scalar field and its time integral. It was
recently shown in [62] that the scalar memory effects are
closely related to the large gauge symmetries of 2-form
theory that was shown in [63] to be dual to the scalar
field theory. The symplectic flux of the scalar field is lin-
ear in the field and in the large gauge transformation;
as a result, we cannot use the flux balance laws to con-
struct a nonlinear memory of the scalar waves as one can
for the tensor waves via the BMS flux-balance laws (one
must instead solve the scalar field equation directly to
determine the scalar memory effect). Since our focus is
on the application of the BMS balance laws in BD the-

2 The terminology “scalar” and “tensor” memory effects also has
been used after Du and Nishizawa [51] by Satishchandran and
Wald [59] in the context of general relativity to refer to different
classes of “ordinary” memory effects (in the sense of [60]); since
we work in Brans-Dicke theory, and we compute “null” memory
effects throughout this paper, we think the sense in which we use
this naming should be clear (with this footnote as an attempt to
dispel any potential lingering ambiguities).
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ory to determine the GW memory effects, we will focus
here on computing the tensor memory effects in BD the-
ory, which differ from those of GR due to the emission of
scalar radiation.

In BD theory, tensor GW memory effects are gener-
ated by energy and angular momentum fluxes of both
tensor and scalar radiation. Because solar-system exper-
iments [64] and pulsar observations [65, 66] have con-
strained the amount of scalar radiation in BD theory, we
assume that the scalar radiation leads to energy and an-
gular momentum fluxes that are small compared to the
leading quadrupole fluxes of tensor GWs in GR. Note,
however, that the scalar field’s fluxes appear at a lower
post-Newtonian (PN) than the tensor GW fluxes do (see,
e.g., [67] for a review of the post-Newtonian, as well as the
multipolar post-Minkowskian, expansion). For a fixed
value of the small (dimensionless) inverse coupling pa-
rameter in BD theory, there is thus a smallest PN param-
eter at which our approximation of the smaller scalar-
field fluxes holds. To compute GW memory effects in
BD theory at Newtonian order, we will need to include
higher-PN-order terms (in the frequency evolution and
Kepler’s law, for example) than we would need to go to
Newtonian order in the calculation in GR. In addition,
we will also truncate our results at a finite, but smallest
PN parameter, which is the smallest value for which our
approximation holds (unlike in GR, in which we can take
the PN parameter to zero).3

We computed our memory effects using the oscillatory
waveforms computed in, e.g., [68–70] after verifying that
we can relate the waveforms computed in harmonic coor-
dinates in these references to our Bondi-Sachs quantities.
The memory effects that we compute in BD theory, have
small terms (proportional to the small BD parameter)
that appear at a PN order less than the leading Newto-
nian order. We can relate part of our results to a part of
the waveform computed by Lang in [68, 69] using the di-
rect integration of the relaxed Einstein equations for the
scalar and tensor waveforms up to 1.5PN and 2PN orders,
respectively. Lang found no scalar GW memory effects,
but he computed a (hereditary) tensor GW memory ef-
fect formally at 1.5PN order that arises from the flux
of energy radiated in the scalar waves. Upon integrating
this 1.5PN term for compact-binary source in our approx-
imation, this term leads to a memory effect that depends
logarithmically on the PN parameter (this is analogous to
how a formally 2.5PN order term in GR, when integrated

3 Note, of course, that we could also compute the memory effects
from a PN parameter of zero up to the small PN parameter at
which the fluxes of scalar and tensor radiation have comparable
magnitudes, if we assume that the radiated fluxes are dominated
by the scalar emission. This, in fact, is the approximation used
in [68, 69], for example. However, because memory effects are
most important when the fluxes are large, this early-time (or
small-PN-parameter) regime is not expected to produce a sig-
nificant GW memory effect, and we do not compute it in this
paper.

for compact binaries, leads to a Newtonian-order effect
in the waveform [71, 72]). If we compare our result in the
Bondi-Sachs framework with Lang’s harmonic-coordinate
expression, the two terms agree. The BMS flux balance
laws are not as helpful for verifying the absence of scalar
memory effects at 1.5PN order.

Our BMS flux-balance approach allows us to com-
pute the Newtonian-order tensor waveforms—which have
not been computed before, as far as we are aware—that
should appear if the work of Lang [68] were extended to
2.5PN order. We find that because of the dipole emission,
the Newtonian-order GW memory effects sourced by the
tensor-GW energy flux has contributions from current
quadrupole, mass octopole, and mass hexadecapole mo-
ments. These higher multipole moments produce GW
memory waveforms that have a different dependence on
the inclination angle than the tensor GW memory effect
in GR at the equivalent PN order. The Newtonian GW
memory effect generated by the scalar field’s energy flux
also has a different dependence on inclination angle from
that sourced by the tensor GWs. The inclination-angle
dependence of the GW memory effect has been shown to
be something that can be tested with second- and third-
generation ground-based GW detectors [73].

The rest of the paper is organized as follows. In
Sec. II, we present a few elements of BD theory in har-
monic and Bondi coordinates. Section III lists the os-
cillatory radiative mass and current multipole moments
for a quasi-circular, nonspinning compact-binary inspi-
ral (Sec. III A); it reviews the derivation of Kepler’s law,
the evolution of the orbital frequency, and the phase of
GWs in BD theory at the necessary PN orders in our
approximation (Sec. III B); and it presents scalar multi-
pole moments generated by an inspiraling quasi-circular,
nonspinning compact binary (Sec. III C). In Sec. IV, we
compute the nonlinear displacement and spin GW mem-
ory waveforms in BD theory from the BMS fluxes. We
conclude in Sec. V. We give additional results in two
appendices in which we show the coordinate transfor-
mations that relate the Bondi coordinates to harmonic
coordinates including relations between the metric func-
tions in two coordinates systems (Appendix A), and we
argue that the ordinary parts of the GW memory effects
are subleading compared to null memory effects in BD
theory (Appendix B).

Throughout this paper, we use units in which c = 1,
and we also set the asymptotic value of the gravita-
tional constant in BD theory to 1. We use Greek indices
(µ, ν, . . . ) to denote four-dimensional spacetime indices,
and uppercase Latin indices (A,B,C, . . . ) for indices on
the 2-sphere, and lowercase Latin indices (i, j, k, . . . ) for
the spatial indices in quasi-Cartesian harmonic coordi-
nates.
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II. WAVEFORM IN HARMONIC AND BONDI

COORDINATES

In this section, we discuss briefly the Bondi-Sachs
framework [21, 22] and the harmonic-gauge waveform
in post-Newtonian theory, both of which we will use
to compute the GW memory waveform. Specifically, in
Sec. II A, we discuss BD theory in harmonic coordinates
and decompose the GW strain into radiative multipole
moments. In Sec. II B, we present BD theory in the
Bondi-Sachs framework and again perform a multipole
decomposition of the radiative data. The last part of
this section (Sec. II C) relates the multipole moments of
the shear tensor in Bondi coordinates to the radiative
mass and current multipole moments of the harmonic-
gauge waveform; it then does the same for the multipole
expansion of the scalar waveform in Bondi coordinates
and harmonic coordinates.

We require both coordinate systems and frameworks,
because the nonlinear and null GW memory effects are
straightforward to compute through the BMS balance
laws in the Bondi approach, but it is more challenging
to relate the Bondi-Sachs framework to a specific solu-
tion of a Cauchy initial-value problem. In the harmonic-
gauge PN approach, the scalar and tensor GW waveforms
already have been computed generally and for specific
compact-binary sources in, e.g., [68, 69]; however, the
GW memory effects are of a sufficiently high PN order
in PN theory that they have not been fully computed in
BD theory. After relating the harmonic-gauge waveform
to the shear in the Bondi-Sachs framework, we can then
determine the GW memory waveforms using the balance
laws (and thereby avoiding high PN-order calculations).

Throughout this paper, we treat Brans-Dicke theory
in the Jordan frame [53], in which the action takes the
form

S =

∫

d4x
√−g

[

λ

16π
R− ω

16π
gµν

(∂µλ) (∂νλ)

λ

]

. (2.1)

Here gµν is the Jordan-frame metric, R is the Ricci scalar
of gµν , λ is a massless scalar field with a nonminimal cou-
pling to gravity, and ω is a coupling constant called the
Brans-Dicke parameter. In this section and subsequent
ones, we set the gravitational constant at infinity to unity,
i.e.,

G0 =
4 + 2ω

3 + 2ω

1

λ0
= 1 , (2.2)

where λ0 is the constant value that λ approaches in the
limit of infinite distances from an isolated source.

A. Waveform in harmonic coordinates

We will denote our quasi-Cartesian harmonic-gauge co-
ordinates by Xµ, and we will use the notation X0 = t for
the time coordinate andX i (for i = 1, 2, 3) for the spatial

coordinates. We will denote the Euclidean distance from
the origin at fixed t by R =

√

X iXjδij . The tensor GWs
in Brans-Dicke theory are described by the transverse-
tracelesss (TT) components of the metric perturbation,

h̃TT
ij , and the scalar GWs are encapsulated in the scalar

field λ. Both fields can be obtained from the metric at
order 1/R, in an expansion in inverse R, from the spatial
components of the spacetime metric gij . The metric is
more conveniently written in terms of the metric pertur-
bation h̃ij and its trace h̃ rather than the TT part. For
extracting the GWs, we need only the part of the space-
time metric that is linear in the fields λ and h̃ij at linear
order 1/R. We write the metric in this approximation as
in [68],

gij = δij + h̃ij −
1

2
h̃δij −

(

λ

λ0
− 1

)

δij . (2.3)

The scalar GWs are present in the 1/R part of λ, which
we expand as

λ = λ0 +
Ξ(ũ, yA)

R
+O

(

R−2
)

. (2.4)

We have written the scalar field in terms of ũ = t − R,
the retarded time in harmonic coordinates, and the an-
gles yA ≡ (ι, ϕ). The angle ι is the polar angle and
ϕ is the azimuthal angle of a spherical polar coordinate
system.4 We expand the TT projection of h̃ij in terms
of second-rank electric-parity and magnetic-parity ten-

sor spherical harmonics (T
(e),lm
ij and T

(b),lm
ij , respectively;

see, e.g., [74]) as [67]

h̃TT
ij =

1

R

∑

l,m

[

Ulm(ũ)T
(e),lm
ij + Vlm(ũ)T

(b),lm
ij

]

. (2.5)

The sum runs over integer values of l and m with l ≥ 2
and −l ≤ m ≤ l. The coefficients Ulm and Vlm are two
sets of radiative multipole moments which are called the
mass and current moments, respectively. Because h̃TT

ij is
real, the mass and current moments satisfy the following
properties under complex conjugation:

Ūlm = (−1)mUl,−m, V̄lm = (−1)mVl,−m . (2.6)

We use an overline to denote the complex conjugate.
We will also use the complex gravitational waveform h

which is composed of the plus and cross polarizations as
follows:

h = h+ − ih× . (2.7)

We use the conventions for the polarization tensors e+ij
and e×ij given in [72] or [75] to construct the polariza-

tions h+ = h̃ijTTe
+
ij and h× = h̃ijTTe

×
ij . We expand h as

4 For compact binary sources, ι is the inclination angle between the
orbital angular momentum of the binary (assumed to be along
the Z axis) and ϕ is the azimuthal angle as measured from the
X axis.
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in terms of spin-weighted spherical harmonics sYlm with
spin weight s = −2:

h =
∑

l,m

hlm(ũ)(−2Y lm) . (2.8)

For a nonspinning planar binary, the modes hlm are re-
lated to the mass and current multipole moments by (see,
e.g., [67])

hlm =

{

1√
2R
Ulm (l +m is even) ,

− i√
2R
Vlm (l +m is odd) .

(2.9)

B. Waveform and metric in Bondi coordinates

We use (u, r, xA) to denote Bondi coordinates. The
coordinate u is the retarded time, r is an areal radius,
and xA are coordinates on a 2-sphere cross sections of
constant u and r (where A = 1, 2). We expand λ as a
series in 1/r as

λ(u, r, xA) = λ0 +
λ1
(

u, xA
)

r
+O(r−2) . (2.10)

The metric in Bondi gauge satisfies the conditions grr =
0, grA = 0, and the determinant of the metric on the
2-sphere cross sections scaled by r−4 is independent of r
(and u). We imposed a set of aysmptotic boundary con-
ditions on the nonzero components of the metric in Bondi
gauge in [50] and postulated a Taylor series expansion of
the scalar field and metric on the 2-sphere cross sections
in 1/r. This allowed us to solve the field equations of
Brans-Dicke theory to obtain the following solution for
the line element [50]:

ds2= −
[

1 +
λ̇1
λ0

−1

r

(

2M+
λ1
λ0

+
3λ1
2λ20

λ̇1

)]

du2

−2

(

1− λ1
λ0r

)

dudr + r2
(

qAB +
1

r
cAB

)

dxAdxB

+

{

ðF c
AF − ðAλ1

λ0
+

1

r

[

−4LA +
1

3
cABðCc

BC

− 1

3λ0

(

2λ1ð
BcAB + cABð

Bλ1 −
1

λ0
ðAλ

2
1

)]}

dudxA

+ . . . . (2.11)

The ellipsis at the end of the equation indicates higher
order terms in powers of 1/r that we are neglecting (the
terms are of order 1/r2 except for the term proportional
to dxAdxB , which is of order unity, because of the r2

term multiplying the expression). In Eq. (2.11), we have
introduced M and LA which are (related to) functions
of integration in Brans-Dicke theory that are the ana-
logues of the Bondi mass aspect and angular momentum
aspect in GR [50]. The two-dimensional metric qAB is
the unit-sphere metric and ð

A is the covariant derivative
compatible with qAB. We will raise and lower 2-sphere

indices (such as A and B) with the metrics qAB and qAB,
respectively. The overhead dot means a partial deriva-
tive with respect to the retarded time u. The symmetric
trace-free tensor cAB is called the shear tensor, and is
related to the GW strain. The time-derivative of cAB is
a symmetric trace-free tensor known as the news tensor:

NAB = ∂ucAB . (2.12)

It is not constrained by the asymptotic field equations
in Brans-Dicke theory, and it contains information about
the tensor GWs. In GR, if the news tensor vanishes it
means the corresponding region of spacetime contains no
GWs [24].

We will also expand cAB in spherical harmonics as

cAB =
∑

l,m

(

c(e),lmT
(e),lm
AB + c(b),lmT

(b),lm
AB

)

. (2.13)

The tensor spherical harmonics can be defined from the
scalar spherical harmonics

T
(e),lm
AB =

1

2

√

2(l − 2)!

(l + 2)!

(

2ðAðB − qABÐ2
)

Ylm , (2.14a)

T
(b),lm
AB =

√

2(l− 2)!

(l + 2)!
ǫC(AðB)ð

CYlm , (2.14b)

or instead in terms of spin-weighted spherical harmonics
and a complex null dyad on the unit 2-sphere of mA and
its complex conjugate m̄A (see, e.g., [74]):

T
(e),lm
AB =

1√
2
(−2YlmmAmB + 2Ylmm̄Am̄B) , (2.15a)

T
(b),lm
AB =− i√

2
(−2YlmmAmB − 2Ylmm̄Am̄B) .

(2.15b)

The dyad is normalized such that mAm̄A = 1.

C. Relation between Bondi- and harmonic-gauge

quantities

We construct a coordinate transformation between
harmonic and Bondi gauges in Appendix A that brings
the harmonic metric at order 1/R to a Bondi-gauge met-
ric at an equivalent order. The procedure used is similar
to that recently outlined in [76], but it is adapted to
Brans-Dicke theory (rather than GR) and it is accurate
only to the first nontrivial order in 1/R. This coordinate
transformation leads to a simple relationships between
cAB and h̃TT

ij , first, and λ1 and Ξ, second:

cAB(u, x
A) = R h̃TT

ij (t−R, yA)∂An
i∂Bn

j , (2.16a)

λ1(u, x
A) = Ξ(t−R, yA) . (2.16b)

The spatial vector ni is the unit vector pointing radially
outward at fixed t in harmonic coordinates (i.e., in the
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direction of propagation for outgoing GWs). The full
transformation between the spherical polar coordinates
R and yA = (ι, ϕ) constructed from the quasi-Cartesian
harmonic coordinates and Bondi coordinates is given in
App. A; we list here the relevant leading-order parts of
the transformation needed to relate u to t − R, r to R,
and xA to yA in Eq. (2.16):

u = t−R − 2M

λ0
log(R) +O(R−1) , (2.17a)

r = R+O(R0) , xA = yA +O(R−2) . (2.17b)

The second-rank tensor spherical harmonics on the
unit 2-sphere in spherical and Cartesian coordinates are
related by the following transformation:

T
(e),lm
AB = T

(e),lm
ij ∂An

i∂Bn
j , (2.18a)

T
(b),lm
AB = T

(b),lm
ij ∂An

i∂Bn
j . (2.18b)

Combining the expressions (2.5), (2.13), and (2.16a), we
find that the multipole moments of the strain and shear
are related by

c(e),lm = Ulm, c(b),lm = Vlm , (2.19)

as was given in [35] (though there the relationship was
derived through a different argument involving the Rie-
mann tensor in linearized gravity). The relation (2.19)
allows us to express the multipole moments of the shear
tensor in terms of multipole moments of the harmonic-
gauge TT strain tensor, once the difference between the
retarded times in harmonic and Bondi coordinates in
Eq. (2.17a) is taken into account.

III. POST-NEWTONIAN RADIATIVE

MULTIPOLE MOMENTS

In this section, we compute expressions for the radia-
tive multipole moments Ulm and Vlm, as well as the scalar
multipole moments which we will define herein. We ob-
tain the moments for nonspinning, quasicircular binaries.
We denote the total mass by M = m1 + m2 (where
m1 and m2 are the individual masses), the symmetric
mass-ratio by η = m1m2/M

2, and orbital separation
by a. We also introduce the parameters ξ = 1/(2 + ω)
and x = (πMf)2/3, where f is the GW frequency. We
will work in the approximation in which ξ ≪ x, which
corresponds to assuming that the BD modifications to
the waveforms and the dynamics are small corrections
to the corresponding quantities in GR. Given that the
Shapiro-delay measurement in the solar system bounds
the BD parameter to be ω > 4 × 104 [64] (a similar
bound has been derived from the pulsar triple system
PSR J0337+1715 [66]), this implies that our approxima-
tion is valid when x ≫ 2.5 × 10−5. In this paper, we
will compute GW memory waveforms through Newto-
nian order, and we keep BD terms that are linear in ξ.
We then retain only the terms in the radiative multipole

moments at the appropriate powers of x and ξ to obtain
Newtonian-order-accurate memory waveforms. Because
we always work to linear order in ξ, we do not include
error terms of O(ξ2) in our expressions (they should be
considered to be implied). We do, however, include such
error terms in the PN parameter x, because the power
of x that constitutes a “Newtonian-order quantity” is not
the same for the various quantities that we consider in
the next two sections.

We will need radiative mass and current multipole mo-
ments at a higher PN order than those required for com-
puting 0PN memory effects in GR. Specifically, in GR,
one only requires the mass quadrupole moment at New-
tonian order—i.e., O(x)—to obtain the Newtonian-order
memory effects. In BD theory, we will need several addi-
tional terms. First, we must compute the BD correction
linear in ξ to the mass quadrupole moment. Second,
we will need the 1PN or O(x2) GR terms of the mass
quadrupole moment, because they multiply −1PN terms
present in the GW phase and in the frequency evolu-
tion to contribute to Newtonian-order memory effects.
Third, we require the current quadrupole and mass oc-
tupole moments which begin at 0.5PN order or O(x3/2).
Fourth, we must include the current octopole and mass
hexadecapole moments at 1PN or O(x2). We do not
need to compute the linear in ξ BD corrections to the
O(x3/2) and O(x2) radiative multipole moments, how-
ever, because the Newtonian-order GW memory effects
produced by them would be quadratic in ξ. For scalar
multipole moments, we require the dipole with relative
1PN corrections [up to O(x3/2)], the quadrupole at O(x)
and the octopole, which begins at O(x3/2). The scalar
field moments are all linear in ξ.

A. Radiative mass and current multipole moments

We first give the expression of lowest-order radiative
mass multipole moment U22. We decompose U22 into
two parts

U22 = U0
22 + U1,GR

22 , (3.1)

where U0
22 is the Newtonian-order part of U22, which in-

cludes the BD corrections to linear order in ξ, and U1,GR
22

consists of the 1PN terms in U22 in GR. We can obtain
the moment U22 from the expression for h̃TT

ij in BD the-
ory in Eqs. (7.1) and (7.2a) of Ref. [68] by contracting

h̃TT
ij with T̄ ij

(e),22 and integrating over the 2-sphere. We

find that to linear order in ξ,

U0
22 = −8

√

2π

5
ηMxe−iφ

(

1− ξ

2
− 2

3
G

)

, (3.2)

where

G = ξ(s1 + s2 − 2s1s2) . (3.3)

The variables s1 and s2 denote the sensitivities (see,
e.g., [70]) of the binary components. The quantity G
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is related to the modified gravitational constant in BD
theory by

G = 1− G . (3.4)

The GW phase is denoted φ(x), and it differs from the
phase of the l = 2,m = ±2 modes of the waveform in GR;
we give the expression for the phase in Eq. (3.18) below.
We use the 1PN GR terms from the review article [67].
Putting these two results together, we have the following
expression for U22:

U22 = − 8

√

2π

5
ηMxe−iφ

×
[(

1− ξ

2
− 2

3
G

)

+

(

55η

42
− 107

42

)

x

]

+O(x5/2) .

(3.5a)

The term proportional to x in the square bracket is the
1PN GR term taken from [67].

As we will show in Section IV, to compute the GW
memory waveform at Newtonian order, we need the ra-
diative current quadrupole moment and several radiative
mass octopole and hexadecapole moments. To work to
linear order in ξ, we can use the GR amplitudes of the
moments (though we use the phase with the BD correc-
tions). This allows us to take the amplitudes from the
expressions given, e.g., in the review [67]:

V21 =
8

3

√

2π

5
ηδmx3/2e−iφ/2 +O(x5/2) , (3.5b)

U33 = 6i

√

3π

7
ηδmx3/2e−3iφ/2 +O(x5/2) , (3.5c)

V32 = i
8

3

√

π

14
Mη(1− 3η)x2e−iφ +O(x5/2) , (3.5d)

U31 =− 2i

3

√

π

35
ηδmx3/2e−iφ/2 +O(x5/2) , (3.5e)

U42 =− 8

63

√
2πMη(1− 3η)x2e−iφ +O(x5/2) . (3.5f)

We use the notation δm = (m1 − m2). We give an ex-
pression for the phase φ(x) in the next subsection.

B. Kepler’s law, frequency evolution, and GW

phase

Before computing the phase, we first give an expres-
sion for Kepler’s law, which we will need to compute the
scalar multipole moments and the frequency evolution as
well as the phase. To obtain a Newtonian-order accurate
GW memory waveform, we need to have an expression for
Kepler’s law at 1PN order. This higher order is needed,
because when evaluating the integrals involved in com-
puting the GW memory effect, there are −1PN terms
arising from dipole radiation in the energy flux, which
multiply 1PN terms in the GW frequency’s evolution

and give rise to Newtonian-order terms in the waveform.
The two-body equations of motion of nonspinning com-
pact objects in Brans-Dicke theory has been computed
in Ref. [77]. For circular orbits, the relative acceleration
is proportional to the orbital frequency squared, Ω2, and
the relative separation to 1PN order. Working to linear
order in ξ, the results of Eqs. (1.4) and (1.5a) of [77] show
that Kepler’s law in BD theory (in this approximation)
is

Ω2 =
M

a3

[

1− G − M

a
(1− 2G ) (3− η)− M

a
Gγ̄
]

.

(3.6)
We have introduced the parameter

γ̄ = −G−1ξ (1− 2s1) (1− 2s2) , (3.7)

in the equation above and G is defined in Eq. (3.4).
Let us now compute the evolution of the GW fre-

quency. We again need a 1PN-order-accurate expression,
which, in full generality, contains many terms. Because
we work to linear order in ξ, the only 1PN terms that we
need to obtain a Newtonian-order expression for the GW
memory waveforms are the GR terms in ḟ (i.e., the 1PN
terms without ξ).5 We can then write the expression for

ḟ = df/dt in the following form:

ḟ = ḟ0 + ḟ1,GR , (3.8)

where ḟ0 is the BD expression to Newtonian order and
linear order in ξ, and ḟ1,GR is ξ = 0 (or GR) limit of the

1PN terms. We first compute ḟ0 using results from [77],

and then we add to it the terms ḟ1,GR taken from [78]. To

compute ḟ0, we first use the binding energy of a binary
in BD theory from Eq. (6.14) of [77], which is valid to
1PN order:

Eb =
1

2
µv2 − µ

GM
a

+
3

8
µ(1− 3η)v4

+
1

2
µ
GM
a

(3 + 2γ̄ + η)v2 +
1

2
µ(1− 2G )

(

M

a

)2

.

(3.9)

We used µ = ηM to denote the reduced mass. We will
next express the binding energy in terms of the PN pa-
rameter x = (πMf)2/3. To do this it is useful to have
the expressions for M/a and v2 written in terms of x:

M

a
= x

[

1 +
1

3
G +

(

1− 1

3
G

)(

1− 1

3
η

)

x+
1

3
Gγ̄x

]

+O(x3) , (3.10a)

v =
√
x

[

1− 1

3
G − (1− G )

(

1− 1

3
η

)

x− 1

3
Gγ̄x

]

+O(x5/2) . (3.10b)

5 The −1PN term that multiplies the 1PN term in this calculation
is linear in ξ, which implies that the BD modification to ḟ at 1PN
enters at higher order in ξ in the GW memory waveforms.
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We can then substitute Eq. (3.10) into Eq. (3.9) to obtain

Eb =− 1

2
µx

[

1− 2

3
G − 1

12

(

1− 4

3
G

)

(9 + η)x− 2

3
Gγ̄x

]

+O(x3) . (3.11)

The rate of change of energy radiated in GWs in BD
theory through Newtonian order is given by a −1PN term
plus a Newtonian term. If we define

S = s1 − s2 (3.12)

and we make use of expressions (6.16) and (6.19) given
in [77], then linearizing their expression in ξ, we have

ĖGW =
32

5
η2x5

[

5ξS2

48x
+ 1− 7

3
G +

5

12
Gγ̄

− 5

72
ξS2(3 + 2η)

]

+O(x11/2) . (3.13)

Imposing energy balance Ėb = −ĖGW (the change in
the binding energy is equal to the energy radiated by the
GWs) and using the chain rule to write ḟ = (df/dEb)Ėb,
we can write the Newtonian-order frequency derivative
ḟ0 as a function of the PN parameter x as

ḟ0 =
96η

5πM2
x11/2

[

1 + ξ

(

5S2

48x
+ F

)]

, (3.14)

where we defined

F =− 5

12
− 5

6
(s1 + s2) +

5

144
(51 + 7η)s1s2

− 5

288
(3 + 7η)(s21 + s22) . (3.15)

Finally, including the GR frequency evolution at 1PN [78]

to ḟ0, we find

ḟ =
96ηx11/2

5πM2

[

1 + ξ

(

5S2

48x
+ F

)

−
(

743

336
+

11

4
η

)

x

]

+O(x7) . (3.16)

We previously introduced a waveform phase variable
φ(x), which we will now compute explicitly. For comput-
ing the GW memory waveforms, we will again need an
expression for the GW phase through 1PN order; how-
ever, because we are working to linear order in ξ, we will
only need the terms without ξ at 1PN order in the phase
(analogously to our calculation of ḟ). The GW phase is
typically obtained by integrating the GW frequency with
respect to time from some appropriate starting time. For
calculations of the GW memory waveform, it is more use-
ful to write the phase as a function of x. By using the
chain rule, we can then write the time integral of the fre-
quency in terms of an integral with respect to the PN
parameter x as follows:

φ(x) = 2π

∫ x

xi

f

ḟ

df

dx′
dx′ , (3.17)

where the frequency f and the derivatives ḟ and df/dx
are functions of x. We have also introduced an initial PN
parameter xi that should be greater than ξ, so that our
approximation of ξ ≪ x holds. From ḟ in Eq. (3.16), we
find that the GW phase is given by

φ(x) − φc = − 1

16ηx5/2

[

1− ξ

(

F +
25S2

336x

)

+
5

3

(

x− 1

8
ξS2

)(

743

336
+

11

4
η

)]

+O(x−1) .

(3.18)

We defined a constant φc, the phase at coalescence, which
is chosen such that the phase at xi vanishes. The terms
in the second line of Eq. (3.18) come from the product of
a −1PN term multiplying a 1PN term, which produces
a Newtonian-order effect on the phase (specifically, it is
the scalar dipole radiation in BD theory that gives rise to
the −1PN-order effects). We discuss the scalar radiation
in more detail in the next subsection.

C. Scalar Multipole Moments

We expand λ1 in terms of the scalar spherical harmon-
ics

λ1 =
∑

l,m

λ1(lm)Y
lm , (3.19)

and the corresponding coefficients in the expansion are
the scalar multipole moments λ1(l,m). Specifically, we
compute expressions for the scalar moments λ1(11), λ1(22)
and λ1(31) in terms of the PN parameter x, which we will
then use to derive the tensor GW memory effect sourced
by the fluxes of the scalar field. These three moments
are those needed to compute the GW memory effects at
Newtonian order. The relevant part of the scalar field λ1
had been computed previously in [69, 70], and we give
the expression to 1PN order above the leading dipole
radiation and to linear order in ξ:

λ1 = ηMλ0ξ

{[

−2S +
M

2a

(

3Γ
δm

M
+ 10Sη

)]

vin
i

+Γ

[

(vin
i)2 − M

a
(ni

12ni)
2

]

− (Γ
δm

M
+ 2ηS)

×
[

(vin
i)3 − 7

2

M

a
(vin

i)(ni
12ni)

2

]}

. (3.20)

Above we introduced the quantities

Γ = 1− 2(m1s2 +m2s1)/M , (3.21)

the unit vector ni pointing radially outward in the direc-
tion of the GW’s propagation, the unit separation vector
ni
12 between the binary’s components, and the relative

velocity vector vi = vi1 − vi2 of the binary’s masses. In
terms of ι and ϕ (the polar and the azimuthal angles, re-
spectively, in the center-of-mass frame of the binary) and
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the GW phase φ, the two unit vectors and the relative
velocity vector take the form

ni = (sin ι cosϕ, sin ι sinϕ, cos ι) , (3.22a)

ni
12 = {cos[φ(u)/2], sin[φ(u)/2], 0} , (3.22b)

vi = {−v sin[φ(u)/2], v cos[φ(u)/2], 0} . (3.22c)

For the magnitude of the velocity, v, we need only the
GR limit of the expression (zeroth-order in ξ) at 1PN
order in x in Eq. (3.10).

We wrote the phase as φ(u) as a shorthand for φ[x(u)]
in Eq. (3.18), so as to emphasize the retarded-time de-
pendence of the phase. The multipole moments can be
extracted through the integral

λ1(lm) =

∫

d2Ωλ1Ȳlm(ι, ϕ) . (3.23)

Using Eqs. (3.19)–(3.22) and the GR limit of Eq. (3.10),
we find that the harmonic components of λ1 can be writ-
ten as

λ1(11) =− 2i

√

2π

3
λ0ξηM

√
xe−iφ/2

×
{

S − x

15

[

12Γ
δm

M
+ S (15 + 34η)

]}

+O(x2),

(3.24a)

λ1(22) =− 2

√

2π

15
λ0ξΓηMxe−iφ +O(x2) , (3.24b)

λ1(31) =− i

10

√

π

21
λ0ξ

(

Γ
δm

M
+ 2ηS

)

ηMx3/2e−iφ/2

+O(x2) . (3.24c)

Equations (3.5) and (3.24) are all the sets of radiative
moments that we will need to compute the GW memory
effects in the next section.

IV. MEMORY EFFECTS

In this section, we compute the displacement and
spin GW memory effects produced by a quasicircular
compact-binary inspiral. The displacement and spin
memory effects are both constructed from the shear ten-
sor cAB, and they have sky patterns with opposite pari-
ties. It is then useful to first decompose the shear tensor
into electric- and magnetic-parity parts as follows:

cAB =
1

2
(2ðAðB − qABÐ2)Θ + ǫC(AðB)ð

CΨ , (4.1)

where Ð2 ≡ ðAðA is the Laplacian operator on the
unit 2-sphere. We compute the displacement and spin
GW memory effects using the BMS flux-charge balance
laws that were computed in Brans-Dicke theory in [50].
We focus on the nonlinear GW memory effects and the
null memory associated with the stress-energy tensor of

the scalar waves. We can compute these effects using
low-PN-order oscillatory waveforms and the BMS bal-
ance laws, whereas if we were to try to compute them
directly through the relaxed Einstein equations in har-
monic gauge, we would need to compute the gravitational
waveform at a higher PN order in BD theory than has
been completed thus far. We also argue that the ordinary
parts of the GW memory effects will be of a higher PN
order than the nonlinear and null parts in Appendix B.

A. Spherical harmonics and angular integrals

We will compute multipole moments of the GW mem-
ory effects, starting from the oscillatory tensor and scalar
waves expanded in terms of the multipole moments in
Eqs. (3.5) and (3.24), respectively. Evaluating these mul-
tipole moments involves computing angular integrals in-
volving products of three spherical harmonics of different
types (scalar, vector, and tensor). We instead follow the
strategy in, e.g., [34, 35], in which the vector and tensor
harmonics are recast in terms of spin-weighted spherical
harmonics. The angular integrals then involve products
of three spin-weighted spherical harmonics (we use the
conventions for the spherical harmonics in [35]). We also
use the notation for the integral of three spin-weighted
spherical harmonics in [34]

Bl(s
′, l′,m′; s′′, l′′,m′′) ≡

∫

d2Ω (s′Yl′m′)(s′′Yl′′m′′)(s′+s′′ Ȳl(m′+m′′)) , (4.2)

which can be written in terms of Clebsch-Gordan co-
efficients (denoted by 〈l′,m′; l′′,m′′|l,m′ + m′′〉) as was
shown, e.g., in [79] (though using the conventions of [35]):

Bl(s
′, l′,m′; s′′, l′′,m′′) = (−1)l+l′+l′′

√

(2l′ + 1)(2l′′ + 1)

4π(2l + 1)

×〈l′, s′; l′′, s′′|l, s′ + s′′〉〈l′,m′; l′′,m′′|l,m′ +m′′〉 .
(4.3)

The multipolar expansion of the nonlinear memory ef-
fects in terms of the radiative moments Ulm and Vlm has
the same form as in GR, which is given in [35]. However,
we will need to perform a new multipolar expansion of
the null memory effects from the stress-energy tensor of
the scalar field. For this expansion, we will need the vec-
tor spherical harmonics

T
(e),lm
A =

1
√

l(l+ 1)
ðAYlm , (4.4a)

T
(b),lm
A =

1
√

l(l+ 1)
ǫABð

BYlm . (4.4b)

In terms of the spin-weighted spherical harmonics and a
complex dyad mA on the unit 2-sphere, we can write the
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vector spherical harmonics as

T
(e),lm
A =

1√
2
(−1YlmmA − 1Ylmm̄A) , (4.5a)

T
(b),lm
A =

i√
2
(−1YlmmA + 1Ylmm̄A) , (4.5b)

where mAmA = m̄Am̄A = 0 and mAm̄A = 1.

B. Displacement memory effects

Supermomentum conservation requires that the change
in the “potential” Θ that is associated with the electric
part of the shear tensor, ∆Θ, must have its change be-
tween two retarded times and satisfy the following rela-
tionship [50]:

∫

d2ΩαÐ2(Ð2 + 2)∆Θ =

∫

du d2Ωα

[

NABN
AB +

6 + 4ω

(λ0)2
(∂uλ1)

2

]

+ 8

∫

d2Ωα

(

∆M− 1

4λ0
Ð2∆λ1

)

. (4.6)

The supermomentum is the charge conjugate to a BMS
supertranslation symmetry and α(xA) is the function
that parametrizes the supertranslation symmetry. The
first two terms inside the square brackets on the right-
hand side of Eq. (4.6) produce the null memory (i.e., the
memory sourced by massless fields) with the first term
being the nonlinear (Christodoulou) memory. Both ∆M
and Ð2∆λ1 generate ordinary memory [50], but we argue
in App. B that the ordinary memory is a higher-PN-order
effect. We will then focus on just the null memory, and
we will derive separately the contributions from the en-
ergy flux of tensor and scalar waves, respectively. We
denote the nonlinear (tensor) part by ∆ΘT and the null
part from the scalar field by ∆ΘS. The full memory effect
is then the sum of the two components:

∆Θ = ∆ΘT +∆ΘS . (4.7)

While ∆Θ is the quantity most straightforwardly
constrained by supermomentum conservation, it is the
change in the strain ∆h that is perhaps the more typical
gravitational-wave observable. It is thus useful to relate
the potential ∆Θ to the strain ∆h. To do this, we will
first introduce the following notation for just the electric
part of the change in the shear:

∆cAB,(e) =
1

2
(2ðAðB − qABÐ2)∆Θ . (4.8)

We expand ∆Θ in scalar spherical harmonics

∆Θ =
∑

l,m

∆ΘlmY
lm(ι, ϕ) , (4.9)

where l ≥ 2 (and −l ≤ m ≤ l); the l ≤ 1 harmonics
are in the kernel of the operator 2ðAðB − qABÐ2. By
substituting (4.9) into Eq. (4.8) and using the definition

of T
(e),lm
AB in Eq. (2.14a), we can relate ∆Θlm to ∆c(e),lm

via Eq. (2.13),

∆c(e),lm =

√

(l + 2)!

2(l− 2)!
∆Θlm . (4.10)

The above equation will be necessary when we construct
the waveform from ∆Θlm. Specifically, we can compute
the waveform by combining Eqs. (2.9), (2.19), and (4.10)
in Eq. (2.8) to obtain

∆h(disp) =
1√
2R

∑

l,m

√

(l + 2)!

2(l− 2)!
∆Θlm −2Y lm . (4.11)

We will denote the memory waveform ∆h(disp) as a
sum of the tensor-sourced, ∆h(disp,T), and scalar-sourced
∆h(disp,S) contributions as follows:

∆h(disp) = ∆h(disp,T) +∆h(disp,S) . (4.12)

We first compute ∆h(disp,T) followed by ∆h(disp,S).

1. Displacement memory effect from the energy flux of

tensor GWs

The expression for the “moments” of ∆ΘT with respect
to α(xC) have the same general form as in GR,

∫

d2Ωα(xC)Ð2(Ð2 + 2)∆ΘT

=

∫ uf

ui

du

∫

d2Ωα(xC)NABN
AB , (4.13)

but there is a subtlety related to the limits of integration
(ui and uf) in the retarded-time integral over u. Be-
cause we work in an approximation in which ξ ≪ x, the
lower limit ui must start at a PN parameter xi for which
xi ≫ ξ. This differs from the corresponding convention
in GR, in the limit ui → −∞ is often taken (in which it is
assumed that xi → 0). The upper limit, uf is a retarded
time at which the corresponding PN parameter xf , is
sufficiently large that the PN approximation (at the or-
der at which we work) starts to require higher-PN-order
terms to remain accurate.
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The multipolar expansion of ∆ΘT proceeds exactly as
in GR (and we note just a few features of the calculation
here; see [35] for further details). We can first replace
the function α(xC) with the complex conjugate of a scalar
spherical harmonic, Ȳlm. We then use Eqs. (2.12), (2.13),
(2.15), and (4.9), and the expression for the moments

∆ΘT
lm in terms of the radiative moments U̇lm and V̇lm is

the same as that derived in GR in [35]:

∆ΘT
lm =

1

2

(l − 2)!

(l + 2)!

∑

l′,l′′,m′,m′′

Bl (−2, l′,m′; 2, l′′,m′′)

×
∫ uf

ui

du
[

s
l,(+)
l′;l′′

(

U̇l′m′ U̇l′′m′′ + V̇l′m′ V̇l′′m′′

)

+2is
l,(−)
l′;l′′ U̇l′m′ V̇l′′m′′

]

. (4.14)

We however, introduced the coefficients

s
l,(±)
l′;l′′ = 1± (−1)l+l′+l′′ (4.15)

that were used in [34] to make the notation more com-
pact. As in [35], the sum runs over l′, l′′ ≥ 2 and l
must be in the range |l′ − l′′| ≤ l ≤ |l′ + l′′| so that
the coefficients Bl(−2, l′,m′; 2, l′′,m′′) given in Eq. (4.3)
are nonzero. The azimuthal indices must be related by
m = m′ +m′′ for the coefficients Bl(−2, l′,m′; 2, l′′,m′′)
to be nonzero. Because we focus on the leading GW
memory effects in the nonoscillatory (m = 0) part of the
waveform, this will further restrict m′ and m′′ to have
equal magnitudes and opposite signs: m′ = −m′′. While
the abstract expression for ∆ΘT

lm in terms of radiative
multipole moments has exactly the same form as that
in GR, the time-derivatives of the radiative multipole
moments U̇l′m′ and V̇l′m′ in BD theory differ from the
corresponding moments in GR. This leads to a number
of order ξ terms in the expression for the GW memory
effect that we will compute below.

Next, we will summarize how we compute the memory
waveforms, including which radiative multipoles we need

and at what PN-order accuracy we require these mul-
tipole moments. For concreteness, let us first focus on
products of the mass moments U̇l′m′ U̇l′′m′′ in Eq. (4.14);
the arguments will apply to products of current moments
and to products of mass and current moments. We per-
form the integral over u by using the chain rule to recast
the integral over u in terms of an integral over x

∫

duU̇l′m′U̇l′′m′′ =

∫

d

dx
Ul′m′

d

dx
Ul′′m′′ ẋdx , (4.16)

as was outlined in, e.g., [72]. In GR, the Newtonian-order
memory waveform can be calculated from just Ul′m′ =
U22 and Ul′′m′′ = U2,−2 (and similarly Ul′m′ = U2,−2 and
Ul′′m′′ = U22), with U22 evaluated at Newtonian order, as
well. In BD theory, however, both ẋ and dφ/dx (the lat-
ter term coming from dUlm/dx) have contributions from
the dipole moments of the scalar field, and these effects
enter at −1PN order relative to the GR result (and they
are proportional to ξ). To obtain the full result at the
Newtonian order requires the 1PN contributions to U22,
ẋ and dφ/dx. Because the −1PN terms of ẋ and dφ/dx
are proportional to ξ, we only need the parts of the 1PN
terms in U22, ẋ and dφ/dx that are independent of ξ to
compute ∆ΘT

lm. Hence, the BD corrections to the 1PN
terms in Eqs. (3.5a), (3.16) and (3.18) were not given.
The −1PN term in ẋ also requires that we compute the
part of the GW memory waveform sourced by products
of the other radiative multipole moments in Eq. (3.5) to
obtain a Newtonian-order-accurate result; in GR, these
moments all give rise to higher-PN corrections to the GW
memory effect.

Considering the radiative multipoles described above,
we can then compute the multipole moments ∆ΘT

l0 of
the GW memory effect from Eq. (4.14). Because the
memory is electric-type, only even l moments are nonva-
nishing for nonspinning compact binaries. When written
in terms of the relevant radiative moments Ulm and Vlm,
the moments ∆ΘT

l0 are given by

∆ΘT
20 =

1

168

√

5

π

∫ uf

ui

du
(

2|U̇22|2 − |V̇21|2 +
√
7ℑ
[√

2 ˙̄U31V̇21 +
√
5 ˙̄U22V̇32

]

+
√
5ℜ
[

˙̄U42U̇22

])

, (4.17a)

∆ΘT
40 =

1

23760
√
π

∫ uf

ui

du

(

11

7
|U̇22|2 −

44

7
|V̇21|2 − 21|U̇33|2 − 7|U̇31|2 +

324
√
5

7
ℜ
[

˙̄U42U̇22

]

+
22√
7
ℑ
[

2
√
5 ˙̄U22V̇32 + 5

√
2 ˙̄V21U̇31

]

)

, (4.17b)

∆ΘT
60 =− 1

36960
√
13π

∫ uf

ui

du
(

|U̇33|2 + 15|U̇31|2 − 4
√
5ℜ
[

˙̄U42U̇22

])

. (4.17c)

Next, we use Eqs. (3.5a), (3.5b)–(3.5f), and (3.16)–(3.18)
to perform the integral over u and to write the moments

in terms of x. With the identity (δm/M)2 = 1 − 4η, we
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can write the moments as

∆ΘT
20 =

2
√
5π

21
Mη∆x

{

1− 4

3
G − 5ξS2

48∆x
ln

(

xf
xi

)

−ξ
[

1 + F + S2

(

1915

96768
+

665η

1152

)]}

,

(4.18a)

∆ΘT
40 =

√
π

1890
Mη∆x

{

1− 4

3
G − 5ξS2

48∆x
ln

(

xf
xi

)

−ξ
[

1 + F + S2

(

−737045

709632
+

143395η

25344

)]}

,

(4.18b)

∆ΘT
60 = −

√

π

13

5MηS2ξ∆x

178827264
(−839 + 3612η) . (4.18c)

We use the notation ∆x = xf − xi, where xi and xf
correspond to the PN parameter x evaluated at an early
retarded time ui and a final time uf during the inspi-
ral, respectively. The terms outside the curly braces
in Eq. (4.18) in the expressions for ∆ΘT

20 and ∆ΘT
40

are equal to the equivalent results in GR. To simplify
the notation, we do not include the PN error terms in
Eqs. (4.18) or (4.20), which are both are O[∆(x3/2)],

where ∆(x3/2) = x
3/2
f − x

3/2
i .

Finally, we will construct the displacement memory
waveform from the ∆Θl0 in Eq. (4.18). To do this, it
is helpful to have the expressions for the spin-weighted
spherical harmonics

−2Y20(ι, ϕ) =
1

4

√

15

2π
sin2 ι , (4.19a)

−2Y40(ι, ϕ) =
3

16

√

10

π
sin2 ι(7 cos2 ι− 1) , (4.19b)

−2Y60(ι, ϕ) =
1

64

√

1365

π
sin2 ι(33 cos4 ι− 18 cos2 ι+ 1) .

(4.19c)

Substituting Eqs. (4.18) and (4.19) into Eq. (4.11), we
obtain the displacement memory waveform due to the
energy flux from tensor GWs in BD theory. We find
the waveform only contains the plus polarization, and at
Newtonian order, it is given by

∆h
(disp,T)
+ =

ηM∆x

48R
sin2 ι(17 + cos2 ι)

[

1− 4

3
G − 5ξS2

48∆x
ln

(

xf
xi

)

− ξ(1 + F )− ξS2

(

81145

73728
− 65465

18432
η

)

+ξS2

(

20975

172032
− 1075

2048
η

)

cos2 ι

]

+
MηS2ξ∆x

R
sin2 ι

(

783875

2064384
− 35575

24576
η

)

. (4.20)

The expression in front of the square brackets on the
first line of Eq. (4.20) is the same as the Newtonian-
order waveform for the memory effect in GR. The terms
within the square bracket highlight a number of correc-
tions introduced into the memory waveform amplitude in
BD theory. These include effects related to the change
in the amplitude of the l = 2, m = ±2 modes (the ξ and
G terms) and changes in the frequency evolution (the F

term). In particular, there is a change in the scaling of
the memory with the PN parameter that is proportional
to ln(xf/xi), which arises because of scalar dipole radi-
ation. At the end of the first and on the second line of
Eq. (4.20) are a number of terms arising from 1PN-order
products of multipole moments coupling to the −1PN
term in the frequency evolution (or ẋ); the terms on the
second line lead to a small (order ξ) difference to the sky
pattern of the memory effect between BD theory and GR.

2. Displacement memory effect from the energy flux of

scalar radiation

The displacement memory effect also has a contribu-
tion from the integral of the energy flux of the scalar

radiation. Its effect can be computed from the terms
proportional to (∂uλ1)

2 in Eq. (4.6):

∫

d2Ωα(xC)Ð2(Ð2 + 2)∆ΘS

=
6 + 4ω

(λ0)2

∫ uf

ui

du

∫

d2Ωα(xC)(∂uλ1)
2 .

(4.21)

Expanding λ1 and ∆ΘS in scalar spherical harmonics as
in Eqs. (3.19) and (4.9), respectively, and choosing α =
Ȳlm, we can determine the multipole moments ∆ΘS

lm in
terms of the multipole moments λ1(lm) and the integrals
of three spherical harmonics defined in Eq. (4.2). The
result is

∆ΘS
lm =

(l − 2)!

(l + 2)!

6 + 4ω

(λ0)2

∑

l′,m′,l′′,m′′

Bl(0, l
′,m′; 0, l′′,m′′)

×
∫ uf

ui

du λ̇1(l′m′)λ̇1(l′′m′′) ,

(4.22)

where l ≥ 2 and l′, l′′ ≥ 1 (and m, m′, and m′′ must
satisfy m = m′ +m′′). Because λ1 is proportional to ξ,
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one might be concerned that ∆ΘS will be an O(ξ2) effect
and be negligible in our approximation. Note, however,
that 3+2ω = 2/ξ−1, which implies that ∆ΘS is an O(ξ)
effect; thus, the integrand can be one order higher in ξ
and still produce an effect at linear order in ξ.

We will now discuss which scalar multipole moments
contribute to the displacement memory waveform and
the accuracies at which we need the different moments to
obtain a Newtonian-order-accurate GW memory wave-
form, at linear order in ξ. The 1PN scalar multipole
moments λ1(lm) that are computed from Eq. (3.20) are
at least O(ξ); thus, to linear order in ξ, we can treat
6 + 4ω as 4/ξ. We will evaluate the integral over u in
Eq. (4.22) by converting it to an integral over x (as was
done in Sec. IVB 1), but unlike in Sec. IVB 1 we need
to keep only the GR contribution in ẋ, which scales as
x5. Similarly, when computing dφ/dx, we again need to
retain just the GR contribution that goes as x−7/2. The
scalar field has a radiative dipole moment, which from
Eq. (3.24a), goes as x−1/2. The leading-order part of the

integrand (proportional to λ̇1(11)λ̇1(1,−1)) scales as 1/x

rather than O(x0) as in GR; in this sense, the integrand
is a −1PN order.6 This product of dipole terms will also
contribute to the waveform at 0PN order because of the
O(x3/2) terms in λ1(11); see Eq. (3.24a). To work to lin-
ear order in ξ, we do not need to go to a higher PN order
for λ1(11). Similar arguments show that the remaining
scalar moments in Eq. (3.24) (namely, λ1(22) and λ1(31))
are the ones that are needed to compute Newtonian-order
accurate moments of ∆ΘS

l0.
We then first list the integrals of the relevant moments

λ1(lm) that contribute to ∆ΘS
l0 at Newtonian order:

∆ΘS
20 =− 1

42
√
5πλ20ξ

∫ uf

ui

du

(

7|λ̇1(11)|2 + 10|λ̇1(22)|2

− 6
√
14ℜ

[

λ̇1(11)
˙̄λ1(31)

]

)

, (4.23a)

∆ΘS
40 =

1

630
√
πλ20ξ

∫ uf

ui

du

(

|λ̇1(22)|2

− 2
√
14ℜ

[

λ̇1(11)
˙̄λ1(31)

]

)

. (4.23b)

As we did with the the memory sourced by the tensor
energy flux, we first substitute the expressions for the
scalar moments in Eq. (3.24) into Eq. (4.23) and evaluate
the integrals in terms of x by using Eqs. (3.16)–(3.18).
This gives the following results:

∆ΘS
20 =− Mηξ

√
5π

144

{

S2 ln

(

xf
xi

)

6 Note, however, when the integrand is integrated, it will again
give rise to a logarithm in x rather than being proportional to x,
as in GR. We will refer to this effect sometimes as a −1PN term,
since it comes from such an effect in the integrand, and since log
terms do not enter into the PN order counting of a term.

+∆x

[

8

7
Γ2 − 23

14
SΓ

δm

M
+ S2

(

71

336
− 157

84
η

)]}

,

(4.24a)

∆ΘS
40 =

Mηξ
√
π∆x

30240

(

8Γ2 − Γ
δm

M
+ 2S2η

)

. (4.24b)

The PN error terms in Eqs. (4.24) or (4.25) are again
O[∆(x3/2)], which we dropped, to simplify the expres-
sions.

We then substitute (4.24) into Eq. (4.11), and with
the expressions for the spin-weighted spherical harmon-
ics in Eq. (4.19), we arrive at the following equation for
the displacement memory waveform sourced by the scalar
energy flux:

∆h
(disp,S)
+ =− 5ηMξ

192R
sin2 ι

{

S2 ln

(

xf
xi

)

+∆x

[

6

5
Γ2 − 33

20
SΓ

δm

M

+ S2

(

71

336
− 113

60
η

)

− 1

20

(

8Γ2 − SΓ
δm

M
− 2S2η

)

cos2 ι

]}

.

(4.25)

There are terms in Eq. (7.2e) of [68] which, after perform-
ing the integration over time in our approximation, pro-
duce a −1PN term in the waveform; this term agrees with
the first line of Eq. (4.25). The Newtonian-order terms
require going to a higher PN order than was computed
in [68], but the BMS balance laws allow us to determine
these expressions.

Because the total GW memory ∆hdisp is a sum of the
scalar and tensor contributions, as given in Eq. (4.12),
then the scalar-sourced contribution will produce an ad-
ditional correction to the amplitude and the sky pattern
beyond the corrections given in Eq. (4.20) for the tensor-
sourced part of the memory effect.

C. GW spin memory effect

The GW spin memory effect is a lasting offset in the
time integral of the magnetic part of the shear tensor.
It can be constrained through the evolution equation for
the Bondi angular momentum aspect, or equivalently the
magnetic part of the flux of the super Lorentz charges.
To compute the spin memory effect, it is helpful to denote
the time integral of the potential Ψ, which gives rise to
the magnetic part of cAB in Eq. (4.1), as ∆Σ:

∆Σ =

∫

Ψdu . (4.26)

We leave off the limits of integration for convenience,
though we will later restore these limits when we com-
pute the spin memory in the PN limit. The generalized
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BMS balance law for the super angular momentum was
given in [50], and analogously to the computation in GR
(see, e.g., [33]), a term involving Eq. (4.26) was needed
to ensure that the balance law was satisfied. The form
of the balance law can be written as
∫

d2Ω γÐ2(Ð2 + 2)∆Σ = −64π

λ0

(

∆Q(γ) +∆J(γ)

)

,

(4.27a)
where Y A = ǫABðBγ is a smooth, magnetic-parity vector
field on the 2-sphere, and where we have defined

∆J(γ) =
λ0
64π

∫

du d2Ω ǫAD
ðDγ

[

ðA(cBCN
BC)

+ 2NBC
ðAcBC − 4ðB(cACN

BC)

+
4ω + 6

(λ0)2
(∂uλ1ðAλ1 − λ1ðA∂uλ1)

]

,

(4.27b)

∆Q(γ) =
λ0
8π

∫

d2Ω ǫAD
ðDγ [−3∆LA

− 1

4λ0
∆(cABð

Bλ1 − λ1ð
BcAB)

]

. (4.27c)

The net flux is denoted by ∆J(γ), the change in the
charges is denoted by ∆Q(γ), and the left-hand side of
Eq. (4.27a) (which is related to the spin memory effect)
is the additional term required for the balance law to
be satisfied. Analogously to the displacement memory,
the contribution of ∆Q(γ) to Eq. (4.27a) is referred to as
ordinary spin memory, and ∆J(γ) is the null spin mem-
ory (which contains a nonlinear part). We will focus on
the null contribution to Eq. (4.27a) here, as we argue in
App. B that the ordinary contribution to the spin mem-
ory is likely to be a higher PN effect than the null memory
is.

As we did with the change in ∆Θ related to the dis-
placement memory effect, we will split ∆Σ into a sum
of its contributions from the angular momentum flux of

tensor and scalar radiation. We denote these two contri-
butions by

∆Σ = ∆ΣT +∆ΣS , (4.28)

and we compute these two contributions separately be-
low.

In addition, while the spin-weight-zero quantity ∆Σ
is the most convenient quantity to compute from the
balance law (4.27a), the shear cAB or strain h are the
more commonly used quantities in gravitational wave-
form modeling and data analysis. We thus relate ∆Σ to
a time integral of the shear; specifically, we denote the
change in the time integral of the magnetic-parity part
of the shear tensor by

∫

cAB,(b)du = ǫC(AðB)ð
C∆Σ . (4.29)

Expanding ∆Σ in terms of scalar spherical harmonics

∆Σ =
∑

l,m

∆ΣlmY
lm (ι, ϕ) (4.30)

(with l ≥ 2 and −l ≤ m ≤ l), then we can relate the
multipole moments ∆Σlm to the time integrals of the
radiative current moments Vlm via Eqs. (4.29), (2.14b),
and (2.13). The result is that

∫

Vlmdu =

√

(l + 2)!

2(l − 2)!
∆Σlm . (4.31)

Equation (4.31) allows us to compute the time integral
of the strain from ∆Σlm.

1. Spin memory effect from the angular momentum flux of

tensor GWs

The null part of the spin memory effect in Eqs. (4.27a)
and (4.27b), that is sourced by the tensor GWs can be
computed from the following expression:

∫

d2Ω γÐ2(Ð2 + 2)∆ΣT =

∫ uf

ui

du

∫

d2Ω ǫAD
ðDγ

[

ðA(cBCN
BC) + 2NBC

ðAcBC − 4ðB(cACN
BC)

]

. (4.32)

It has the same form as the analogous expression in GR.
It can then be recast into the same form as in Eq. (3.23)
of [33] by using the identities in Appendix C of [33]. This
expression was then the starting point for the multipolar
expansion of the spin memory effect given in [35]. We
reproduce the result from [35] below; however, we first

introduce, in addition to s
l,(±)
l′;l′′ in Eq. (4.15), the following

coefficients (defined in [34]) to make the expression more

concise:

cll′m′;l′′m′′ = 3
√

(l′ − 1) (l′ + 2)Bl (−1, l′,m′; 2, l′′,m′′)

+
√

(l′′ − 2) (l′′ + 3)Bl (−2, l′,m′; 3, l′′,m′′) .
(4.33)

The expression for the moments ∆Σlm can then be de-
rived through a lengthy calculation outlined in [35], and
the result is given by
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∆ΣT
lm =

1

4
√

l(l + 1)

(l − 2)!

(l + 2)!

∑

l′,l′′,

m′,m′′

cll′m′;l′′m′′

∫ uf

ui

du
[

is
l,(−)
l′;l′′

(

Ul′m′U̇l′′m′′ − U̇l′m′Ul′′m′′ + Vl′m′ V̇l′′m′′ − V̇l′m′Vl′′m′′

)

−sl,(+)
l′;l′′

(

Ul′m′ V̇l′′m′′ + V̇l′m′Ul′′m′′ − U̇l′m′Vl′′m′′ − Vl′m′U̇l′′m′′

)]

.

(4.34)

To compute the spin memory effect at Newtonian or-
der, we need precisely the same set of radiative multi-
pole moments Ulm and Vlm that were used to compute
the displacement memory effect in Sec. IVB 1. We then

compute the spin memory effect following the same pro-
cedure in Sec. IVB 1 by first writing the needed moments
of ∆Σlm in terms of integrals of the relevant radiative
moments Ulm and Vlm:

∆ΣT
30 = − 1

720
√
7π

∫ uf

ui

du

{

ℑ
[

9
(

˙̄U22U22 − 2 ˙̄V21V21

)

+ 7
(

˙̄U31U31 − ˙̄U33U33

)

+ 11
√
5
(

˙̄U22U42 +
˙̄U42U22

)]

+ℜ
[

5
√
35
(

˙̄V32U22 − ˙̄U22V32

)

− 5

√

7

2

(

˙̄V21U31 − ˙̄U31V21

)

]}

, (4.35a)

∆ΣT
50 =

1

5040
√
11π

∫ uf

ui

du

{

ℑ
[

5
(

˙̄U33U33 + 5 ˙̄U31U31

)

− 38√
5

(

˙̄U22U42 +
˙̄U42U22

)

]

+ℜ
[

2

√

7

5

(

˙̄U22V32 − ˙̄V32U22

)

+ 2
√
14
(

˙̄V21U31 − ˙̄U31V21

)

]}

. (4.35b)

As in Sec. IVB 1, we then use Eqs. (3.5a), (3.5b)–
(3.5f), and (3.16)–(3.18) to evaluate the integrals in
Eqs. (4.35a)–(4.35b) and to write the expression for the
moments ∆Σ30 and ∆Σ50 in terms of x. Unlike in
Sec. IVB 1, the integrand does not depend on ẋ, when
written as an integral over x, because there is only one
time derivative of the radiative multipole moments. The
result of this integration is given by

∆ΣT
30 =

√

π

7

ηM2

10

{

−5ξS2

144
∆(x−3/2) + ∆(x−1/2)

[

1− 4

3
G

− (1 + F )ξ +
5(47796η+ 5003)S2ξ

435456

]}

,

(4.36a)

∆ΣT
50 =−

√

π

11

ηM2ξS2

12192768
(21588η− 4117)∆(x−1/2) ,

(4.36b)

where we have defined ∆(x−1/2) = x
−1/2
f − x

−1/2
i and

similarly for ∆(x−3/2). The PN error terms in Eqs. (4.36)
and (4.39) are both expected to be of order log(xf/xi),
which would arise from O(1/x) terms in the u integral.
We did not write these terms out explicitly, so as to sim-
plify the notation.

In GR, the only term that appears in the Newtonian-

order spin-memory waveform is ∆(x−1/2) times the co-
efficient outside the curly braces in Eq (4.35a). The
remaining terms in ∆Σ30 and the entire expression for
∆Σ50 appear in the BD-theory waveform at Newtonian
order because of the −1 PN term in dφ/dx and the ad-
ditional radiative multipole moments that contribute in
BD theory, but not in GR.

Finally, we construct the time-integrated strain from
the moments ∆Σl0 in Eqs. (4.36a)–(4.36b). Using
Eqs. (2.8), (2.9), (2.19), and (4.31), we can write the re-
lation between the time integral of h and a general ∆Σlm

as

∫ uf

ui

h(spin)du =
−i
2R

∑

l,m

√

(l + 2)!

(l − 2)!
∆Σlm(−2Y lm) .

(4.37)
Because the modes ∆Σl0 that produce the time-
integrated strain h(spin) in Eq. (4.36a) and (4.36b) are
real, then from Eq. (2.7) it follows that the spin mem-
ory enters in the cross mode polarization of gravita-
tional waves (as it does in GR [35]). Finally substituting
Eqs. (4.36a)–(4.36b) into (4.37), and using the expres-
sions for the spin-weighted spherical harmonics

−2Y30(ι, ϕ) =
1

4

√

105

2π
sin2 ι cos ι , (4.38a)
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−2Y50(ι, ϕ) =
1

8

√

1155

2π
sin2 ι cos ι(3 cos2 ι− 1) , (4.38b)

we obtain for the time-integrated strain

∫ uf

ui

du h
(spin,T)
× =

3ηM2

8R
sin2 ι cos ι

{

−5ξS2

144
∆(x−3/2) +

[

1− 4

3
G − (1 + F )ξ − ξS2

(

3365

6912
η +

1915

27648

)]

∆(x−1/2)

+ξS2

(

20585

580608
− 1285

6912
η

)

∆(x−1/2) cos2 ι

}

. (4.39)

The expression for the u integral of h
(spin,T)
× is writ-

ten such that the angular dependence and coefficient
3ηM2/(8R) outside of the curly braces coincides with
the expression in GR at Newtonian order. Within the
curly braces there are several sorts of terms: (i) the first
term proportional to ∆(x−3/2) is a −1PN term arising
from the dipole term in the phase, but which has the
same angular dependence as the spin memory effect in
GR; (ii) the terms in the square bracket (aside from the
factor of unity that reproduces the GR expression for the
spin memory) are small BD corrections (proportional to
ξ) that modify the amplitude of the waveform without
changing its x or ι dependence; (iii) the final terms on
the second line are those which have the same x depen-
dence, but a different angular dependence from the GR
expression (and are again proportional to ξ).

2. Spin memory effect from the angular momentum flux of

the scalar radiation

The angular momentum flux from the scalar radiation
produces a second contribution to the spin memory ef-
fect. Its contribution can be obtained from the scalar
field terms in the balance law in Eq. (4.27a),
∫

d2ΩγÐ4(Ð2 + 2)∆ΣS = −6 + 4ω

(λ0)2

∫ uf

ui

d2ΩduǫAB
ðBγ

× (λ̇1ðAλ1 − λ1ðAλ̇1) .
(4.40)

The multipolar expansion of ∆Σ can be obtained by as-
suming γ is equal to the spherical harmonic Ȳlm, and then
using the multipolar expansion of λ1 in Eq. (3.19). Af-
ter relating the gradients and curls of spherical harmon-
ics in this expansion to the electric- and magnetic-parity
vector harmonics in Eqs. (4.4a)–(4.4b) and then employ-
ing the relationship between these vector harmonics and
the spin-weighted spherical harmonics in Eqs. (4.5a)–
(4.5b),we can derive the moments ∆Σlm in terms of mo-
ments λ1(lm) (and their time derivatives and complex
conjugates) and the coefficients Bl(s

′, l′,m′; s′′, l′′,m′′)
given in Eq. (4.2). The resulting expression is given be-
low:

∆ΣS
lm =

i(2ω + 3)

λ20
√

l(l + 1)

(l − 2)!

(l + 2)!

∑

l′,m′,l′′,m′′

s
l,(−)
l′;l′′

×
√

l′′(l′′ + 1)Bl(0, l
′,m′; 1, l′′,m′′)

×
∫ uf

ui

du(λ̇1(l′m′)λ1(l′′m′′) − λ1(l′m′)λ̇1(l′′m′′)) .

(4.41)

The coefficient s
l,(−)
l′;l′′ is defined in Eq. (4.15).

The moments of λ1(lm) that contribute to the
Newtonian-order spin memory effect are the same mo-
ments needed to compute the scalar-sourced displace-
ment memory effect in Sec. IVB 2. The only nonvan-
ishing moment of ∆Σ at this order then is ∆Σ30, and to
linear order in ξ it is given by

∆ΣS
30 = − 1

30ξ(λ0)2
1√
7π

∫ uf

ui

duℑ
[

λ̇1(22)λ̄1(22)

−
√

7

2

(

λ̇1(11)λ̄1(31) − λ1(11)
˙̄λ1(31)

)

]

. (4.42)

We can then use the expressions for the scalar-field multi-
pole moments in Eq. (3.24) to evaluate the integrals and
write them in terms of x (analogously to what was done
for the tensor-GW part of the spin memory effect), and
we find it is given by

∆ΣS
30 =

√
πηM2ξ

1440
√
7

(

2ηS2 + ΓS
δm

M
− 8Γ2

)

∆
(

x−1/2
)

.

(4.43)
It is then straightforward to use Eq. (4.37) to write the
retarded-time integral of the spin memory waveform gen-
erated by scalar angular momentum flux as

∫ uf

ui

duh
(spin,S)
× =

ηM2ξ

384R

(

2ηS2 + Γ
δm

M
S − 8Γ2

)

×∆
(

x−1/2
)

sin2 ι cos ι . (4.44)

The PN error terms in Eqs. (4.43) and (4.44) are both
expected to be of order log(xf/xi), which would arise
from O(1/x) terms in the u integral.

The full retarded-time integral of the spin memory

waveform is h
(spin)
× = h

(spin,S)
× + h

(spin,T)
× . It then adds

small correction linear in ξ to Eq. (4.39) that changes the
amplitude but does not alter the x or ι dependence of the
effect.
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V. CONCLUSIONS

In this paper, we computed the displacement and spin
GW memory effects generated by nonprecessing, quasi-
circular binaries in BD theory. We worked in the PN
approximation, and the expressions that we computed
are accurate to leading Newtonian order in the PN pa-
rameter x, and they include the leading-order corrections
in the BD parameter ξ. Our calculations relied upon us-
ing the BMS balance laws associated with the asymptotic
symmetries in BD theory (which are the same as in GR).
These balance laws permit us to determine the tensor
GW memory effects, but the scalar GW memory effects
associated with the breathing polarization are not con-
strained through these balance laws. We further focused
on the null contributions to the tensor GW memory ef-
fects, because we estimated that the ordinary (linear)
memory effects would contribute at a higher PN order
than the null (including the nonlinear) memory effects.

Using the BMS balance laws has the advantage that
we can determine the memory effects in BD theory to a
higher PN order than had been previously done through
the direct integration of the relaxed Einstein equations
in harmonic gauge. However, the balance laws take as
input radiative and nonradiative data at large Bondi ra-
dius and this data must be obtained through some other
method. Specifically, in the context of this paper in PN
theory, we needed to take as input the oscilliatory scalar
and tensor GWs computed in harmonic gauge in BD the-
ory in [69]. This required us to compute a coordinate
transformation between harmonic and Bondi gauges at
leading order in the inverse distance to the source, so that
we could relate the radiative GW data in these two dif-
ferent coordinate choices (and formalisms). There were
relatively simple transformations that allowed us to re-
late the Bondi shear tensor to the transverse-traceless
components of GW strain, and these relations were par-
ticularly simple when expressed in terms of the radia-
tive multipole moments of the shear and strain tensors.
There were similar expressions relating the scalar field
at leading order in inverse distance in the two coordinate
systems and the corresponding multipole moments of the
scalar field. With these relationships between the multi-
polar expansions of the scalar field and the shear tensor
in harmonic and Bondi gauges, we could then use the
BMS balance laws to compute the GW memory effects.

The tensor GW memory effects in BD theory have sev-
eral noteworthy differences from the corresponding ef-
fects in GR at the equivalent PN order. First, because
of scalar dipole radiation in BD theory, there are relative
−1PN-order terms in the memory effects in BD theory.
The −1PN term in the displacement memory waveform
comes from two sources in the supermomentum balance
law: (i) directly from the energy flux of scalar radiation
and (ii) indirectly from the energy flux in tensor radia-
tion (specifically through dipole contributions to the fre-
quency evolution and the GW phase). The spin memory
waveform, however, has a relative −1PN correction from

GR arising from only the energy flux of the tensor waves
(the scalar-sourced part of the energy flux gives rise to
a contribution at the same leading order as in GR, and
it comes from products of dipole and octupole moments,
as well as quadrupole moments with themselves). The
absence and presence of the −1PN term from the scalar
radiation in the spin and displacement memory effects,
respectively, arises because of the different lowest multi-
pole term in the sky pattern of the effects: the spin mem-
ory effect begins with the l = 3, m = 0 mode, whereas
the displacement memory has an l = 2, m = 0 mode.

A second noteworthy feature is that the computation
of Newtonian-order memory effects in BD theory requires
radiative multipole moments of the strain at higher PN
orders than are required in GR (in which the leading-
order effects can be computed from just the l = 2,
m = ±2 radiative mass quadrupole moments. Because
there are −1PN terms in the GW phase and the evolu-
tion of the GW frequency, computing the Newtonian GW
memory effects requires higher-PN-order radiative mul-
tipole moments (including the current quadrupole, the
mass and current octupoles, and the mass hexadecapole).
These higher-order mass and current multipole moments
also give rise to a sky pattern of the GW memory effect
in BD theory that differs from the sky pattern of the ef-
fect in GR. In addition, the presence of dipole radiation
required us to include 1PN corrections to the GW phase
and frequency time derivative to compute the memory
effects to Newtonian order (though we only required the
GR limit of these 1PN corrections when working to linear
order in the BD parameter ξ).

Finally, let us conclude by commenting on potential
applications of the calculations of GW memory effects
given in this paper. Because the calculations herein have
shown that the memory effect in BD theory differs from
that in GR, it is natural to ask if these differences could
be detected. Given the challenges of detecting the mem-
ory effect in GR with LIGO and Virgo [15, 16, 80] and
the fact that the PN corrections are small, it would
be more natural to consider whether next-generation
gravitational-wave detectors—such as the space-based
detector LISA [81] or ground-based detectors like the
Einstein Telescope or Cosmic Explorer [82, 83]—could
constrain BD theory through a measurement of the GW
memory effect. The constraints could come from search-
ing for differences in the leading-order amplitude of the
effect, in the time dependence of the accumulation of the
memory effect (through the different dependence on the
PN parameter x), or in the sky pattern of memory effects
in BD theory (the latter being similar to the hypothesis
test described in [73]). Because memory effects accumu-
late most rapidly during the merger of compact binaries,
having waveforms that go beyond the PN approximation
and include the merger and ringdown would be important
for producing the most accurate constraints. Neverthe-
less, we use the PN results to give order-of-magnitude
estimates for the prospects of detecting any BD effects
in the memory waveforms.
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The BD corrections to the GW memory waveforms
computed in this paper depend on the BD parameter
ξ and the sensitivities of the binary’s components. The
dependence on the sensitivities is such that for binary
black holes, which have binary components with sensitiv-
ities equal to one half in BD theory, the Newtonian GW
memory waveform for binary black holes is equivalent to
the waveform in GR after rescaling the black-hole masses
by (1−ξ/2). The fact that there exists a constant redefi-
nition of the mass that produces the same waveform as in
GR implies that the difference is not observable, as was
previously noted in Refs. [68, 70, 77] in PN theory. This
also implies that observations of GWs from supermassive
binary black holes by the LISA detector, although pos-
sibly high in signal to noise [81], may not be able detect
or constrain features of BD theory.

Mixed black-hole neutron-star binaries, however, will
have observable effects, because the objects have different
sensitivities. From Eqs. (4.20), (4.25), (4.39), and (4.44),
it follows that the leading PN BD correction is O(ξ/∆x)
smaller than the leading PN GR memory effects.7 Given
the current lower bound on ξ and taking the final PN pa-
rameter xf to be PN parameter at the frequency of the
innermost stable circular orbit, the −1PN BD correc-
tions are O(10−4) times smaller in amplitude than the
0PN GR memory effects. While we have not performed
a detailed signal-to-noise calculation, this does make it
appear challenging to detect the effects if present. How-
ever, it is difficult to provide an accurate estimate for the
signal-to-noise of the BD memory effects for the follow-
ing reasons. First, to the best of our knowledge, there
has not been a systematic study of the signal to noise for
GW memory effects arising from black-hole neutron-star
binaries, even in GR. Second, memory effects accumulate
most rapidly during the merger of compact binaries, dur-
ing which the PN approximation becomes less valid and
numerical simulations of the merger and ringdown are re-
quired to produce accurate waveforms. We thus leave a
quantitative assessment of the detection prospects of the
GW memory effects in BD theory for future work.
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Appendix A: Coordinate transformations from

harmonic gauge to Bondi gauge

In this appendix, we construct a coordinate transfor-
mation between harmonic coordinates to linear order in
1/R and Bondi coordinates at an equivalent order in 1/r
for a radiating spacetime in Brans-Dicke theory. The
procedure is similar to that recently described in [76] in
GR, but we do not work to all orders in 1/r as in [76].
Rather, we work only to an order in 1/r so that we can

relate the radiative data in harmonic gauge (h̃TT
ij and Ξ)

to the corresponding radiative data in Bondi gauge (cAB

and λ1) and compute the GW memory effects from PN
waveforms in harmonic gauge.

We will denote the harmonic-gauge metric by g
(H)
µν

which we write in quasi-Cartesian coordinates Xµ =
(X0, X i), where X0 = t and X i = (X,Y, Z). We

find it convenient to define R =
√

X iXjδij to be the

harmonic-gauge distance from the origin, and yA = (ι, ϕ)
to be spherical polar coordinates with cos ι = Z/R and
tanϕ = Y/X . The components of the metric can then
be written in the form

g
(H)
00 = −1 +

2AM

R
+

1

R
H00(t−R, yA) , (A1a)

g
(H)
0i =

1

R
H0i(t−R, yA) , (A1b)

g
(H)
ij = δij +

2BM

R
δij +

1

R
Hij(t−R, yA) . (A1c)

We have written the metric in the center-of-mass rest
frame of the system, and we have split the O(1/R) part
of the metric in terms of the constant mass monopole mo-
ment M and all the time-dependent, higher-order mul-
tipole moments in Hµν . We have also introduced con-
stants A and B [defined in Eq. (A3)] which are needed
so that the metric satisfies the modified Einstein’s equa-
tions in the static limit (at the leading nontrivial order in
1/R). To specify a solution, we also need an expression
for the scalar field, which we give in the Jordan frame,
and which we denote by λ. We will again expand it in
terms of a static monopole moment and time-dependent,
higher-order multipole moments as follows:

λ = λ0

[

1 +
ψ(t−R, yA) + 2CM

R

]

. (A2)

The monopole term is the O(1/R) piece proportional to
2λ0CM and ψ contains the higher-order, time-dependent
moments. The third coefficient C is again needed to
satisfy the field equations in the static limit. The ex-
pressions for the constants A, B, and C were previously
determined in [68, 70, 84] and are given by

A =
ω + 2− κ

ω + 2
, (A3a)
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B =
ω + 1 + κ

ω + 2
, (A3b)

C =
1− 2κ

2ω + 4
. (A3c)

We introduced the variable κ = (m1s1+m2s2)/M in the
equations above. The coefficients also satisfy the rela-
tionships A−B = 2C and A+B = 2/λ0.

The harmonic gauge conditions lead to relationships
between the components of the quantities Hµν and ψ.
These relationships are more conveniently expressed in
terms of a quantity H̃µν , which is related to Hµν and ψ
by

Hµν = H̃µν − 1

2
H̃ηµν − ψηµν . (A4)

The gauge conditions are given by

H̃00 = ninjH̃ij , H̃0i = −njH̃ij . (A5)

We have defined ni = X i/R = ∂iR above, and it reduces
to the expression ~n ≡ (sin ι cosϕ, sin ι sinϕ, cos ι) when
written in terms of ι and ϕ.8

Our procedure for transforming from harmonic gauge
to Bondi gauge follows some aspects of the work [76]
in GR, in which Bondi coordinates were determined in
terms as functions of harmonic-gauge quantities. In our
case, however, we consider BD theory, we work only to
linear order in 1/R in harmonic coordinates, and we de-
termine the corresponding Bondi coordinates in an ex-
pansion in 1/R, such that Bondi gauge is imposed to one
order in 1/r beyond the leading-order metric. To per-
form the coordinate transformation, it is useful to work
with the components of the inverse metric. In harmonic
gauge, these components are given by

gµν(H) = ηµν(H)−
1

R

[

Hµν + 2M(Aδµ0 δ
ν
0 +Bδµi δ

ν
j δ

ij)
]

+O(R−2) ,

(A6)
where Hµν is related to Hµν by raising indices with ηµν(H).

We aim to put the metric in Bondi form, in which the
nonzero components of the inverse Bondi metric are given
by

gur(B) =− 1− λ1
λ0r

+O
(

r−2
)

, (A7a)

grr(B) = 1 +
∂uλ1
λ0

+
1

r

(

λ1
λ0

− 2M+
λ1∂uλ1
2λ20

)

+O
(

r−2
)

, (A7b)

8 The conditions in Eq. (A5) can be derived by first making the
definitions given, e.g., in [70, 77], of a conformally rescaled metric
g̃µν = λgµν , then defining h̃µν to be h̃µν = ηµν −

√
−g̃g̃µν , and

imposing the harmonic gauge condition ∂ν h̃µν = 0. When the
harmonic gauge condition is imposed at leading order in 1/R,
then the conditions in (A5) can be obtained up to integration
constants that we set to zero [so as to maintain the static solution
of Einstein’s equations in Eqs. (A1) and (A2)].

grA(B) =
1

2r2

(

ðBc
AB − ðAλ1

λ0

)

+O
(

r−3
)

, (A7c)

gAB
(B) =

1

r2
qAB − 1

r3
cAB +O(r−4) (A7d)

(and where guu(B) = guA(B) = 0). For simplicity, we will

summarize Eq. (A7) as

gµν(B) = ηµν(B) −
1

r
hµν(B) , (A8)

where the quantity ηµν(B) consists of the O(r0) pieces of

gur(B) and grr(B), the O(r−1) part of grA(B) (which vanishes)

and the O(r−2) part of gAB
(B) ; the quantity hµν(B) consists

of the coefficients of the relative 1/r corrections to the
components of ηµν(B).

We perform the coordinate transformation in two
stages for illustrative purposes (one could perform it in
one stage as in [76], but the two-stage process here allows
us to highlight the different roles of the different terms
in the transformation more easily). The first stage im-
poses the gauge conditions on the inverse Bondi metric
that guu(B) and guA(B) vanish to the accuracy in 1/r at which

we work, it also makes r an areal radius, and finally,
it relates the Bondi-coordinate retarded time u to the
harmonic-gauge retarded time t − R. It can be thought
of as a “finite” gauge transformation, in the sense that it
is needed to relate the background metrics ηµν(B) and ηµν(H),

which differ by a large (not perturbative in 1/r) coor-
dinate transformation. The second stage, which can be
treated as perturbative in 1/r, then sets the metric fol-
lowing the first transformation into a Bondi-gauge metric
that satisfies the modified Einstein equations of BD the-
ory.

The first stage, the finite part of the coordinate trans-
formation expresses a set of coordinates xα = (u, r, xA)
in terms of harmonic gauge coordinates Xα = (t,X i),
though, it is expressed more easily in terms of the spher-
ical polar coordinates (t, R, yA) constructed from har-
monic coordinates as follows:

u = t−R− 2M

λ0
lnR , (A9a)

r = R+BM − ψ

2
, (A9b)

xA = yA . (A9c)

The coordinates (u, r, xA) resemble, but are not precisely
Bondi coordinates at the order in 1/r at which we work,
because they do not enforce all of the required properties
of the Bondi-gauge metric. We will thus write this “in-
termediate” metric as gµν(I) , and it can be computed from

the harmonic-gauge metric using the transformation law
for the components of a rank-two contravariant tensor:

gµν(I) = gαβ(H)

∂xµ

∂Xα

∂xν

∂Xβ
. (A10)

A somewhat lengthy, but otherwise straightforward cal-
culation shows that this metric can be written in the
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form

gµν(I) = ηµν(B) −
1

r
hµν(I) , (A11)

where η
(B)
µν is the leading order part of the inverse Bondi

metric in Eq. (A7) when ∂uΞ = ∂uλ1. The coefficients of
the relative 1/r corrections to ηµν(B) we denoted by hµν(I),

and they are given by

hrr(I) =
2M

λ0
(∂uψ)

2 −
(

H̃

2
− 2BM + ψ

)

∂uψ

+Hijn
inj + 2BM +O

(

r−1
)

, (A12a)

hur(I) = −M
λ0
∂uψ +

Ξ

λ0
+
H̃

2
+O

(

r−1
)

, (A12b)

r hrA(I) = −
(

H0ið
Ani − 1

2
ð
Aψ

)

+O
(

r−1
)

, (A12c)

huu(I) = O
(

r−1
)

, (A12d)

huA(I) = O
(

r−2
)

, (A12e)

r2hAB
(I) = Hijð

Ani
ð
Bnj + ψqAB +O

(

r−1
)

. (A12f)

To arrive at Eq. (A12), we used the conditions in Eq. (A5)
and we expressed ∂tψ in terms of ∂uψ (and other terms)
using the derivatives of the first two lines in Eq. (A9) and
the chain rule:

∂tψ = ∂uψ − M

rλ0
(∂uψ)

2 . (A13)

Note that nonlinear terms involving ψ appear here and
elsewhere in hrrI , because the coordinate transformations
in (A9a)–(A9c) involve ψ at order O(R0).

The metric is similar to a Bondi-Sachs form to the
order in 1/r at which we work, in the sense that the Bondi
gauge conditions guu(I) = guA(I) = 0 are satisfied at this

order and the right-hand side of Eq. (A12f) is traceless
with respect to qAB (thereby being consistent with the
determinant condition of Bondi gauge). Note, however,
that the ur, rr, and rA components of hµν(I) do not satisfy

the modified Einstein equations in Bondi-Sachs gauge, as
they are not consistent with the form of the inverse metric
in Eq. (A7). The metric can be put into Bondi gauge with
a perturbative (in 1/r) coordinate transformation, as we
describe next.

We will parametrize the perturbative coordinate trans-
formation in terms of a vector ξµ which effects the coor-
dinate transformation xµ → xµ + ξµ. This coordinate
transformation will take the part of the metric hµν(I)/r

and bring it to the Bondi-Sachs form hµν(B)/r, through

the transformation

1

r
hµν(B) =

1

r
hµν(I) + L~ξη

µν
(B) , (A14)

where L~ξ is the Lie derivative along ~ξ. To solve for the

perturbative gauge vector that generates this transfor-
mation, we first write the components of ξµ as

ξµ =
1

r
(ξu(1), ξ

r
(1), ξ

A
(1)/r) , (A15)

where the functions ξµ(1) depend on u and xA (not r).

These lead to a set of partial differential equations for
the ξµ(1) that can be integrated by requiring that hµν(I) be

transformed into Bondi-Sachs form. Before giving the full
details of this procedure, it is worth noting that given the
form of the components of the vector ξµ in Eq. (A15), the
radiative data λ1 and cAB can be related to harmonic-
gauge data and the finite coordinate transformation (A9)
without needing the full expression for ξµ in (A15).

For the scalar field, because in both harmonic and
Bondi gauges, the field has an expansion of the form
λ = λ0+O(r

−1) [where λ0 is constant and the coefficient
of the O(r−1) term is denoted Ξ(t − R, yA) in harmonic
coordinates and λ1(u, x

A) in Bondi coordinates], then the
transformation parametrized by ξµ in Eq. (A15) will not
change Ξ or λ1. Thus, one must have that

λ1(u, x
A) = Ξ(t−R, yA) , (A16)

where u is related to t−R (and xA to yA) by the transfor-
mations in Eq. (A9). For cAB, a direct calculation shows
that L~ξη

AB
(B) is of order r−4 for ξµ in (A15). This implies

that

cAB = Hijð
Ani

ð
Bnj + ψqAB . (A17)

Using the definition of H̃µν in Eq. (A4), the harmonic
gauge conditions in (A5), and the fact that qAB =
δijð

AniðBnj , this equation can be recast as

cAB = H̃ijð
Ani

ð
Bnj − 1

2
H̃qAB . (A18)

After using Eq. (A5) again, it follows that cAB is related

to just the transverse-traceless (TT) part of H̃ij as

cAB(u, xA) = H̃TT
ij (t−R, yA)ðAni

ð
Bnj , (A19)

where again u is related to t − R and xA to yA by the
transformations in (A9).

For our purposes of relating the radiative data in Bondi
coordinates to that in harmonic coordinates, Eqs. (A16)
and (A19) provide the solution. However, for complete-
ness we do compute the form of the required gauge vector
ξµ needed to complete the transformation from harmonic
to Bondi coordinates. The components of the gauge vec-
tor in Eq. (A15) can be constrained from the ur, rA, and
rr components of Eq. (A14), which state, respectively,

∂uξ
u
(1) = hru(B) − hru(I) , (A20a)

∂uξ
A
(1) = r(hrA(B) − hrA(I) ) , (A20b)

2∂uξ
r
(1) + ξu(1)(∂u)

2(λ1/λ0) = hrr(B) − hrr(I) . (A20c)

By substituting the relationships in Eqs. (A16) and (A19)
into Eq. (A7), extracting the relevant components of
hµν(B), and using the expressions for hµν(I) in Eq. (A12),

it is straightforward to integrate the first two lines in
Eq. (A20) to obtain expressions for ξu(1) and ξA(1). Once
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ξu(1) has been determined, integrating the final line of

Eq. (A20) to determine ξr(1) is also, in principle, straight-

forward. There is one subtlety in this procedure: hrr(B) in-

volves the Bondi mass aspect M, which has not yet been
determined from metric quantities in harmonic gauge.
Because the mass aspect satisfies the conservation equa-
tion [50]

∂uM =− 1

8
NABN

AB +
1

4
ðAðBN

AB

− (3 + 2ω)
1

4λ20
(∂uλ1)

2 +
1

4λ0
Ð2∂uλ1 , (A21)

it is possible to integrate this equation and express M
in terms of harmonic-gauge quantities using Eqs. (A16)
and (A19). (To simplify the notation, however, we will
not write this out in detail below, and we will write this
quantity just as M.) The result of performing these inte-
grations and using the harmonic gauge conditions in (A5)
is that the components of the vector ξµ are given by

ξu = − 1

2r

∫

dtH̃ +
M

λ20r
Ξ , (A22a)

ξr = − 1

2r

∫

dt

[

ξu(1)

λ0
∂2uΞ +

2M

λ30
(∂uΞ)

2 − 2M+ H̃00

−1

2

Ξ

λ20
∂uΞ−

(

1

2
H̃ − 2M

λ0

)(

1 +
∂uΞ

λ0

)]

,

(A22b)

ξA = − 1

r2

∫

dt

[

1

2
ðB

(

H̃TT
ij ð

Ani
ð
Bnj

)

+Hijn
i
ð
Anj

]

.

(A22c)

This transformation, along with the finite transformation
in Eq. (A9), brings the metric into the form in Eq. (A7),
in which λ1 and cAB are related to the harmonic-gauge
quantities Ξ and H̃TT

ij by Eqs. (A16) and (A19).

Appendix B: Estimates of ordinary memory effects

in Brans-Dicke theory

1. Ordinary displacement memory effect

The contribution to the ordinary memory effect comes
from the charge rather than the flux terms in Eq. (4.6),
i.e.:
∫

d2ΩαÐ2(Ð2 + 2)∆ΘO = 8∆

∫

d2Ωα

(

M− 1

4λ0
Ð2λ1

)

.

(B1)

Expanding ∆M, ∆ΘO and ∆λ1 in spherical harmonics,
the moments ∆ΘO are given by

∆ΘO
lm =

(l + 2)!

(l − 2)!

[

8∆Mlm +
2

λ0
l(l+ 1)∆λ1(lm)

]

.

(B2)

We would like to estimate if the quantity ∆ΘO
lm is of

a similar PN order to the nonlinear and null parts of
the memory ∆ΘT

lm and ∆ΘS
lm that were computed in

Sec. IVB for any of the specific values of l = 2, 4, or
6 and m = 0. To do so, we will focus on the moment
∆ΘO

20 for simplicity (the other three moments will have
the same, or a higher PN order).

One natural way to compute the ordinary memory
would be to directly evaluate the moments ∆λ1(20) and
∆M20. Using Eq. (3.20), we can show that ∆λ1(20) is

at least O(x2); thus, the scalar field’s contribution to the
memory effect is of a higher PN order than the Newtonian
order at which we work. We do not have an independent
expression for ∆M20 that would allow us to directly com-
pute ∆ΘO

20 (although we already verified that the contri-
bution from the ∆λ1(20) is of a higher PN order). Instead,

we can compute ∆ΘO
20 directly from the waveform that

were already computed in Eqs. (7.1) and (7.2a) of [68]
to verify that ∆M20 would not contribute at Newtonian
order. Specifically, we contract the Newtonian-order ex-
pression with the polarization tensors eij+ − ieij×, multiply

by the spin-weighted spherical harmonic −2Ȳ20 to obtain
U20 and then rescale it to obtain ∆ΘO

20. We find that
the Newtonian-order result vanishes, and there is thus
no Newtonian-order ordinary displacement memory.

2. Ordinary spin memory effect

The ordinary part of the spin memory effect can be
computed from Eq. (4.27a) with just the term (4.27c) on
the right-hand side:
∫

d2Ω γÐ2(Ð2 + 2)∆Σ0 = −8∆

∫

d2Ω ǫAD
ðDγ [−3LA

− 1

4λ0
(cABð

Bλ1 − λ1ð
BcAB)

]

.

(B3)

The terms cABð
Bλ1 − λ1ð

BcAB on second line of the
equation will not contribute at Newtonian order for the
spin memory effect (i.e, at order x−1/2), because both
cAB and λ1 involve non-negative powers of x in the PN
expansion, so their product will not be a negative power
of x. The only term that could contribute to the spin
memory effect comes from the change in the angular mo-
mentum aspect, LA.

We do not have an expression for LA in terms of
harmonic-gauge metric functions, which (analogously to
the case of the mass aspect and ordinary displacement
memory effect) prohibits a direct calculation of the or-
dinary spin memory effect. In addition, it is not possi-
ble to directly check the time integral of the waveform,
because the Newtonian-order terms in the spin memory
effect arise from formally 2.5PN-order terms in the wave-
form that are then integrated with respect to retarded
time; however, the waveform has only been computed to
2PN order in [68]. While we cannot then be certain that
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the ordinary memory terms do not contribute at the same
order because of additional nonlinear terms in the near
zone, we can estimate the size of the effect in linearized
theory.

The ordinary spin memory effect would arise at the
lowest PN order from changes in ∆ΣO

30, which is pro-
portional to the retarded time integral of the radiative
moment V30. Because at leading PN order, V30 is related
to three time derivatives of the source current octopole

J30, then ∆ΣO
30 should be proportional to J̈30. By di-

mensional analysis, J30 is proportional to Mva3 (or see,

e.g., [67]); thus, J̈30 scales as Mvaȧ2. This scales with
the PN parameter as ξx9/2+x11/2, which would be a 6PN
correction to the nonlinear and null effects. We thus an-
ticipate from these arguments in linearized theory that
the ordinary part of the spin memory will be small.
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