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Cross-correlating cosmic microwave background (CMB) lensing and galaxy clustering has been
shown to greatly improve the constraints on the local primordial non-Gaussianity (PNG) parameter
fNL by reducing sample variance and also parameter degeneracies. To model the full use of the
3D information of galaxy clustering, we forecast fNL measurements using the decomposition in the
spherical Fourier-Bessel (SFB) basis, which can be naturally cross-correlated with 2D CMB lensing
in spherical harmonics. In the meantime, such a decomposition would also enable us to constrain
the growth rate of structure, a probe of gravity, through the redshift-space distortion (RSD). As a
comparison, we also consider the tomographic spherical harmonic (TSH) analysis of galaxy samples
with different bin sizes. Assuming galaxy samples that mimic a few future surveys, we perform
Fisher forecasts using linear modes for fNL and the growth rate exponent γ, marginalized over
standard Λ cold dark matter (ΛCDM) cosmological parameters and two nuisance parameters that
account for clustering bias and magnification bias. Compared to TSH analysis using only one bin,
SFB analysis could improve σ(fNL) by factors 3 to 12 thanks to large radial modes. With future
wide-field and high-redshift photometric surveys like the LSST, the constraint σ(fNL) < 1 could be
achieved using linear angular multipoles up to `min ' 20. Compared to using galaxy auto-power
spectra only, joint analyses with CMB lensing could improve σ(γ) by factors 2 to 5 by reducing
degeneracies with other parameters, especially the clustering bias. For future spectroscopic surveys
like the DESI or Euclid, using linear scales, γ could be constrained to 3 % precision assuming the
GR fiducial value.

I. INTRODUCTION

In many large-scale cosmological surveys, the observ-
ables can be classified as tracers of the matter field, the
main ingredient of which is the invisible and mysterious
dark matter [1] that is known to be interacting with bary-
onic matter through gravity. The 3D large-scale struc-
ture (LSS) of the matter field can be traced with photons
emitted directly from baryonic matter, e.g. in galaxy
redshift and line intensity mapping (LIM) surveys (see
e.g. [2, 3]). On the other hand, a 2D map of the line-of-
sight (LOS) integral of the matter field can also be re-
constructed up to a distant light source through the weak
gravitational lensing effect [4]. The light source can be
luminous matter at different redshifts [5] or cosmic mi-
crowave background (CMB) traveling from the epoch of
recombination [6].

The lensing convergence signal reconstructed from
CMB temperature and polarization maps is the LOS in-
tegral of the matter field up to redshift z ∼ 1100, and
therefore should correlate with any galaxy clustering ob-
servations. These cross-correlations have been detected
in several previous works using different CMB lensing
and galaxy clustering datasets, see e.g. [7, 8] for the first
two detections. With the cross-correlation, CMB lensing
and galaxy clustering can also be further combined to
construct other statistics like EG [9–13] to probe gravity.
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Joint analysis of CMB lensing and galaxy clustering
has been shown to be powerful in improving the con-
straint on the local primordial non-Gaussianity (PNG)
parameter fNL [14–18]. CMB lensing is an unbiased
tracer of the matter field, while galaxy clustering has a
bias that could be scale-dependent due to PNG [19, 20].
This difference in bias of the two tracers makes the joint
analysis useful in reducing the sample variance and mit-
igating the degeneracies between fNL and other cosmo-
logical parameters.

In previous joint analyses, the galaxies in a redshift bin
are usually projected in the radial direction to make an
angular map to be cross-correlated with the CMB lensing
map, typically in spherical harmonic (SH) space. How-
ever, the radial information of the 3D galaxy field could
be lost in the projection. Even if we split the redshift
coverage of a galaxy sample into many bins and perform
the tomographic spherical harmonic (TSH) analysis with
the covariances between redshift bins fully included, it is
still uncertain how well the radial information could be
recovered for different scales that are mixed, see e.g. [21]
for a recent discussion on this. The standard 3D analy-
sis of galaxy clustering is usually based on the Cartesian
Fourier transform. However, this makes it difficult to do
the cross-correlation with the SH coefficients of 2D an-
gular maps given the different bases. Also for analysis
in Cartesian coordinates, large scales are quite challeng-
ing given the spherical geometric boundaries of the sur-
vey and also LOS effects like redshift-space distortions
(RSD) [22].
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The positions of the galaxies are measured in spher-
ical coordinates, for which the spherical Fourier-Bessel
(SFB) decomposition would be a natural choice for power
spectrum analyses. SFB analysis decomposes a 3D field
in the spherical eigenfunctions of the Laplacian, which
are spherical harmonics and spherical Bessel functions.
There have been a number of studies about SFB analysis
of galaxy clustering, which can be traced back to [23, 24].
Here we list some of the recent discussions with further
references cited therein. [25] suggested the proper radial
basis function to be used in spherical shells, which is a
more optimal choice for surveys that do not start from
redshift zero. [26, 27] developed the SFB power spectrum
estimators. [28] compared SFB and tomographic analy-
ses in parameter constraints, and found that SFB anal-
ysis is more robust to systematics in galaxy clustering
bias. [29] discussed cross-correlations of 2D photomet-
ric and 3D spectroscopic galaxy surveys. [30] proposed a
hybrid-basis inference by combining SFB and Cartesian
Fourier analyses on different scales. Besides galaxy clus-
tering, SFB formalism has also been discussed for LIM
in power spectrum analysis [31] and full sky lensing re-
construction [32].

In this work, we consider the joint analyses of 2D CMB
lensing and 3D galaxy clustering, which are decomposed
in SH and SFB bases, respectively. The same angular
basis function makes it straightforward to cross-correlate
2D and 3D fields using their SH and SFB coefficients. In
this SFB formalism of galaxy clustering, we discuss the
expressions for power spectra, including modifications
due to PNG, RSD and also magnification bias. Then we
perform Fisher forecasts for the constraints on fNL and
the growth rate exponent γ, with a set of standard Λ cold
dark matter (ΛCDM) cosmological parameters and two
nuisance parameters accounting for galaxy clustering bias
and magnification bias being marginalized. We assume a
few galaxy sample setups that mimic the designed spec-
ifications of some future spectroscopic and photometric
surveys, including the Dark Energy Spectroscopic Instru-
ment (DESI) [33], the Euclid satellite mission [34], the
Legacy Survey of Space and Time (LSST) [35] of the Vera
C. Rubin Observatory, and the Spectro-Photometer for
the History of the Universe, Epoch of Reionization, and
Ices Explorer (SPHEREx) [36]. We consider only lin-
ear modes that are quantified with SFB and TSH power
spectra directly, which we show to be better defined than
converting a 3D wavenumber to an angular mode in 2D
harmonic space, as is typically done. For fNL, it would
be interesting to check the improvement with large radial
scales, which should not only contribute more informa-
tion but also help in reducing sample variance. Thanks
to the SFB transform in fully including radial informa-
tion on all scales, we are able to constrain γ simultane-
ously. For these two parameters that appear in galaxy
clustering only, we investigate how CMB lensing could
contribute to the constraints by mitigating the degenera-
cies with other cosmological or nuisance parameters. As
a comparison to SFB, we also consider the TSH analysis

of the galaxy samples, and study how the information
from linear modes depend on different bin sizes.

The paper is organized as follows. First we briefly re-
view the CMB lensing and galaxy number density fields
in Section II, where modifications to the galaxy field due
to PNG, RSD and magnification bias are also discussed.
The angular SH and 3D SFB decomposition and power
spectra of these fields are described in Section III, includ-
ing the well-known noises in auto-power spectra. In Sec-
tion IV, details of fiducial CMB lensing and galaxy red-
shift surveys are introduced. For these surveys, we per-
form Fisher forecasts on parameter constraints, with the
setup described in Section V. We present and discuss the
results in Section VI, and conclude in Section VII. In this
work, we assume a flat ΛCDM cosmology with Planck
2018 CMB TT,TE,EE+lowE best-fit parameters [37] as
fiducial values.

II. TRACERS OF THE MATTER FIELD

In this section, we briefly review the observables in
CMB lensing and galaxy redshift surveys, and their con-
nection to the matter field.

Since the photons take a finite time to travel to us,
we are actually observing the past light cone instead of
the 3D matter field at z = 0. For both CMB lensing and
galaxy surveys, the matter field traced at radial comoving
distance r(z) =

∫ z
0
dz′ c/H(z′) is the status of the field at

redshift z, which uniquely corresponds to the time that
the light was emitted. In linear perturbation theory, the
redshift evolution of the matter field can be described
with

δm(r, z) = D(z)δm,0(r) , (1)

where δm(r, z) is the 3D matter field at redshift z(r),
r ≡ (r, r̂) with r̂ ≡ (θ, φ) denoting the angular coor-
dinates, D(z) is the linear growth factor normalized to
D(z = 0) = 1, and δm,0(r) denotes the 3D matter field
at redshift z = 0.

A. CMB lensing map

The CMB lensing signal reconstructed from CMB tem-
perature and polarization maps traces the integral of the
matter field along the line-of-sight direction

κ(r̂) =

∫ rCMB

0

drWκ(r, rCMB)δm(r, z) , (2)

where rCMB is r at redshift zCMB ' 1100, and the lensing
kernel

Wκ(r, r?) =
3Ωm,0H

2
0

2c2
(1 + z)r

(
1− r

r?

)
, (3)

with the light source being CMB and located at r? =
rCMB in this case.
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B. Galaxy clustering catalog

1. Number density

LSS galaxy or quasar surveys construct catalogs that
include the angular positions and redshifts of a large
number of point sources that are selected for clustering
analyses. Assuming uniform angular target selection, the
number density field can be written as

n(r, r̂) = n̄V φg(r) [1 + δg(r, r̂)] , (4)

where the average volume number density n̄V = N/V
is given by the ratio of the total number of targets and
the comoving volume of the survey, φg(r) is the radial
selection function of the survey, and δg(r, r̂) is related to
the matter field through

δg(r, r̂) = bg(z)δm(r, z) , (5)

where bg(z) is the galaxy clustering bias, which is usu-
ally redshift-dependent and can also be scale-dependent
(e.g. due to primordial non-Gaussianity, discussed be-
low). Given the number density field constructed from
the catalogs, we can define an overdensity field

δ(r, r̂) ≡ n(r, r̂)− n̄V
n̄V

, (6)

and leave φg in the relation to δg,

δ(r, r̂) = φg(r)δg(r, r̂) + φg(r)− 1 . (7)

To get φg(r) for the survey, we first define the normalized
redshift distribution

fg(z) ≡
1

N

dN

dz
, (8)

which can be directly constructed with all the redshifts
in the catalog, e.g. by making a histogram. The relation
between φg(r) and fg(z) can be derived by considering
the number of targets in a thin radial slice∫

Ω

dΩ r2dr n(r, r̂) = Nfg(z)dz , (9)

which gives

n̄V φg(r)r
2dr = n̄Ωfg(z)dz , (10)

where n̄Ω = N/Ω is the average angular number density,
i.e. the number of targets per solid angle. With this
relation, φg(r) and fg(z) can be used interchangeably in
describing the radial distribution of galaxies.

Similar as the 3D field δ(r, r̂), the projected 2D galaxy
overdensity map g(r̂) is usually constructed as

g(r̂) ≡
∫
n(r, r̂)r2dr − n̄Ω

n̄Ω
. (11)

Combining Eq. (4) and (10), g is related to δg through

g(r̂) =

∫
dr
H(z)

c
fg(z)δg(r, r̂) , (12)

where dr = c dz/H(z) has been used.
To summarize, uniform 3D galaxy overdensity fields

can be simply connected to the matter perturbation field
with Eq. (5). However, due to the target selections in real
surveys and depending on how the fields are constructed
given the data, additional calibration functions like φg(r)
or fg(z) may have to be applied. For the 3D and 2D
overdensity field constructed from observed catalogs us-
ing Eq. (6) and (11), φg(r) and fg(z) are included in the
corresponding theoretical modeling, Eq. (7) and (12). Of
course, if we change how the fields were constructed from
data, these analytic modelings would have to be modified
accordingly.

2. Redshift-space distortion

The observed galaxy redshifts include contributions
from not only the Hubble expansion but also the pecu-
liar velocities of the targets due to gravity. This causes
a radial distortion (i.e. RSD) in the observed galaxy
field compared with the true field. In linear perturbation
theory, the modification to δg(r, r̂) due to RSD can be
described with [38–40]

∆δg(r, r̂)|RSD = f(z)Rδm(r, z) , (13)

where f(z) = d lnD(z)/d ln a is the linear growth rate
defined as the logarithmic derivative of the growth factor
with respect to the scale factor, and the RSD operator
R ' ∂2/∂r2∇−2, which results in a second-order deriva-
tive of the spherical Bessel function in the LOS integral,
as we will see below. In GR and some modified grav-
ity models, the linear growth rate depends on the mat-
ter fraction through f(z) = Ωm(z)γ [41]. The exponent
γ ' 0.55 for GR, and this value could vary for different
gravity models,

3. Primordial non-Gaussianity of local type

Measuring PNG is one of the promising methods to
constrain models of inflation in the early universe, which
sources the primordial density fluctuations and therefore
the LSS of the matter field observed today. PNG of lo-
cal type is introduced to the primordial Gaussian poten-
tial ψ(x) through ΨNG(x) = ψ(x) + fNL(ψ2(x)− 〈ψ2〉),
with the non-Gaussian term proportional to the scale-
independent fNL parameter. The standard single-field
slow-roll inflation predicts a fNL that is smaller than
unity, while in other models like multifield inflation, fNL

could be significantly higher (see e.g. [20] and references
therein).
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FIG. 1. Redshift and scale dependence of the clustering bias
correction due to PNG of local type, shown as the fractional
change to the fiducial bias bg(z) assuming fNL = 1. Lines are
plotted for bg(z) = 1/D(z) (solid) or bg(z) = 1 + z (dashed),
which represent two typical types of redshift dependence.

It was found that this local PNG leaves fingerprint
on LSS tracers like galaxies by introducing a scale-
dependent modification to the clustering bias [19]

bg(z, k) = bg(z) + fNL∆bg(z, k) , (14)

where

∆bg(z, k) = 3 (bg(z)− 1)
Ωm,0δc

k2T (k)D̃(z)

(
H0

c

)2

, (15)

with D̃(z) being the linear growth factor normalized to

(1 + z)−1 for matter domination, i.e. D̃(z) = D̃(0)D(z).
This bias correction is more significant on larger scales
(∝ k−2) and higher redshifts (∝ D(z)−1), with a simple
illustration in Fig. 1.

4. Magnification bias

Just as the CMB photons are lensed by the matter field
all the way from the last scattering surface to us, our ob-
served galaxies are also lensed by the foreground matter
field. This weak gravitational lensing could change the
flux of an individual target and also magnify the angular
distribution of the targets. The corresponding distortion
to δg(r, r̂) is given by [42, 43]

∆δg(r, r̂)|lensing = (5s− 2)κg(r, r̂) , (16)

where s is the magnification bias parameter and the weak
lensing convergence up to r is given by

κg(r, r̂) =

∫ r

0

dr′Wκ(r′, r)δm(r′, z′) , (17)

where the lensing kernel Wκ is given in Eq. (3), with the
first and second parameter being the comoving distance
to the lensing and light source respectively. A subscript
g is added just to distinguish it from κ, which specifi-
cally refers to the CMB lensing in this paper. For galaxy

samples with a faint-end cutoff target selection, the mag-
nification bias is given by [42]

s =
d log10N(m < m∗)

dm

∣∣∣∣
m=m∗

, (18)

where m is the apparent magnitude, and N(m < m∗) is
the number of targets that appear to be brighter than
the survey faint limit m∗.

III. POWER SPECTRA

In this section, we start with a brief review on the
spherical Fourier analyses of 2D and 3D fields, which
also defines the conventions of transforms in this work.
Applying these decompositions to the CMB lensing and
galaxy overdensity fields, we derive the formalism for the
auto- and cross-power spectra.

A. Fourier decomposition in spherical coordinates

A 2D field a(r̂) defined on a sphere can be decomposed
in spherical harmonic space as

a(r̂) =
∑
`m

a`mY`m(r̂) , (19)

where Y`m(r̂) are the spherical harmonics that are or-
thonormal

∫
dΩY`m(r̂)Y`′m′(r̂) = δK

``′δ
K
mm′ by definition.

The coefficients are given by the inverse transform

a`m =

∫
dΩ a(r̂)Y ∗`m(r̂) , (20)

with dΩ = sin θdθdφ being the differential solid angle.
A 3D field f(r, r̂) expressed in spherical coordinates

can be similarly decomposed in the SFB basis, which is
a natural extension to the angular case above with the
radial coordinate included. In general, the radial basis
function for a shell volume could be written as [25]

J`(k`nr) ≡ j`(k`nr) +A`ny`(k`nr) . (21)

where j` and y` are the spherical Bessel function of first
and second kind, respectively. The discrete wavenumbers
k`n and corresponding factors A`n indexed by n for each
` are determined by the Dirichlet boundary conditions.
If the field is defined in a sphere out to a certain radius,
then A`n would always be zero and J` simply reduces to
j`. While if the field is defined in a shell with a non-zero
lower radius limit, we could have non-zero A`n factors.
The galaxy samples we will consider include both of these
sphere and shell cases. With this radial eigenfunction,
the SFB decomposition reads

f(r, r̂) =
∑
`mn

f`m(k`n)J`(k`nr)Y`m(r̂) , (22)
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with the coefficients

f`mn ≡ f`m(k`n)

= τ−1
`n

∫
dr

∫
dΩ r2f(r, r̂)J`(k`nr)Y ∗`m(r̂) .

(23)

The normalization factors τ`n for different radial bound-
aries are derived in Appendix A. With Eq. (23), the
power spectra in SFB basis can be related to the 2-
point correlation function (2PCF) or the power spectra
of f(r) in 3D Cartesian coordinates, see more details in
Appendix B.

B. Auto- and cross-power spectra of matter field
tracers

In what follows, we derive the SH and SFB power
spectra for the 2D and 3D tracers of the matter field,
whose homogeneous and isotropic power spectrum today
Pm,0(k) is defined through

〈δm,0(k)δ∗m,0(k′)〉 = (2π)3δD(k − k′)Pm,0(k) . (24)

The Fourier transform of the matter field δm,0(r) in 3D
Cartesian coordinates

δm,0(r) =

∫
d3k

(2π)3
eik·rδm,0(k) , (25)

and the plane wave expansion in spherical coordinates

eik·r = 4π
∑
`m

i`j`(kr)Y`m(r̂)Y ∗`m(k̂) , (26)

will be used. We also assume the linear evolution of the
matter field in Eq. (1).

For the 2D CMB lensing and galaxy projected over-
density maps, the corresponding SH coefficients κ`m and
g`m are given by Eq. (20). The angular power spectrum
is defined through

〈a`ma′∗`′m′〉 = δK
``′δ

K
mm′C

aa′

` . (27)

With the two fields a and a′ being either κ or g, which
are related to the matter field through Eq. (2) and (12),
we can get

Caa
′

` =
2

π

∫
dk k2Pm,0(k)∆a

` (k)∆a′

` (k) , (28)

where ∆a
` denotes the transfer function of the 2D matter

field tracer a. For κ and g, we have

∆κ
` (k) =

∫
drWκ(r)D(z)j`(kr) , (29)

and

∆g
` (k) = ∆gd

` (k) + ∆gr
` (k) + ∆gn

` (k) + ∆gm
` (k) , (30)

which includes contributions from the main Gaussian
overdensity signal (gd), and also the modifications due
to RSD (gr), PNG (gn), and magnification bias (gm).
These galaxy transfer function components are

∆gd
` (k) =

∫
r,g

bg(z)D(z)j`(kr) , (31)

∆gr
` (k) = −

∫
r,g

f(z)D(z)j′′` (kr) , (32)

∆gn
` (k) = fNL

∫
r,g

∆bg(z, k)D(z)j`(kr) , (33)

∆gm
` (k) = (5s− 2)×∫

r,g

∫ r

0

dr′Wκ(r′, r)D(z′)j`(kr
′) ,

(34)

where for simplicity we define a shorthand notation∫
r,g

≡
∫
dr
H(z)

c
fg(z) . (35)

Similar expressions have also been derived in some pre-
vious work, see e.g. [20, 43, 44].

As shown above in Eq. (22), 3D SFB transform is a nat-
ural extension to the 2D SH transform in Eq. (19), with
the same angular eigenfunctions indexed by `m. Thus SH
coefficients a`m in Eq. (20) can be cross-correlated with
SFB coefficients f`mn in Eq. (23) of any radial mode in-
dexed by n

〈a`′m′f∗`mn〉 = δK
``′δ

K
mm′C

af
`n , (36)

which gives

Caf`n =
2

π

∫
dk k2Pm,0(k)∆a

` (k)∆f
`n(k) , (37)

where ∆f
`n(k) is the transfer function of f(r, r̂), a 3D

tracer of the matter field like δ in this work. Similarly,
the correlation between two 3D fields in SFB basis reads,

〈f`mnf ′∗`′m′n′〉 = δK
``′δ

K
mm′C

ff ′

`nn′ , (38)

with

Cff
′

`nn′ =
2

π

∫
dk k2Pm,0(k)∆f

`n(k)∆f ′

`n′(k) . (39)

where in general the radial modes are not orthonormal
due to the radial selection and evolution of the fields.
In this case, for each ` the power spectrum is a covari-
ance matrix of the radial modes. Similar as that for the
projected galaxy map g(r̂), for the 3D overdensity field
δ(r, r̂) in Eq. (7), the transfer function is given as

∆δ
`n(k) = ∆δd

`n(k) + ∆δr
`n(k) + ∆δn

`n(k) + ∆δm
`n (k) , (40)
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with

∆δd
`n(k) =

∫
r,δ

bg(z)D(z)j`(kr) , (41)

∆δr
`n(k) = −

∫
r,δ

f(z)D(z)j′′` (kr) , (42)

∆δn
`n(k) = fNL

∫
r,δ

∆bg(z, k)D(z)j`(kr) , (43)

∆δm
`n (k) = (5s− 2)×∫

r,δ

∫ r

0

dr′Wκ(r′, r)D(z′)j`(kr
′) ,

(44)

where the shorthand notation∫
r,δ

≡ τ−1
`n

∫
dr r2φg(r)J`(k`nr) . (45)

Notice that the φg(r)− 1 term in Eq. (7) is independent
of the angular direction and thus only contributes to the
monopole (` = 0), which along with the dipole (` = 1)
will not be included in the Fisher analyses in this work.

The numerical computation of the transfer functions
requires the line-of-sight integrals over the highly oscil-
latory spherical Bessel functions j`(kr) and y`(kr), for
which we include more details in Appendix D. In this
work, we use Colossus [45] and CAMB [46, 47] to cal-
culate the required cosmological functions, including the
3D matter power spectrum.

C. Noise in auto-power spectra

In this work, we consider both auto- and cross-power
spectra. Usually the noise in one observable is not cor-
related with signal and noise in another different observ-
able, thus being independent of noise is one advantage
of cross-correlation. Below we consider the well-known
noise expressions in the auto-power spectra, including
the lensing reconstruction noise for CMB lensing and the
shot noise for galaxy overdensity.

1. CMB lensing reconstruction noise

Weak lensing of the CMB induces correlations between
different Fourier modes of the CMB temperature and po-
larization fields. As a result, estimators of κ field out of
linear combinations of terms quadratic in different modes
of observed temperature and polarization fields can be
constructed [48]. Indeed, almost all the CMB lensing
analyses to date have relied upon such quadratic estima-
tors. Recently, [49] showed that the well-known Hu and
Okamoto [50] estimator is not the most optimal quadratic
estimator that can be constructed out of the temperature
and polarization maps as was previously thought. They
instead derive the global-minimum-variance (GMV) esti-
mator built out of all possible quadratic combinations of

2 10 100 1000

`

10−9

10−8

10−7

C
κ
κ

`

Signal

Lensing reconstruction noise

FIG. 2. CMB lensing convergence power spectrum and the
lensing reconstruction noise discussed in Section III C 1.

T, E, and B (temperature, and E and B mode polariza-
tion). Here, we use the GMV estimator to estimate the
noise of the reconstructed Cκκ` denoted by Nκκ

` .

Nκκ
` = 2

∫
Ξij(l1, l2)Ξpq(l1, l2)Cipl1 C

jq
l2
, (46)

where Ξij(l, l
′) is a three by three symmetric matrix cor-

responding to weights applied to the T, E, and B mode
pairs and is derived in [49], and Cijl are CMB power spec-
tra. The CMB lensing signal and the reconstruction noise
(with survey specifications in Section IV A) are shown in
Fig. 2. [15] divide the noise coming from the ‘EB’ es-
timator by a factor of 2.5, to approximately match the
noise level expected by the iterative reconstruction pro-
cess. We find that this results in an overall noise reduc-
tion by a factor of ∼ 2 for the minimum variance coming
out of the Hu and Okamoto estimator. Here we assume
that a similar reduction of a factor of two will take place
for the GMV estimator as well and thus divide the min-
imum variance noise from the GMV estimator by two as
shown in Fig. 2.

2. Galaxy shot noise

Galaxy shot noise is induced by the discrete nature of
the point targets. Assuming Poisson sampling [51], the
shot noise εn(r) contribution to the 2PCF of the number
density field n(r, r̂) is shown [52] to be

〈εn(r)εn(r′)〉 = n̄V φg(r)δ
D(r − r′) , (47)

from which the shot noise power spectra in spherical ba-
sis can be derived for the 2D and 3D overdensity fields
starting from the definitions of SH and SFB coefficients.

For the 2D overdensity field g(r̂) defined in terms of
n(r, r̂) in Eq. (11), the corresponding angular shot noise is
εg(r̂) ≡

∫
dr r2εn(r)/n̄Ω. The shot noise power spectrum

is given by

〈εg`mε
g∗
`′m′〉 = δK

``′δ
K
mm′N

gg
` , (48)
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with

Ngg
` =

n̄V
n̄2

Ω

∫
dr r2φg(r) =

1

n̄Ω

∫
dzfg(z) =

1

n̄Ω
, (49)

which is simply the inverse of the average angular number
density that is a constant for all the angular modes and
independent of the redshift distribution.

Similarly, for the 3D overdensity field δ(r, r̂) defined in
Eq. (6), the shot noise field εδ(r) ≡ εn(r)/n̄V has the
power spectrum

〈εδ`mnεδ∗`′m′n′〉 = δK
``′δ

K
mm′N

δδ
`nn′ , (50)

with

Nδδ
`nn′ =

τ−1
`n τ

−1
`n′

n̄V

∫
dr r2φg(r)J`(k`nr)J`(k`n′r) , (51)

where in general we could have non-zero shot noise for
the cross correlation between different radial modes. For
top-hat φg(r) (i.e. φg(r) = 1 in the survey cover-
age, otherwise 0), the orthogonality relation (see Ap-
pendix A) could be used and the RHS of Eq. 51 reduces
to δK

nn′τ
−1
`n /n̄V . However, this is usually not the case for

real galaxy surveys.

IV. FIDUCIAL SURVEYS

In this section, we describe the fiducial survey setups
for the Fisher forecasts.

A. CMB lensing survey

For the CMB lensing survey, we consider the CMB-
S4 [53] level precision with the white noise of the detector

given by ∆T = 1µK arcmin and ∆P =
√

2∆T . The
lensing reconstruction noise level is shown in Fig. 2.

B. Galaxy redshift surveys

We consider a few fiducial galaxy samples that mimic
the designed specifications of some future spectroscopic
surveys. Although we simply use the name of the surveys
to denote the samples in this work and omit the “-like”
suffix for brevity, it is worth being reminded that the real
data from these surveys could be more or less different.
In our analysis, each survey or its sub-samples can be
completely described with the total number of targets
Ng, the fractional sky coverage fsky, the redshift distri-
bution fg(z), and a redshift-dependent clustering bias
model bg(z). Some details of the galaxy samples below
are summarized in Table I, and the redshift distributions
are shown in Fig. 3.

The spectroscopic surveys we consider include
DESI [33] and the redshift survey of the Euclid satel-
lite mission [34]. For DESI, we include the two largest

0.0 0.5 1.0 1.5 2.0 2.5 3.0

z
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f g
(z

)
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Euclid

LSST low-z

LSST high-z

SPHEREx 1

SPHEREx 2

SPHEREx 3

FIG. 3. Redshift distributions of the galaxy samples, the
integrals of which are normalized to one in the redshift range
covered. Note that the LSST high-z sample extends to z = 5
though we truncate the plot at z = 3 for better clarity.
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FIG. 4. Cross-correlation coefficients of CMB lensing and
the galaxy samples, which are calculated with Eq. (53) by
projecting each galaxy sample into a 2D angular map.

sub-samples, the bright galaxy sample (BGS) and the
emission line galaxy (ELG) sample. The expected
redshift distributions are given by Table 2.3 and 2.5
in [54], and we assume the fiducial redshift-dependent
bias bg(z)|BGS = 1.34/D(z) [54] and bg(z)|ELG =
0.84/D(z) [55]. For Euclid [56, 57], number densities
are taken from Table 3 in [58] and we assume the refer-
ence case (i.e. the n2 column). We take a fiducial bias
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TABLE I. Specifications of the galaxy survey samples considered, including the total number of targets Ng, fractional sky
coverage fsky, redshift coverage z, radial comoving width rwidth, average comoving volume density n̄V , and redshift uncertainty
σ̃z ≡ σz/(1 + z). More details are discussed in Section IV B.

Sample Ng fsky z rwidth n̄V σ̃z
[M] [%] [Mpc] [×10−3 Mpc−3]

DESI BGS 9.8 33.9 0 - 0.5 1954 0.92 -
DESI ELG 17 33.9 0.6 - 1.7 2561 0.12 -
Euclid 61 36.4 0.6 - 2.1 3177 0.26 -
LSST low-z 2801 48.5 0 - 2 5314 9.2 0.05
LSST high-z 865 48.5 2 - 5 2631 1.2 0.05
SPHEREx 1 24 75 0 - 1.4 4292 0.096 0.003
SPHEREx 2 76 75 0 - 1.4 4292 0.31 0.01
SPHEREx 3 147 75 0 - 1.4 4292 0.59 0.03

bg(z)|Euclid = 0.76/D(z) [59]. The galaxy redshifts in
the spectroscopic surveys are measured to very high ac-
curacy, whose uncertainties correspond to scales that are
much smaller than the scales we consider in this work.
Thus for these samples, we shall just ignore the redshift
uncertainty.

Besides, we also consider one photometric and an-
other spectro-photometric survey which could have non-
negligible redshift uncertainties. The photometric one is
the LSST [35] survey, which is expected to have a redshift
distribution given by [60]

d2N

dzdΩ
=

n̄LSST
Ω,totβ

z∗Γ [(α+ 1)/β]

×
(
z

z∗

)α
exp

[
−
(
z

z∗

)β]
deg−2 ,

(52)

with α = 2.0, β = 1.0, z∗ = 0.5, and a total projected
number density n̄LSST

Ω,tot = 50 arcmin−2. We consider the
redshift depth up to z = 5, which encloses more than
99.7% of the total targets. The bias model is assumed
to be bg(z)|LSST = 0.95/D(z) [59]. The LSST redshift
coverage is really wide and in this work, we divide the
LSST sample into two sub-samples, with one covering
lower redshift z = 0 − 2 and the other covering higher
redshift z = 2 − 5. The spectro-photometric one is
the SPHEREx [36] survey. SPHEREx provides forecasts
of galaxy number density and bias for five sub-samples
based on the redshift uncertainty [61]. We use the three
samples with σ̃z ≤ 0.03, denoted as SPHEREx {1, 2,
3}. The number density distribution and bias functions
are interpolated from data in this public products repos-
itory [62].

Since we are doing joint analyses of these galaxy sam-
ples with CMB lensing, before doing Fisher forecasts we
can do a quick check on the cross-correlation strength,
which can be quantified with coefficients

r` =
Cκg`

[(Cκκ` +Nκκ
` )(Cgg` +Ngg

` )]1/2
, (53)

where g is the projected overdensity map of the galaxy
sample over its whole redshift coverage, and noises are

added to the corresponding auto-power spectra. These
cross-correlation coefficients are shown in Fig. 4. In gen-
eral, the coefficients peak at different angular scales with
galaxy samples covering lower redshifts peaking at larger
angular scales and vice-versa. With the same CMB lens-
ing reconstruction noise, the overall amplitude is mainly
determined by the galaxy shot noise and also the redshift
overlap with the CMB lensing kernel that peaks around
z = 2.

V. FISHER FORECAST SETUP

In this section, we discuss the setups for the Fisher
forecast on parameters of interest with the joint analysis
of CMB lensing and galaxy overdensity fields, for which
both SFB and TSH analyses will be considered for a com-
parison.

A. Parameters

The parameters of primary interest are the PNG am-
plitude fNL and the RSD exponent γ. We assume fiducial
values fNL = 0, i.e. no PNG and γ = 0.55, the GR pre-
diction.

We also include a few free nuisance parameters that ac-
count for the uncertainties in some galaxy properties. For
the fiducial clustering bias model, we assume the redshift-
dependence is well known in the redshift range covered
while introducing a constant parameter Ab, which is free
for tuning the overall amplitude around the fiducial value
Ab = 1. Another free parameter is the foreground magni-
fication bias s, for which we take a fiducial value s = 0.4
assuming no distortion, see Eq. (16). It is important to
notice that unlike fNL, γ or other cosmological parame-
ters, Ab and s depend on the particular galaxy sample.
The derivatives of power spectra from one sample with
respect to these two parameters of another sample would
simply be zero. For example, if we have two galaxy sam-
ples in the joint analysis, then besides other parameters,
the free parameter set will include {A1

b , A
2
b , s

1, s2} with
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1 and 2 denoting the two samples. The power spectra of
sample 1 should be independent of A2

b and s2.
The parameters above are all associated with the

galaxy field, and they appear only in the galaxy trans-
fer functions (Eq. (30) and (40)). In addition, we also
consider the dependence of the matter field, i.e. its
power spectra today Pm,0(k) and linear growth fac-
tor D(z), on the background cosmological parameters
{H0, Ωm,0, Ωb,0, σ8, ns}, which are also included in the
Fisher analyses. We assume a flat ΛCDM cosmology with
Planck 2018 CMB TT,TE,EE+lowE best-fit results [37]
as fiducial values. It would also be helpful to include
the Planck constraints as prior information in our Fisher
analyses, with more details in Section V E. Notice that
CMB lensing depends on these background cosmological
parameters but not fNL or γ, which can help reducing
the degeneracy, and this is one of the motivations for the
joint analyses.

B. Linear SFB and TSH modes

Some of the theoretical or fiducial models discussed
above, e.g. the linear evolution of the matter field, scale-
independent galaxy clustering bias, and the RSD correc-
tion etc., are valid only on large linear scales. In what
follows, we discuss the linear SFB and TSH modes that
will be included in our Fisher analyses.

There have been several ways of quantifying the 3D
threshold k3D

max(z) between linear (or quasi-linear) and
nonlinear Fourier modes based on the linear matter
power spectrum Pm(k, z). For example, we may sim-
ply set a limit to the dimensionless matter power spec-
trum ∆2

m(k, z) ≡ k3Pm(k, z)/(2π2), whose value is mono-
tonically increasing with k. Some previous work de-
fines the linear scales as those satisfying ∆2

m(k, z) < 1.
Another slightly more complicated way that has been
widely used is to evaluate the variance of the smoothed

matter field σ2(R, z) =
∫

d3k
(2π)3 W

2(kR)Pm(k, z), where

W (kR) = 3[sin(kR) − kR cos(kR)]/(kR)3 for a tophat
filter function in real space [63]. This variance is de-
creasing with R and by requiring σ2(R, z) < 1, we could
get the minimum radius Rmin and the corresponding
k3D

max = 1/Rmin. One more criterion is based on the im-
pact of the nonlinear correction (e.g. with a halofit model
in [64]) to linear Pm(k, z). The threshold can be quanti-
fied by requiring the fractional impact of the correction
to be within e.g. 10 %.

All these three methods above can be used to deter-
mine k3D

max(z). Then a very natural idea is to convert
this threshold on the 3D wavenumber to the limit on
SFB and TSH modes. However, these conversions are
not clearly defined for a few reasons. First, power spec-
tra of SFB and TSH modes are given by the integral over
3D wavenumbers, as shown in Eq. (28) and (39). The
contributions of different 3D wavenumbers to these inte-
grals depend on the boundary condition for SFB (see Ap-
pendix B) and the bin size for TSH, and also the redshift-
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`
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k
`n

[M
p

c−
1 ]

Lowest k`n

Highest k`n

k3D
max(z = 0.6− 2.1)

Linear SFB modes

FIG. 5. Linear modes in SFB analysis of the Euclid galaxy
sample, where each mode is specified by the angular multipole
` and the discrete radial wavenumber k`n. The blue line show
the lowest k`n we could have for each ` under the boundary
condition, while the orange line denote the highest k`n deter-
mined by the linear requirement. Thus all the linear modes
that will be included in the Fisher analysis are covered by
the enclosed orange area. As a reference, we also show the
maximum 3D linear wavenumber k3Dmax, which evolves with
redshift, in the grey shaded area. See Section V B for more
details.

dependent functions. Even just for a single bin with SH
analysis, Limber approximation which picks out a partic-
ular k ' `/r only works for high `s and wide bins, which
is not always satisfied in our TSH analyses. On the other
hand, for TSH analysis, besides the ` for each bin, which
is usually approximated with kr, we still need to deter-
mine the bin size. However, we find it hard to properly
determine a pair of the `max value and the tomographic
bin size that corresponds to a given k3D

max(z).

Given these issues and inspired by the third method for
determining k3D

max(z) above, we quantify the linear modes
for SFB and TSH analyses independently. We evaluate
Eq. (28) and (39) using a linear and non-linear matter
power spectrum Pm(k, z) for TSH and SFB analysis re-
spectively. The highest possible value of `max for a given
z and redshift bin width in the TSH analysis (or k`n
for a given ` for the SFB analysis) is then determined
such that the fractional difference in the evaluation of
the power spectrum using a linear and non-linear matter
power spectrum is less than 10 %. These are the linear
modes used for the Fisher analysis. In the meantime, the
lowest k`n available for each ` for the SFB analysis are
determined by the radial coverage (i.e. shell or sphere)
and the Dirichlet boundary condition. With their linear
modes being determined independently, it is not guar-
anteed that the modes corresponding to the same scales
are included for SFB and TSH analyses, which is hard to
do since they behave differently in mixing 3D wavenum-
bers. To better illustrate our linear modes selection, as
an example, here we show the diagrams for the Euclid
sample. In Fig. 5, the linear SFB modes are shown in
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FIG. 6. Linear modes in TSH analysis of the Euclid galaxy
sample, where each mode is specified by the redshift bin size
and the angular multipole `. Each line labelled by the tomo-
graphic redshift bin size shows the maximum ` for each bin
determined by the linear requirement. As a reference, we also
show k3Dmax(z)r(z), which is usually used to convert k to ` for
a single redshift bin. See Section V B for more details.
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FIG. 7. Spectral window function (Eq. (54)) multiplied to the
galaxy SFB modes. The example line is shown for a redshift
uncertainty σr = 50 Mpc, which roughly corresponds to σ̃z =
0.01 centered at z = 0.7 (e.g. the SPHEREx 2 sample).

the (k`n, `) space. The maximum k`n values lie between
k3D

max at redshift z = 0.6 and z = 2.1. Similarly, we have
Fig. 6 for the TSH modes. We can see that as the bin
size becomes much smaller, e.g. from 0.01 to 0.005, we
have more bins but the linear `max value for each bin
becomes significantly lower. This is expected since with
smaller bin sizes, more nonlinear scales are being mixed
in the integral and high ` modes that become more non-
linear are excluded. Then it is interesting to check how
the total information, e.g. in terms of the signal-to-noise
ratio (SNR) or constraints on different parameters, will
change accordingly. It should be expected that with only
the linear modes being selected, the information would
stop increasing as the bin size is decreased to a certain
level. As will be discussed in Section VI D and VI B, we
find that for spectroscopic samples, TSH analysis with
a bin size around ∆z = 0.01 gives the highest overall
SNR for power spectra and the tightest constraints on
parameters.

For (spectro-)photometric samples with non-negligible
redshift uncertainties, a spectral window function [32]

A(k`n) =
π

4

[
sinc

(
k`nσr − π

2

)
+ sinc

(
k`nσr + π

2

)]
(54)

is applied to the galaxy transfer functions (Eq. (40)) in
SFB analyses, where σr = c σ̃z(1 + z)/H(z) is the radial
interval that corresponds to the redshift uncertainty. As
an example, we show A(k`n) with σr = 50 Mpc in Fig. 7.
In TSH analyses, we use bin sizes that are larger than
the redshift uncertainty.

C. Gaussian likelihood and Fisher matrix

The likelihood function L(D̂|θ) describes the proba-

bility of having the observed data vector D̂ given the set
of parameters θ, or vice versa. For brevity, we adopt a
frequently used shorthand notation for the partial deriva-
tive with respect to parameters, �,α ≡ ∂�/∂θα. The
elements of Fisher matrix are defined as

Fαβ ≡ 〈−(lnL),αβ〉 , (55)

whose inverse gives the Gaussian covariance matrix of
the parameters

Cov(θα, θβ) =
(
F−1

)
αβ

. (56)

Then the uncertainty of a parameter with all the other
parameters being marginalized is simply given by the di-
agonal elements

σ(θα) =
√

(F−1)αα . (57)

Excluding parameters (i.e. fixing these parameters) in
Fisher analysis is convenient and we only need to remove
the corresponding rows and columns without any further
computation being required. The extreme case is the con-
ditional uncertainty of a parameter given by (Fαα)−1/2.
Unless otherwise specified, the constraints on the param-
eters in this work are always the marginal uncertainties.

Assuming the data vector D̂ to be Gaussian, the like-
lihood function reads

L(D̂|θ) =
1

(2π)dim(D̂)/2
√
|C|

× exp

{
−1

2
(D̂ −D)†C−1(D̂ −D)

}
,

(58)

where dim(D̂) is the length of D̂, with the ensemble av-

erage D ≡ 〈D̂〉 and covariance matrix

C ≡ 〈(D̂ −D)(D̂ −D)†〉 = 〈D̂D̂
†〉 −DD† , (59)

whose determinant is denoted as |C|. Then the explicit
expression of Fisher matrix given the Gaussian likelihood
can be written as

Fαβ =
1

2
Tr[C−1C,αC−1C,β ] + D†,αC

−1D,β . (60)
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D. Data vector

In our Fisher analyses, we take the SH or SFB coeffi-
cients of the 2D or 3D fields as the data vector. CMB
lensing and galaxy overdensity fields have constant en-
semble average (e.g. zero, depending on the definition)
and hence the second term in Eq. (60) vanishes. We
ignore the possible mode coupling of the angular multi-
poles `’s and simply use the fractional sky coverage fsky

to account for the loss of information due to partial sky
survey footprint. This approximation is reasonable given
the large sky coverages with regular geometries that we
consider. In general, this coupling could be reduced by
binning the modes or removed with the mode coupling
matrix given the angular mask of the survey [65]. Then
each ` contributes independently to the Fisher matrix,
and the total information can be written as a summation

Fαβ =
∑
`

(2`+ 1)fsky

2
Tr[C−1

` C`,αC−1
` C`,β ] , (61)

where the 2`+1 factor results from the number of equiv-
alent m modes for each `, since the covariances of the
coefficients are the power spectra, which do not depend
on m as shown in Section III B. This is the explicit form
that is used in the Fisher analyses in this work. Next let
us look into D̂`m and the corresponding C` for the two
ways of decomposing 3D galaxy fields, TSH and SFB
analyses.

First we consider the joint analysis of κ and tomo-
graphic g maps from one or multiple galaxy samples. For
each ` and m, the data vector reads

D̂`m = (κ̂`m, {ĝij`m})T , (62)

where the set {ĝij`m} includes all the galaxy samples con-
sidered, indexed with i, and for each sample, j denotes
the redshift bins. Notice that different galaxy samples or
redshift bins could have different maximum ` given our
discussion in Section V B about the linear modes being
included in the analysis, and hence the number of sam-
ples/bins included in D̂`m could vary for different `. It
is slightly messy but still straightforward to understand
since different ` modes contribute independently to the
Fisher information, and we should have the freedom to
decide what data to use for each ` as long as the choice
is consistent for all the Fisher matrix elements.

The formalism is similar in SFB analysis except that
for each galaxy sample we have multiple discrete radial
modes instead of tomographic redshift bins. The data
vector can be written as

D̂`m = (κ̂`m, {δ̂i`mn})T , (63)

where i denotes galaxy samples and n is the index for
discrete radial wavenumbers as discussed in Section III A.

For both TSH and SFB analyses, we consider the full
covariance matrix of D̂`m. The power spectra for any
pair of SH or SFB coefficients in D̂`m are computed using

the expressions in Eqs. (28), (37) and (39). For each `,
the galaxy samples included and the number of radial
modes for each sample could be different.

We use the Fisher matrix in Eq. (61) for the analyses
in this work, while it is also helpful to implement an
equivalent form as a double check, which is given as

Fαβ =
∑
`

d†`,αM`
−1d`,β , (64)

where d` is a vector consisting of all the power spectra,
i.e. a stack of the upper triangular elements in C`, and
M` is the Gaussian covariance matrix of d`, where a sim-
ilar (2` + 1)fsky sampling factor is included as shown in
Eq. (C3). Eq. (64) is sometimes referred as the Fisher
matrix at power spectra level, and it is mathematically
equivalent as Eq. (61), see more discussion in [66, 67].
It is worth being reminded that Eq. (64) is not given by
taking the power spectra vector (i.e. d`) as the Gaus-
sian data vector in the general Gaussian Fisher matrix
in Eq. (60), where the first term would not vanish since
M` is also function of the parameters. The reason that
Eq. (64) is not preferred for all the analyses in this work
is that the size of M` could be very large and the in-
version would take much longer computational time than
the inversion of C`. For example, for a certain `, consider
the joint analysis of δ with n radial modes and κ. Then
dim(C`) = (n+ 1)× (n+ 1) , dim(d`) = (n+ 1)(n+ 2)/2,
and dim(M`) = dim(d`) × dim(d`). In our analyses, n
can be of order ∼ 100. Thus we only use Eq. (64) as a
double check and run it for a few cases.

E. Prior information

For the five background cosmological parameters
{H0, Ωm,0, Ωb,0, σ8, ns} considered, it would be help-
ful to include the prior information from Planck 2018
CMB temperature and polarization data. We use the
Planck TT,TE,EE+lowE constraints [37], and the co-
variance matrix for a subset of original and new derived
parameters is reconstructed from the Monte Carlo chains
provided at [70]. We do not use the Planck results includ-
ing CMB lensing to avoid double counting information,
since we have lensing in our Fisher analyses. Using Get-
Dist [68, 69], the covariances for the five parameters are
estimated, which are shown in Fig. 8. As prior informa-
tion, elements in the inverse of this covariance matrix are
added to the corresponding Fisher matrix elements.

VI. RESULTS AND DISCUSSIONS

In this section, we present and discuss the main results
of our Fisher analyses.
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FIG. 8. Planck 2018 CMB TT,TE,EE+lowE constraints on
the five background cosmological parameters considered in
this work, recompiled from Monte Carlo chains provided using
GetDist [68, 69]. Contours show 68 % and 95 % confidence
regions. The corresponding covariance matrix will be used as
prior information in our Fisher analyses, see Section V E.

TABLE II. Total SNR of power spectra given by Eq. (65)
for the galaxy samples decomposed in SFB or TSH basis. For
TSH analyses of spectroscopic samples, a bin size ∆z = 0.01 is
used. While for (spectro-)photometric samples, the bin sizes
are limited by the redshift uncertainties (except for SPHEREx
1). These include the same linear modes that are used in the
Fisher analyses, as discussed in Section V B.

SNR

Cκδ Cκg Cδδ Cgg

DESI BGS 22 21 263 251
DESI ELG 94 78 887 793
Euclid 140 116 1451 1330
LSST low-z 21 21 73 71
LSST high-z 38 37 178 156
SPHEREx 1 89 72 749 608
SPHEREx 2 78 78 583 513
SPHEREx 3 32 32 133 127

A. Power spectra

First as a simple check on our theoretical expressions
and also numerical computations of the power spectra
and noises for both SFB and TSH analyses, we estimate
the total signal-to-noise ratio (SNR), which is given by

SNR (Cxy) =

[∑
`

(Cxy
` )TCov−1

` C
xy
`

]1/2

, (65)
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FIG. 9. SNRs of TSH power spectra Cgg and Cκg with
different bin sizes for the Euclid galaxy sample. SNRs of
SFB power spectra Cδδ and Cκδ are also shown as horizontal
dashed lines for reference.

where we sum over all the ` modes included in Fisher
analyses, Cxy

` is the signal (i.e. without noise) vector
and Cov` is the Gaussian covariance matrix of Cxy

` , with
a general expression given by Eq. (C3). The pair of fields
xy can be κδ or κg for the CMB lensing and galaxy (in
SFB or TSH basis) cross-power spectra, where for each
`, Cxy

` is a 1D vector consists of power spectra of all the
radial modes or redshift bins. The fields xy can also be
δδ or gg for the galaxy auto-power spectra, which are
matrices for each ` and the vector Cxy

` is a stack of the
upper triangular elements. Notice that Eq. (65) is in a
similar form as Eq. (64), which is equivalent as Eq. (61).
Therefore for δδ and gg where Cov` can be too large,
instead of Eq. (65), we use its equivalent expression as
Eq. (61) to speed up the computation. The results are
summarized in Table II. We can see that with their own
linear modes, SFB give higher SNRs than TSH for both
the auto-power spectra of galaxies and the cross-power
spectra with CMB lensing.

Of course the SNRs of TSH power spectra could de-
pend on the number of tomographic redshift bins. We
take the Euclid galaxy sample as an example and try dif-
ferent bin sizes, with the resulted SNRs shown in Fig. 9.
It is interesting that for the galaxy auto-power spectrum,
instead of continuously increasing, SNRs of TSH with
different bin sizes peak around ∆z = 0.01, which is still
lower than the SNR of SFB. This is mainly due to the
linear requirement which excludes more nonlinear modes
when very small TSH bin sizes are used, as shown in
Fig. 6. While for the cross-power spectrum with CMB
lensing, TSH has similar SNRs as SFB for most bin sizes,
which then decreases for very small bin sizes. The SNR
only tells us the overall strength of the power spectra
signal, and a higher SNR does not guarantee better con-
straints on certain parameters, which could change the
power spectra in different ways instead of simply tuning
the amplitude. In the following sections, we will discuss
the constraints on different parameters, and how those
given by TSH analyses depend on the bin size.
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B. Constraints on parameters

We summarize the Fisher constraints on the two
parameters of primary interest, fNL and γ, in Ta-
ble III for three scenarios: galaxy only, joint analy-
ses with CMB lensing, and further adding prior infor-
mation from Planck CMB temperature and polariza-
tion. For the (spectro-)photometric samples with high
redshift uncertainties, we do not report the poor con-
straints on γ, which are not comparable to the con-
straints given by spectroscopic samples. The only ex-
ception is the SPHEREx 1 sample, whose redshift uncer-
tainty is actually low enough to be treated as a spectro-
scopic sample. As mentioned in Section V A, these are
the constraints with other parameters being marginal-
ized, including five background cosmological parameters
{H0, Ωm,0, Ωb,0, σ8, ns} and two nuisance parameters
{Ab, s}. Besides these marginal constraints on fNL and
γ, to further look into the correlations between any pair
of free parameters in the Fisher analysis, as an exam-
ple, we show the full constraints with the Euclid galaxy
sample in Fig. 10.

In Table III, besides the results for the individual
galaxy samples listed back in Table I, we also show the
results given by combining samples from the same sur-
vey (e.g. DESI BGS and ELG) in the data vector in
Eq. (62) for TSH and Eq. (63) for SFB. The covariances
between samples are fully included since samples from
the same survey are observing the same angular patch of
the sky. While for samples with different sky coverages,
Fisher information for overlapping and non-overlapping
regions should be calculated separately with and without
covariances, and then combined. However, the footprint
overlap between different surveys depends closely on the
observation details of these future surveys, which are not
very clear at this stage. Therefore here we do not discuss
the combination of galaxy samples from different surveys.

For fNL, we notice that TSH analyses give similar con-
straints as SFB. This means that the bin size should be
small enough in recovering large radial scales where PNG
is more significant, and we discuss more about this in Sec-
tion VI D. Recall that one of our motivations is to check
how radial information contributes to constraining fNL.
The extreme cases are SFB analysis where radial infor-
mation is fully considered, and TSH analysis with only
one bin where most if not all radial information is lost
in the projection. For all the galaxy samples considered,
compared to the TSH analysis with only one bin, SFB
could be better by a factor of 3 to 12. We also tried TSH
with two bins, and σ(fNL) gets much tighter compared
to the one bin case, while SFB could still be better by a
factor of 2 to 3. These improvement factors vary for dif-
ferent surveys, while the general conclusion is that large
radial scales does contribute significantly to constraining
fNL. Joint analysis with CMB lensing improves σ(fNL)
more when the cross-correlation (Fig. 4) is stronger at
low `s, e.g. for DESI BGS. Besides these marginal con-
straints, in Fig. 10, we can see that the covariances be-

tween fNL and other parameters are not strong. This is
one of the reasons that we do not see the improvements
with CMB lensing that are as significant as those shown
in [15]. Instead of considering background cosmological
parameters, they introduced a fake fNL parameter to the
matter power spectrum that mimics the real fNL in scale-
dependence. This resulted in a degeneracy that is much
stronger than it should be, and therefore CMB lensing
became more important in reducing that.

For constraining γ, with CMB lensing included, we find
significant improvements by a factor of 2 to 5 for differ-
ent samples depending on their redshift ranges and scales
included in the Fisher analyses. These improvements
on σ(γ) mainly come from the mitigation of degenera-
cies with other parameters, which can be seen from the
shapes and orientations of the confidence regions shown
in Fig. 10. With galaxy only, γ is strongly correlated with
the clustering bias Ab, which is the well-known RSD-bias
degeneracy since it is roughly the sum of fσ8 and bgσ8

that determines the overall amplitude of the power spec-
trum. Both γ and Ab are also correlated with some of the
background cosmological parameters. After CMB lens-
ing is included, these covariances are reduced, especially
between γ and Ab. On the other hand, for the com-
parison between SFB and TSH methods, we get better
constraints on γ with SFB. This indicates that even with
a small enough bin size, linear TSH modes still contain
less radial information than SFB. More discussions are
included in Section VI D below.

For the background cosmological parameters, the con-
straints are also improved with the joint analysis with
CMB lensing and also the addition of CMB temperature
and polarization prior information. Another interesting
point to notice is that the galaxy magnification bias is
almost not degenerate with any other parameters. As
a result, for the samples at lower redshifts, we do not
observe much difference with s being fixed or marginal-
ized, even with different fiducial s values we tried in the
range 0.1 − 0.7. The only exception is the LSST high-
z sample which covers redshift 2 < z < 5, for which
we do observe relative differences of dozens of percent in
σ(fNL) with different fiducial s values being used. This
is understandable considering that magnification bias is
caused by the foreground lensing, to which galaxy sam-
ples at higher redshifts might be more sensitive. While
with CMB lensing included, σ(fNL) becomes much less
dependent on s, which is another advantage of the joint
analysis.

C. Dependence on the minimum angular multipole

In our main analyses, we use the minimum angular
multipole `min = 2 for all the surveys, which is reason-
able given the large sky coverage (fsky in Table I) of these
surveys. However, even though spatially accessible, these
very large scales have always been challenged by system-
atics, which makes them excluded from practical anal-
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TABLE III. Fisher forecasts of marginal constraints on the PNG parameter fNL and the RSD exponent γ for three progressive
scenarios: galaxy only, joint analyses with CMB lensing, and further adding Planck CMB temperature and polarization prior
information. Results for galaxy samples analyzed in both SFB and TSH bases are included. For spectroscopic samples, a TSH
bin size ∆z = 0.01 is used. For (spectro-)photometric samples (except SPHEREx 1), the constraints on γ are very poor due
to redshift uncertainties and thus not included. See Section VI B for more discussions. Note that `min = 2 is used for these
analyses, we discuss the dependence on `min in Section VI C.

Galaxy only × CMB lensing + Planck prior

σ(fNL) σ(γ) σ(fNL) σ(γ) σ(fNL) σ(γ)

SFB TSH SFB TSH SFB TSH SFB TSH SFB TSH SFB TSH

DESI BGS 45.1 44.9 0.19 0.22 40.1 40.4 0.038 0.043 33.9 34.2 0.029 0.033
DESI ELG 7.9 8.2 0.067 0.078 7.6 7.8 0.021 0.026 7.2 7.4 0.017 0.020
DESI BGS+ELG 7.8 8.0 0.038 0.049 7.0 7.2 0.019 0.024 6.7 6.9 0.015 0.018

Euclid 4.6 4.7 0.034 0.040 4.4 4.5 0.015 0.019 4.2 4.3 0.012 0.014

LSST low-z 6.2 6.5 - - 3.3 3.4 - - 2.6 2.6 - -
LSST high-z 1.2 1.3 - - 0.9 1.0 - - 0.6 0.6 - -
LSST all 0.8 0.9 - - 0.7 0.7 - - 0.5 0.5 - -

SPHEREx 1 4.8 5.0 0.043 0.055 3.9 4 0.019 0.028 3.8 3.8 0.018 0.026
SPHEREx 2 2.9 3.0 - - 2.5 2.6 - - 2.3 2.4 - -
SPHEREx 3 5.4 5.8 - - 3.0 3.2 - - 2.5 2.6 - -
SPHEREx 1-3 2.2 2.3 - - 1.9 2.0 - - 1.9 1.9 - -

yses. Therefore in this part we discuss the dependence
of the parameter constraints on the `min used in Fisher
analyses.

In Fig. 11, taking the LSST sample (which gives the
best constraint on fNL) as an example, we show the de-
pendence of σ(fNL) on `min used in the Fisher analyses.
We can see that fNL is very sensitive to low ` modes
(i.e. large scales) given its k−2 scale dependence. Us-
ing `min = 50 could increase the uncertainty in fNL by
a few factors (e.g. 3 for this LSST example) compared
to using `min = 2. Thus for future surveys dedicated
to constraining fNL, it would be very helpful to identify
and reduce large scale systematics. While for the growth
rate exponent γ, the constraint is less sensitive to `min.
For spectroscopic surveys like the Euclid sample, using
`min = 100 only increases σ(γ) by around 20 %.

D. Dependence of TSH constraints on the bin size

As discussed in Section V B, the modes included in
Fisher analyses are determined based on the linear re-
quirement of the SFB and TSH power spectra. For TSH
analysis, the maximum linear angular multipoles also de-
pend on the bin size, as shown in Fig. 6 for the Euclid
sample as an example. In the discussions above, we use
the bin size ∆z = 0.01 in TSH analyses, and here we dis-
cuss how this optimal value is found. Fig. 12 shows the
TSH constraints on parameters with different bin sizes,
where the values are shown as ratios to the SFB con-
straints. Similar as the SNR of the galaxy power spec-
trum that peaks around ∆z = 0.01 as shown in Fig. 9,
the tightest constraints on the parameters given by TSH
are also achieved around ∆z = 0.01. Given that RSD is

a purely radial effect, σ(γ) is more sensitive to the bin
size than other parameters. On the other hand, com-
pared with other parameters, σ(fNL) requires fewer bins
to reach the SFB constraint since it is more sensitive
to large scales and the additional information from very
small bins does not contribute a lot. Similar discussion
in a simplified cubic box geometry can be found in [71],
where it is shown that analyzing a 3D survey as a 2D
map will lose a factor greater than 2 in SNR, consistent
with our results.

Fig. 12 and 9 are shown for the Euclid sample, but the
bin size dependence and the optimal bin size are simi-
lar for DESI BGS, ELG or SPHEREx 1 galaxy samples
we consider. For other (spectro-)photometric samples,
the optimal bin sizes could not be achieved since they
are smaller than the redshift uncertainties. The optimal
bin size depends on many details of the survey includ-
ing the number density which determines the shot noise
level, and also the redshift distribution. We tried finer
sampling of the bin size, and the optimal values are not
exactly the same for different surveys. For example, for
DESI BGS, the optimal ∆z is closer to 0.008, which is
smaller than 0.01. While for DESI ELG and Euclid, the
finer optimal values are slightly lower than 0.01. We also
tuned the number density with other configurations being
fixed and noticed that, the advantage of SFB is stronger
when the shot noise is lower.

E. Covariances between radial modes in SFB or
redshift bins in TSH

In this part, we consider the importance of the covari-
ances between radial modes in SFB or redshift bins in
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FIG. 10. Fisher constraints on the PNG parameter fNL, the RSD exponent γ, five background cosmological parameters
{H0, Ωm,0, Ωb,0, σ8, ns}, and two nuisance parameters {Ab, s} with the Euclid-like galaxy sample. The contours shown are 1σ
(68 %) confidence regions. We consider the constraints with galaxy only in SFB basis (blue), joint analysis with CMB lensing
(orange), and further adding the Planck CMB TT,TE,EE+lowE prior (green). Note that the CMB prior (dashed red lines)
only contains information for the five background cosmological parameters.

TSH. In principle, all the covariances should be included
as part of the total information, while sometimes people
might ignore them for simplicity. Therefore, it is worth
being discussed how the constraints on parameters of in-
terest would change with or without the covariances.

In TSH basis, the cross-correlations between tomo-
graphic redshift bins contain wealthy information from
the radial direction. Therefore excluding these covari-
ances in the Fisher analysis could result in worse con-

straints on the parameters. The significance of off-
diagonal elements in a covariance matrix C can be quan-
tified with the correlation matrix, whose elements are
given by

Corr(C)ij =
Cij√
CiiCjj

, (66)

where in this case Cij corresponds to Eq. (28) and (39)
for TSH and SFB galaxy power spectra respectively. As
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CMB lensing included. To get a more straightforward idea
about the dependence of background cosmological parameters
on the bin size ∆z in TSH analysis, Planck CMB prior is not
added. See Section VI D for more details.

an example, we show the correlation matrices of TSH
power spectra of the Euclid galaxy sample for a few `’s in
Fig. 13. We can see there are non-negligible correlations
between redshift bins for both high and low `s, given the
small bin size ∆z = 0.01 we use. For the galaxy samples
we consider, with the covariances removed, we noticed

` = 10 ` = 500 ` = 700

−1

0

+1

FIG. 13. Correlation matrices of TSH galaxy power spectra
for ` = 10, 500, 700, assuming the Euclid sample. The upper
left corner corresponds to lower redshift bins.
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−1

0

+1

FIG. 14. Similar as Fig. 13 but for SFB galaxy power spectra.
The upper left corner corresponds to lower k`n modes.

that both σ(fNL) and σ(γ) could be larger approximately
by a factor of 1.5 to 2.5. Therefore as expected, it is cru-
cial to consider the covariances in tomographic analysis
in order to make use of the valuable radial information.

While in SFB analysis, it is not straightforward to an-
alytically predict how the covariances between discrete
radial modes would change the constraints. We show a
few correlation matrices in Fig. 14. Those non-zero off-
diagonal covariances are mainly caused by the redshift
dependence of the galaxy field and also the boundary
condition, where the orthogonality relations of the radial
basis functions no longer hold. For the galaxy samples
we consider, σ(fNL) could be larger by 10 % to 40 % due
to these covariances. While for γ, which is more sensi-
tive to the radial information, the constraints could be
either better or worse by dozens of percent depending on
the specific sample. Thus it is important to consider the
covariances between radial modes in SFB power spectra
analysis, given the significant impact on the parameter
constraints.

VII. CONCLUSIONS

As observables tracing the same matter field, cross-
correlating CMB lensing and galaxy clustering is power-
ful in reducing the sample variance on large scales and
also mitigating the degeneracies between galaxy-only and
standard ΛCDM cosmological parameters. Compared
with Cartesian P (k) analysis, decomposing 3D spheri-
cal galaxy field in SFB basis is a more natural choice
for large scales. This also makes it straightforward to be
cross-correlated with 2D CMB lensing map in SH basis.
Motivated by this SFB analysis that maintains the radial
information, we investigate the constraints on the PNG
parameter fNL and the RSD exponent γ by performing
Fisher forecasts for galaxy setups that mimic a few future
surveys. In these Fisher analyses, we also marginalize
over five ΛCDM cosmological parameters and two nui-
sance parameters that accounts for clustering bias and
magnification bias.

We consider the linear modes that are defined based
on their own power spectra in SFB and TSH analyses.
We avoid doing these by converting from the 3D lin-
ear scale as has been done in some previous work, since
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3D wavenumbers are actually mixed in SFB and TSH
analyses, and it is hard to perform the conversion accu-
rately. For TSH analysis, a direct result is that for a
much smaller bin size, maximum ` for each bin would
be lower since those modes that become more nonlin-
ear due to the small bin size are excluded. In general,
we find that SFB works better than TSH in maintaining
the linear modes and therefore gives more information in
constraining parameters.

For fNL, thanks to the contribution from large radial
scales, SFB gives tighter constraints by a factor of 3 to
12 compared to TSH analysis with only one bin, where
radial information is mostly lost. Since PNG is only sig-
nificant on large scales, decreasing the bin size in TSH
analysis could improve σ(fNL) but would not give better
results than SFB analysis where large radial scales are
clearly included. We also notice that in SFB analysis or
TSH analysis with a large number of bins, CMB lens-
ing does improve σ(fNL) but not significantly since fNL

is only weakly degenerate with other cosmological pa-
rameters, and also radial scales contribute more modes
to reducing the sample variance than CMB lensing. For
the galaxy samples considered, compared with analyzing
galaxy only, joint analysis with CMB lensing could im-
prove σ(γ) by a factor of 2 to 5. This is mainly con-
tributed by reducing the degeneracies between γ and
other parameters, especially the clustering bias.

For the magnification bias s due to foreground lens-
ing, its degeneracies with other parameters are found to
be very weak while different fiducial values could change
σ(fNL) by dozens of percent for analyzing high redshift
galaxy samples. However, using the joint analysis with
CMB lensing, σ(fNL) becomes more robust and these
changes due to fiducial s values reduce to only a few
percent. Therefore, for analyzing high redshift galaxy
datasets, it might be necessary to consider free s pa-
rameter in a proper prior range if CMB lensing is not
included.

Both SFB and TSH methods have their own advan-
tages and limitations. In SFB basis, it is more convenient
to decompose a 3D field without losing information, es-
pecially for large radial scales. However, the sacrifice is
that the information from different redshifts is mixed in
the radial integral, which is an inevitable result of ob-
serving the light cone. In TSH basis, it is easier to study
the redshift evolution of the field, but the radial infor-
mation may not be well reconstructed even with a large
amount of modes. Therefore, which method to use de-
pends on the parameters of interest. For example, if the
primary goal is to constrain fNL, then TSH analysis with
a moderate number of bins should suffice. Besides, it is
worth mentioning that for constraining fNL in the 3D
P (k) analysis, an optimal redshift weighting method has
been shown to be helpful in reducing the uncertainty (see
e.g. [72–74] for the application on the eBOSS data). This
might also be an interesting aspect to consider when the
SFB formalism is used to analyze observed data in the
future.

In general, our Fisher forecasts show that joint anal-
yses of future CMB lensing and galaxy surveys in SFB
basis are very promising in constraining PNG and RSD,
which are probes of inflation and gravity models respec-
tively. For future large spectroscopic surveys like DESI
BGS+ELG or Euclid, we would be able to constrain γ to
∼ 3 % precision using their linear scales. For high red-
shift photometric samples like LSST, σ(fNL) < 1 can be
achieved as long as `min ' 20 are free of possible large-
scale systematics. However, to use either SFB or TSH
formalism for data analyses of future surveys, besides the
estimator that has been discussed in [26, 27], it is still nec-
essary to improve the numerical algorithm of computing
the theoretical power spectra since they would have to
be evaluated at each MCMC step. Besides the FFTLog
algorithm mentioned in Appendix D, another promising
solution is to extend the emulators (see e.g. [75, 76]) to
the SFB power spectra.
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Appendix A: Orthogonality relations

In this Appendix, we present a brief review of the or-
thogonality relations satisfied by the radial basis func-
tions in SFB decomposition. Following the discussion
in [23], we derive the normalization factors under dif-
ferent boundary conditions (BCs). The spherical Bessel
functions are defined through the differential equation

1

r

d2

dr2
[rf`(kr)] =

[
`(`+ 1)

r2
− k2

]
f`(kr) , (A1)

where f`(kr) can be any linear combination of j`(kr) and
y`(kr), the spherical Bessel functions of first and second
kind. Applying the operation∫ r2

r1

dr r2f`(k
′r) (A2)

to both sides of Eq. (A1) and removing the symmetric
terms in k and k′ by doing the subtraction with k and k′

interchanged, we are left with∫ r2

r1

dr r2f`(kr)f`(k
′r)

=
r2 [k′f`(kr)f

′
`(k
′r)− kf`(k′r)f ′`(kr)]

∣∣r2
r1

k2 − k′2 ,

(A3)
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where r1 and r2 are the lower and upper radial bound-
aries. We can see that for discrete k = k`n and k′ = k`n′
values determined with either Dirichlet

f`(k`nr1,2) = 0 (A4)

or Neumann

f ′`(k`nr1,2) = 0 (A5)

BC, the numerator of Eq. (A3) evaluated at the bound-
aries are zero. Then Eq. (A3) can be written as a orthog-
onality relation∫ r2

r1

dr r2f`(k`nr)f`(k`n′r) = τ`nδ
K
nn′ , (A6)

where the normalization factor τ`n for n = n′ can be
determined by taking the limit k → k′ on the RHS of
Eq. (A3), which gives

τ`n =
r3

2

{
[f ′`(k`nr)]

2 − f`(k`nr)f
′
`(k`nr)

k`nr

− f`(k`nr)f ′′` (k`nr)

}∣∣∣∣∣
r2

r1

.

(A7)

Now we could explicitly write down the following nor-
malization factors for different BCs.

• For a sphere, r1 = 0, f` = j`,

– with Dirichlet BC,

τ`n =
r3
2

2
[j`+1(k`nr2)]2 . (A8)

– with Neumann BC,

τ`n =
r3
2

2

[
1− `(`+ 1)

(k`nr2)2

]
[j`(k`nr2)]2 . (A9)

• For a shell, 0 < r1 < r2 and f` = J`,
– with Dirichlet BC,

τ`n =
r3

2
[J`+1(k`nr)]

2

∣∣∣∣r2
r1

. (A10)

– with Neumann BC,

τ`n =
r3

2

[
1− `(`+ 1)

(k`nr)2

]
[J`(k`nr)]2

∣∣∣∣r2
r1

. (A11)

Appendix B: SFB and 3D Cartesian power spectra

Here we discuss the relation between SFB and 3D
Cartesian power spectra. Assuming that f(r) is a statis-
tically homogeneous and isotropic 3D field, whose auto-
power spectrum in Cartesian coordinates is given through

〈f(k)f∗(k′)〉 = (2π)3δD(k − k′)Pf (k) . (B1)

The SFB coefficient with or without boundary conditions
(BCs) can be written in a general form as

f`m(kr) =

∫
dr r2F(kr, r)

∫
dΩ f(r)Y ∗`m(r̂) , (B2)

where F(kr, r) includes the factor and radial eigenfunc-
tion, and kr denotes the radial wavenumber in SFB basis.
By transforming f(r) to f(k) and using the plane wave
expansion in Eq. (26), the inner angular integral can be
written as an integral over the 3D wavevector∫

dΩ f(r)Y ∗`m(r̂) =
i`

2π2

∫
d3k f(k)j`(kr)Y

∗
`m(k̂) ,

(B3)
and Eq. (B2) becomes

f`m(kr) =
i`

2π2

∫
d3k f(k)Y ∗`m(k̂)

∫
dr r2F(kr, r)j`(kr) .

(B4)
Without any BC, kr is continuous and

F(kr, r) =

√
2

π
kj`(krr) , (B5)

where the choice of the normalization factor is not im-
portant here and may vary depending on the convention.
Then the integral over r from 0 to +∞ gives δD(kr − k)
and the auto-correlation turns out to be

〈f`m(kr)f
∗
`′m′(k

′
r)〉 = δK

``′δ
K
mm′δ

D(kr − k′r)Pf (kr) , (B6)

i.e. we have Cf` (kr) = Pf (kr) and the radial wavenumber
is exactly the 3D wavenumber.

With a shell or sphere BC, kr are discrete k`n values
and we have

F(k`n, r) = τ−1
`n J`(k`nr) . (B7)

The auto-correlation now reads

δK
``′δ

K
mm′C

f
`nn′ = 〈f`m(k`n)f∗`′m′(k`′n′)〉

= δK
``′δ

K
mm′

2

π
τ−1
`n τ

−1
`n′

×
∫
dk k2Pf (k)I`n(k)I`n′(k) ,

(B8)

where we defined

I`n(k) ≡
∫ r2

r1

dr r2J`(k`nr)j`(kr) . (B9)

Since k is arbitrary, this integral over r would no longer
reduces to the Delta function.

Appendix C: Gaussian covariances between power
spectra

In this Appendix, we briefly discuss the Gaussian sam-
pling covariances for SH and SFB power spectra based on
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the pseudo-C` (PCL) estimator. Note that although the
expressions below are written for 3D SFB coefficients,
the derivation is the same for SH coefficients and thus
any 3D field f(r, r̂) can be replaced with 2D field a(r̂)
by simply erasing the corresponding radial wavenumber
index n.

The PCL estimator is constructed based on the equiv-
alence of all the m modes

Ĉff
′

`nn′ =
1

(2`+ 1)fsky

∑̀
m=−`

f̂∗`mnf̂
′
`mn′ , (C1)

i.e. the estimate for each ` mode is given by the average
over all the 2`+1 m modes, fsky is the fractional sky cov-
erage and we ignore the coupling between multipoles for
simplicity, as also assumed in the main text. Assuming
the fields fi to be Gaussian, with Wick contraction

〈f1f2f3f4〉 =〈f1f2〉〈f3f4〉
+ 〈f1f3〉〈f2f4〉+ 〈f1f4〉〈f2f3〉 ,

(C2)

we can show that the sample covariance reads

Cov
(
Ĉf1f2`n1n2

, Ĉf3f4`′n3n4

)
=
〈(
Ĉf1f2`n1n2

− Cf1f2`n1n2

)(
Ĉf3f4`′n3n4

− Cf3f4`′n3n4

)〉
=

δK
``′

(2`+ 1)fsky

(
Cf1f3`n1n3

Cf2f4`n2n4
+ Cf1f4`n1n4

Cf2f3`n2n3

)
,

(C3)

where Cf1f2`n1n2
are measured power spectra that include

possible noises. As mentioned in the main text, in this
work we consider the lensing reconstruction noise and
shot noise in CMB lensing and galaxy clustering auto-
power spectra respectively. Besides the simplified fsky

description of partial sky coverage, [77] presented a full
discussion of the PCL estimator and also the correspond-
ing Gaussian covariance matrix for SH power spectra
with angular masks included. Similar discussion and ex-
pressions should also work for the joint analyses of SH
and SFB since there is no difference in their angular mul-
tipole descriptions, see e.g. [28, 78] for discussions about
the impact on SFB power spectra. A recent work on
SFB power spectrum estimator [27] also presents more
detailed discussions about the analytical covariance ma-
trix.

Appendix D: Numerical computation of power
spectra

This Appendix includes some details on the numeri-
cal computation of the power spectra. In our formalism

discussed in Section III B, there are mainly two steps.
First, for tracers of the matter field, e.g. CMB lensing
and 2D projected or 3D galaxy overdensity, we need to
the compute their transfer functions given by the line-of-
sight integrals over radial distance r. Then these transfer
functions can be combined with the matter power spec-
trum in the integral over 3D wavenumber k to get the
SH or SFB power spectra. The numerical evaluation of
the line-of-sight integrals is nontrivial given the highly
oscillatory j`(kr) functions, and the Limber approxima-
tion [79, 80]

∫
dx f(x)j`(x) '

∫
dx f(x)

√
π

2`+ 1

× δD(`+ 1/2− x)

(D1)

is usually used to speed up the computation. However,
this approximation work well only for high `s, an inte-
gral range that is much wider than the oscillation pe-
riod of j`(x), and also f(x) should vary slowly compared
with j`(x). These requirements may not hold in our case.
First, we are interested in large scales and very low `s are
included. Also, the redshift slice (i.e. the integral range)
could be very narrow given the large number of bins in
TSH analysis. Besides, for SFB analysis, we have the
radial basis function J`(k`nr) = j`(k`nr) + A`ny`(k`nr)
in the line-of-sight integral, which is also oscillating very
fast as j`(kr). Given these issues, we are not able to
use Limber approximation in our analyses. Instead, we
evaluate the integral in a brute-force but exact way with
a large number of sampling points. A significant frac-
tion of time is spent on getting the spherical Bessel func-
tions j`(kr) or J`(k`nr), which are computed recursively.
To speed this up, we tabulate these on the 2D (k, r) or
(k`n, r) sampling grids for each ` in advance, which can
then be loaded wherever needed. In Fisher analysis, since
we only need to evaluate these power spectra a few times,
the computational time is acceptable. But for a MCMC
fitting of the analytic power spectra to the estimates from
real data, it would be necessary to make some improve-
ments since the brute-force computation is too slow for
each step in the MCMC chains. For angular power spec-
tra, the FFTLog algorithm [81] has been used to opti-
mize the computation, see e.g. [17, 82]. For future work,
it would be useful to check if this algorithm could also be
applied to the SFB power spectra given the radial basis
functions in the integral.

[1] Particle Data Group, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104


20

[2] eBOSS Collaboration, Phys. Rev. D 103, 083533 (2021),
arXiv:2007.08991 [astro-ph.CO].

[3] E. Schaan and M. White, J. Cosmol. Astropart. Phys.
2021, 067 (2021), arXiv:2103.01971 [astro-ph.CO].

[4] H. Hoekstra and B. Jain, Annu. Rev. Nucl. Part. Sci. 58,
99 (2008), arXiv:0805.0139 [astro-ph].

[5] R. Mandelbaum, Annu. Rev. Astron. Astrophys. 56, 393
(2018), arXiv:1710.03235 [astro-ph.CO].

[6] A. Lewis and A. Challinor, Phys. Rep. 429, 1 (2006),
arXiv:astro-ph/0601594 [astro-ph].

[7] K. M. Smith, O. Zahn, and O. Doré, Phys. Rev. D 76,
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[19] N. Dalal, O. Doré, D. Huterer, and A. Shirokov, Phys.
Rev. D 77, 123514 (2008), arXiv:0710.4560 [astro-ph].

[20] A. Slosar, C. Hirata, U. Seljak, S. Ho, and N. Padman-
abhan, J. Cosmol. Astropart. Phys. 2008, 031 (2008),
arXiv:0805.3580 [astro-ph].

[21] P. L. Taylor, K. Markovič, A. Pourtsidou, and
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[49] A. S. Maniyar, Y. Ali-Häımoud, J. Carron, A. Lewis, and

M. S. Madhavacheril, Phys. Rev. D 103, 083524 (2021),
arXiv:2101.12193 [astro-ph.CO].

[50] W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002),
arXiv:astro-ph/0111606 [astro-ph].

[51] H. A. Feldman, N. Kaiser, and J. A. Peacock, Astrophys.
J. 426, 23 (1994), arXiv:astro-ph/9304022 [astro-ph].

[52] J. Yoo and V. Desjacques, Phys. Rev. D 88, 023502
(2013), arXiv:1301.4501 [astro-ph.CO].

[53] CMB-S4 Collaboration, arXiv e-prints ,
arXiv:1610.02743 (2016), arXiv:1610.02743 [astro-
ph.CO].

[54] DESI Collaboration, arXiv e-prints , arXiv:1611.00036
(2016), arXiv:1611.00036 [astro-ph.IM].

[55] N. Mostek, A. L. Coil, M. Cooper, M. Davis, J. A. New-
man, and B. J. Weiner, Astrophys. J. 767, 89 (2013),
arXiv:1210.6694 [astro-ph.CO].

https://doi.org/10.1103/PhysRevD.103.083533
https://arxiv.org/abs/2007.08991
https://doi.org/10.1088/1475-7516/2021/05/067
https://doi.org/10.1088/1475-7516/2021/05/067
https://arxiv.org/abs/2103.01971
https://doi.org/10.1146/annurev.nucl.58.110707.171151
https://doi.org/10.1146/annurev.nucl.58.110707.171151
https://arxiv.org/abs/0805.0139
https://doi.org/10.1146/annurev-astro-081817-051928
https://doi.org/10.1146/annurev-astro-081817-051928
https://arxiv.org/abs/1710.03235
https://doi.org/10.1016/j.physrep.2006.03.002
https://arxiv.org/abs/astro-ph/0601594
https://doi.org/10.1103/PhysRevD.76.043510
https://doi.org/10.1103/PhysRevD.76.043510
https://arxiv.org/abs/0705.3980
https://doi.org/10.1103/PhysRevD.78.043520
https://arxiv.org/abs/0801.0644
https://doi.org/10.1103/PhysRevLett.99.141302
https://doi.org/10.1103/PhysRevLett.99.141302
https://arxiv.org/abs/0704.1932
https://doi.org/10.1093/mnras/stv554
https://doi.org/10.1093/mnras/stv554
https://arxiv.org/abs/1412.4454
https://doi.org/10.1093/mnras/stw1249
https://doi.org/10.1093/mnras/stw1249
https://arxiv.org/abs/1511.04457
https://arxiv.org/abs/1511.04457
https://doi.org/10.1093/mnras/sty2681
https://doi.org/10.1093/mnras/sty2681
https://arxiv.org/abs/1803.08915
https://doi.org/10.1093/mnras/staa3672
https://doi.org/10.1093/mnras/staa3672
https://arxiv.org/abs/2007.12607
https://arxiv.org/abs/2007.12607
https://doi.org/10.1103/PhysRevLett.102.021302
https://arxiv.org/abs/0807.1770
https://doi.org/10.1103/PhysRevD.97.123540
https://doi.org/10.1103/PhysRevD.97.123540
https://arxiv.org/abs/1710.09465
https://doi.org/10.1093/mnras/stz2258
https://arxiv.org/abs/1906.04730
https://arxiv.org/abs/2103.01229
https://arxiv.org/abs/2103.01229
https://doi.org/10.1103/PhysRevD.103.103502
https://arxiv.org/abs/2106.05267
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.1103/PhysRevD.77.123514
https://arxiv.org/abs/0710.4560
https://doi.org/10.1088/1475-7516/2008/08/031
https://arxiv.org/abs/0805.3580
https://arxiv.org/abs/2106.05293
https://doi.org/10.1093/mnras/staa2129
https://doi.org/10.1093/mnras/staa2129
https://arxiv.org/abs/1911.08353
https://doi.org/10.1093/mnras/272.4.885
https://arxiv.org/abs/astro-ph/9406009
https://doi.org/10.1093/mnras/275.2.483
https://doi.org/10.1093/mnras/275.2.483
https://arxiv.org/abs/astro-ph/9409027
https://arxiv.org/abs/1906.05866
https://arxiv.org/abs/1906.05866
https://doi.org/10.1051/0004-6361/201118463
https://arxiv.org/abs/1111.3591
https://arxiv.org/abs/1111.3591
https://arxiv.org/abs/2102.10079
https://arxiv.org/abs/2102.10079
https://doi.org/10.1051/0004-6361/201424456
https://doi.org/10.1051/0004-6361/201424456
https://arxiv.org/abs/1406.5989
https://doi.org/10.1103/PhysRevD.95.123508
https://doi.org/10.1103/PhysRevD.95.123508
https://arxiv.org/abs/1702.03004
https://doi.org/10.1088/1475-7516/2020/10/022
https://doi.org/10.1088/1475-7516/2020/10/022
https://arxiv.org/abs/2007.14962
https://doi.org/10.3847/1538-4357/833/2/242
https://doi.org/10.3847/1538-4357/833/2/242
https://arxiv.org/abs/1609.04401
https://doi.org/10.1093/mnras/stz1781
https://doi.org/10.1093/mnras/stz1781
https://arxiv.org/abs/1906.05873
https://www.desi.lbl.gov
https://www.euclid-ec.org
https://www.lsst.org
https://spherex.caltech.edu
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1807.06209
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1086/186264
https://doi.org/10.1007/978-94-011-4960-0_17
https://doi.org/10.1007/978-94-011-4960-0_17
https://arxiv.org/abs/astro-ph/9708102
https://doi.org/10.1103/PhysRevD.72.043529
https://arxiv.org/abs/astro-ph/0507263
https://doi.org/10.1103/PhysRevD.76.103502
https://doi.org/10.1103/PhysRevD.76.103502
https://arxiv.org/abs/0706.1071
https://doi.org/10.1093/mnras/sty2353
https://doi.org/10.1093/mnras/sty2353
https://arxiv.org/abs/1807.05639
https://doi.org/10.1111/j.1365-2966.2007.11593.x
https://arxiv.org/abs/astro-ph/0605302
https://doi.org/10.3847/1538-4365/aaee8c
https://arxiv.org/abs/1712.04512
https://camb.info
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://arxiv.org/abs/astro-ph/9911177
https://doi.org/10.1086/323253
https://arxiv.org/abs/astro-ph/0105424
https://arxiv.org/abs/astro-ph/0105424
https://doi.org/10.1103/PhysRevD.103.083524
https://arxiv.org/abs/2101.12193
https://doi.org/10.1086/341110
https://arxiv.org/abs/astro-ph/0111606
https://doi.org/10.1086/174036
https://doi.org/10.1086/174036
https://arxiv.org/abs/astro-ph/9304022
https://doi.org/10.1103/PhysRevD.88.023502
https://doi.org/10.1103/PhysRevD.88.023502
https://arxiv.org/abs/1301.4501
https://arxiv.org/abs/1610.02743
https://arxiv.org/abs/1610.02743
https://arxiv.org/abs/1611.00036
https://doi.org/10.1088/0004-637X/767/1/89
https://arxiv.org/abs/1210.6694


21

[56] Euclid Collaboration, R. Laureijs, et al., arXiv e-prints ,
arXiv:1110.3193 (2011), arXiv:1110.3193 [astro-ph.CO].

[57] Euclid Collaboration, Astron. Astrophys. 642, A191
(2020), arXiv:1910.09273 [astro-ph.CO].

[58] The Euclid Theory Working Group, Living Reviews in
Relativity 21, 2 (2018), arXiv:1606.00180 [astro-ph.CO].

[59] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-
J. Seo, and A. Slosar, J. Cosmol. Astropart. Phys. 2014,
023 (2014), arXiv:1308.4164 [astro-ph.CO].

[60] LSST Science Collaboration, arXiv e-prints ,
arXiv:0912.0201 (2009), arXiv:0912.0201 [astro-ph.IM].
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