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Based on a 14-moment closure for non-resistive (general-) relativistic viscous plasmas, we describe a new
numerical scheme that is able to handle all first-order dissipative effects (heat conduction, bulk and shear vis-
cosities), as well the anisotropies induced by the presence of magnetic fields. The latter is parameterized in
terms of a thermal gyrofrequency or, equivalently, a thermal Larmor radius and allows to correctly capture the
thermal Hall effect. By solving an extended Israel-Stewart-like system for the dissipative quantities that enforces
algebraic constraints via stiff-relaxation, we are able to cast all first-order dissipative terms in flux-divergence
form. This allows us to apply traditional high-resolution shock capturing methods to the equations, making
the system suitable for the numerical study of highly turbulent flows. We present several numerical tests to
assess the robustness of our numerical scheme in flat spacetime. The 14-moment closure can seamlessly in-
terpolate between the highly collisional limit found in neutron star mergers, and the highly anisotropic limit of
relativistic Braginskii magnetohydrodynamics appropriate for weakly collisional plasmas in black-hole accre-
tion problems. We believe that this new formulation and numerical scheme will be useful for a broad class of
relativistic magnetized flows.

I. INTRODUCTION

Relativistic fluid dynamics is widely used as an effective
description of long wavelength, long time phenomena in a va-
riety of many-body systems such as the quark-gluon plasma
[1], the early universe [2], and the hot and ultradense matter
formed in neutron star mergers [3]. In the context of heavy-ion
collisions, experiments at the Relativistic Heavy Ion Collider
and the Large Hadron Collider have provided overwhelming
evidence that the quark-gluon plasma formed in highly ener-
getic nuclear collisions behaves as a strongly-interacting rel-
ativistic fluid over distance scales not much larger than the
size of a nucleus [4]. Through the last decade (see [1] for
a review), detailed comparisons between numerical hydrody-
namic simulations and experimental data have shown that the
matter formed in such collisions is not a perfect fluid, i.e.,
viscous effects are needed to describe experimental data. In
fact, the quantitative extraction of the transport coefficients
(such as shear and bulk viscosities) of the quark-gluon plasma
from heavy-ion collision data [5–8] provides key guidance
toward understanding the novel out-of-equilibrium properties
that emerge in deconfined quark-gluon matter at extreme tem-
peratures and moderate baryon densities.

Hydrodynamic simulations of the quark-gluon plasma in
heavy-ion collisions solve second-order relativistic viscous
hydrodynamic equations of motion [9], which may be ob-
tained from entropy considerations, relativistic kinetic theory,
or from a resummation of the gradient series [10]. Current
formulations in use [10, 11] share the same spirit of Israel-
Stewart theory [9] in which dissipative corrections to the
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energy-momentum tensor and the conserved currents behave
as new degrees of freedom that obey additional (relaxation-
type) equations of motion, which must be solved together with
the conservation laws to determine the evolution of the fluid.
Alternative formulations, such as anisotropic hydrodynamics
[12–16], have also been used in heavy-ion simulations.

In the linearized regime around equilibrium, it is known
that there are conditions involving the equation of state and
the transport coefficients which, once fulfilled, guarantee sta-
bility and causality of second-order theories [17, 18]. In the
nonlinear regime probed in heavy-ion collisions, however, the
backreaction from the dissipative corrections becomes impor-
tant and more stringent conditions to ensure causality have
been derived [19, 20]. See [21, 22] for discussions on the rele-
vance of such nonlinear causality conditions in the description
of the evolution of the quark-gluon plasma.

Numerical implementations of viscous, Israel-Stewart-like
equations of motion can be found both in Eulerian [23–32]
and also in Lagrangian algorithms [33–35]. In the former, nu-
merical methods originally written to solve flux conservative
problems are adapted [36] to determine the evolution of the
system, even though the second-order viscous formulations
[10, 11] employ equations of motion that are, in general, not
in flux conservative form. In the latter, a Lagrangian method
based on Smoothed Particle Hydrodynamics [37], extended to
the relativistic regime [38], is used in heavy-ion simulations
[33–35].

In the context of neutron star mergers, effective dissipation
is crucial to model the correct equilibrium of accretion disks
[39] and capture potentially out-of-(weak)-equilibrium effects
that could affect the gravitational wave emission [40, 41] or
late time evolution of the remnant [42–45]. Moreover, tur-
bulent dynamo processes in the merger [46–49] critically de-
pend on the presence of a resistive and a viscous scale. In
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the case of Rayleigh-Taylor instabilities potentially present at
the surface of the merging neutron stars, the amplification and
growth scale might depend critically on the shear viscosity
[49].

Several attempts have been made to incorporate viscosity
into astrophysical fluid dynamics simulations of relativistic
systems. In the context of black hole accretion and neu-
tron star merger remnants, some have considered simple (and
acausal [50]) Navier-Stokes approaches, e.g. Ref. [51, 52],
whereas more recently Israel-Stewart-like formulations have
been considered in Ref. [44, 53]. Apart from second-order
formulations, recent progress in causal and hyperbolic first-
order theories [54–58] has also enabled the first simulations
of such theories in the context of conformal relativistic flu-
ids [59]. Another conceptually very different approach with
symmetric hyperbolic structure originating from the study of
continuum mechanism was presented by Refs. [60, 61]. In
the context of mimicking effective shear viscous dissipation
associated with small-scale magnetic turbulence, large-eddy
closures have been proposed [42, 62], although additional ef-
fort is required to ensure covariance of such a closure [63].
In the same spirit, an effective Israel-Stewart shear viscous
formulation was proposed in [44] and successfully applied to
long-term studies of post-merger remnants [43].

In this work we take a different approach in that we con-
sider dissipative evolution equations derived from a moment
expansion of the relativistic Boltzmann equation [11]. Going
beyond all works above, we include all first-order dissipative
effects, such as heat conduction, bulk and shear viscosity, and
also include the anisotropies induced by magnetic fields in the
equations of motion of the dissipative quantities in a fully co-
variant way. The only effect omitted here is resistivity, which
we will consider in a forthcoming study. To this end, we in-
corporate the gyrofrequency as a free parameter, which allows
us to control the degree of anisotropy of heat conduction and
shear stresses relative to the direction of the (comoving) mag-
netic field. Critically, Ref. [64] has shown that in a systematic
expansion in inverse Reynolds and Knudsen numbers, the as-
sociated magnetic field coupling considered in this work is
the only possible term that appears at first and second order
in a gradient expansion, if resistive effects of the plasma are
neglected (see [65] for the resistive case). For extreme mag-
netic field strengths relative to the plasma energy, which are
not considered here, additional terms might have to be added
at second-order, though [66].

Additionally, one issue affecting all previous numerical
(Eulerian) implementations of Israel-Stewart formulations
is the appearance of source terms with time derivatives.
While the presence of strong shocks and fluid gradients in
turbulent astrophysical scenarios calls for high-resolution
shock capturing (HRSC) schemes, these derivatives are
not commonly treated in this way, see e.g. [26]. This
can easily lead to numerical instabilities in the flow in
more complex simulations, if the dissipative terms develop
gradients themselves, which is associated with regions of
numerically under-resolved physical viscosity. In this work,
we address this point in full, by carefully designing an HRSC
scheme, where all first-order dissipation terms are treated

in flux-divergence form [67]. This is facilitated by the use
of stiff relaxation terms that are treated with implicit time
integration schemes [68]. The use of such stiff relaxation
terms is inspired by the implementation of the force-free
electrodynamics limit in numerical relativity simulations [69–
71]. Overall, this makes our scheme suitable for applications
in heavy-ion collisions and astrophysical fluid dynamics alike.

This paper is structured as follows. In Sec. II we describe
the equations of motion we employ and in Sec. III we provide
a detailed derivation of how to recast them in flux-divergence
form. In Sec. IV, we describe the numerical method used to
solve these equations, and in particular how we handle stiff
source terms. In Sec. V we demonstrate the ability of this
scheme to successfully model relevant test problems, and pro-
vide a discussion of the results in Sec. VI. Throughout this
paper, we adopt geometrical units where G = c = kB = 1
and a mostly plus signature for the Lorentzian spacetime met-
ric gµν .

II. NON-RESISTIVE RELATIVISTIC DISSIPATIVE
MAGNETOHYDRODYNAMICS

A relativistic ideal fluid can be described via its rest-mass
(“baryon”) density ρ, energy density e, and four-velocity uµ

(normalized such that uµuµ = −1). The equilibrium pres-
sure P is defined in terms of the other thermodynamic vari-
ables such that, for instance, P = P (ρ, e). This defines the
equation of state, with which one may compute the temper-
ature T = T (ρ, e) using standard thermodynamic relations.
The equilibrium hydrodynamics system can be described by
means of an energy-momentum tensor

Tµνhydro = euµuν + P∆µν , (1)

where

∆µν = gµν + uµuν , (2)

is the rank-2 projector orthogonal to the flow velocity, i.e.
∆µνuµ = 0. Conservation of baryon number is defined in
terms of the rest-mass current Nµ = ρuµ and baryon number
conservation

∇µNµ = 0. (3)

In this work we will also consider the effects of a (co-moving)
magnetic field bµ tightly coupled to the fluid, i.e. in the
limit of infinite electric conductivity [64]. We note that
bµuµ = 0 so that, in the local rest frame of the fluid where
uµ = (1, 0, 0, 0), the magnetic field 4-vector only has nonzero
spatial components.

The electromagnetic field is described by the electromag-
netic field strength tensor and its dual

Fµν :=
√
b2bµν = −εµναβuαbβ , (4)

∗Fµν = uµbν − bµuν . (5)
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We stress again that these expressions only hold in the limit
infinite electric conductivity, in which the comoving electric
field eµ = 0 vanishes. For later convenience, we have also
introduced above the shorthand notation bµν . The evolution of
the magnetic field is then governed by the Maxwell equation
∇µ∗Fµν = 0, which may be written as

∇µ (bµuν − bνuµ) = 0. (6)

It is useful to introduce the projector

Ξµν = ∆µν − 1

b2
bµbν , (7)

which is orthogonal to uµ and bµ. Using this projector, it can
be shown that

FµαΞνα = Fµα∆ν
α = Fµν , (8)

and

FµαFνα = b2Ξµν . (9)

The electromagnetic fields give rise to an energy-momentum
tensor given by [72]

TµνEM =
1

2
b2uµuν +

1

2
b2∆µν − bµbν . (10)

In total, the generalized energy-momentum tensor for non-
resistive ideal magnetohydrodynamics can be written as

Tµν = Tµνhydro + TµνEM. (11)

The equations of motion of ideal relativistic magnetohydroy-
namics stem from the conservation of energy and momentum

∇µTµν = 0, (12)

coupled to Eq. (6).

A. Second-order hydrodynamic equations

In the following we summarize a formalism for describing
out-of-equilibrium dynamics allowing for viscous corrections
to the system. These can be encoded by the viscous stress ten-
sor Πµν , which is added to the fluid’s energy-momentum ten-
sor. In this work, we use the so-called Eckart hydrodynamic
frame [73] in which the rest-mass current remainsNµ = ρuµ,
all viscous/dissipative effects appear only in the expression
for the energy-momentum tensor, and there are no out-of-
equilibrium corrections to the energy density.

Considering the number of degrees of freedom, we can see
that Tµν and Nµ have a total of 14 (since Tµν is symmetric),
but in equilibrium only five of them are actually independent
(e.g. {e, ρ, uµ}). Accounting for out-of-equilibrium dynamics
of the system then amounts to prescribing evolution equations
for the remaining 9 degrees of freedom. These can be param-
eterized in terms of the bulk scalar pressure Π, the symmetric
anisotropic pressure tensor πµν , and the heat flux qµ, which

obey a distinct set of constraints on the dissipative momenta
and stresses, i.e.

qµu
µ = 0, (13)

πµνu
µ = 0, (14)
πµµ = 0. (15)

Therefore, once these constraints are fulfilled, the set
{πµν ,Π, qµ} indeed only has 9 independent degrees of free-
dom. As we show in this paper, the way these constraints are
imposed heavily influences the numerical methods required to
study this system. Overall, we can group these contributions
into the viscous stress tensor

Πµν = qµuν + qνuµ + Π∆µν + πµν , (16)

which is then added to the hydrodynamics equations

Tµν → Tµν + Πµν . (17)

The combined stress-energy tensor, including the dissipative
contributions, is covariantly conserved

∇µ (Tµν + Πµν) = 0, (18)

whereas Nµ remains unchanged with dynamics given by (3).
We point out that we choose the Eckart frame in this work
solely for numerical convenience in the context of astrophys-
ical applications. Clearly, other definitions of the hydrody-
namic fields, i.e. other hydrodynamic frames [9], could have
been used. For instance, one could have removed the heat
flux and introduced a diffusive correction to the baryon cur-
rent. Alternatively, one may employ other frames in which
both terms are present. For a deeper discussion about hy-
drodynamic frames, and how a judicious choice of hydro-
dynamic variables can be useful to formulate causal, stable
and strongly-hyperbolic theories of viscous relativistic fluids
at first-order in derivatives, see [54–58]. Second-order Israel-
Stewart-like theories in general hydrodynamic frames have
also been investigated in [74], and more recently in [75, 76].

Having parameterized the viscous degrees of freedom, we
need to prescribe a set of causal evolution equations for
them. In this work, we use equations of motion obtained
from a truncation of suitably defined moments of the rela-
tivistic Boltzmann-Vlasov equation for a gas of charged par-
ticles (without dipole moment or spin) dynamically coupled
to a magnetic field. This approach to obtain the second-order
hydrodynamic equations employs a systematic expansion of
the Boltzmann equation in powers of the Knudsen and inverse
Reynolds numbers1, and this method was originally applied
in [11] in the investigation of neutral kinetic systems. The
equations of motion, and the transport coefficients obtained

1 The Knudsen numbers measure the ratio between microscopic length
scales and the macroscopic scales associated with gradients of the con-
served quantities. In the approach of [11], one denotes quantities such as
Π/(e + P ) as inverse Reynolds numbers, given that they can be seen as
relativistic generalizations of the ratio between viscous and inertial forces.
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within this formulation, are widely used in current heavy-ion
collision simulations of the quark-gluon plasma (usually done
in the absence of eletromagnetic fields). This formalism was
extended to include non-resistive, comoving magnetic field ef-
fects using the Boltzmann-Vlasov equation in [64]. The mag-
netohydrodynamical equations of motion were obtained in the
so-called 14-moment approximation [9] and they essentially

provide a generalization of Israel-Stewart fluid dynamics to
the case of non-vanishing magnetic fields. The full resistive
case (which includes effects from comoving electric and mag-
netic fields) was worked out later in this approach in Ref. [65].

In our work, the dissipative variables obey the following
advection-type relaxation equations2

τΠu
µ∇µΠ + δΠΠΠ∇µuµ + Π = −ζ∇µuµ (19)

τq∆
α
νu

µ∇µqν + δqqq
α∇µuµ + qα = −κTuµ∇µuα − κ∆αµ∇µT − δqBFαµqµ (20)

τπ∆αβ
λν u

µ∇µπλν + δπππ
αβ ∇µuµ + παβ = −η∆αβ

λν

[
∇νuλ +∇λuν

]
− δπBF δµπγµ ∆αβ

γδ , (21)

where we have introduced the symmetric trace-free projector

∆αβ
λν =

1

2

[
∆α
λ∆β

ν + ∆α
ν∆β

λ

]
− 1

3
∆αβ∆λν . (22)

Above, η is the shear viscosity, ζ is the bulk viscosity, κ is the
thermal conductivity, τΠ is the bulk relaxation time, τq is the
relaxation time for heat flux, while τπ is the shear viscosity
relaxation time. Besides those coefficients, the equations of
motion also contain the additional second-order transport co-
efficients {δΠΠ, δqq, δππ} and the new coefficients that deter-
mine the coupling between the dissipative quantities and the
electromagnetic field tensor, δqB and δπB . Expressions for all
of these coefficients, including δqB and δπB , in terms of the
temperature and chemical potential for an ultrarelativistic gas
can be found in [11, 64, 65]. In this work, we treat the ratios
δΠΠ/τΠ,ζ/τΠ, δqq/τq , κ/τq , δππ/τπ , η/τπ , δπB/τπ , δqB/τq
as free parameters defined in terms of thermodynamic quanti-
ties (e and ρ). It is important to remark that in the formulation
of Ref. [64] the form of the equations of motion remains very
close to that found in standard Israel-Stewart theory, with ad-
ditional terms that couple the fluid variables directly to the
magnetic field. Also, we note that in this first work we have
not included all the possible second-order terms that appear in
[11, 64, 65]. A systematic investigation of their effects will be
given in a forthcoming study.

We note that any second-order theory with relaxation equa-
tions for the dissipative currents given by (19), (20), and (21)
has an asymptotic relativistic Navier-Stokes regime. This can
be seen by performing a systematic expansion in gradients,
together with the conservation laws [10]. In the absence of
magnetic fields, to first order in gradients the system reduces

2 We note that the original derivation of the non-resistive equations of motion
in [64] used the Landau frame [77]. The Eckart frame version of these
equations can be found by taking the non-resistive limit of the equations
derived in [65].

to

Π = −ζ∇µuµ +O(∂2), (23)

qα = −κTuµ∇µuα − κ∆αµ∇µT +O(∂2), (24)

παβ = −η∆αβ
λν

[
∇νuλ +∇λuν

]
+O(∂2), (25)

which is the standard relativistic generalization of Navier-
Stokes theory [73]. It is important to understand that this limit
can never be reached exactly, since it reduces the character
of the hydrodynamic evolution equations from hyperbolic to
parabolic, rendering the system acausal [78]. Also, we note
that the standard constraints that stem from a linearized anal-
ysis of causality and stability, derived in the absence of a mag-
netic field in [17], automatically hold for the system of equa-
tions we use. For a linearized study of stability and causality
in the presence of a nonzero magnetic field, see [79].

III. FLUX-CONSERVATIVE FORMULATION

In the following, we will reformulate the equations for the
bulk pressure (19), heat flux (20), and shear-stress tensor (21)
in a flux-conservative form [67, 80] that is suitable for nu-
merical simulations. In particular, we will suitably extend the
system in a way that allows us to recast all first-order gradient
terms into flux-divergence form, i.e. ∇µFµ, for a suitable flux
function Fµ. To this end, to better illustrate our approach, we
consider all viscous effects separately.

A. Bulk pressure

We start out by considering the Israel-Stewart-like equation
(19) for the bulk pressure Π. After a simple algebraic manip-
ulation it can be shown that Eq. (19) is equivalent to

∇µ
[(

Π +
ζ

τΠ

)
uµ
]

=− 1

τΠ
Π

+

(
1− δΠΠ

τΠ

)
Πθ + uµ∇µ

ζ

τΠ
.

(26)
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Here we have introduced the shorthand θ = ∇µuµ. We will
provide a detailed treatment of arbitrary viscous relaxation
terms in Sec. III E. We note that depending on the applica-
tion this equation can be further simplified.

In the simplest case of ζ/τΠ = const, or if ζ/τΠ is ad-
vected, i.e. uµ∇µ (ζ/τΠ) = 0 and δΠΠ = τΠ, we find

∇µ
[(

Π +
ζ

τΠ

)
uµ
]

= − 1

τΠ
Π, (27)

which, remarkably, is free of derivatives on the right-hand side
(RHS).

1. Limit of vanishing relaxation time

We now consider a particular limit of these equations,
showing that in the limit of vanishing relaxation time τΠ → 0
the system does not always approach to a perfect fluid solu-
tion. Indeed, we can see from Eq. (27) that for a choice of
transport coefficient ζ = τΠ f (ρ, T, . . . . . . ), with uµ∇µf =
0, the limit τΠ → 0 corresponds to the introduction of a newly
conserved quantity, i.e.

∇µ
[(

Π +
ζ

τΠ

)
uµ
]
' 0, (28)

where conservation is to be understood to hold approxi-
mately up to second-order corrections. Physically, this limit
is reached when bulk viscous damping happens on viscous
scales `visc � `dyn much larger than the dynamical scale
`dyn. We can further see that in this limit, Π + ζ/τΠ satis-
fies a continuity equations, akin to the baryon density ρ. In
the absence of effective viscous damping, this implies that Π
provides an effective correction to the equation of state, which
now depends on the bulk viscous scalar P → P + Π, and in
turn on the velocity via the continuity equation. This is similar
to the use of microphysical equations of state that depend on
compositional information, given by an advected scalar, such
as the electron fraction Ye [81].

B. Heat conduction

Next we turn to the equation for heat conduction. It can
trivially be shown that

∆α
ν [τqu

µ∇µqν + δqqq
ν θ] =∆α

ν [−κTuµ∇µuν
−κ∇νT − δqBF νµqµ]− qα,

(29)

where we have used that uα∇µuα = 0. The specific form
of this equation further allows us to add terms proportional to
uν , since these get projected out by the global ∆α

ν projection.
Along those lines, it will help us to simplify the equations if

we add such a terms in the following way

∆α
ν [τqu

µ∇µqν + δqqq
ν θ] =∆α

ν [−κuµ∇µ (Tuν)

− κ∇νT − δqBF νµqµ

−κTθuν − τqTuµuν∇µ
κ

τq

]

− qα. (30)

We can now understand the meaning of the projector ∆µ
ν in

Eq. (29) as follows. Contracting Eq. (29) with uα, we see that
the sole purpose of the projector is to enforce Eq. (13), such
that qµ is orthogonal to uµ. In practice, the presence of such
a projector will lead to a variety of gradient terms, which ex-
plicitly impose the constraint (29). Such terms are typically
numerically difficult to evaluate and will not only increase
the error budget of any numerical solution, but they will also
numerically lead to only an approximate enforcement of Eq.
(13).
A better approach, which is commonly used in relativistic
force-free electrodynamics [69, 70], is to instead include the
constraint (29) via stiff relaxation [69]. Introducing a new re-
laxation time ωq � τq , we can equivalently write

τqu
µ∇µqν + δqqq

ν θ =− κuµ∇µ (Tuν)− κ∇νT − κTθuν

− qν − δqBF νµqµ − τqTuµuν∇µ
κ

τq

− τq
ωq

(qµu
µ)uν . (31)

The effect of this term can best be considered in the Navier-
Stokes limit (in the absence of magnetic fields), where

qµuµ ' ωq
κ

τq
uµ∇µT . (32)

Hence, the constraint (13) will indeed be imposed when ωq →
0. Although Eq. (31) is more desirable from a numerical
point of view than the original Israel-Stewart equation (20),
we will need implicit numerical schemes in order to properly
compute this term. This will be explained in detail in Sec. IV.
Applying the same reordering that leads to a flux-conservative
form (26) for the bulk scalar we obtain the final form

∇µ
[
qνuµ +

κ

τq
T∆µν

]
=− δqB

τq
F νµqµ −

1

τq
qν

+

[(
1− δqq

τq

)]
θqν

+ Tgµν∇µ
κ

τq
− 1

ωq
(qµu

µ)uν .

(33)

For a class of theories, where κ/τq = const or advected
(uµ∇µ [κ/τq] = 0), and δqq = τq , we find the simple flux-
conservative stiff relaxation equation

∇µ
[
qνuµ +

κ

τq
T∆µν

]
=− 1

τq
qν − δqB

τq
F νµqµ

− 1

ωq
(qµu

µ)uν . (34)
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Nonetheless, our numerical scheme is able to solve systems
with arbitrary heat conductivities, see Sec. III E.

1. Comparison with non-relativistic heat conduction

It is interesting to consider a simple limiting case in order
to highlight the nature of heat conduction within this formu-
lation. Restricting ourselves to flat spacetime, zero magnetic
field, and assuming a vanishing 3-velocity (i.e. ui ≈ 0), it
can be shown (neglecting dissipative sources other than heat
condution) that the equations reduce to

∂t (ρε) + ∂iq
i = 0 (35)

∂t
(
qi
)

+
κ

τq
∂j
(
ηijT

)
= − 1

τq
qi. (36)

For simplicity, adopting the ideal gas law p = ρε (Γ− 1) =
ρ kBmb

T , where kB is the Boltzmann constant , mb the baryon
mass and Γ the adiabatic coefficient, we find

∂tT +
mb (Γ− 1)

kBρ
∂iq

i = 0. (37)

In this simple example, we have used that ∂tρ = 0 for
vanishing fluid velocity. In the Navier-Stokes limit where
qi → −κ∂iT , we find that this expression reduces to the stan-
dard heat equation. However, because τq > 0 this limit will
not be reached and instead we find that the temperature evo-
lution obeys

∂2
t T −

κmb (Γ− 1)

kBρτq
∆T − 1

τq
∂tT = 0. (38)

This is a damped wave equation for the temperature T with
wave speed

c2q =
κmb (Γ− 1)

kBρτq
< 1, (39)

where causality places a strict bound on κ/τq . This is nothing
but the Telegrapher’s equation, which has already been ex-
tensively studied in the context of hyperbolic heat conduction
(see, e.g. [82]).

C. Shear-viscous stresses

We finally consider the evolution of the shear stress tensor
παβ , with the aim of recasting it into flux-conservative form.
Starting from Eq. (21), we write

∆αβ
λν

[
τπu

µ∇µπλν + 2η∇(αuβ)
]

=− δπππαβ θ − παβ

− δπBF δµπγµ ∆αβ
γδ ,

(40)

where 2∇(αuβ) = ∇αuβ + ∇βuα. Similar to the observa-
tions made for Eq. (29), we find that the introduction of the
trace-free projector ∆αβ

λν was done to ensure the validity of
the constraints (14) and (15). In the same spirit of deriving
Eq. (31), we can replace the projector by the introduction of a
stiff relaxation current. More specifically, we write

τπu
µ∇µπαβ + 2η∇(αuβ) =− δπππαβ θ − παβ

− δπBF δµπγµ ∆αβ
γδ

− 2
τπ
ωπ
πλ(αuβ)uλ

− τπ
ωππ

(πµνgµν) gαβ , (41)

where we have introduced the relaxations times ωπ, ωππ �
τπ . Reordering the terms in the same way as for Eqs. (26) and
(33), we find

∇µ
[
παβuµ +

η

τπ

(
gµαuβ + gµβuα

)]
=

(
1− δππ

τπ

)
παβ θ − 1

τπ
παβ +

(
gµαuβ + gµβuα

)
∇µ

η

τπ
− δπB

τπ
F δµπγµ ∆αβ

γδ

− 1

ωπ

[(
παλuλ

)
uβ +

(
πβλuλ

)
uα
]
− 1

ωππ
(πµνgµν) gαβ . (42)

We further note that all terms terms proportional to uµ are
already accounted for in the constraint damping term and will
get removed in the ω → 0 limit. Remarkably, and differently
from the heat conduction and bulk viscosity, this leads to the

removal of the∇µ (η/τπ) term from the equations. Hence, no
approximation or other special treatment need to be applied
to handle non-constant shear viscosity. The final form of the
evolution equation then reads
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∇µ
[
παβuµ +

η

τπ

(
gµαuβ + gµβuα

)]
=

(
1− δππ

τπ

)
παβ θ − δπB

τπ
F δµπγµ ∆αβ

γδ

− 1

τπ
παβ − 1

ωπ

[(
παλuλ

)
uβ +

(
πβλuλ

)
uα
]
− 1

ωππ
(πµνgµν) gαβ . (43)

As a final remark we stress the ambiguity in adding or re-
moving constraint terms related to Eq. (14) and (15). While in
the continuum limit Eq. (15) will perfectly hold, the discrete
version of these equations might behave differently whether or
not additional terms proportional to gµν would be added. One
particular example would be the removal of the trace from the
shear tensor in Eq. (43). This would lead to a replacement of
the principal part of Eq. (43) with

∇µ
[
παβuµ +

η

τπ

(
gµαuβ + gµβuα − 1

2
gαβuµ

)]
. (44)

Whether or not such modifications will impact the stability
of the system will require a more in-depth analysis, which will
be provided in forthcoming work.

D. Interpretation of the magnetic field coupling

In the following, we would like to associate a meaning with
the magnetic field coupling terms, δqB and δπB . To facili-
tate this, we will draw on an analogy with the Ohm’s law for
a single fluid ideal magnetohydrodynamics in the Newtonian
regime. To this end, we consider a simple Ohm’s law from
Hall magnetohydrodynamics [83],

J i + ωgτeε
ijkJjBk = σEi, (45)

where ωg = q/ (mecB) is the electron gyrofrequency, q the
electron charge, me the electron mass and J i the electric cur-
rent. By fixing the gyration velocity v⊥, we can also express
this via the inverse Larmor radius R−1

L = ωg/v⊥.
Taking the Newtonian limit of Eq. (20), i.e. τq → 0, and going
to the rest-frame of the fluid uµ = (1, 0, 0, 0), we obtain

qi + δqBε
ijkqjbk = −κ∂iT. (46)

Since we only consider non-resistive plamas, we can see that
the heat conduction current replaces the electric current com-
pared to Eq. (45). In fact, if we were to consider resistive
plasmas [65], we would obtain exactly the same expression
with σ′ei on the RHS, where eµ is the comoving electric field,
and σ′ the associated conductivity.

Although Eq. (45) describes an electric and Eq. (46) a heat
current, it can be shown that the two are related in a dissipative
relativistic fluid description. Indeed, the total heat flux of the
theory is given by [65]

Qµ = qµ +
e+ P

ρ
mbV

µ
f , (47)

where mb is the baryon mass and V µf is the particle dif-
fusion current, which directly enters the electric current in
Maxwell’s equations [65]. In defining the dissipative system
in Eq. (16), we have made a frame choice, to neglect the
particle diffusion current, and treat the heat flux vector qµ

directly. We could have additionally chosen to operate in the
Landau frame, and instead reexpressed the system in terms of
the diffusion current V µf , being more similar to Eq. (45).

Overall, this comparison allows us to identify the coupling
scale with a thermal gyrofrequency

δqB ∼ ωgτq. (48)

We further find it natural to identify the time scale of collisions
τe with the relaxation time τq , as those should be proportional
to each other. Physically this implies that the thermal conduc-
tivity (in the Navier-Stokes limit) will split into a part paral-
lel
(
κ‖
)

and perpendicular (κ⊥ , κH) to the magnetic field,
where the latter term is the equivalent of the electric Hall con-
ductivity [64]. In particular, this would lead to an anisotropic
modification of the Navier-Stokes limit as follows

qµ '
(
κ⊥Ξµν − κ‖bµbν − κHb

µν
)

[uα∇αuν +∇ν log T ]T.

(49)

Crucially, in our current prescription these anisotropy effects
are controlled by a single parameter δqB , which can be freely
specified. For a more detailed discussion of this effect, see
Ref. [64].

1. Braginskii-limit

Having discussed that the equations presented here are nat-
urally able to capture the effect of (Hall) anisotropies in the
heat conduction, we now turn to the strong coupling limit. It
will turn out that this limit has a very important interpretation
in the limit of weakly collisional plasmas.

Indeed, in the strong coupling limit δπB , δqB →∞, we find
that the shear stress and heat flux must satisfy

F νµqµ = 0, (50)

F δµπγµ ∆αβ
γδ = 0. (51)

Since πµν and qµ are also subject to the constraints (13)-(15),
we find that this imposes the following form on the dissipative
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fluxes and stresses,

qµ = q0b
µ, (52)

πµν = π0

(
−bµbν +

b2

3
∆µν

)
, (53)

where q0 and π0 are Lorentz scalars, which in the Navier-
Stokes limit approach

q0 ' −κT
1√
b2

[bαu
µ∇µuα + bµ∇µ log T ] , (54)

π0 ' −3η Ξµν∇(µuν) . (55)

From a physical point of view, δB ∼ R−1
L ∼ ωg ∼ λmfp can

be identified with the mean-free-path of the system [64] so
that, as expected, in the limit of weak collisionality λmfp →
∞ a Braginskii-like limit is recovered [84] for our system of
equations.

A similar formulation of relativistic viscous magnetohydro-
dynamics using Israel-Stewart-like equations has been pro-
posed for weakly collisional plasmas in Ref. [85]. This for-
mulation was modelled after non-relativistic Braginskii theory
[84], where the shear stress aligns with the comoving mag-
netic fields. We stress that differently from the formulation
of [85] where the anisotropy of the viscous stresses and heat
flux has been imposed from the outset, in the framework con-
sidered here the anisotropy emerges naturally as the gyrofre-
quency diverges in the limit of weak collisionality plasmas.
As such, the (truncated first-order) equations of [64] in this
limit can be considered as a generalization of Braginskii mag-
netohydrodynamics for non-resistive relativistic plasmas for
finite thermal gyrofrequencies.

E. Advection terms

Although we have so far managed to eliminate most gradi-
ent terms from the RHS of the equations of motion, a set of
advection and compression terms still remain. We will now,
likewise, reformulate them as a set of implicit rate equations
in the comoving frame.

We note that because of baryon number conservation, an
arbitrary advected scalar Y satisfies

0 = uµ∇µY = ∇µ (ρY uµ) . (56)

If we want to enforce that Y follows a certain behavior, Y0, we
may implicitly define an autonomous source term such that

Y (x, t) = Y0 (x, t) . (57)

This gives rise to a relaxation current

IY = − u
0

ωY
(Y − Y0) , (58)

where ωY is a stiff relaxation time scale. In order to enforce
the condition (57) we may add this current to the advected
part,

∇µ (ρY uµ) = ρIY . (59)

In other words, in the local comoving frame of the fluid, this
equation is prescribing a rate equation to enforce the damping
of Y towards Y0 on a (subgrid) time scale ωY . If we can
evaluate the stiff current IY numerically, it can be used to
replace advective derivatives of the form

uµ∇µY = IY . (60)

In the same way, we can also treat gradient terms by noting
that

δνµ∇µZ = ∇µ (δµνZ) , (61)

where δνµ is the Kronecker symbol. Introducing the current
Zν , we can write in non-covariant form:

∂t
(√−gZν

)
+ ∂i

(√−gZδiν
)

=
√−gΓµµν +

√−gIZν ,
(62)

where Γλµν is the Christoffel symbol associated with gµν and

IZν = − 1

ωZ

(
Zν − Zδ0

ν

)
. (63)

Here ωZ is a stiff relaxation timescale.
Applied to our source terms this results in the following set

of stiff advection equations

∇µ (ρYζu
µ) = ρIζ , (64)

∇µ (ρYκu
µ) = ρIκ, (65)

∇µ (ρYθu
µ) = ρIθ, (66)

∇µ (ρYηu
µ) = ρIη, (67)

∂t
(√−gZκν

)
+ ∂i

(√−g κ
τq
δiν

)
=
√−gΓµµν +

√−gIκν .
(68)

The source terms of those equations are fixed according to

Iζ = − 1

ωζ

(
Yζ −

ζ

τΠ

)
, (69)

Iκ = − 1

ωκ

(
Yκ −

κ

τq

)
, (70)

Iθ = − 1

ωθ
(Yθ − ρ) , (71)

Iη = − 1

ωη

(
Yη −

η

τπ

)
, (72)

Iκν = − 1

ωκ

(
Zκν −

κ

τq
δ0
ν

)
, (73)

where we have introduced new relaxation time scales
ωζ , ωκ , ωη , andωθ.

F. Summary

The equations of motion that describe the dissipative fluxes
present in the second-order theory in the presence of electro-
magnetic fields and perfectly conducting matter, as derived
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from kinetic theory [64], were shown in (19)-(21). These
equations are reformulated here in a flux-conservative form
by relaxing the orthogonality constraints (13)-(15) and en-
forcing them implicitly, as explained in detail above. This

procedure leads to the final version of our equations of mo-
tion for flux-conservative dissipative magnetohydrodynamics
presented below:

∇µ (Tµν + Πµν) = 0 , (74)
∇µ (bµuν − bνuµ) = 0 , (75)

∇µ [(Π + Yζ)u
µ] = − 1

τΠ
Π−

(
1− δΠΠ

τΠ

)
Π

1

ρ
Iθ + Iζ , (76)

∇µ [qνuµ + YκT∆µν ] = −
(

1− δqq
τq

)
qν

1

ρ
Iθ + TIνκ −

1

τq
qν − 1

ωq
(qµu

µ)uν − δqB
τq

F νµqµ, (77)

∇µ
[
παβuµ +

η

τπ

(
gµαuβ + gµβuα

)]
= −

(
1− δππ

τπ

)
παβ

1

ρ
Iθ −

1

τπ
παβ − δπB

τπ
F δµπγµ ∆̃αβ

γδ

− 1

ωπ

[(
παλuλ

)
uβ +

(
πβλuλ

)
uα
]
− 1

ωππ
(πµνgµν) gαβ , (78)

∇µ (ρYζu
µ) = ρIζ , (79)

∇µ (ρYκu
µ) = ρIκ, (80)

∇µ (ρYθu
µ) = ρIθ, (81)

∇µ (ρYηu
µ) = ρIη, (82)

∂t
(√−gZκν

)
+ ∂i

(√−gYκδiν
)

=
√−gΓµµν +

√−gIκν . (83)

Before we proceed, a few comments are in order. All
second-order gradient terms (Πθ , qνθ , πµνθ) on the RHS of
all equations are treated implicitly via the relaxation equations
associated with (57). Although such a treatment seems ap-
proximate, compared to the flux-divergence operator on the
left-hand side (LHS), it is important to point out that we are
primarily interested in near-equilibrium behavior where Π, qν ,
and πµν are small. As such, these specific second-order terms
constitute only a minor correction and could even be omitted.
This is also consistent with neglecting all other second-order
transport terms in these equations, which should otherwise
be present [11]. On the other hand, since first-order gradi-
ent terms are important for the evolution, they require more
sophisticated numerical methods, as outlined in Sec. IV . Sec-
ond, we point out that in deriving these equations we have
made use of our freedom to remove all terms proportional
to uµ on the RHS. Due to the projected nature of the Israel-
Stewart limit, these terms would get removed when projecting
the equations into the fluid frame (in the continuum limit). In
the stiff-relaxation approach, all these terms are hence implic-
itly accounted for in the relaxation operator scaling with the
fluid four-velocity uµ.

It would be very interesting to investigate if our formulation
of the equations of motion can be proven to be hyperbolic
in the full nonlinear limit. This would be especially impor-
tant when coupling our system to Einstein’s equations, which
is needed to investigate viscous phenomena in neutron star
mergers [40–42, 44] or black hole accretion in non-dynamical
spacetimes [86, 87]. To the best of our knowledge, there

is currently no formulation of general-relativistic dissipative
magnetohydrodynamics that is proven to be strongly hyper-
bolic in the nonlinear regime. For instance, such a statement
is not known to hold for the elegant approach proposed in
Ref. [85]. Drawing from our experience with the zero mag-
netic field limit of Israel-Stewart-like equations [19, 20], such
a nonlinear analysis of hyperbolicity and causality would give
rise to important constraints on the values of the dissipative
currents, the transport coefficients, and in this case also the
magnetic field.

The equations presented in this section are written in a way
that seems to be very natural for for performing such a non-
linear investigation. Indeed, here we have taken the first step
towards this result as we have been able to rewrite the sys-
tem as a set of first-order PDEs in flux-conservative form,
which can be beneficial in such studies. We remark, how-
ever, that proving that our nonlinear system of equations is
strongly hyperbolic is a very challenging mathematical task,
which we hope to address in the near future. On the other
hand, a linearized analysis of our equations can be performed
following Ref. [79]. The only difference would be that the in-
clusion of the stiff advection equations introduces additional
non-hydrodynamic modes to the system parametrized by the
new relaxation times ωζ , ωκ, ωη and ωθ. Therefore, in the
light of [79], we leave the investigation of the linear regime of
our equations to a future dedicated study.
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IV. NUMERICAL METHODS

Having derived the set of Israel-Stewart-like equations in
flux-conservative form with stiff relaxation, we now want
to integrate them numerically to investigate their behavior
in a series of test problems. One of the key features will be
the treatment of the stiff source terms. We first comment on
the general numerical approach before providing a detailed
discussion of the implicit time stepping in Sec. IV A.

The equations are discretized following a simple finite-
volume scheme common to many fluid dynamical problems
[67, 80]. More specifically, we solve a flux-conservation law
of the form

∂t
(√−g U

)
+ ∂i

(√−gF i
)

=
√−g S, (84)

where U is a conserved state vector, F i is the flux vector and
S are the source terms. The conserved variables, i.e. the com-
ponents of U , are given by

ρ∗ = ρu0 (85)

e∗ =

[[
e+ P + b2 + Π

] (
u0
)2

+

(
P + Π +

b2

2

)
g00

+2q0u0 + π00 − b0b0
)
], (86)

Si =
[(
ρh+ Π + b2

)
u0ui + q0ui + u0qi + π0

i − b0bj
]

(87)

Π̃ = (Π + Yζ)u
0 (88)

q̃µ =
(
qµu0 + YκT∆0ν

)
, (89)

π̃µν =
(
πµνu0 + Yη

[
gµ0uν + gν0uµ

])
. (90)

The precise form of the fluxes and sources depends on
the spacetime employed in the simulations and can straight-
forwardly be derived from Eq. (76)-(83). As the nature
of dissipative effects is to provide local heat fluxes and
stresses, these will likely act on scales much smaller than the
curvature scale of space-time. Hence, for a first exploration
we will conduct our numerical experiments exclusively in
flat spacetime, and leave general-relativistic test cases for a
future study. We provide an explicit representation of the
flux-conservative form of the equations in flat Minkowski
spacetime in Appendix A.

We discretize this set of equations by adopting a second-
order accurate finite-volume algorithm. In particular we
evolve cell averaged volume quantities U = (∆V )

−1 ∫ UdV ,
where ∆V is the cell volume over which the integral is car-
ried out. We compute an upwinded discretization of the flux
by solving the local Riemann problem at each cell interface
[67]. In particular, we first perform a limited interpolation
step using the WENO-Z algorithm [88] for the right and left
states, UR and UL, at the interface. From those, we can com-
pute an upwinded flux adopting the Rusanov Riemann solver
[67],

F =
1

2
(FL + FR)− cc

2
(UR − UL) , (91)

where cc is the fastest characteristic speed at the interface.
For simplicity, we adopt this to be the speed of light cc = c.
While such a choice leads to more diffusive numerical so-
lutions, it is common in relativistic simulations of non-ideal
magnetohydrodynamics, when the characteristics of the sys-
tem are not known [89, 90]. The flux-update of the ∂iF i term
is performed using a second-order accurate discretization of
the divergence operator. Especially for (barely) resolved dis-
sipative length scales (e.g. in the presence of strong gradients)
with smooth profiles it might be beneficial to used improved
high-order flux-update schemes [91, 92] as used in [93, 94].
Nonetheless, we find a second-order scheme to be sufficient
for the simple test problems considered here. The numerical
implementation is done on top of a newly developed version
of the Athena++ framework [95], which utilizes the Kokkos
library [96] to achieve parallelization across modern CPU and
GPU architectures.

A. Implicit time-stepping

An integral part of the new formulation presented here is the
enforcement of the constraints (13), (14) and (15) by means
of stiff relaxation source terms. Due to the fact that there
must be a hierarchy among the relaxation times involved, i.e.,
τ � ω → 0, this severe stiffness limit can only be handled
using implicit time integration schemes. One such scheme,
consistent with the explicit strong-stability preserving Runge-
Kutta schemes, is the RK3-ImEx SSP3 (4,3,3) scheme [68].
Within this scheme, we split the source terms into two distinct
contributions. In particular we write

∂tUi = Hi, (92)
∂tVi = Ei + Ii. (93)

Here, we have split the hydrodynamic variables Ui =

(e∗, ρ∗, Si) from the dissipative variables Vi =
(

Π̃, q̃ν , π̃µν
)

.
We have further split the RHS of the dissipative variables Vi
into explicit, Ei, and implicit, Ii, terms. The hydrodynamic
variables remain explicit with source termsHi. Explicit terms
are evaluated at the current time tn, while implicit terms are
evaluated at the next time step. We will give a detailed de-
scription below.

The multistep ImEx scheme then proceeds with n = 4 in-
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ternal stages [68],

U (0)
i = Ui (t) (94)

U (k)
i = Ui + ∆t

k−1∑

l=1

aklHi
(
U (l)
i ,V(l)

i

)
(95)

V(k)
i = Vi + ∆t

k−1∑

l=1

aklEi
(
U (l)
i ,V(l)

i

)

+ ∆t

k∑

l=1

ãklIi
(
U (l)
i ,V(l)

i

)
, (96)

Ui (t+ ∆t) = Ui + ∆t

n∑

l=1

blHi
(
U (l)
i ,V(l)

i

)
, (97)

Vi (t+ ∆t) = Vi + ∆t

n∑

l=1

blEi
(
U (l)
i ,V(l)

i

)

+ ∆t

n∑

l=1

b̃lIi
(
U (l)
i ,V(l)

i

)
. (98)

The coefficients aij , ãij , bi , b̃i can be found in Table I.
At every substep we need to solve an implicit equation for

the substep Vki . Since the implicit matrix of Table I is lower
triangular, each substep k, the following expression can be
directly computed using the information of previous substeps,

V∗ (k)
i = Vi + ∆t

k−1∑

l=1

aklEi
(
U (l)
i ,V(l)

i

)

+ ∆t

k−1∑

l=1

ãklIi
(
U (l)
i ,V(l)

i

)
. (99)

With that, the implicit equation can be written as

V(k)
i = V∗ (k)

i + α∆tIi
(
U (k)
i ,V(k)

i

)
, (100)

where aii = α. Since this equation is non-linear, numerical
root-finding will be needed in order to obtain the intermediate
stage V(k)

i .

1. Solving the implicit equation

We are now going to apply the implicit time stepping to the
dissipative magnetohydrodynamics system. In doing so, we
need to treat all source terms in Eqs. (76)-(83) using the ImEx
method outlined above, see Eq. (99). In particular, we treat all
stiff contributions proportional to τ−1 or ω−1 implicitly. We
further introduce the definitions

Iνq = − 1

ωq
(qµu

µ)uν (101)

Iαβπ = − 1

ωπ

[(
παλuλ

)
uβ +

(
πβλuλ

)
uα
]

− 1

ωππ
(πµνgµν) gαβ . (102)

Since the baryon-number, energy- and momentum equa-
tions do not have stiff sources, the hydrodynamic variables
ρ, T, uµ are, hence, the same in the implicit and explicit
stages. We can then write the full set of implicit equations
as follows,

[Π + Yζ ]u
0 = Π̃∗ − α∆t

[
1

τΠ
+

(
1− δΠΠ

τΠ

)
1

ρ
Iθ
]

Π

+ α∆tIζ (103)

qν u0 + YκT∆0ν = q̃∗ ν − α∆t

ωq
(qµuµ)uν − α∆t

δqB
τq

F νµqµ

+ α∆t
[
Iνκ + Iνq

]
, (104)

παβu0 = π̃∗αβ − 2Yη

(
g0(αuβ)

)

− α∆t

[
1

τπ
+

(
1− δππ

τπ

)
1

ρ
Iθ
]

+ α∆tIαβπ − α∆t
δπB
τπ

F δµπγµ ∆αβ
γδ , (105)

ρu0Yζ = ρu0Ỹ ∗ζ − α∆tρIζ , (106)

ρu0Yκ = ρu0Ỹ ∗ζ − α∆tρIκ, (107)

ρu0Yη = ρu0Ỹ ∗η − α∆tρIη, (108)

ρu0Yθ = ρu0Ỹ ∗θ − α∆tρIθ, (109)

Zν = Z̃∗ν − α∆tρIνκ . (110)

In the stiff limit of ωq/π/ππ → 0, these equations will have
the following solution for a given velocity vector ui and tem-
perature T ,

Π =
(
u0 + α∆t∆Π

)−1
[
Π̃∗/u0 − Y ∗ζ

]
, (111)

qµ =
(
u0 + α∆t∆q

)−1Qµν [(q∗)
ν − T (Z∗)

ν
] , (112)

παβ =
((
u0
)2

+ α∆t∆πu
0
)−1

Pαβγδ ∆γδ
µν (π∗)

µν
, (113)

Yζ =
ωζ

ωζ + α∆t
Y ∗ζ +

α∆t

ωζ + α∆t

ζ

τΠ
, (114)

Yκ =
ωκ

ωκ + α∆t
Y ∗κ +

α∆t

ωκ + α∆t

κ

τq
, (115)

Yη =
ωη

ωη + α∆t
Y ∗η +

α∆t

ωη + α∆t

η

τπ
, (116)

Yθ =
ωθ

ωθ + α∆t
Y ∗θ +

α∆t

ωθ + α∆t
ρ, (117)

Zν =
ωκ

ωκ + α∆t
Z∗ν +

α∆t

ωκ + α∆t
δ0
ν

κ

τq
, (118)
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0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0
0 1/6 1/6 2/3

α α 0 0 0
0 -α α 0 0
1 0 1− α α 0

1/2 β η γ α
0 1/6 1/6 2/3

TABLE I. Butcher tableau representation of the third-order IMEX-SSP3(4,3,3) scheme [68]. The explicit part aij (left) and the implicit part
ãij(right) are both given in matrix form. The bottom row displays the coefficients bi (left) and b̃i (right). The numerical coefficients are given
as follows α = 0.24169426078821 , β = 0.06042356519705 , η = 0.12915286960590 , γ = 1/2− α− β − η.

where we have used that

∆Π =

[
1

τΠ
+

(
1− δΠΠ

τΠ

)
1

ρ
Iθ
]
, (119)

∆q =

[
1

τq
+

(
1− δqq

τq

)
1

ρ
Iθ
]
, (120)

∆π =

[
1

τπ
+

(
1− δππ

τπ

)
1

ρ
Iθ
]
, (121)

∆t′π = α∆tδπB/τπ , (122)
∆t′q = α∆tδqB/τq , (123)

Qµν = ∆µν −
(
∆t′q

)2
b2

1 +
(
∆t′q

)2
b2

Ξµν − ∆t′q

1 +
(
∆t′q

)2
b2
Fµν ,

(124)

Pαβγδ = b−2 bαbβbγbδ + bαpβγδ + bβpαγδ + Pαβ
γδ , (125)

√
b2 pαµν =

(
1 + 2 (∆t′π)

2
b2
)−1

[bµΞαν − (∆t′π) bµF
α
ν ]

(126)

Pαβ
µν =

(
1 + 2 (∆t′π)

2
b2
)

(
1 + 4 (∆t′π)

2
b2
)ΞαµΞβν

− ∆t′π

1 + 4 (∆t′π)
2
b2

[
Fαµ Ξβν + F βµΞαν

]

+
2 (∆t′π)

2

1 + 4 (∆t′π)
2
b2
Fαµ F

β
ν . (127)

While those relations can straightforwardly be used when
the four-velocity uµ and the temperature T are known, this is
not the case at the end of the explicit stage, when only the con-
served variables ρ∗, e∗ and Si are given. Hence, the solution
of the implicit equation needs to be embedded in an outer root-
finding loop trying to recover those variables simultaneously.
This problem has been studied extensively in the context of
relativistic (ideal-) (magneto-)hydrodynamics [97–101], and
we refer to these studies for further details.

In short, our iterative procedure to solve the implicit equa-
tions proceeds as follows:

1. Given the current guess for the spatial part of the four
velocity ūi and the temperature T̄ , compute the full
four-velocity ū0 from ūµūνgµν = −1 and the baryon
density ρ̄ = ρ∗/ū

0. Together with the equation of state
a full guess for the hydrodynamical state

(
ρ̄, T̄ , ūi

)
is

then available.

2. Compute all transport coefficients using the above
guess for the hydrodynamical state, compute all first-
order transport coefficients (η, κ, ζ) and relaxation
times (τΠ, τq, τπ), as well as the second-order transport
terms (δΠΠ, δqq, δππ) and the magnetic field couplings
(δqB , δπB).

3. Using the approximate state
(
ρ̄, T̄ , ūi

)
, solve the im-

plicit equations (111)-(118) in order to recover the dis-
sipative variables

(
Π̄, q̄µ, π̄µν

)
.

4. Next, use the approximation Π̄, q̄µ, π̄µν to the dissipa-
tive variables obtained in the previous step to compute
the purely hydrodynamic part of the e∗ and Si,

ehydro
∗ = e∗ + b0b0 − π00 − 2q0u0

−
(

1

2
b2 + Π

)
∆00 − 1

2
b2
(
u0
)2
, (128)

Shydro
i =Si − π0

i − q0ui − qiu0 + b0bi

−
(

1

2
b2 + Π

)
∆0
i −

1

2
b2u0ui , (129)

(130)

where all variables are to be interpreted as the approx-
imate solutions obtained before, although we suppress
the notation here for readability. These two equations
can then be inverted using relations for a standard hy-
drodynamical inversion. In particular, we use [98],

ε = u0 e∗
g00ρ∗

−
√
SiSi

ρ∗
− 1 , (131)

where ε = e/ρ− 1 is the specific internal energy den-
sity.

5. Using the equation of state, we can compute the residu-
als via

resT = T (ε̄, ρ̄, . . . )− T̄ , (132)

resiS =
Si(

ē+ P̄
)
ū0
− ūi , (133)

where the second terms are always given by the ini-
tial guesses from Step 1. Using this residual the root-
finding algorithm repeats this procedure restarting at the
first step, until these residuals are small. We typically
demand that max

(
|resT /T | ,

∣∣resiS
∣∣) < 10−11 for suc-

cessful convergence.
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FIG. 1. One-dimensional blast wave problem for different choices of the bulk viscous relaxation time τΠ for fixed κ/τΠ = 1. The left panel
shows the rest-mass density ρ at time t = 0.4, the middle panel the four-velocity component ux, and the right panel the value of the bulk
pressure Π.

To solve the implicit equation numerically, it turned out to
be crucial to use a stable root-finding algorithm as the Jaco-
bian of the system could easily become singular. While we
were able to obtain good results for heat conduction only with
a multi-dimensional Newton-method [102], solving the shear
stresses required the use of a Newton-Krylov solver [103].
Moreover, using a good initial guess is crucial to the suc-
cessful solution of this system. We empirically found that
for initial guesses to the root-finder that differed substantially
from the true solution, the inversion converged to unphysical
states. Differently from ideal magnetohydrodynamics inver-
sions [99–101], unphysical in this context means that the vis-
cous degrees of freedom were unphysically large, whereas the
hydrodynamic variables were still well defined, in terms of
positive pressures and finite velocities.
We therefore found it beneficial to first compute an initial
guess for the Newton-Krylov solver using a standard ideal
magnetohydrodynamics inversion scheme [99], which ne-
glects the viscous contributions. Further development and
investigation will be needed to improve the robustness and
computational cost of this step, but the current approach is
sufficient to provide accurate evolutions of all test problems
presented in this work.

V. NUMERICAL TESTS

Having introduced a new numerical formulation of the non-
resistive viscous relativistic hydrodynamics system, we want
to assess its ability to handle

each of the dissipative contributions. In the following, we
present an initial set of problems designed to test each of
those transport contributions individually. Starting from one-
dimensional problems for bulk viscosity and heat conduction,

we continue with a two-dimensional test of shear viscosity and
the impact of varying the thermal gyrofrequency parameter in
the presence of a magnetic field. For simplicity, all tests adopt
a simplified Γ-law equation of state, i.e. P = ρε (Γ− 1),
where Γ will be given in the description of each test. As is
common in numerical code testing (see e.g. [91, 95]) we will
adopt code units throughout. That is, the units of all quantities
are implicitly specified relative to each other.

A. Bulk viscosity

In this test we investigate the impact of bulk viscosity on
a one-dimensional relativistic shocktube problem, see also
Ref. [53] for a similar test. Following [104], we adopt
the following initial conditions for a one-dimensional blast
wave launched into an ambient medium. We adopt a domain
[−0.5; 0.5] along the x-axis . All primitive variables, includ-
ing the dissipative sector, are initialized to zero. The only
non-zero quantities are given separately for x < 0, and x > 0
as follows :

ρ =
(
10−3, 10−3

)
, (134)

P =
(
1, 10−5

)
. (135)

The system is closed by adopting an equation of state with
Γ = 5/3. In order to study the behavior of bulk viscous
dissipation, we adopt a fixed ζ/τΠ = 1 and vary τΠ. This
will allow us to probe the τΠ → 0 limit discussed in Sec.
III A 1 . All other dissipative coefficients are set to zero, i.e.
η = κ = 0 with their corresponding relaxation timescales
fixed to values smaller than the dynamical time of the prob-
lem, i.e. τq = τπ = 10−5 . With this choice, the system will
only be subject to bulk viscous dissipation. The evolution of
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FIG. 2. Thermal dissipation of an initial Gaussian temperature, T , profile. The transport coefficients κ and τq are varied in each case. The
different colors denote different times t during the diffusion process.

the baryon density ρ and velocity ux is shown in Fig. 1 for
different values of the bulk viscous relaxation time τΠ. We
can anticipate that for this particular choice of the transport
coefficients the code will converge to two limiting solutions,
see Sec. III A 1. In the case of τΠ → 0 (magenta curve), the
effective timescale associated lengthscale `visc ∼ ζ−1 = τ−1

Π
of the bulk viscosity will be too small to affect the dynamics
of the shock problem, which happens on scales `dyn � 0.01
. Hence, the solution will approach the perfect fluid solution.
On the other hand, following the discussion in Sec. III A 1,
we approach a non-perfect fluid limit already in the case of
τΠ = 10, which changes the shock structure (blue curve in
Fig. 1). We can best appreciate this when considering the
bulk pressure Π (right panel). For small values of the relax-
ation time τΠ, it represents a small correction to the overall

0.1 0.2 0.4 0.8 1.

t

0.1

0.2

0.4

0.8

1.

T
(x

=
0) ∝

√
t
−1

Heat equation

Telegrapher′s equation

κ/τq = 0.2 , τq = 0.05

κ/τq = 0.02 , τq = 0.05

FIG. 3. Comparison of the dissipation of the top, x = 0 of a Gaus-
sian temperature, T , profile. Shown are two evolution profiles for
two sets of transport coefficients ζ and τq . These are compared to
analytic solutions of the heat equation, Eq. (137), and the Telegra-
pher’s equation, Eq. (138).

pressure, and is only relevant at the shock front (x > 0) and
the rarefaction wave (x < 0). However, in the non-dissipative
limit Π is large and dynamically important. Intermediate val-
ues of the bulk viscosity, `dyn ' `visc, on the other hand, have
the ability to interpolate between the two limits. This transi-
tion can be best understood when looking at the velocity ux,
where for increasing relaxation time τΠ the velocity profile
transitions from the higher speed perfect fluid solution (ma-
genta curve) to the advected solution (blue curve) at slightly
lower velocities.

B. One-dimensional heat conduction

We proceed by analyzing the ability of the system to con-
duct heat in a one-dimensional test setup. In order to pick
a suitable set of initial conditions, we recall that in the limit
of ui → 0, the system reduces to the Telegrapher’s equation
(38). In the Navier-Stokes limit of τq → 0 we further recover,

κmb (Γ− 1)

kBρ
∆T − ∂tT = 0, (136)

which is the standard heat equation. The fundamental so-
lution to this equation, i.e. starting from initial conditions
T (x, t = 0) = δ (x), is a Gaussian,

T (x, t) =
1√

4πξt
exp

(
− x

2

4ξt

)
. (137)

Here, we have introduced the effective diffusion constant ξ =
κmb(Γ−1)

kBρ
. While this solution only holds approximately in

the limit of τq → 0, the full solution of the Telegrapher’s
equation for the above initial condition instead reads [105],

T (x, t) =Θ (t) Θ

(
t2ξ

τq
− x2

)
1√
4ξτq

× e−t2/(2τq)I0

(√
t2

4τq
− x2

4ξτq

)
, (138)
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FIG. 4. Anisotropic heat conductivity test. Starting from an initially hot inner cylinder at temperature Th surrounded by an ambient medium
at temperature Tc (left column), the evolution of relativistic causal heat conduction is shown for two different times in the middle and right
columns. The rows correspond to various degrees of anisotropy with respect to the magnetic field (shown as white streamlines). We can see
that in the most anisotropic case (bottom row), heat can only flow along the magnetic field lines. A more detailed description is given in Sec.
V C.

where the Heaviside functions Θ ensure causality of the so-
lution. Here, I0 is a modified Bessel function of the first
kind. Motivated by these observations we initialize an initial
temperature distribution to resemble a Gaussian in hydrostatic
equilibrium, i.e.,

T = exp
(
−x2/0.01

)
, (139)

p = 0.1, (140)
ρ = p/T (assuming kB = mb = 1) , (141)

where we adopt Γ = 4/3. Our simulations use a grid resolu-
tion corresponding to Nx = 1600 grid points in the interval
[−0.5 : 0.5]. We then show the resulting profiles for different
times in Fig. 2. We can see that the evolution differs drasti-
cally for fixed κ/τq = 0.02 . For low τq = 0.05 and, hence,

fast relaxation (left panel), we can see that the initial Gaussian
slowly diffuses. On the other hand, for larger τq = 0.5 (cen-
ter panel) the diffusive process happens more rapidly but the
Gaussian is eventually flattening. For even larger relaxation
time, τq = 5.0 , which is much larger than the dynamical time
scale of the simulation, we see that the wave part in the Tele-
grapher’s equation (38) takes over and the Gaussian begins to
split apart. Hence, in this limit of large mean-free path the
dynamics is more similar to a damped wave equation than to
a diffusion equation.

In order to assess whether we are indeed recovering the
correct analytic solution of the Telegrapher’s (38) and Heat
equations (136), we compare the evolution of the center point,
T (x = 0, t) with the analytic solutions (138) and (137). This
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FIG. 5. Two-dimensional Kelvin-Helmholtz test with heat conduction at t = 3.4. Shown is the rest-mass density ρ. In the absence of shear
viscosity secondary vortices form at higher resolutions, denoted by the number of grid points Ny ×Nx.

comparison is shown in Fig. 3. We can see that for different
choices of the transport coefficient κ/τq the two limits can be
reliably recovered. In particular, it is worth highlighting that
causality, which limits the instantaneous spreading of heat,
can significantly slow down dissipation compared to standard
parabolic heat conduction, for which T (x = 0, t) ∝ t−1/2.

C. Two-dimensional heat conduction

We now continue to explore the effects of thermal conduc-
tivity in a two-dimensional setting. In particular, we follow a
setup first proposed by Ref. [106],

ρ =

{
0.8

√
x2 + y2 < 0.08,

1.0
√
x2 + y2 > 0.08,

(142)

P = Γ− 1, (143)

Bx = 10−4, (144)

By = 10−4 sin (16πx) . (145)
(146)

As before, all quantities not explicity listed have been ini-
tialized to zero. We emphasize that the initial condition is
in pressure equilibrium and, in the absence of initial veloci-
ties, would remain static if dissipative effects were not present.
Adopting an equation of state Γ = 4/3, this corresponds to an
inner hot region with temperature Th = 5/12 and an outer
cold region with temperature Tc = 4/12. In this problem,
we explicitly include a global magnetic field to study the de-
pendence with the gyrofrequency parameter δqB . Inspired by
the functional form of this parameter found for ultrarelativistic
gases [65], we chose

τq = 0.60, (147)
κ = 0.02, (148)
δqB
τq

T 2 = const. (149)

The evolution for different values of δqB is shown in Fig. 4.
We can see that in the almost isotropic case, i.e. δqB → 0, heat
conduction proceeds independently of the magnetic field ge-
ometry. More specifically, we can see in the middle and right
panels of the first row in Fig. 4 that the temperature evolu-
tion retains its cylindrical symmetry. With increasing degree
of anisotropy (middle row), we can see that the temperature
evolution begins to be affected by the presence of the mag-
netic field. Physically, the increase in gyrofrequency beings to
suppress cross-conductivity. In particular, the initially cylin-
drical temperature profile begins to split up (center panel) and
heat conduction along the magnetic field starts to be enhanced.
Comparing the final times (right column), we still find that the
overall profile of the heat conduction is almost isotropic with
only a small degree of anisotropy being present. Finally, by
further increasing the degree of anisotropy δqB , the heat flux
begins to fully align with the magnetic field, i.e. qµ → q0b

µ,
where the latter approximation is valid in the limit of small ve-
locities. This is the limit of extended magnetohydrodynamics
discussed in Sec. III D 1.

We can see from the bottom row of Fig. 4 that in this limit
heat conduction across the magnetic field lines is essentially
absent and that the evolution is similar to the test case pre-
sented in Ref. [106]. We note, however, that because the clo-
sure adopted in the present formulation allows to dynamically
adjust the degree of anisotropy, we can naturally interpolate
between the highly collisional (top row) and weakly colli-
sional limits (bottom row).

D. Two-dimensional Kelvin-Helmholtz instability

Having discussed the behavior of bulk viscosity and heat
conductivity in a series of numerical tests, we now turn to the
effect of shear viscosity. In particular, we focus on a standard
test problem routinely studied in the context of the Newto-
nian Navier-Stokes equations [107]. Adopting the initial con-
ditions presented in [108], we study the formation of vortices
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FIG. 6. Two-dimensional Kelvin-Helmholtz test with heat conduction and shear viscosity at t = 3.4. In the presence of shear viscosity
the same converged vortex structure is recovered also at higher resolutions, denoted by the number of grid points Ny × Nx. Shown are the
rest-mass density ρ (top row), the four-velocity uy along the shear layer (second row), and the shear stress tensor components πxy (third row)
and πyy (bottom row).
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in a two-dimensional Kelvin-Helmholtz unstable shear layer.
More precisely, we use

p = 1 , (150)

ρ =

{
0.505 + 0.495 tanh [(x− 0.5) /0.01] , x > 0 ,

0.505− 0.495 tanh [(x+ 0.5) /0.01] , x ≤ 0 ,

(151)

ux

u0
=





0.05 sin (2πy) exp
[
− (x− 0.5)

2
/0.1

]
, x > 0 ,

−0.05 sin (2πy) exp
[
− (x+ 0.5)

2
/0.1

]
, x ≤ 0 .

(152)

uy

u0
=

{
0.5 tanh [(x− 0.5) /0.01] , x > 0 ,

0.5 tanh [(x+ 0.5) /0.01] , x ≤ 0 ,
(153)

where we have further adopted Γ = 4/3. As before, all quan-
tities not listed above have been initialized to zero. For this
test problem we include both shear viscosity and heat conduc-
tion by fixing

τq = 0.05, (154)
τπ = 0.1, (155)

κ = 6× 10−4τq, (156)

η = 5× 10−3τπ, (157)

which gives rise to an effective thermal Prandtl number
Pr := η/κ ≈ 8.

Shear stresses act in providing a fixed cut-off for small scale
turbulence, which is set by the length scale of the shear vis-
cosity `shear ' η/ (ρv̄), where v̄ is a characteristic velocity
scale. If instead of an explicit viscosity this cut-off was solely
provided by the grid scale, i.e. `shear ∼ ∆x, the outcome
of the simulation would strongly depend on the given res-
olution. Hence, demonstrating resolved and converged vor-
tex formation in a Kelvin-Helmholtz unstable shear layer has
become a standard test problem for non-relativistic hydrody-
namics [107]. Following the same logic, we will perform sim-
ulations at three different resolutions, labeled by the number
of grid points Nx × (2Nx), where Nx ∈ [256, 512, 1024].

In order to establish a baseline for the effect of underre-
solved shear viscosity, we perform a first set of simulations
for η = 0. The resulting baryon density evolution during vor-
tex formation is shown in Fig. 5. Comparing the lowest (left
panel) and highest resolutions (right panel), we clearly find
differences in the small scale evolution, particularly inside the
vortex. The presence of grid dependent effective viscosity can
best be appreciated by comparing the medium (middle panel)
and high (right panel) resolution cases. While on first glance
the density distributions look very similar, one can clearly spot
the presence of secondary vortices being formed in the shear
layers of the primary vortex. If the shear viscosity was instead
constant and resolved by the numerical resolution, we would
expect convergent behavior in the vortex evolution. That is,
getting the same vortex above a certain sufficiently resolved
resolution.

To demonstrate that this is indeed the case when using our
viscous scheme, we perform the same simulation, but with the
shear viscosity η given by Eq. (157). The resulting evolutions
for the baryon density ρ, the velocity component uy along the
shear layer, and the shear stresses πxy and πyy are shown in
Fig. 6. Comparing the density evolutions with those shown
in Fig. 5, the effect of a resolved shear viscosity is strikingly
obvious. The formation of secondary vortices is suppressed at
all resolutions and the vortices have the same internal structure
in all cases, establishing that the relativistic form of the shear
viscosity in flux-conservative form is working as expected. To
better illustrate the dynamics, we next focus on the velocity uy

along the shear layer (second row in Fig. 6). We can indeed
see that relativistic velocities uy ' 1 are present in the vor-
tices. Furthermore we can see that strong shock fronts prop-
agate through the vortices along the shear layer, coinciding
with the jump (red to green color) in the rest-mass density ρ.
Looking at the shear stresses πxy (third row in Fig. 6), we can
see that the shear stresses are perfectly resolved and converged
at all resolutions, with the strongest stresses present inside the
vortices, as expected.

The most remarkable feature of our numerical simulations
now arise in the bottom panel of Fig. 6. Since these simula-
tions do not include explicit bulk viscosity, i.e. ζ = 0, the
strong shock fronts propagating along the shear layer are not
resolved and should manifest almost as discontinuities, sim-
ilar to the shock tube solutions for perfect fluids shown in
Fig. 1. Taking πyy as a proxy for these stresses, we indeed
find very sharp almost discontinuous jumps across the shocks,
getting sharper when going from the lowest (left panel) to
the highest (right panel) simulation. While handling such
strong discontinuities might be difficult with more traditional
finite-difference approaches to the shear stresses [26, 31], our
way of incorporating the first-order dissipative forms in flux-
conservative form clearly allows us to perfectly handle those
steep jumps using high-resolution shock capturing methods.

E. Two-dimensional Kelvin-Helmholtz instability in the
presence of magnetic fields

As a final test, we investigate the weakly collisional regime
when shear stresses and heat fluxes are included. As discussed
in Sec. III D 1, in the limit of large mean-free-path the cou-
plings δqB and δπB diverge, leading to the heat flux and shear
stresses to align with the co-moving magnetic field.
In the case of globally sheared accretion flows, hybrid-kinetic
simulations of shearing flows in accretion disks have shown
that in this limit mirror and firehose instabilities lead to a lo-
cal enhancement of collisionality [109]. These instabilities are
expected to kick in, once [86]

π0 >
3

2
b2 (firehose instability), (158)

π0 <
3

2
b2
π0 + P

π0 − P
(mirror instability). (159)

Additionally, the heat flux is expected to be bound [86, 110],

|q0| . ρc3s, (160)
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FIG. 7. Two-dimensional Kelvin-Helmholtz test with anisotropic heat conduction, shear viscosity and finite thermal gyrofrequency at t = 3.4.
the left column shows results in the extended magnetohydrodynamics (Braginskii-like) limit of the closure. The center column in addition
adds a subgrid model to include kinetic effects (limiting the pressure anisotropies according to mirror and firehose instabilities) that increase
collisionality. The right column corresponds to a non-resistive viscous simulation. The rows show the pressure anisotropy

∣∣P‖ − P⊥∣∣ relative
to the magnetic field, the in-plane shear-stresses πxy and the norm of the in-plane heat flux |q|.
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where cs is the sound speed in the fluid. Once these instabili-
ties are triggered they lead to a local enhancement of collision-
ality and effectively pin the stresses at the threshold values for
the instability. Within the framework of dissipative hydrody-
namics, this can most easily be incorporated by locally adjust-
ing the relaxation time τq/π ∝ λmfp, while keeping the ratios
of the transport coefficients fixed, i.e. κ/τq , η/τπ ' const.

To do this, we adjust the relaxation times during the implicit
solve of Eq. (112) and (113). We then consider the same setup
presented in Sec. V D, but add a uniform magnetic field

By = 10−3, (161)

while keeping the other magnetic field components at zero
initially. This results in an initial plasma parameter β =
P/B2 = 106, for which the magnetic field in itself is not
dynamically important. That is, in the absence of magnetic
field induced anisotropies of heat fluxes and shear stresses, the
simulation outcome will not differ from a purely hydrodynam-
ical simulation. However, because of the anisotropic coupling
with the magnetic field, the differences observed between the
simulations will be purely because of the anisotropic nature of
the dissipative variables. Furthermore, for such a choice of β
the mirror and firehose instability are expected to quench any
anisotropy of the shear stresses.

We present the result of these simulations in Fig. 7 at time
t = 3.4. Specifically, we consider the case of δqB = −δπB =
105τπ , in which the equations approach the Braginskii-like
limit of extended magnetohydrodynamics [85]. We also con-
sider the same parameters, but supplemented with the sub-
grid model discussed above. Starting from the top, we show
the pressure anisotropy |π0| =

∣∣P‖ − P⊥
∣∣, where P‖ and

P⊥ are the pressures along and perpendicular to the magnetic
field. The scalar π0 was defined in Eq. (53). We can see
that the global magnetic field evolution is very similar in all
cases, except in the absence of the magnetic field coupling
(δqB = δπB = 0), in which the vortices are much more col-
lapsed (right panel). In the limit of extended magnetohydro-
dynamics the vortices are much more circular, although there
are differences within the vortex, when comparing the purely
extended magnetohydrodynamics case (left panel) with the
subgrid modeling (middle panel). Most importantly, we can
see that the shear stresses are highly anisotropic, especially
in the case of extended magnetohydrodynamics (left). How-
ever, as expected from the firehose and mirror instabilities,
the effective subgrid model eliminates this anisotropy almost
entirely with the pressure anisotropy being about a 100-times
smaller (middle panel).

In the middle row, we show the xy-component of the shear
stress tensor πxy . Starting from the limit of extended magne-
tohydrodynamics with subgrid model (middle panel), we can
see that the shear-stresses overall are 100 times weaker than in
the other cases, as expected from the discussion of

∣∣P‖ − P⊥
∣∣

above. Looking at the case of pure Extended magnetohydro-
dynamics (left panel), we can also see that small-scale sub-
structures are present inside the vortices. Comparing the the
structures in the magnetic field (top row), we can clearly see
that shear stresses nicely align with the magnetic field geom-
etry. When comparing with the case without the coupling

(right panel), we can see that the stresses are uniformly present
inside the vortices, where strongest shear flows are present.
As expected for an enhancement of collisionality, the simula-
tion including the subgrid model locally suppresses the shear
stresses inside the vortices. The disappearance of substruc-
ture in the main vortices is also broadly consistent with the
outcome of a similar Newtonian simulation assessing the im-
pact of the subgrid model [111]. Since the shear stresses are
very small in this case, they might not be able to perfectly sup-
press the formation of secondary vortices, as in the isotropic
viscous case, see Fig. 6. Indeed we see the (re-)appearance
of secondary vortices when adding the sugrid model (middel
panel).

Finally, we turn to the heat flux present in these simulations,
which is shown in the bottom row of Fig. 7. We can see that
in the case without magnetic field coupling (right panel), a
strong heat flux is present along the shear layer. This heat flux
is able to diffuse the part of the pressure support of the vortices
helping the collapse of the vortex compared to the extended
magnetohydrodynamics cases (left and center panels). Since
for those the heat flux has to align with the magnetic field,
no heat conduction across the shear layer can happen, as the
magnetic field is aligned with the layer so that the vortices
will retain an additional pressure support. Moreover, when
considering the shock that propagates along the interface, we
can see that in the unlimited case (left panel) a strong heat
flux is present that travels with the shock. In the case of the
subgrid model, where the heat flux is clamped, see Eq. (160),
the transport of heat is suppressed as these low density regions
do not permit strong heat fluxes.

VI. CONCLUSIONS

In this work, we have presented a new formulation to nu-
merically model relativitic dissipative effects in the presence
of magnetic fields. More specifically, starting from a col-
lisional 14-moment closure [11] for non-resistive relativistic
magnetohydrodynamics [64], we have derived a set of equa-
tions suitable for the study of heat conduction as well as bulk
and shear viscosities in an astrophysical context. By treating
the fluid frame projector implicitly we were able to recast the
equations in fully flux conservative form. Different from ear-
lier approaches (e.g. [26, 31]), this allows us to treat all dissi-
pative variables using high-resolution shock capturing meth-
ods, which removes any ambiguities of how to compute either
explicit time or spatial derivatives in the dissipative sources.

In addition, the numerical scheme includes two coupling
terms that project the shear stresses and heat flux onto the
comoving magnetic fields. This coupling has been identi-
fied with the gyrofrequency, allowing us for the first time to
fully include this effect in a relativistic magnetohydrodynam-
ics simulations. We have further demonstrated that for large
coupling the system approaches the relativistic Braginskii-like
limit of extended magnetohydrodynamics investigated in Ref.
[85]. This allows us to study effects of weakly collisional
plasmas that could be relevant for certain types of black hole
accretion [86, 87].
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To investigate the properties of the solutions of the equa-
tions of motion, we have also presented a set of numerical
simulations aimed at testing each of the dissipative effects in-
dividually. In particular, we have considered one- and two-
dimensional tests of heat conduction and viscous shear flows
in flat-spacetime. Our results showed that all effects can be
correctly captured with or without (coupled) magnetic fields
being present. As such, we expect that this scheme will be
highly suitable to numerically study highly relativistic mag-
netohydrodynamical turbulence [112, 113], black hole ac-
cretion [86], and dissipative effects in neutron star mergers
[40, 41, 44, 114].

An important aspect not yet addressed in this work are
causality bounds on the system presented here. While con-
ditions that ensure causality in the nonlinear regime of Israel-
Stewart-like equations formulated in the Landau frame (in the
absence of magnetic fields or baryon density) have been de-
rived in [20] (and strong hyperbolicity has been proven in [19]
in the case of only bulk viscosity), no such conditions exist ei-
ther when magnetic fields are included, or for the equations
presented here, which have additional relaxation equations.
Although our equations do approach standard Israel-Stewart-
like equations in the stiff limit, we currently have no proof
under which conditions the equations presented here maintain
causality in the nonlinear regime (the linear regime of the the-
ory derived in [64] was investigated in [79]). Such an analysis
will have to be performed for our system as well, although our
ability to solve this system in a stable manner under all condi-
tions investigated here provides an optimistic indication that
causality and hyperbolicity can be established in this system
3.

Beyond our current approach, several extensions are pos-
sible, in particular when considering applications to the hy-
drodynamic evolution of the quark-gluon plasma [1]. In that
regard, the next step would be to check how our framework
handles Gubser flow [115], which has become the standard

test for numerical codes in the field of heavy-ion collisions
[116]. In fact, when considering heavy-ion applications, we
would have to also incorporate second-order coupling terms
[11], though the effects of some of those terms on causal-
ity are not yet known in the nonlinear regime even at zero
baryon chemical potential (for instance, Ref. [20] neglected
terms involving the coupling between the vorticity tensor and
the shear stress tensor).

Furthermore, we have limited ourselves to non-resistive
plasmas. A natural extension we are planning is the incor-
poration of resistivity effects, which have been investigated
in [65]. Extrapolating our results, this will allow us to
correctly treat the relativistic Hall effect [117] and relativistic
reconnection [118], which could be highly relevant for flaring
process around accreting supermassive black holes [119, 120].
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Appendix A: Non-resistive dissipative magnetohydrodynamics
in flat spacetime

The numerical tests presented in this paper are per-
formed in flat Minkowski spacetime, where gµν = ηµν =
diag (−1, 1, 1, 1). We can further introduce a magnetic field

Bi = ∗F 0i, (A1)

as seen by a Eulerian observer. In terms of this magnetic field,
the comoving field reads

bµ =

(
Bju

j ,
1

u0

[
Bi +

(
Bju

j
)
ui
])

. (A2)

The overall evolution equations of non-resistive dissipative
magnetohydrodynamics in flat Minkowski spacetime are then
given by

∂t
[
ρu0
]

+ ∂i
[
ρui
]

= 0 (A3)

∂t

[(
ρh+ b2 + Π

) (
u0
)2

+
(
2q0 − ρ

)
u0 −

(
P + Π +

1

2
b2
)
− b0b0 + π00

]

+ ∂i

[(
ρh+ Π + b2

) (
u0
)2 ui
u0

+
(
q0 − ρ

)
u0 u

i

u0
+ qiu0 + π0i − b0bi

]
= 0 (A4)

∂t
[(
ρh+ Π + b2

)
u0uj + qju

0 + q0uj + π0
j − b0bj

]

+ ∂i

[(
ρh+ Π + b2

)
u0uj

ui

u0
+ qiuj + qju

i + πij + δij

(
P + Π +

1

2
b2
)
− bibj

]
= 0 (A5)

∂tB
j + ∂i

[
ui

u0
Bj − uj

u0
Bi
]

= 0 (A6)

∂t
[
(Π + Yζ)u

0
]

+ ∂i

[
(Π + Yζ)u

0 u
i

u0

]
= − 1

τΠ
Π−
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1− δΠΠ

τΠ

)
Π

1

ρ
Iθ + Iζ , (A7)
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(qν + YκTu

ν)u0 + YκTη
0ν
]
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0 u
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0
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0 u
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0
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∂t (Zκν ) + ∂i
(
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i
ν

)
= Iκν . (A14)

(A15)
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