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As the sensitivity and observing time of gravitational-wave detectors increase, a more diverse range5

of signals is expected to be observed from a variety of sources. Especially, long-lived gravitational-6

wave transients have received interest in the last decade. Because most of long-duration signals are7

poorly modeled, detection must rely on generic search algorithms, which make few or no assumption8

on the nature of the signal. However, the computational cost of those searches remains a limiting9

factor, which leads to sub-optimal sensitivity. Several detection algorithms have been developed to10

cope with this issue. In this paper, we present a new data analysis pipeline to search for un-modeled11

long-lived transient gravitational-wave signals with duration between 10− 103 s, based on an excess12

cross-power statistic in a network of detectors. The pipeline implements several new features that13

are intended to reduce computational cost and increase detection sensitivity for a wide range of14

signal morphologies. The method is generalized to a network of an arbitrary number of detectors15

and aims to provide a stable interface for further improvements. Comparisons with a previous16

implementation of a similar method on simulated and real gravitational-wave data show an overall17

increase in detection efficiency for all but one signal morphologies tested, and a computing time18

reduced by at least a factor 10.19

I. INTRODUCTION20

A new era in astronomy began in September 2015 with21

the observation of gravitational waves (GWs) from the22

merger of two stellar mass black holes [1]. Since then,23

the Advanced LIGO [2] and Advanced Virgo [3] have24

regularly observed a larger volume of the Universe lead-25

ing, among major discoveries, to the observation of the26

merger of two neutron stars [4] in August 2017 associ-27

ated to gamma ray burst GRB190817A [5] followed up28

kilonova AT2017gfo in NGC4993 [6]. As of mid of 2021,29

Advanced LIGO and Advanced Virgo have reported ∼ 5030

confirmed mergers of compact objects, black holes and/or31

neutron stars [7].32

Yet many GW sources have not yet been observed:33

core collapse supernova, isolated neutron stars, magne-34

tars, cosmic strings, and the resulting stochastic back-35

ground of GWs [8]. The diversity of the GW signal ex-36

pected from these sources require different detection al-37

gorithms. When the GW signal waveform is predicted38

analytically, matched filter techniques can be used. In39

practice, this concerns mainly compact objects binary40

coalescence, cosmic strings signals [9] and GWs from pul-41

sars [10, 11].When the GW emission is poorly modeled,42

detection will rely on unconstrained searches that make43

few assumptions about the characteristics of the signal.44

In the last twenty years, several search algorithms have45

been developed, mostly focusing on GW signals of dura-46

tion less than a few seconds [12–16]. More recently, tran-47

sient GW signals of longer duration have received atten-48

tion, bridging the gap between short-duration transient49

and continuous emission of GWs, and dedicated search50

algorithms have been developed [17–23].51

Several astrophysical processes could be at the origin52

of long-duration transient GWs emission, for example,53

those related to core collapse supernova, compact object54

binary mergers and isolated neutron stars [18]. Some55

of them are associated to the most energetic phenom-56

ena observed in the Universe. There is evidence [24, 25]57

that core collapse supernovae and long gamma-ray bursts58

(GRB) are connected to the death of massive stars where59

the iron core collapses under its own gravity, form-60

ing either a black hole or a highly magnetized neutron61

star, releasing an incredible amount of energy (1053 erg)62

mainly through neutrino emission, while ∼ 1% goes into63

the kinetic energy of the explosion [26]. Once the col-64

lapse is triggered, very powerful non-spherical flows de-65

velop in the outer region of the proto-neutron star that66

are expected to generate GWs energetically bounded to67

1044 − 1047 ergs [27]. The GW emission will last until68

the onset of the explosion or until a black hole is formed.69

The signal is expected to be no longer than 1− 2 s.70

In the collapsar model, massive stars collapse to black71

holes either without an initial supernova explosion or72

via fallback accretion after a successful but weak explo-73

sion [28]; a rotating black hole is formed while the inner74

layers of the star lacks momentum to eject all the matter.75

Over a period of minutes to hours, 0.1− 5M� falls back76

onto the collapsed remnant, turning it into a black hole77

and establishing an accretion disk. GWs may be emitted78

by disk turbulence and disk instabilities that may lead79

to clumping or disk fragmentation [29, 30]. The GW80

signal expected from accretion disk fragmentation would81

last O(10− 100) s with a characteristic strain h ∼ 10−22
82

at 100 Hz for a source at 100 Mpc [29]. When the core83

collapse explosion is successful, a magnetar is formed.84

Convective currents and dynamical and secular nonax-85

isymmetric rotational instabilities in the proto-magnetar86

develop and may emit GWs [31]. In both scenarios, a87

GRB jet is launched either thanks to magnetohydrody-88

namical processes and neutrino pair annihilation powered89

by accretion or by the high Lorentz factor outflow that90

follows the birth of the proto-magnetar.91

When a magnetar is formed, gravitational wave emis-92
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sion from viscosity-driven ”spin-flip” instability may last93

hours to days, with a detection horizon of 3− 4 Mpc for94

Advanced LIGO/Advanced Virgo detectors and unmod-95

elled searches [32–34].96

The merger of two neutron stars will form a hot su-97

permassive neutron star; depending on the component98

masses, the centrifugal forces induced by differential ro-99

tation and the stiffness of the nuclear equation of state100

may allow it survive for hundreds of milliseconds before101

collapsing to a black hole or form a massive neutron102

star [35, 36]. It is very likely that the remnant is sur-103

rounded by an accretion disk that may endeavor insta-104

bilities like in the collapsar scenario. If the newly formed105

neutron star survives more than a few seconds, it could106

emit long-lived GW through magnetic field-induced ellip-107

ticity [37, 38] or r-mode instabilities [39], although the108

precise amplitude of such signals remains unclear. So far,109

no post-merger GW signals have been detected for any110

of the binary neutron star mergers found in LIGO and111

Virgo data [40–42].112

Isolated neutron stars are another potential source of113

long-duration GW signals. Sudden speed-ups of the rota-114

tion of pulsars observed in radio and X-ray data are fol-115

lowed by a period of relaxation (weeks long) during which116

the pulsar slows down. GWs may be emitted during this117

period but the amplitude is expected to be low as the118

rotational energy changes remain below 1043 erg [43–46].119

Seismic phenomena in the crust of magnetars are thought120

to be at the origin of soft gamma repeaters and anoma-121

lous X-ray pulsars. Soft gamma repeaters giant flares are122

associated to huge emission of electromagnetic energy, up123

to 1046 erg, followed by long duration quasi periodic os-124

cillations which may be associated to GW emission over125

the same time scale [47–49]. The recent observation of126

GRB 200415a, suggesting that magnetar giant flare may127

be a distinct class of short GRB, with a substantially128

higher volumetric rate than compact object mergers [50],129

is re-enforcing the interest for magnetar giant flare events130

in nearby galaxies.131

The diversity of long transient expected GW wave-132

forms has lead to the development of algorithms that do133

not rely on a signal model. Coherent waveburst [13, 51]134

and X-pipeline [15], used for short-duration searches,135

have been adapted to search for transients with duration136

up to a few hundred of seconds, while the STAMP excess137

cross-power algorithm [18] has been developed to target138

specifically long and very long transient signals lasting up139

to several weeks. It has been used to search for long du-140

ration GW transients associated to GRBs [52], for post-141

merger GW signals associated to GW170817 [40, 42] and142

adapted to perform an all-sky/all-time search for long143

duration GW transient in LIGO and Virgo data [53–55].144

An enhanced version of the STAMP algorithm is pre-145

sented in this article. It is a complete rewrite in python146

of the all-sky/all-time STAMP-AS pipeline that was built147

using the STAMP algorithm library written in Matlab. As148

such, it has been optimized to search for GW signals of149

duration in the range 10 − 103 s in a large data set at150

a lesser computing cost than STAMP. It especially imple-151

ments a hierarchical strategy, similar to the algorithm152

proposed in [19] to select the most interesting periods of153

the data without loosing detection efficiency.154

This paper is organized as follows. In section II, we155

present the formalism of the analysis and the methods156

used to generate candidate events in the framework of a157

2 detector search. We describe the implementation of the158

pipeline and the methods used for background and effi-159

ciency estimation in Section III. Section IV summarizes160

the performance of the pipeline over simulated Gaussian161

noise and real data from the second LIGO-Virgo obser-162

vation campaign (O2). Finally, we summarize those re-163

sults in section V and propose several improvements to164

increase the pipeline sensitivity in the future.165

II. OVERVIEW OF A CROSS-CORRELATION166

GW TRANSIENT SEARCH ALGORITHM167

A. Definitions and conventions168

We are considering a network of GW detectors whose169

strain data time-series s(t) = n(t) + h(t) is a linear sum170

of independent detector noise n(t) and the detector’s171

response to a GW strain amplitude given by h(t). The172

detector noise is itself the sum of random noise and173

non-Gaussian noise transients, or ”glitches”. The GW174

signal is assumed to be described by two polarization175

modes, h+(t) and h×(t) and originates from a point-176

like source whose sky-position is given by the right177

ascension and declination (α, δ). We define Ω̂ as the178

direction to the source and h̃(f) the Fourier transform179

of any h(t) time-series. The detector’s response to180

a GW strain is the linear combination of the two181

polarisations weighted by the detector antenna factors182

h(t) = F+(t, Ω̂)×h+(t) +F×(t, Ω̂)×h×(t). We consider183

an interval of duration T of GW strain data that are184

discrete measurements sampled at fs. In the following,185

the variable t; refers to the time segment start time.186

187

The STAMP algorithm is an extension of the radiometer188

method developed to detect point-like sources of stochas-189

tic background GWs [56]. To estimate the GW strain190

power spectrum of a transient signal, excess power is191

searched in frequency-time maps (ft-maps) formed by192

cross-correlating the data of two spatially separated grav-193

itational wave detectors I and J . Following [18] an es-194

timator of the GW power in a single ft-pixel is given195

by196

Ŷ (t; f, Ω̂) ≡ Re[QIJ(t; f, Ω̂) s̃?I(t; f) s̃J(t; f)] (1)

where197

QIJ(t; f, Ω̂) =
1

εIJ(t; Ω̂)
e2πifΩ̂·∆~xIJ/c (2)
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is a filter function that takes into account the arrival time198

delay of the signal in the two detectors whose distance is199

given by ∆~xIJ and the pair efficiency200

εIJ(t; Ω̂) ≡ 1

2

(
F+
I (t; Ω̂)F+

J (t; Ω̂) + F×I (t; Ω̂)F×J (t; Ω̂)
)
(3)

which weights the GW strain cross-power according to201

the alignment of the detectors. To normalize the cross-202

correlation, we compute the variance of Ŷ for which an203

estimator is204

σ̂2
Y (t; f, Ω̂) = |QIJ(t; f, Ω̂)|2PI(t; f)PJ(t; f) (4)

where PI(t; f) is the noise one-sided auto-power spec-205

trum. We then define the signal-to-noise ratio206

SNR(t; f, Ω̂) for a single pixel207

SNR(t; f, Ω̂) ≡ Ŷ (t; f, Ω̂)

σ̂Y (t; f, Ω̂)

= Re

[
s̃?I(t; f)s̃J(t; f)√
PI(t; f)PJ(t; f)

e2πifΩ̂·∆~xIJ/c

]
.

(5)

SNR(t; f, Ω̂) depends only on the single-detector208

whitened statistic209

ỹI(t; f) ≡ s̃I(t; f)√
PI(t; f)

(6)

and the time delay τ ≡ Ω̂ · ∆~xIJ/c of the signal in the210

two detectors.211

In the context of an all-sky search, the source direc-212

tion Ω̂, and therefore τ , are unknown. An error in the213

time delay induces a dephasing in the computation of214

Ŷ (t; f, Ω̂) that can cause an underestimation of the SNR215

of coherent signals. A solution is to span all sky-positions216

Ω̂ and retain the one that gives the largest SNR. That217

was the strategy implemented in STAMP-AS used to search218

for long duration transient GW signals in initial LIGO219

data [53, 57] and advanced LIGO data [54, 55]. However,220

the computational time required to process numerous sky221

positions was a limitation of the pipeline. Besides, back-222

ground estimation requires repeating, a large number of223

times, the same coherent cross-correlation of the data224

streams for each sky position tested using complete ft-225

maps while a large fraction of the pixels do not contain226

relevant information. As a consequence the amount of227

simulated background was restricted to ∼ 100 years, and228

the number of sky positions tested was limited to a few.229

All these sub-optimal features resulted in a loss of sensi-230

tivity of ∼ 10− 20% [53].231

The PySTAMPAS pipeline addresses these limitations by232

implementing the hierarchical approach proposed in [19]233

which consists of first identifying the most interesting234

clusters of pixels in single-detector auto-power ft-maps.235

In a second stage, a coherent detection statistic is com-236

puted using only the pixels that have been selected in the237

first stage. The computationally intensive calculations238

are carried out only once, allowing rapid background es-239

timation without sacrificing the sensitivity gained by the240

use of coherence and spanning the whole sky positions.241

The gain in computational performance has also allowed242

the introduction of the use of several time-frequency res-243

olutions to gain sensitivity to GW signals that may have244

time-varying frequency evolution. In the following sec-245

tions, we describe the different computations that are246

performed at each stage.247

B. Single detector stage248

1. Single detector ft-map249

The simplest time-frequency representation of the GW250

time series sI(t) is a spectrogram obtained using one-251

sided Fourier transform of short segments of duration ∆t.252

The short segments are first Hann-windowed and overlap253

by 50% with each other such that the pixels resolution254

is respectively (∆t/2) × (1/∆t) in time and frequency –255

the factor 1
2 comes from the 50% overlap between short256

segments.257

The spectrograms are whitened by the one-sided power258

spectral density of each segment PI(t; f). Two meth-259

ods to compute the auto-power have been implemented.260

The first one, inherited from STAMP, takes the average of261

|s̃I(t; f)|2 over time-neighboring pixels in a similar way to262

the Welch’s method. The other one considers the median263

over the frequency-neighboring pixels. The pros and cons264

of the two methods are discussed in section IV A 1. For265

each time-frequency resolution, ft-maps of the whitened266

statistic ỹI(t; f) are built.267

The duration ∆t of the Fourier transformed segments268

is an arbitrary choice that depends of the type of sig-269

nal searched. Long-duration GW searches generally use270

Fourier transformed segments of duration ' 1s which are271

suited to reconstruct signals lasting ∼ 101 − 103s. How-272

ever when the frequency evolution of the signal is chang-273

ing with time, parts of it can be better reconstructed274

using different resolutions. In order to improve signal re-275

construction as demonstrated by coherent waveburst [13],276

we opt for a multi-resolution approach which consists in277

building several ft-maps of different resolutions and com-278

bine them into a single, multi-resolution ft-map.279

2. Clustering280

The long-duration GW signal signature in ft-maps ap-281

pears as a cluster of pixels that a pattern recognition al-282

gorithm must be able to reconstruct without assuming283

a model. A year-long data set is typically used. The284

unknown morphology assumption leads us to consider285

a seed-based clustering algorithm. The principle is to286

group high-energy pixels together by proximity, without287

imposing any preferred morphology for the cluster. For288
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PySTAMPAS, we have adapted the burstegard algorithm,289

developed for STAMP [57] to multi-resolution ft-maps.290

We consider all pixels ỹI(t; f) from every map with in-291

dividual resolution ∆ti ×∆fi. Pixels for which |ỹI(t; f)|292

exceeds a given threshold are kept to form a set of pixels293

for which we keep the time and frequency of the bot-294

tom left corner, ∆ti, ∆fi, and ỹI(t; f). The clustering295

algorithm starts with a seed pixel, the first pixel in the296

list, as the order does not matter. All pixels that are297

above threshold and within a given distance (in time and298

frequency) of the seed become part of the same cluster,299

whatever their resolution. Each new pixel added to the300

cluster is then becoming the seed pixel and the same pro-301

cess is repeated recursively until no more pixels can be302

added. The next remaining unclustered pixel becomes303

the seed of the next cluster and the operations are ap-304

plied again until all isolated pixels have been clustered.305

To eliminate clusters composed of only a few pixels, we306

select clusters that have a user-determined minimal num-307

ber of pixels. The different parameters of the clustering308

(pixel threshold, radius and minimal number of pixels309

per cluster) are free parameters that can be tuned con-310

sidering that the number of operations is proportional to311

O(N log(N))), where N is the number of pixels above312

threshold. As the GW signal energy is spread over many313

pixels, the threshold on |ỹI(t; f)| should not be too selec-314

tive, and the distance between 2 pixels should not be too315

strict as well.316

C. Coherent analysis317

Considering all possible detector pairs, clusters from318

one detector are cross-correlated with the other detec-319

tor’s pixels. At this stage, the clusters can be composed320

of pixels of different time-frequency resolution. To be321

able to cross-correlate pixels of different time-frequency322

resolution, we define virtual pixels that have resolution323

min ∆ti × min ∆fi. Each of these pixels is assigned a324

value that is the largest |ỹI(t; f)| value of all pixels that325

overlap the virtual pixel. As ∆ti×∆fi is constant over all326

resolution maps, the virtual pixels assigned values have327

the same weight. The same construction of virtual pixels328

is performed for the pixels of the other detector’s ft-map.329

The cross-correlation SNR given by Eq. (5) is then330

computed considering the virtual pixels. As already men-331

tioned, pixel SNR depends only on the time delay be-332

tween two detectors τ = Ω̂ ·∆~xIJ/c. In an all-sky search,333

the direction to the source is not known a priori, and334

an error on the time delay can cause to underestimate335

the SNR of coherent signals. A solution is to span the336

time delay parameter space over all possible values for a337

given pair. The maximal SNR loss due to an error of d~Ω338

corresponding to dτ is339

SNR(t; f, Ω̂ + d~Ω) = cos(2πfdτ) SNR(t; f, Ω̂) (7)

The time delay bin size dτ is determined such that the340

maximal SNR loss is lower than ε ∈ [0 1] for the maximal341

frequency considered in each cluster.342

dτ =
arccos(ε)

2πfmax
(8)

with fmax being the maximal frequency of all pixels of343

the cluster, which can be much lower than the maximal344

frequency of the search, reducing the number of time de-345

lays to test. In the most general case, we would need to346

test Nτ time delay values between 0 and ∆xIJ/c by steps347

of dτ to recover a signal accurately. However, because348

we are considering a phase factor, a degeneracy appears:349

ε = cos(2πfdτ) = cos(2πf(dτ+1/f)). As a consequence,350

for a pixel at frequency f , it is sufficient to test time de-351

lays in the interval [0, 1/f ] instead of [0,∆xIJ/c] to get352

the correct phase factor. In the case of a broadband clus-353

ter with pixel frequencies between fmin and fmax, this354

interval is the largest for f = fmin, so we need to test355

time delay values between 0 and 1/fmin by steps of dτ .356

Finally, the number of time delays to test to recover a357

signal with an accuracy ε is358

Nτ =
2π

arccos(ε)

fmax
fmin

. (9)

In the end, Nτ remains rather small (less than a few359

hundred), especially compared to the thousands of sky360

positions that need to be tested using a regular grid in361

sky coordinates α, cos(δ). Since the computations are362

done only over the small subset of pixels that constitute363

the cluster, it is possible to test hundreds of time delays364

in a reasonable time and therefore limit the loss of SNR365

to ε = 0.95 regardless of the signal morphology as shown366

in section IV A 2.367

The time delay τ0 that maximizes the sum of all pixel368

SNRs provides a detection statistic that reflects the sig-369

nificance of the cluster370

SNRΓ ≡
∑

(t,f)∈Γ

SNR(t; f, τ0). (10)

This detection statistic is used to test the hypothesis of a371

GW signal or the null hypothesis. However, hierarchical372

processing methods such as PySTAMPAS applied on real373

GW data tend to bias the selection of triggers because374

of the presence of noise outliers in one detector. When375

combined with noise fluctuation in the second detector,376

such triggers may have large SNRΓ values despite being377

incoherent. In order to mitigate this effect we estimate378

the residual noise energy that is left in one detector’s379

data after subtracting the sum of |ỹI(t; f)|2 over all pixels380

belonging to the cluster. We define the quantity381

EresI ≡
∑

(t,f)∈Γ

|SNR(t; f)− |ỹI(t; f)|2|. (11)

For a coherent GW signal, recovered with the right time382

delay, this residual energy is expected to be much smaller383

than both SNRΓ and the auto-power energy EI384

EI ≡
∑

(t,f)∈Γ

|ỹI(t; f)|2 (12)
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On the contrary, for a cluster due to a noise outlier in385

one of the detectors EresI may become large in the sec-386

ond detector. We can then define a second discriminant387

variable in addition to SNRΓ,388

Σres ≡
∑
I

EresI /EI . (13)

Finally, we combine these two variables into a single de-389

tection statistic Λ defined by390

Λ ≡ SNRΓ

SNRΓ + Σres
. (14)

Λ should tend to 1 in presence of a coherent GW sig-391

nal and take << 1 values in case of noise outliers. For392

convenience we define393

pΛ ≡ − log(|1− Λ|) (15)

such that the detection statistic increases with the sig-394

nificance of the trigger. Note that pΛ is not the only395

possibility to combine SNRΓ and Σres. We show in Sec-396

tion IV C that pΛ is robust to loud noise triggers using a397

sample of real data from GW detectors, but other com-398

binations may be relevant depending on the distribution399

of background noise.400

III. DETAILS OF THE PIPELINE401

IMPLEMENTATION402

In the following sections, we describe the implementa-403

tion of PySTAMPAS in the case of a 2-detectors network,404

and we propose a generalization to the case of network of405

more than 2 detectors. In practice, the pipeline is imple-406

mented using Python 3 and relies on the GWpy package407

[58].408

A. Data conditioning409

The GW detectors’ data streams are first searched in-410

dividually to reveal clusters of energy which may contain411

coherent GW signals. Real GW detector data are avail-412

able as an ensemble of time-series of different lengths. For413

a given pair of GW detectors, only coincident times are414

analyzed. This reduces the data set to a list of coincident415

segments of time. For each of the coincident segments,416

the data are split into windows of duration Twin that417

overlap by 50%. The duration of the data window is a418

free parameter that can be adjusted to the typical dura-419

tion of the GW signal that is being investigated. In this420

study, we use Twin ' 500 s, as it is done in previous long-421

duration searches [54, 55]. STAMP was originally designed422

to search for signals with duration up to several weeks423

[18]. Although there is no fundamental limitation to ex-424

tending PySTAMPAS to longer signals, we limit ourselves425

to signals in the range 10− 103 s in this paper. Working426

with very large windows leads to dropping up to Twin/2427

s of data at the end of each coincident segments, and428

increases the computing cost of clustering.429

The data are first high-pass filtered to suppress energy430

outside the analysis frequency bandwidth whose lower431

boundary is adapted to the GW detectors’ noise spec-432

trum of each data set. Real GW detector data often con-433

tain non-Gaussian, short duration spikes (”glitches”) [59,434

60]. When the magnitude of the glitch is large, an ex-435

cess of energy is present in the ft-maps and generates436

single-detector clusters with very large energy (orders of437

magnitude larger than what a real GW signal would gen-438

erate). The coherent step is usually not able to eliminate439

them completely and a better strategy consists in gat-440

ing the data time-series before computing the ft-maps.441

PySTAMPAS is mitigating the effect of the loud glitches442

by applying a Planck window on the hI(t) samples that443

exceeds a fixed threshold1. This threshold is a free pa-444

rameter that should be tuned for each analysis in order445

to remove most of the glitches without penalizing sig-446

nal recovery. After this pre-processing step, ft-maps of447

ỹI(t; f) are built.448

As shown in all GW detectors’ noise spectra [61, 62],449

real GW data contain many spectral artefacts corre-450

sponding to mechanical resonances, power lines and451

pump or fan-like machines surrounding the detectors [63,452

64]. Most of these spectral lines are of low amplitude and453

relatively constant over time, while some have a time-454

varying frequency. These artifacts can generate false long455

duration tracks in ft-maps. To attenuate the impact of456

lines, we set to zero (“frequency notch”) ỹI(t; f) pixels457

corresponding to a list of frequencies that are constructed458

following two steps:459

1. For each ft-map built, we compute the median460

value ȳ(f) over time of |ỹ(t; f)|. Frequencies for461

which ȳ(f) is higher than a given threshold are462

flagged.463

2. If a frequency is flagged in more than a given frac-464

tion of the total ft-maps, it is added to the list.465

This last condition reduces the risk that a monochromatic466

GW transient of duration . Twin is mistaken for an in-467

strumental line and notched. One should note, however,468

that a very long monochromatic transient signal (on the469

order of weeks or months) could still be flagged if it is470

spread over a fraction of the total ft-maps higher than471

the threshold chosen. If a signal crosses a notched fre-472

quency, it may be divided into several parts which will473

be reconstructed by burstegard as separate clusters, re-474

ducing the significance of the signal. To reconnect these475

parts, we implement the findtrack algorithm [57]. If the476

minimal distance between the corners of two clusters is477

smaller than a given radius, these clusters are connected478

and treated as one single cluster.479

1 These samples are found by the scipy function find_peaks.
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B. Coincident search480

The coincident search is the proper analysis during481

which true GW signals are searched in the data. The482

individual detector’s ft-maps are searched for clusters of483

excess energy following the procedure described in sec-484

tion II B. Two lists of clusters are extracted from a pair485

of detectors. They are saved along with the ft-maps to486

be analyzed in the coherent stage following the procedure487

described in section II C. The pipeline produces a list of488

coherent triggers that are ranked according to pΛ.489

C. Background estimation490

In order to assess the significance of triggers found in491

coincidence, one has to estimate the accidental rate of492

noise triggers caused by instrumental and environmental493

effects. Like almost all GW transient search pipelines, to494

encompass any particular effect in the data and augment495

the total volume of data, we use the time-slides tech-496

nique to estimate our background [65]. One data stream497

is time-shifted with respect to the other one by an amount498

of time greater than the light travelling time between the499

detectors. Assuming the number of detectable GW sig-500

nals is small, this assures that the cross-correlated data501

does not contain a coherent GW signal. In the meantime,502

non-Gaussian and non-stationary features of the detec-503

tors’ noise are preserved. By repeating the analysis for504

many time-shift values one simulates multiple instances505

of the noise.506

In PySTAMPAS, time-shifts are performed considering507

data streams split over Nwin windows that are time or-508

dered on a circle. Data are shifted by a multiple of win-509

dows (lags) and for each lag by a multiple of ∆tmax the510

maximal time resolution (mini-lags). For example, con-511

sidering only lags, at the n-th lag, clusters from detector512

I that have been extracted in window i are matched with513

detector J data from window (i+n). With this technique,514

the maximal number of time-shifts is515

(Nwin − 1)× Twin
∆tmax

. (16)

The total background lifetime simulated Tbkg is the num-516

ber of time-shifts performed times the duration of data517

available for a pair of detectors. The cumulative back-518

ground trigger rate gives an estimation of the false-alarm519

rate (FAR) as a function of the detection statistic which520

is used to rank the triggers.521

D. Sensitivity studies522

PySTAMPAS performs sensitivity studies by injecting523

simulated signals into the data. A simulated signal con-524

sists primarily of a waveform which describes the two525

polarizations modes h+(t) and h×(t) of a GW. Wave-526

forms are stored in files in the form of two time series527

sampled at fs, as well as metadata (duration, frequency528

range, physical model, etc). A bank of waveforms with529

various properties is available to sample the rather large530

parameter space of long-duration transient GW signals531

with representative signal morphologies.532

To compute the detector’s response hI(t) to a given533

GW signal one has to specify a waveform and the follow-534

ing parameters:535

• the time of arrival t0 at the center of the Earth;536

• the direction Ω̂ to the source;537

• the inclination and polarization angles (ι, ψ) that538

characterize the orientation of the source’s refer-539

ence frame with respect to the Earth equatorial540

frame;541

• a scaling amplitude factor α to modulate the542

strength of the signal.543

Source frame GW polarizations are then rotated to be
expressed in the Earth equatorial frame

h′+(t) = a+ cos 2ψ h+(t)− a× sin 2ψ h×(t)

h′×(t) = a+ sin 2ψ h+(t) + a× cos 2ψ h×(t) (17)

where a+ ≡ 1+cos ι2

2 and a× ≡ cos ι2. The polarizations544

are then time-shifted by the delay of arrival between the545

detector’s position ~rI and the center of the Earth546

τI =
Ω̂ · ~rI
c

, (18)

and rescaled by the amplitude factor α such that finally,547

hI(t) = α [F+
I (t; Ω̂)h′+(t−τI)+F×I (t; Ω̂)h′×(t−τI)] (19)

where F+
I (t; Ω̂) and F×I (t; Ω̂) are the detector’s sensitiv-548

ity to + and × polarizations (expressed in the Earth549

equatorial frame) of a GW signal coming from direction550

Ω̂ at time t. The computed response is resampled and551

interpolated to match with the detector’s sampling, and552

the first and last seconds of the time series are tapered553

with a Hann window to avoid numerical artifacts when554

the signal starts or stops abruptly. The signal is injected555

in the data, which are then analyzed the same way as556

in a coincident search (restricted to the windows that557

overlap the injection to gain time). An injection is con-558

sidered detected if the search produces a trigger within559

the time and frequency boundaries of the simulated sig-560

nal, and with a detection statistic pΛ larger than a given561

threshold.562

To estimate the detection sensitivity to a given wave-563

form at a given amplitude, a statistically significant num-564

ber of injections are performed with random starting565

2 The dependence of a+ and a× on iota is correct for quadrupolar
emission.
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time, sky position, polarization angle and cosine of the in-566

clination. Starting times are selected in such a way that567

they always fall within a coincident data segment. By568

computing the fraction of recovered injections for differ-569

ent signal amplitudes, it is possible to characterize the de-570

tection efficiency as a function of signal’s strength, which571

is usually expressed with the root-sum-squared amplitude572

hrss given by573

hrss ≡

√∫
(h2

+(t) + h2
×(t)) dt. (20)

E. Generalization to a network of detectors574

The search algorithm can be generalized in a straight-575

forward manner to a network of N detectors (I, J,K...),576

constituting p(N) = N(N−1)/2 pairs. For a given time-577

frequency pixel (t; f) and sky direction Ω̂, we define the578

total coherent SNR as the sum of cross-correlated SNRs579

from all detector pairs:580

SNR(t; f, Ω̂) =

N∑
I=1

∑
J>I

SNRIJ(t; f, Ω̂), (21)

with SNRIJ(t; f, Ω̂) the coherent SNR computed from
Eq. (5) corresponding to the pair IJ . This allows us to
generalize the definitions of EresI and SNRΓ for a cluster
of pixels Γ,

EresI ≡
∑

(t,f)∈Γ

|SNR(t; f)/p(N)− |ỹI(t; f)|2|, (22)

SNRΓ ≡
∑

(t,f)∈Γ

SNR(t; f), (23)

and finally the definition of Λ remains unchanged:

Λ ≡ SNRΓ

SNRΓ +
∑
I

Eres
I

EI

(24)

The pipeline’s implementation does not fundamentally581

change with N ≥ 3 detectors. The clustering step is582

performed independently over each individual detector’s583

ft-maps, following the hierarchical method of [19] . For584

each cluster, cross-correlation is computed for the p(N)585

pairs to compute its ranking statistic pΛ. However, as586

the degeneracy between sky direction and time delay be-587

tween detectors is broken for N ≥ 3, it is necessary in588

this case to test all sky positions by choosing uniformly589

α and cos(δ) and select that position that maximizes590

SNRΓ. Therefore, a full-scale study of the pipeline’s per-591

formances over a network of 3 or 4 detectors will be nec-592

essary in the future, considering realistic detector’s sen-593

sitivity curves.594

IV. PERFORMANCES AND COMPARISONS595

To test the pipeline and demonstrate its performance,596

we consider 13 waveforms commonly used in long-597

duration searches [54, 55] whose main characteristics are598

listed in Table I. Most of the waveforms are based on as-599

trophysical models and fall into three categories: eccen-600

tric inspiral-merger-ringdown nonspinning compact bi-601

nary coalescence (ECBC) [66], broadband chirps from in-602

nermost stable circular orbit waves around rotating black603

holes (ISCOchirp) [67, 68] and accretion disk instability604

models (ADI) [30]. We include two ad hoc waveforms605

to better cover the parameter space; a 250 s long sine606

Gaussian signal (SG-C) with a decay time of 50 s and a607

20 s long band-limited white noise burst (WNB-A). These608

signals of different morphology cover the time-frequency609

space with durations within 9-290 s and frequencies in610

the 10-2048 Hz range. In the following we consider the611

case of a 2-detector search to compare performance with612

STAMP-AS. If not stated differently, we are using simu-613

lated Gaussian noise following LIGO’s best sensitivity614

during the second observing run (O2) [69] to simulate615

the data from the two LIGO detectors at Hanford (H1)616

[70] and Livingston (L1) [71].617618

A. Signal reconstruction619

We investigate the effects of several parameters of the620

pipeline on the detection capability and the signal re-621

construction in order to find a set of parameters that622

maximize the detection of a wide range of different mor-623

phology signals, while keeping the computational costs624

affordable.625

1. Power spectral density estimation626

The accuracy of the noise power spectral density (PSD)627

estimation is playing a central role to reconstruct GW sig-628

nals efficiently. Yet, this task is complicated in the case629

of GW detectors as the noise contains non-Gaussian and630

non-stationary features such as glitches, spectral lines631

and slow drifts of the noise amplitude.632

Consider a detector’s strain time series given by sI(t) =633

hI(t) + nI(t), where hI(t) is a deterministic GW signal634

and nI(t) random noise. A good estimator of the one-635

sided PSD of the noise is given by the squared modulus636

of its Fourier transform,637

PI(t; f) ≡ 〈|ñI(t; f)|2〉, (25)

This value is not directly accessible because in case of an638

unknown GW waveform it is not possible to disentangle639

a priori signal from noise. One has to rely on the observ-640

able |s̃I(t; f)|2, that may contain GW signal. Assuming641

signal and noise are not correlated,642

〈 |s̃I(t; f)|2 〉 = 〈 |h̃I(t; f)|2 〉+ PI(t; f). (26)
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Waveform Parameters Duration [s] Frequency [Hz] Morphology

ECBC-A M1 = 1.4 M�, M2 = 1.4 M�, ecc = 0.2 291 10 - 250 Chirp

ECBC-B M1 = 1.4 M�, M2 = 1.4 M�, ecc = 0.4 178 10 - 275 -

ECBC-C M1 = 1.4 M�, M2 = 1.4 M�, ecc = 0.6 64 10 - 350 -

ECBC-D M1 = 3.0 M�, M2 = 3.0 M�, ecc = 0.2 81 10 - 180 -

ECBC-E M1 = 3.0 M�, M2 = 3.0 M�, ecc = 0.4 49 10 - 200 -

ECBC-F M1 = 3.0 M�, M2 = 3.0 M�, ecc = 0.6 15 10 - 200 -

ISCOchirp-A mBH = 5.0 M� 237 1049 - 2048 Broadband chirp-down

ISCOchirp-B mBH = 10.0 M� 237 705 - 2048 -

ISCOchirp-C mBH = 20.0 M� 236 196 - 1545 -

ADI-A mBH = 5.0 M�, aBH = 0.3 35 135 - 166 Chirp-down

ADI-B mBH = 10.0 M�, aBH = 0.95 9 110 - 209 -

SG-C 243 402-408 Mono-chromatic

WNB-A 20 50-400 Band limited white noise

TABLE I. Name, parameters, duration, frequency range and spectral morphology of waveforms used to characterize PySTAMPAS.
Mi is the component compact object mass; ecc is the eccentricity of the binary orbit at 10 Hz; MBH and aBH are the mass and
normalized spin of the black hole.

Therefore, an assumption over the nature of the signal643

h̃I(t; f) must be made in order to build an unbiased es-644

timator of PI(t; f). PySTAMPAS implements two methods645

to estimate the PSD that are suited for different signal646

morphologies.647

The first method consists in taking the average of648

|s̃I(t; f)|2 over nt symmetrically chosen neighbouring649

Fourier transformed segments. The underlying assump-650

tions are that (1) the noise is stationary over the time651

window considered, and (2) no signal is present in the ad-652

jacent pixels. As discussed above, (1) is often wrong be-653

cause of the presence of short glitches in the data, which654

are therefore not factored in the PSD and appear as sig-655

nal. Conversely, (2) is wrong when a monochromatic or656

quasi-monochromatic signal is present in the data, lead-657

ing these to be mistakenly included in the PSD. Degraded658

sensitivity to monochromatic signals is a known weakness659

of STAMP [53].660

To address these issues, we propose to estimate the661

PSD by taking the median of |s̃I(t; f)|2 over nf adjacent662

frequency bins. The pros and cons of this method are663

opposite to the first one: short glitches are well taken664

into account and monochromatic signals are better re-665

constructed. However, signals whose frequency evolu-666

tion is rapid tend to be less well reconstructed. In case667

of noise only, both methods provide similar PSD esti-668

mates, except that spectral narrow features are better669

reconstructed with the method averaging the neighbor-670

ing time-segments pixels, as shown in Fig. 1. We use the671

median as it is more robust that the average to extreme672

values. Because of instrumental lines, it is likely that673

one of the neighbouring frequency bins has pixels with674

a very high value of s(t;f), which would spoil the PSD675

estimation.676

The effect of the PSD estimation on the signal re-677

construction in PySTAMPAS is illustrated in Fig. 2.678

Two signals with very different spectral morphologies,679

a broadband ISCO chirp (ISCOchirp-C) [68] and a680

monochromatic sine Gaussian (SG-C), are injected in681

FIG. 1. Estimation of the PSD for a 100 s long segment of
LIGO Hanford data from the O2 observing run using the two
different methods implemented in PySTAMPAS. The squared
modulus of the Fourier transform (averaged over 10 indepen-
dent realizations of the noise) is shown in blue for reference.

Gaussian noise. By taking the median over adja-682

cent frequency bins (hereafter referred as frequency-683

median PSD) instead of averaging over neighbouring684

Fourier transformed segments (time-average PSD), the685

sine Gaussian signal is better reconstructed, but the fast686

frequency evoluting part of the ISCOchirp is blurred687

out. The optimal choice of a PSD estimation method688

depends on the type of signals targeted and the char-689

acteristics of the noise, especially spectral lines and/or690

non-stationary features. Another way to restore the sen-691

sitivity to monochromatic triggers would be to consider692

a very long (∼ 103 s) time period to estimate the PSD in693

the case of the time adjacent pixels method. However,694

noise from GW detectors tend to become non-stationary695

over such time intervals at low frequencies (below ∼ 100696

Hz) [63].697
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FIG. 2. Time-frequency maps of |ỹ(t; f)| for two injected signals (top: ISCOchirp, bottom: sine Gaussian) realised with the
two different PSD methods (left : average over n = 32 adjacent time bins (time-average), right : moving median over n = 20
frequency bins (frequency-median)).

2. Source sky location determination698

The number of sky locations tested in the coherent step699

(which reduces to a single time delay parameter in the700

case of a two detector network) is currently a limiting fac-701

tor of all-sky searches, and illustrates the necessary trade-702

off between detection sensitivity and computational cost703

[53]. The hierarchical processing implemented in PyS-704

TAMPAS allows for scanning many positions at a low cost.705

In Section II C, we have seen that Nτ , the number of time706

delays between detectors to be tested, depends on the ra-707

tio between the maximal and the minimal frequency of708

the trigger. Here, we investigate empirically the pipeline709

sensitivity loss as function of the number of time delays710

for different waveform families.711

Signal waveforms are injected coherently into Gaussian712

noise, simulating data from LIGO Hanford and LIGO713

Livingston, from a given sky direction Ω̂0, and are recov-714

ered by PySTAMPAS. We vary the number of time delays715

and keep the maximal SNRΓ obtained which is compared716

to SNRΓ(Ω̂0), the SNR value corresponding to the true717

source position Ω̂0.718

The ratio SNRΓ to SNRΓ(Ω̂0) as function of the num-719

ber of time delays between detectors is shown in Fig. 3 for720

sine Gaussians of different central frequency and for a se-721

lection of waveforms of different morphology/durations.722

We compare the number Nτ of delays tested to get723

ε = 0.95 to the theoretical prediction from Eq. (9) given724

in Table II. We see that the optimal value of Nτ does not725

depend on the signal frequency, but mainly on its fre-726

quency range fmax/fmin. Monochromatic sine Gaussians727

are recovered equally rapidly no matter their frequency,728

and faster than signals of broader band. The empirical729

values are overall lower than the theoretical ones. This730

discrepancy comes from the fact that the clustering al-731

gorithm does not always reconstruct the entirety of the732

waveform, leading to a lower effective value of fmax/fmin.733

To optimize the detection efficiency while keeping the734

number of tested sky positions minimal, we fix ε such735

that the maximal SNR loss parameter to 5% and Nτ is736

determined for each cluster following Eq. (9).737

3. Multi-resolution and clustering738

The energy of long-duration GW signals is spread over739

a potentially large number of pixels. This would mean740

it is necessary to lower the threshold on the individ-741

ual pixel’s energy |ỹI(t; f)| and rely on the clustering742

algorithm to group all pixels belonging to the cluster.743

Clustering a large number N of pixels is computation-744

ally expensive since burstegard’s time complexity is745

O(N logN). However, because of the hierarchical im-746

plementation, that step is computed only once per ft-747

map and is therefore no longer a bottleneck for analyz-748

ing long periods of data. Yet, the risk is to include pixels749

due to noise fluctuations and generate clusters that are750

only composed of noise pixels. By increasing the minimal751

number of pixels per cluster, one can control the rate of752

noise clusters that are generated.753

Another way to collect, as best as possible, all the en-754

ergy in the ft-maps is to process the data with a range755
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Waveform fmax/fmin Nτ

ADI-A 1.2 24

ADI-B 1.9 37

ISCOchirp-A 1.9 37

ISCOchirp-B 2.8 56

ISCOchirp-C 7.9 155

ECBC-A 12.5 247

ECBC-B 13.8 272

ECBC-C 17.5 346

ECBC-D 9 178

ECBC-E 10 197

ECBC-F 10 197

SG-C 1 20

WNB-A 1.2 23

TABLE II. Theoretical minimal number Nτ of time delays
between two detectors (here LIGO Hanford and LIGO Liv-
ingston) to be considered for each waveform in order to recover
the coherent signal SNR with an accuracy larger than 0.95.
Nτ depends on the frequency ratio fmax/fmin of the signal
considered as given in Eq. (9).

FIG. 3. Ratio between the recovered SNRΓ and SNRΓ(Ω̂0)
as function of the number of time delays between the LIGO
Hanford and LIGO Livingston detectors for different wave-
forms. 50 injections have been performed for each value of
Nτ . Crosses represent the theoretical number of time delays
to test to reach a ratio of 0.95, computed from Eq. 9.

of different time-frequency resolutions that match well756

all the different GW signal shapes. The choice of time-757

frequency resolutions depends on the waveform, but we758

have seen that for the diversity of signals we are target-759

ing, a limited number of time-resolutions is enough to760

improve the detection efficiency of non-monochromatic761

GW signals. Using a set of 4 resolutions ranging from762

4 s × 0.25 Hz to 0.5 s × 2 Hz, we report an efficiency in-763

crease by 5− 40% for the waveforms tested (at constant764

FAR), compared to 1 s × 1 Hz pixels. We report the rela-765

Waveform Effiency increase

ADI-A +25%

ADI-B +5%

ISCOchirp-A +17%

ISCOchirp-B +10%

ISCOchirp-C +18%

ECBC-A +23%

ECBC-B +17%

ECBC-C +40%

ECBC-D +38%

ECBC-E +41%

ECBC-F +3%

TABLE III. Relative increase on the distance at 50% detec-
tion efficiency between a single-resolution approach (pixels of
1 s × 1 Hz) and the multi-resolution approach implemented
in PySTAMPAS (4 different resolutions from 0.5 s × 2 Hz to
4 s × 0.25 Hz), all other parameters being equal, for the as-
trophysical waveforms described in Table IV

tive increase in detection efficiency for each astrophysical766

waveform in Table III.767

It is not possible to perform a fine optimization of768

all PySTAMPAS parameters for a generic all-sky/all-time769

search because of the large parameter space, but we770

present in the next Sections the pipeline performance for771

both Gaussian simulated noise and real GW data to de-772

tect long duration GW signals using the set of parameters773

given in Table IV.774

Parameters Value

ft-maps

Window duration 512s

Frequency range 20− 2000 Hz

∆ti ×∆fi
[4.0 s× 0.25 Hz− 2.0 s× 0.5 Hz

−1.0 s× 1.0 Hz− 0.5 s× 2.0 Hz]

PSD estimation

Time-average 32 time bins

Frequency-median 20 Hz

Clustering

Pixel energy threshold 2.0

Clustering radius 2 s× 2 Hz

Minimum pixels number 30

Coherent stage

SNR loss 1− ε 5%

TABLE IV. PySTAMPAS parameter values used in the all-
sky/all-time long-duration GW search with Advanced LIGO
/ Advanced Virgo data presented in this paper.

B. Test on simulated data775

We carry out a study with simulated Gaussian noise to776

test the pipeline as a whole and evaluate its performance.777
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First, we generate two sets of 14 days of stationary Gaus-778

sian GW noise following LIGO’s O2 sensitivity to simu-779

late the data from the two LIGO detectors at Hanford780

and Livingston. We analyze these data with PySTAMPAS,781

using parameters given in Table IV.782

Background triggers are generated following the783

method described in III C. We perform 128, 000 time-784

slides, simulating ∼ 4, 900 years of background noise ac-785

counting for 34 days of CPU time on a dual-core mod-786

ern processor. As a comparison, the previous version of787

STAMP-AS took 95 days of CPU time to perform 1, 000788

time-slides over the same data, meaning that PySTAMPAS789

is faster by at least one order of magnitude. On Fig. 4790

showing the cumulative false alarm rate (FAR) as func-791

tion of pΛ, the blue curves correspond to the distribution792

of simulated Gaussian noise triggers for the two PSD es-793

timation methods; the shape of the two curves is similar,794

but the median-frequency PSD method produces ∼ 60795

more triggers than the time-average PSD. This has lit-796

tle effect on the pipeline sensitivity as the tail of the pΛ797

distribution are similar.798

For each waveform described in Table I, we estimate799

the detection efficiency as function of hrss following the800

method described in section III D. We fix a detection801

threshold corresponding to a FAR of 1/50 yr−1 and de-802

termine the value h50%
rss of hrss for which 50% of the injec-803

tions are recovered. To provide a comparison, we perform804

the same search with STAMP-AS over the same simulated805

Gaussian noise. We use the quantity h50%
rss to estimate the806

detection efficiency of the search. It is inversely propor-807

tional to the typical detection range. In Fig. 5, we show808

the ratio of h50%
rss between STAMP-AS and PySTAMPAS for809

each waveform and each PSD estimator.810

For a majority of the waveforms tested, PySTAMPAS is811

more sensitive than STAMP-AS, up to a factor 2, with the812

exception of the ISCOchirp family for which detection813

efficiencies are worse by down a factor 0.8− 1 in the best814

case with the time-average PSD. For this specific family,815

the single-detector clustering algorithm reconstructs low816

amplitude signals poorly because the energy is spread817

over too many pixels. Down to a certain amplitude, most818

pixels fall below the clustering threshold and the signal819

is not reconstructed at all. A finer tuning of burstegard820

could be done to address this limitation, but this type of821

signal would certainly be better reconstructed by seedless822

clustering algorithms. This also illustrates the difficulty823

of tuning the pipeline to maximize sensitivity to a wide824

variety of waveforms.825

The ad-hoc waveforms illustrate the most extreme826

cases. Detection efficiency is multiplied by ∼ 6 for the827

monochromatic sine Gaussian signal (SG-C) when the828

PSD is computed over adjacent frequency bins as com-829

pared to STAMP-AS. On the other hand, the large band830

white noise burst (WNB-A) is not recovered at all with831

this method, and recovered almost equally well with the832

time-average PSD. We note that the sine Gaussian is also833

better recovered using the time-average PSD. This is due834

to the fact that we consider a wider time window to com-835

pute the PSD (32 pixels from each side instead of 8).836

C. Tests on real data837

Real data from GW detectors have non-Gaussian and838

non-stationary features that challenge pipelines. To un-839

derstand the behaviour of PySTAMPAS on real GW noise,840

we analyze LIGO data from the Advanced LIGO and841

Advanced Virgo O2 observing run downloaded from the842

Gravitational Wave Open Science Center [72, 73]. The843

chosen period runs from 2017-08-01 00:00:00 UTC to844

2017-08-15 00:00:00 UTC and contains 9.21 days of co-845

incident data from H1 and L1. We keep the pipeline’s846

parameters given in Table IV, but switch on the spectral847

lines removal algorithm described in Section III A. About848

5% of the total frequency bins are flagged as spectral lines849

and notched for each detector. As in the simulated data850

study, we consider both PSD estimation methods. Cu-851

mulative FAR distributions for O2 data are compared852

to simulated Gaussian noise FAR distributions in Fig. 4.853

For both PSD estimation methods, an excess of triggers is854

present compared to the simulated Gaussian noise distri-855

butions, meaning that the FAR of the search for a given856

value of pΛ is higher than with Gaussian noise.857

For the frequency-median PSD, the excess of triggers858

(∼ 20% more triggers in real data than in the Monte859

Carlo study with Gaussian noise) consist of long-duration860

(> 50 s), quasi-monochromatic events that correspond861

to instrumental lines being punctually excited. These862

lines are too low amplitude and are not excited regularly863

enough to be flagged by the spectral lines removal algo-864

rithm. However, that excess becomes marginal for large865

value of pΛ and thus is not affecting the overall pipeline866

sensitivity for this set of data.867

Using the time-average PSD method, the excess of trig-868

gers compared to Gaussian noise is much larger, by at869

least 1.5 orders of magnitude. It is dominated by short870

glitches with frequencies between 20-100 Hz which have871

passed the gating procedure. They generate triggers with872

high pΛ that populate the tail of the distribution. To873

discriminate those triggers, we implement a veto, Rveto,874

based on the ratio of incoherent energy between the de-875

tectors R = EI/EJ , similar to what is done for STAMP-AS876

in [55]. Fig. 6 shows the cumulative distributions of R for877

background triggers and for triggers recovered for a GW878

waveform (ADI-A). Vetoing triggers with R > 4 allows879

to reduce by a factor 5 the number of triggers but more880

interestingly, the tail of the distribution of pΛ is dras-881

tically reduced to approach the Gaussian noise triggers882

estimation, while no more than 5% of GW signal triggers883

are vetoed. In this paper, we are just illustrating that884

the pipeline behavior changes considerably in presence of885

non Gaussian and non stationary data. We also show886

that simple post-processing selection criteria can be eas-887

ily developed and applied with a relatively small penalty888

for the overall pipeline sensitivity.889

As we have done for the study with simulated Gaus-890
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FIG. 4. FAR obtained with data from LIGO O2 observing
run versus the detection statistic pΛ with frequency-median
PSD (top) and time-average PSD (bottom). The blue curves
represent the FAR obtained with Gaussian noise. FAR of
triggers remaining after applying Rveto is shown by the green
curve.

sian noise, we now estimate the detection efficiency of891

this search with the two PSD estimators and compare it892

to results obtained by STAMP-AS during the second Ad-893

vanced LIGO observing run [55] for a FAR of 1/50 yr−1.894

For the time-average PSD, signals with R > 4 are re-895

jected like is done in the background study. Best results896

obtained for each waveform among the two PSD meth-897

ods are presented in Table V and compared to STAMP-AS.898

The relative detection efficiency depends on the wave-899

form, but the overall PySTAMPAS pipeline efficiency in-900

crease observed with real data is very similar to what901

was obtained on simulated Gaussian data.902903

V. CONCLUSION904

In this paper, we have presented PySTAMPAS, a new905

data analysis pipeline designed to search for GW of du-906

ration ∼ 10−103 s in a network of detectors with minimal907

FIG. 5. Ratio between the hrss at 50% detection efficiency
obtained with STAMP-AS and with PySTAMPAS for a FAR =
1/50 yr−1 for both PSD estimation methods. The white noise
burst waveform WNB-A was not recovered at all using the
frequency-median PSD. A ratio above 1 means that PySTAM-

PAS recovers the signal better than STAMP-AS.

FIG. 6. Distribution of the incoherent energy ratio R obtained
for background triggers (in blue) and GW signal triggers from
the ADI-A waveform (in orange) using the time-average PSD.
Rejecting triggers with R > 4 allows for reducing the excess of
large pΛ background triggers, while marginally affecting the
pipeline efficiency to recover GW signals.

assumptions on the nature and origin of the signal. The908

search algorithm relies on a hierarchical method, initially909

designed for a seedless clustering algorithm [19], where910

candidate events are first identified in single-detectors911

ft-maps, and a coherent detection statistic is then com-912

puted by cross-correlating data streams from each pair913

of detector. This method provides a significant gain in914

computational efficiency compared to the initial imple-915

mentation of STAMP-AS with seed-based clustering, while916

still benefiting from the increased sensitivity of coherent917

searches. This is especially critical for all-sky/all-time918

searches for which both the data set and the parameter919

space can be very large.920
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Waveform
PySTAMPAS STAMP-AS

Ratio
frequency-median time-average

ISCOchirp-A 9.18× 10−21 8.17× 10−21 6.20× 10−21 0.76

ISCOchirp-B 1.84× 10−21 2.01× 10−21 1.44× 10−21 0.78

ISCOchirp-C 8.89× 10−22 1.06× 10−21 1.01× 10−21 0.95

ECBC-A 9.95× 10−22 1.07× 10−21 1.55× 10−21 1.55

ECBC-B 8.81× 10−22 8.61× 10−22 1.34× 10−21 1.56

ECBC-C 8.64× 10−22 8.00× 10−22 1.35× 10−21 1.69

ECBC-D 1.20× 10−21 8.95× 10−22 1.48× 10−21 1.65

ECBC-E 1.12× 10−21 8.82× 10−22 1.89× 10−21 2.14

ECBC-F 9.25× 10−22 7.83× 10−22 9.64× 10−22 1.23

ADI-B 3.26× 10−22 3.26× 10−22 4.81× 10−22 1.47

SG-C 4.34× 10−22 6.88× 10−22 4.35× 10−21 10.0

WNB-A - 2.0× 10−21 2.04× 10−21 1.00

TABLE V. Values of hrss at 50% detection efficiency for dif-
ferent waveforms obtained with PySTAMPAS for the two PSD
methods and STAMP-AS over O2 data from LIGO Hanford
and LIGO Livingston, using a FAR threshold of 1/50 yr−1.
The last column shows the ratio between STAMP-AS and the
lowest value of PySTAMPAS among the two PSD methods.
White noise burst waveforms WNB-A are not recovered at
all with the frequency-median PSD.

The reduced computational cost allows us to imple-921

ment several new features to improve the overall sensitiv-922

ity of the pipeline. The use of multi-resolution ft-maps923

enables the better reconstruction of signals with fast fre-924

quency evolution. An alternative method to estimate the925

noise PSD is proposed that is best suited for monochro-926

matic and quasi-monochromatic signals. We also intro-927

duce a new detection statistic that compares the coherent928

SNR of an event to the incoherent auto-power in single929

detectors in order to discriminate coherent GW signals930

from loud noise events. Additionally, it is now feasible931

to scan hundreds of sky positions during the coherence932

stage, and therefore to reduce the loss of SNR due to an933

error in the sky position to less than 5%. The combi-934

nation of these features results in a detection efficiency935

increased by a factor ∼ 1.5 on average compared to the936

previous version of STAMP-AS with seed-based clustering937

for the different waveforms tested, which have durations938

between 8−291 s, frequencies between 10−2048 Hz, and939

various spectral morphologies. We note that the changes940

in detection efficiency are dependant on the type of wave-941

form, with PySTAMPAS performing slightly less well on942

waveforms from the ISCO chirp family and better for the943

remaining waveforms. We plan to improve the tuning of944

the clustering algorithm to address this issue.945

PySTAMPAS is able to perform all-sky or targeted946

searches over a full observing run and a network of de-947

tectors, and provides a basis for further developments.948

For example, the burstegard algorithm has been used949

here to identify clusters of excess power pixels, but other950

detection algorithms could be considered, such as seed-951

less clustering [74] or more complex pattern recognition952

algorithms. This will be need to be done in order for the953

pipeline to be fully competitive, as show by the exam-954

ple of the ISCO chirp waveforms family, which are cur-955

rently slightly less well recovered by PySTAMPAS. We have956

shown that real GW data search requires to develop spe-957

cific trigger selection to cope with non Gaussian and non958

stationary features of GW detectors data, but another959

possibility of improvement could consist in implementing960

a better identification and subtraction of non-Gaussian961

features of the GW detectors noise, as well as better dis-962

criminant variables.963
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