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Abstract

A quantum-optics approach is used to study the nature of the acceleration radiation due to a

random atomic cloud falling freely into a generalized Schwarzschild black hole through a Boulware

vacuum. The properties of this horizon brightened acceleration radiation (HBAR) are analyzed

with a master equation that is fully developed in a multimode format. A scheme for the coarse-

graining average for an atomic cloud is considered, with emphasis on the random injection scenario,

which is shown to generate a thermal state. The role played by conformal quantum mechanics

(CQM) is shown to be critical for detailed balance via a Boltzmann factor governed by the near-

horizon physics, with the unique selection of the Hawking temperature. The HBAR thermal state

is the basis for a thermodynamic framework that parallels black hole thermodynamics.

1



I. INTRODUCTION

Deep connections between gravitation, quantum theory, and thermodynamics have been

uncovered within a consistent framework known as black hole thermodynamics [1, 2]. This

synthesis combines: Bekenstein’s entropy identification with the area of the black hole [3, 4]

as the basis for a generalized second law of thermodynamics (GSL) [4, 5] (along with Hawk-

ing’s area theorem [6–8] and the four laws of black hole mechanics [9]); and Hawking’s

seminal breakthrough [10, 11] that black holes can radiate with a definite temperature and

associated entropy-area proportionality constant. Hawking radiation and temperature con-

firm the genuine physical nature of this form of thermodynamics. Related thermal behavior

in accelerated systems (including acceleration temperature and radiation) was also identified

by Unruh, Davies, and Fulling [12–14].

In this paper, we begin developing the tools needed for a thermodynamic framework that

involves a correspondence between black hole thermodynamics and acceleration radiation.

Most importantly, we identify the conformal nature of the acceleration radiation, using a

systematic near-horizon approach, and address its existence and properties for arbitrary

initial conditions of an atomic cloud freely falling into a Schwarzschild black hole. Our

presentation builds on the insightful quantum optics approach developed in 2018 [15], in

which such cloud of atoms emits “horizon brightened acceleration radiation” (HBAR) with

a thermal-like behavior and a surprising HBAR area-entropy-flux relation [15]. Our approach

is different from standard analyses of the near-horizon physics of black hole thermodynamics

in that it focuses on the nature of the acceleration radiation by falling atoms within a

three-component system (black hole, scalar field, and atoms) as opposed to the simple

interaction of the field with the black hole. Moreover, following Refs. [16–20], we anticipate

that hidden near-horizon conformal symmetry [21–23], manifests in the leading form of

the field equations as conformal quantum mechanics (CQM) [24]; and CQM governs the

predicted thermodynamic behavior. Specifically, the CQM modes and the corresponding

near-horizon geodesics lead to: (i) the unique Hawking temperature shared by the black hole

and the HBAR radiation; (ii) the existence of an HBAR area-entropy-flux relation. This

will be further developed within a larger synthesis in the second article of this series [25].

This article is organized as follows. Section II consists of a brief outline of the setup of

the problem and its component parts. This is followed by two parallel tracks: the gravita-
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tional concepts described by the background geometry and the statistical concepts described

by a quantum-optics approach. The gravitational logical flow of concepts develops from

Sec. IV with a derivation of the near-horizon CQM modes and the near-horizon geodesics

of the freely falling atoms; and is followed in Sec. V with a discussion of the conformal

aspects of the acceleration radiation, whereby the near-horizon conformal symmetry implies

thermal behavior with an associated Hawking temperature in a generalized Schwarzschild

background. The quantum-optics statistical flow of concepts begins in Sec. III, where we

derive the master equation for the reduced density matrix of the radiation field, generalizing

the results of Ref. [15]; the proof of the thermal nature of the field is expanded with the

master equation in Sec. VI, where we demonstrate that the CQM framework leads to the

thermal field density matrix that completely characterizes the state consisting of all modes

of the quantum field. Finally, in Sec. VII we provide concluding remarks and combine the

results of the previous sections (with converging parallel tracks) to anticipate the HBAR

entropy flux formula of Ref. [15]—this will be fully developed in the continuation paper of

this series [25]. The appendices include a thorough treatment of the master equation (A),

the related properties of the average involved in the coarse-grained density matrix (B), and

the geodesics in a generalized Schwarzschild background (C).

II. SETUP OF THE PROBLEM: GENERALIZED SCHWARZSCHILD GEOME-

TRY AND ACCELERATION RADIATION GENESIS

The physical setup of the problem involves three interacting systems: a black hole, a

quantum field, and an atomic cloud, within an approach that follows the general strategy of

Refs. [15, 19, 20]. The three interacting systems are described in terms of a dipole coupling

of a scalar field Φ with a freely falling atomic cloud of two-level systems (“atoms”), within

the gravitational background of a black hole. In this paper, our main goal is to show that

the generation of acceleration radiation of particles by free fall into a black hole is associated

with a thermal state, in such a way that the physics of these processes is governed by near-

horizon CQM. Conformal symmetry will be highlighted in this work. Incidentally, we will

use the term “photon” to refer to the field quantum; the basic physics of radiation generation

and related thermodynamics does not depend on the nature of the field, but we will consider

a scalar field for simplicity.
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Our derivation in this paper will assume the geometry of a generalized Schwarzschild

black hole in D spacetime dimensions, which is given by

ds2 = −f(r) dt2 + [f(r)]−1 dr2 + r2 dΩ2
(D−2) , (1)

where the last term gives the metric of the (D − 2)-dimensional sphere that foliates the

spacetime. This class of metrics includes D-dimensional generalizations of the Schwarzschild

metric, of the Reissner Nordström metric, and of extensions of these with a cosmological

constant, and black hole solutions with additional charges. This class of geometries suffices

to show how the HBAR-black-hole correspondence arises, and further generalization to non-

extremal Kerr black holes will be reported elsewhere [25].

In this geometric background, the physical setup includes a scalar field Φ and an atomic

cloud of two-level systems injected randomly and undergoing free fall towards the generalized

Schwarzschild black hole through the Boulware vacuum. We begin by quantizing the scalar

field with

Φ(r, t) =
∑

s

[asφs(r, t) + h.c.] , (2)

where h.c. stands for the Hermitian conjugate (adjoint); and r denotes the spatial coordi-

nates, i.e., r = (r,Ω), with Ω being the angular coordinates, for the metric (1). In Eq. (2),

the field modes φs are associated with the Boulware vacuum, which is annihilated by the low-

ering operator as. In addition, the symbol s stands for the set of “quantum numbers” that

provide complete characterization of the mode: it includes the frequency ω of the mode and

any additional numbers associated with the geometry and separation of variables. It should

be noted that, for finite-box quantization, the frequencies involve a third discrete number.

For the Schwarzschild geometry (1), this set is s = {ω, l,m}, where {l,m} is the set of

generalized angular momentum quantum numbers associated with the (D− 2)-dimensional

sphere.

As the atoms fall, they interact with the scalar field via the dipole interaction given by

VI(τ) = gΦσ = g
∑

s

[asφs(r(τ), t(τ)) + h.c.]
(

σ−e
−iντ + h.c.

)

, (3)

where g is the atom-field coupling strength, and σ− is the atomic lowering operator. The

operator σ = σ−e
−iντ + σ+e

iντ , where σ+ = σ†
− is the atomic rising operator (Hermitian

conjugate of σ−), describes the transitions between the two states of the atom. The field
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modes φs(r(τ), t(τ)) will be evaluated in the near-horizon region in Sec. IV, as needed

in Eq. (3), which requires their values parametrized with the proper time of the geodesic

trajectories of the atoms.

In Eq. (3), the coupling strength g of the field with the atoms will be sufficiently weak

to allow use of perturbation theory for the emission and absorption rates of the atoms as

they fall freely through the vacuum. Due to the relative acceleration of the field modes

with respect to the atoms, a radiation field is emitted by the atoms, despite their locally

inertial motion [26, 27]. The interaction of the atoms with the radiation field involves

processes whereby they will go to an excited state with the emission of a scalar photon.

Ordinarily, these are virtual processes in which the atom comes back to the ground state

with photon reabsorption; however, they are disrupted by the relative acceleration (which

is here mediated by the black hole’s gravitational background [15])—this is similar to the

usual Unruh effect [28]. Up to first order in perturbation theory, the emission probability

Pe,s for the field mode s is given by

Pe,s =

∣

∣

∣

∣

∫

dτ 〈1s, a|VI(τ) |0, b〉
∣

∣

∣

∣

2

≡ g2|Ie,s|2 , (4)

where |b〉 and |a〉 are the ground and excited states of the atom respectively and −igIe,s is

the corresponding probability amplitude. Similarly, the absorption probability is given by

Pa,s =

∣

∣

∣

∣

∫

dτ 〈0, a|VI(τ) |1s, b〉
∣

∣

∣

∣

2

≡ g2|Ia,s|2 , (5)

where −igIa,s is the absorption probability amplitude. In regards to the dipole potential (3),

the atomic lowering and raising operators are σ− = |b〉 〈a| and σ+ = |a〉 〈b| respectively. As

usual, the field states are labeled by their occupation numbers ns; here the ground state |0〉
and the state |1s〉 with one photon in mode s are considered. Thus, we get

Pe,s = g2
∣

∣

∣

∣

∫

dτ φ∗
s
(r(τ), t(τ)) eiντ

∣

∣

∣

∣

2

, (6a)

Pa,s = g2
∣

∣

∣

∣

∫

dτ φs(r(τ), t(τ)) e
iντ

∣

∣

∣

∣

2

. (6b)

The excitation and absorption probabilities above are critical in finding the field configura-

tion that emerges from the falling atomic cloud. This configuration can be described by the

steady-state density matrix of the field, which is derived as the partial trace of the density

matrix of the field-atom system (by tracing out the atomic degrees of freedom). As we
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will see in Secs. VI and VII, the density matrix of the field can be used to characterize the

thermal properties of the HBAR field and to find thermodynamic relations, including the

entropy flux due to the photon generation by the excitation of the freely falling atoms.

III. BASIC THEORY OF THE MASTER EQUATION FOR THE FIELD MODES

With the setup described in Sec. II, our goal is to derive the master equation for the

evolution of the quantum field, an essential ingredient to determine the thermodynamic

properties, including the entropy. Generalizing Refs. [28] and [29], this will be achieved by

considering the rate of change of the reduced density matrix (ρP) for all degrees of freedom

of the field, due to the random injection of atoms that fall freely through the Boulware

vacuum. This procedure will require a detailed analysis that involves a statistical averaging

as well as consideration of all field modes φs. As pointed out in Sec. II, the choice of a scalar

field is made to simplify the calculations, and the result of the radiation generation is the

emission of scalar photons. Thus, we will refer to the field as the photon system (labeled

with P), which interacts with the atom (labeled with A).
A complete description of the time evolution of the combined atom-field system is gov-

erned by the von Neumann equation satisfied by the density matrix ρPA. In the interaction

picture, and up to second order, this equation is

ρPA(τ) = ρPA(τ0)− i

∫ τ

τ0

dτ ′[VI(τ
′), ρPA(τ0)]−

∫ τ

τ0

dτ ′
∫ τ ′

τ0

dτ ′′[VI(τ
′), [VI(τ

′′), ρPA(τ0)]] . (7)

The initial state of the combined system is the tensor product ρPA(τ0) = ρP(τ0) ⊗ ρA(τ0),

as the atoms and field are initially uncorrelated. The time parameter τ to be used a priori

for our problem in Eq. (7) is the proper time of free-fall trajectories, as this describes the

dynamics of the atoms that generate the radiation.

We will consider a cloud of atoms that acts as a reservoir. The atoms are injected in

their ground state, so that an atom’s initial density matrix (at time τ0) is ρA = |b〉 〈b|.
The evolution of the system of interest, the radiation field, will be properly averaged over

a distribution of injection times. While the density matrix ρA is defined at time τ0, we will

assume a Markovian property for the system’s dynamics, whereby the predictions for the

evolution of the field density matrix can be made by using the reservoir’s initial state alone.

This is a memorylessness property of the reservoir, which means that its memory is short,
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i.e., its density matrix does not change appreciably over a significant evolution of the field

system.

As a result, the effective evolution of the field is obtained by a twofold process: tracing

over the atomic degrees of freedom (with TrA) to get the reduced field density matrix

ρP = TrA
(

ρPA
)

; and performing an appropriate averaging procedure over a time scale

larger than the reservoir’s memory time—here, this is characteristic time scale that captures

a representative distribution of injection times. This approximate evolution, governed by a

master equation [30, 31], is said to be coarse-grained, with the implication that the effective

field states are described by an approximate coarse-grained reduced density matrix ρP .

The averaging procedure that leads to the coarse-grained density matrix can be estab-

lished as follows—and for this problem, we will loosely refer to it as “injection average.”

This is a standard procedure in quantum optics, where the experimental setup involves an

optical cavity. The cavity analog for the generalized Schwarzschild geometry corresponds

to a spatial region bounded by constant values of the Schwarzschild spatial coordinates,

with the experimental devices being carried by a set of static observers, and such that the

times are specified via the coordinate time t. Consider one atom labeled with subscript

a, which is injected at an initial time t0 = ti,a as measured in the cavity. The atom will

undergo geodesic motion with the equations given in Appendix C. As a result, there exists

a relationship τ = τ(t) specifically given by Eq. (C6); therefore, the time parameter τ can

be replaced by t, and the corresponding exact or “microscopic” change in the field density

matrix due to the injection of the single atom is δρPa ≡ δρP(t; ti,a) = ρP(t)− ρP(ti,a). (Here,

there is an abuse of notation, τ(t) → t.) Then, for a cloud or ensemble of atoms, the

course-grained (“macroscopic”) change is ∆ρP =
∑

a δρa, whence the coarse-grained rate of

change, for which we will use the overdot notation, is [30]

ρ̇P ≡ ∆ρP

∆t
= r

1

∆N

∑

a

δρP(t; ti,a) = r δρP , (8)

where r = ∆N/∆t is the atom injection rate and δρP stands for the average microscopic

change with respect to particle injection. The rate of change in Eq. (8) is computed with

respect to the generalized Schwarzschild coordinate time t. Indeed, as the coarse-grained

density matrix is used to describe states of the field P in the Boulware vacuum, and not

of the atoms, its natural (coarse-grained) evolution should be governed by this coordinate

time t. In the quantum optics analogy, the coordinate t corresponds to times experienced
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at given locations of an optical cavity. This is in contradistinction with the evolution of the

complete density matrix ρPA(τ) as in Eq. (7), which is governed by the proper time τ .

The injection average can be performed with respect to the initial-time variable ti,a that

governs the statistical distribution of the cloud as reservoir. This choice of statistical average

corresponds to the following operational procedure for the formation of the atomic cloud:

(i) the atoms are released with given initial conditions from a specified radial-coordinate

value ri at variable Schwarzschild coordinate times ti,a; (ii) the atoms are allowed to follow

ingoing geodesics towards the event horizon. Each geodesic is described by the proper time

parameter, starting with a value τi,a and reaching a later point with value τf,a; because of

the static nature of the metric and the specified initial conditions, one can assign uniform

values of the proper time along the geodesics with a given fixed value τi,a = τi. Details

on the geodesics are discussed in Sec. IV. The times ti,a are the coordinate times for in-

jection events located at r = ri in the Schwarzschild geometry. These events can occur at

different moments in the evolution of the system; thus, ti,a are arbitrary additive constants

in the geodesic relationship t = t(τ), i.e., from Eq. (C6), t = ti,a + H−1(τ − τi). Thus,

in the Schwarzschild analog “cavity,” one can use the times ti,a as variables that define a

statistical distribution, with the other parameters fixed. The corresponding statistical av-

erage is defined by considering a number of atoms ∆N during a time interval T , such that

(1/∆N)
∑

aX
P =

∫

dti,af(ti,a)X
P (when applied to a field quantity XP), where f(ξ) is the

probability distribution of the random variable. Then,

δρP =

∫

dti f(ti) δρ
P(t; ti) , (9)

with the index a removed in favor of a generic initial time ti ≡ t0. This procedure can

be applied to any other relevant field quantity. For a completely random distribution of

injection times, a uniform distribution f(ti) = 1/T can be chosen; this choice will be made

in Appendix B.

Therefore, from Eqs. (7) and (8), the coarse-grained rate of change of the reduced field

density matrix [30, 31], when averaged over a distribution of injection times (9), is given by

ρ̇P = −r
∫ τf=τ

τi

∫ τ ′

τi

dτ ′dτ ′′ TrA
[

V (τ ′),
[

V (τ ′′), ρP(t(τi))⊗ ρA(τi)
]]

, (10)

where the lower limit τi is the initial (injection) time and the upper limit τf is the final

(observation) time, equal to the effective time that defines the argument of the density
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matrix on the left-hand side of the equation. In the quantum-optics analogy, these are the

entry and exit times of the atoms in the cavity. The leading second-order of perturbation

theory in Eq. (10) is due to the fact that the interaction potential VI of Eq. (3) contains

only one raising or lowering operator in σ, so that the first-order term is vanishing, as it is

proportional to TrA (σ |b〉 〈b|) = 〈b| σ |b〉 = 0. Moreover, when the integral on the right-hand

side of Eq. (10) is rewritten using Eq. (3),

∫ τf=τ

τi

∫ τ ′

τi

dτ ′dτ ′′ TrA[V
′, [V ′′, ρPA]] = g2

∫ τf=τ

τi

∫ τ ′

τi

dτ ′dτ ′′ TrA
[

Φ′σ′, [Φ′′σ′′, ρP ⊗ ρA]
]

, (11)

where the shorthand notation V ′ stands for V (τ ′), and V ′′ for V (τ ′′); and similarly for the

operators Φ and σ. Two key steps are needed to untangle this expression. First, the double

commutator can be regrouped in pairs of adjoint operators,

[

V ′, [V ′′, ρPA]
]

= V ′[V ′′, ρPA] + h.c. =
(

V ′V ′′ρPA + h.c.
)

−
(

V ′ρPAV ′′ + h.c.
)

, (12)

due to the Hermiticity of the potential and the density matrix. This pattern arises because

the commutator of two Hermitian operators is anti-Hermitian, but the double commutator

is Hermitian. The same regrouping identity can be applied to
[

Φ′, [Φ′′, ρPA]
]

after taking

the partial trace TrA. Second, taking into account the operator ordering, the partial trace

yields

TrA
[

π
(

σ′σ′′ρA
)]

= e−i sgn(π) ντ ′ei sgn(π) ντ
′′

(13)

where π is any permutation of the operators, with signature sgn(π) accounting for the cyclic

property of the trace. Then, with the steps and substitutions shown in Appendix A, the

field master equation (10) can be recast in a more explicit form directly in terms of the field

operators Φ,

ρ̇P = −rg2










∫

I

Φ′Φ′′ ρ+

∫

II

ρΦ′Φ′′



 d2τ e−iντ ′eiντ
′′ −

∫

I+II

d2τ eiντ
′

e−iντ ′′Φ′ ρΦ′′







. (14)

The double integrals on the right-hand side of Eq. (14) are performed with d2τ = dτ ′dτ ′′ in

regions I ≡ τ ′ > τ ′′ and II ≡ τ ′ < τ ′′; this rearrangement corresponds to the exchange of

symbols τ ′ ↔ τ ′ in the adjoint expressions involved in the commutators. This is discussed

in Appendix A, where we also show that further expansion of the operators Φ on the right-

hand side of Eq. (14), in terms of field creation and annihilation operators, gives a more

transparent and useful form of the master equation.
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In what follows, choosing a specific atomic-cloud distribution of injection times, the

resulting density matrix elements to be used in Eqs. (10) and (14) will be denoted by

ρPn,m = 〈n| ρ |m〉. To simplify the notation, for the remainder of the paper, we will use

ρ to denote the density matrix of the field (dropping the superscript P). Moreover, in

Appendix B, we justify the statement that, when the atomic-cloud distribution of injection

times is random, all the off-diagonal matrix elements average out to zero. Thus, only the

diagonal elements ρPn,n are nonvanishing for a randomly injected cloud; this is due to the

removal of the random phase associated with the injection times, which is only effective for

terms involving pairs of creation and annihilation operators of the same kind. Thus, for

the single-mode version of the reduced field density matrix and random injection times, the

master equation becomes

ρ̇n,n = −Re,s

[

(n + 1) ρn,n − n ρn−1,n−1

]

−Ra,s

[

n ρn,n − (n+ 1) ρn+1,n+1

]

, (15)

where Re,s = rPe,s = r g2|Ie,s|2 and Ra,s = rRa,s = r g2|Ia,s|2 are the emission and absorption

rate coefficients of the given mode s, defined in terms of the probability amplitudes as in

Eqs. (4)–(5) and (6a)–(6b). Similarly, the occupation number n is a function of the given

field mode, and this will be further explained next. Equation (15) is the particular type of

master equation proposed in Refs. [15], [28], and [29]. We will generalize the master equation

to describe all the modes of the field simultaneously, as required for the proper computation

of additive thermodynamic functions, including the entropy.

While Eq. (15) captures the essence of the master equation by showing the interplay

between states with n and n±1 photons, the more general multimode expression derived in

Appendix A provides the foundation for a complete description of the Planck distribution

of the scalar photon field studied in this paper. The notation for the multimode framework

is more involved, and we will use some conventional choices, with adjustments to simplify

the final results, as follows. First, the single-mode quantum numbers s can be chosen in

an ordered sequence s1, s2, . . . sj . . . ; and the state of the field in the occupation number

representation involves the number nj ≡ nsj
of scalar photons in the state sj . Thus, with the

notation { n } ≡ { n1, n2, . . . , nj, . . . }, the multimode state with given occupation numbers

is the tensor product of single-mode states: |{ n }〉 ≡ |n1, n2, . . . , nj, . . .〉. Second, the

elements of the density matrix are ρ
(

{ n } ;{ n′ }
)

≡ 〈 { n } | ρ | { n′ } 〉 ≡ ρn1,n2,...;n′

1,n
′

2,...

(where the semicolon is used for notational clarity). Finally, the diagonal elements of the
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density matrix will be denoted by

ρdiag({ n }) ≡ ρ
(

{ n } ;{ n }
)

or ρdiag(n1, n2, . . .) ≡ ρn1,n2,...;n1,n2,... . (16)

Moreover, we will use the shorthand notation

{ n }nj+q ≡ { n1, n2, . . . , nj + q, . . . } , (17)

where q is an integer number, to represent the occupation-number set where the mode

labeled by j (i.e., sj) has a number shift nj → nj + q; that is, given a particular value nj

(stated within the given equation), the appropriate value to use for the occupation number

is shifted as specified. Furthermore, these shifts can be implemented multiple times within

a set (more than one occupation number), and for the different rows and columns of the

density matrix.

Then, as shown in Appendix A, the multimode master equation for our problem takes

the form

ρ̇diag({ n }) = −
∑

j

{

Re, j

[

(nj + 1) ρdiag({ n })− nj ρdiag({ n }nj−1)
]

+Ra, j

[

nj ρdiag({ n })− (nj + 1) ρdiag({ n }nj+1)
]

}

,

(18)

under the assumption that only the diagonal elements are relevant. In Eq. (18), again,

Re,j = rPe,j = r g2|Ie,j|2

Ra,j = rRa,j = r g2|Ia,j|2
(19)

are the emission and absorption rate coefficients of the given mode sj. As stated above,

the diagonal-reduction property is achieved, as shown in Appendix B, for random injection

times—otherwise additional terms would appear on the right-hand side of Eq. (18), corre-

sponding to transitions with jumps in occupation number by two units as well as involving

different modes. The functional form of Eq. (18) only includes changes of one mode at a

time, i.e., the modes are effectively independent. This mode independence is guaranteed by

enforcing two distinct conditions: the field interacts with the atoms and the gravitational

background, but does not self-interact; and the atom-injection distribution is random.

The physical meaning of Eq. (18) can be described in terms of the photon distribution

functions p({ n }) ≡ ρdiag({ n }), i.e., the probabilities of states { n } with given numbers of

photons in the field. This amounts to a flow of probability [30] into and out of the { n } state,
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n+1

n

n-1

(a)

(b1) (b2)

FIG. 1: Probability flow described by the master equation (18). In (a) The three levels of the

field mode is shown with the transition probabilities indicated. (b1) and (b2) show the atomic

transitions corresponding to the emission and absorption rates. Detailed balance of absorption

and emission establishes a steady state analyzed in Sec. VI.

from and into the neighboring states { n }nj±1 ≡ { n1, n2, . . . , nj ± 1, . . . }, for a particular

mode sj , as shown in Fig. 1. When the master equation takes this specific diagonal form, it

has the same properties as a Planck distribution, as we will show in Sec. VI, where we will

provide a complete characterization of the ensuing thermal state. Before proceeding with

such detailed analysis of the consequences of Eq. (18), we have to determine the emission

and absorption probabilities (6a) and (6b), using the interaction Hamiltonian (3). This

program will first require a careful examination of the field equations, near-horizon CQM,

and the spacetime trajectories of the atoms, as will be discussed in Sec. IV.
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IV. NEAR-HORIZON PHYSICS AND CONFORMAL QUANTUM MECHANICS

IN GENERALIZED SCHWARZSCHILD GEOMETRY: FIELD EQUATIONS AND

GEODESICS

The field modes that form a basis for the quantization of the scalar field are solutions to

the Klein-Gordon equation in curved spacetime,

(

�− µ2
Φ

)

Φ ≡ 1√−g∂µ
(√
−g gµν ∂νΦ

)

− µ2
ΦΦ = 0 , (20)

where µΦ is the mass of the scalar field. When the specific form of the generalized

Schwarzschild metric (1) is used, Eq. (20) defines a differential equation for the mode func-

tions valid at all distances outside the event horizon. In order to see the role played by

the near-horizon region, we will obtain a simplified equation for the field that highlights

the governing role played by conformal symmetry in black hole thermodynamics. In this

section, following Refs. [16, 17], we will briefly discuss the near-horizon reduction process

and the functional form of the field modes.

The quantization of the scalar field is enforced by Eq. (2), with the procedure and nota-

tion discussed in Sec. II. This is the standard approach for quantum fields in curved space-

time [32], which requires finding the basis modes for the fields. Because of its time-translation

invariance, the generalized Schwarzschild metric (1) admits a Killing vector ξ = ∂t, with

respect to which we can define positive frequency modes with frequency ω; this Killing vec-

tor is timelike all the way to the event horizon, where it is null. In addition, the spherical

symmetry of the metric (1) allows for the separation of variables

φs(r,Ω, t) = R(r)Ylm(Ω)e−iωt , (21)

where Ylm(Ω) are the hyperspherical harmonics as solutions of the Laplacian on the (D−2)-

sphere.

We now examine the behavior of the Klein-Gordon equation near the horizon by defining

a variable x = r − r+, where r+ is the radius of the outer event horizon, defined by the

largest root of the equation f(r) = 0. To extract the near-horizon behavior, we use a

systematic Taylor expansion of the radial equation around r+. Furthermore, we also apply a

Liouville transformation of the form R(x) ∝ x−1/2u(x). This procedure was shown in detail

in Refs. [16, 19]. Then, the radial part of the scalar field near the horizon, keeping terms up

13



to the leading order in x, reduces to the differential equation

u′′(x) +
λ

x2
[1 +O(x)] = 0 , (22)

where

λ =
1

4
+ Θ2 , Θ =

ω

2κ
, (23)

in which κ is the surface gravity of the black hole defined by κ = −(∇µξν)(∇µξν)/2 = f ′
+/2.

We have also used the short-hand notation f ′
+ ≡ f ′(r+), where prime denotes derivative

with respect to r; in this paper, f ′
+ 6= 0, since we are considering non-extremal black holes.

The symmetry of properties of Eq. (22) are crucial for an appropriate interpretation of

the governing near-horizon physics. This is a Schrödinger-like equation with Hamiltonian

H = p2x/2+Veff(x), where Veff(x) = −λ/x2 is the effective potential term. This Hamiltonian

H is classically scale invariant, with an enlarged SO(2,1) symmetry group that describes a

(0+1)-dimensional conformal field theory, known as conformal quantum mechanics (CQM).

The algebra of this SO(2,1) group is generated by H , combined with the dilation operator

D and the special conformal operator K. In this article, we will not explore any further

the group-theoretic structure of the problem, but will mostly rely on the consequences of its

scale symmetry.

A pair of linearly independent solutions of Eq. (22) is given by u(x) = x1/2±iΘ. These

are oscillatory functions with a logarithmic phase that is the signature of scale invariance.

Combined with their time dependence, these solutions give outgoing and ingoing CQM

modes,

Φ±(CQM)
s

(H)∝ x±iΘYlm(Ω)e
−iωt , (24)

where
(H)∝ (as well as

(H)∼ below) denotes the hierarchical near-horizon expansion.

We will use the CQMmodes of Eq. (24) in Sec. V to find the emission and absorption rates

of the free-falling atoms. For this purpose, we also need the near-horizon geodesic equations

for the class of generalized Schwarzschild metrics [19]; see summary in Appendix C. In

particular, the near-horizon limiting forms for the time and radial coordinates satisfy the

following functional relationships τ = τ(x) and t = t(x):

τ
(H)∼ −kx+ const. +O(x2) , (25)

t
(H)∼ − 1

2κ
ln x− C x+ const. +O(x2) . (26)
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In Eq. (26), k = 1/e and the constant C, governing the linear term in x, is given in Eq. (C9).

These constants, as shown in Sec. V, do not play a direct role in the radiation formula.

V. HBAR IN GENERALIZED SCHWARZSCHILD GEOMETRY: CONFORMAL

ASPECTS OF THE ACCELERATION RADIATION

With the near-horizon field modes and spacetime trajectory equations, we can now find

the emission and absorption rates for the freely falling atoms in the generalized Schwarzschild

geometry. This calculation, whose setup is evident from Eqs. (6a) and (6b), will be thor-

oughly worked out next. Our treatment will show that the final results are governed by

CQM. In effect, this calculation can be performed by using the purely outgoing CQM modes

described in Eq. (24), normalized as asymptotically exact WKB local waves [17]; therefore,

Pe,s
(H)∼ g2k2

∣

∣

∣

∣

∫ xf

0

dx x−iΘeiωt(x)eiντ(x)
∣

∣

∣

∣

2

, (27a)

Pa,s
(H)∼ g2k2

∣

∣

∣

∣

∫ xf

0

dx xiΘe−iωt(x)eiντ(x)
∣

∣

∣

∣

2

, (27b)

where k = 1/e and xf is an approximate upper limit that demarcates the upper boundary

of the region of validity for the near-horizon approximation. Using Eqs. (25) and (26), the

emission rate becomes

Re,s = r g2k2

∣

∣

∣

∣

∫ xf

0

dx x−iω/κe−isx

∣

∣

∣

∣

2

, (28)

where s = Cω + ν/e, and C is given by Eq. (C9). The integrand in Eq. (28) consists

of two oscillatory factors x−iω/κ and e−isx. The eisx factor is highly oscillating in the limit

ν ≫ ω, thus making the integral average out to essentially zero, away from the horizon—this

is because the x−iω/κ factor barely changes over multiple oscillations of the function eisx.

However, near the horizon, the x−iω/κ factor exhibits a remarkable scale invariance that

is a signature of the CQM modes. The important parameter that governs this dominant

conformal property is ω/κ = 2Θ, which includes one contribution of Θ from the field modes

piling up near the horizon, and the other one arising from the relative motion of the atom

with respect to the fields. Now, because of the scale invariance of this factor x−2iΘ = x−iω/κ,

as one zooms in towards the horizon, its behavior remains unaltered. As a result, the

oscillations of eisx are no longer effective in rendering a vanishing contribution to the integral,

and this generates the leading nonzero value from the near-horizon region.
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Due to the cancellation of the contributions from the integral away from the horizon,

one can also increase the upper limit from xf to infinity without adding much error. The

conformal behavior of the x−iω/κ factor ensures that the integral is nonzero, and captures

the correct final results. Consequently, the emission rate is evaluated as

Re,s = r g2k2

∣

∣

∣

∣

∫ xf

0

dx x−iω/κe−isx

∣

∣

∣

∣

2

−→ r g2k2

∣

∣

∣

∣

∫ ∞

0

dx x−iω/κe−isx

∣

∣

∣

∣

2

=
2πr g2ω

κ ν2

1

e2πω/κ − 1
,

(29)

where we have used the condition ν ≫ ω. In this final result (29), the constants k and C

have disappeared, thus leading to an outcome that is independent of the initial conditions.

It should be noted that, if we had used a purely ingoing instead of a purely outgoing

component, the emission rate would have been zero. This is because, for ingoing waves, the

logarithmic contributions from the coordinate time t and the field modes would have canceled

each other out. In other words, even though the near-horizon expressions of the modes

involve different CQM combinations, only the purely outgoing components Φ
+(CQM)
s

(H)∝
xiΘYlm(Ω)e

−iωt [see Eq. (24)] survive for the transition processes considered in this paper.

An important consequence of this property is that acceleration radiation with a Planckian

distribution from a freely falling atom will exist for the Boulware state |B〉, as a result of

the nonzero conformal integral in Eq. (29).

The emergence of the Planck factor in Eq. (29) is an indication of the thermal behavior

of the emission rate. This thermality will be further explored in Sec. VI with the field

density matrix. We can further confirm this behavior by finding the ratio of the emission

and absorption rates. The absorption rate can easily be obtained from the emission rate

expression by using the substitution ω → −ω, as can be seen from Eq. (27). This gives

Ra,s =
2πrg2ω

κ ν2

1

1− e−2πω/κ
, (30)

so that the ratio is
Re,s

Ra,s
= e−2πω/κ . (31)

This ratio can be interpreted as corresponding to a thermal state with an effective temper-

ature T = β−1 defined from the detailed-balance Boltzmann factor

Re,s

Ra,s
= e−βω . (32)

For the remainder of the paper, we will use units with the Boltzmann constant kB = 1.

Comparison of the right-hand sides of Eqs. (31) and (32) gives the temperature of the
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thermal state of the field as

T = β−1 =
κ

2π
≡ β−1

H = TH , (33)

which is the Hawking temperature of the black hole. Moreover, this temperature coincides

with the one predicted from the Planck distribution of Eq. (29). A proof of the consistency of

these statements using the steady-state condition for the density matrix is given in Sec. VI,

where we will achieve a complete characterization of the state as thermal.

Two critically important properties can be deduced from the derivation leading to

Eqs. (31)–(33). First, these equations show the existence of a unique temperature T defined

uniformly for all modes by the Boltzmann factor of Eq. (32). If this unique-temperature

condition were not satisfied, the “temperature” would be merely an effective phenomeno-

logical parameter introduced in an ad hoc manner for a particular mode. Instead, we have

derived this uniqueness for the general class of black holes considered in this paper, with the

implication that T = TH is a candidate for a genuine thermodynamic temperature associated

with a thermal state. Second, the existence of this nontrivial uniqueness condition can be

traced to the governing role played by the near-horizon region of the black hole through

CQM, which yields the Boltzmann factor from the logarithmic singular nature of its modes.

This happens in a way that it is encoded by the ratio of the probabilities Pe,s and Pa,s,

as displayed by Eq. (32). In conclusion, the anticipated thermal state of the field and the

Hawking temperature are completely determined by near-horizon CQM . However, in order

to accomplish an even more thorough thermal characterization of the state of the field, and

to further understand the details of the radiation genesis, we will derive the steady-state

field density matrix.

VI. STEADY-STATE SOLUTION OF THE REDUCED FIELD DENSITY MA-

TRIX AND COMPLETE THERMAL CHARACTERIZATION

In Sec. III, we introduced the master equation (18) in its diagonal form, valid for random

atomic injection times. We are particularly interested in the steady-state solution defined by

the condition that the coarse-grained time derivative in Eq. (18) is equal to zero. The density

matrix of this steady state will be denoted with superscript (SS), namely, ρ
(SS)
diag ({ n }). From

the results of Sec. V, especially Eqs. (31) and (33), we can anticipate that this is a candidate
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for a thermal state. However, it is crucial to gain further insights into this behavior by a

more thorough characterization of the thermal property via the master equation.

As a first step, it is straightforward to find the solution for the simpler single-mode

equation (15). In this case, the right-hand side gives a homogeneous three-term linear

recurrence relation that admits a power-law solution ρ
(SS)
n,n = N

(

Re,s/Ra,s

)n
, as can be

easily verified. The constant N is determined from the normalization condition Tr [ρ] = 1,

which is a geometric series,
∑∞

n=0 ρ
(SS)
n,n = 1 =⇒ N [1− (Re,s/Ra,s)]

−1 = 1. Thus,

ρ(SS)n,n

∣

∣

single−mode
=

[

1−
(

Re,s

Ra,s

)] (

Re,s

Ra,s

)n

, (34)

given the expected inequality Re,s < Ra,s. In order to facilitate the transition to the multi-

mode case, we can write this expression more precisely as ρ
(SS)
nj ,nj = Nj

(

Re,j/Ra,j

)nj , for mode

nj , with Nj = Z−1
j = 1−

(

Re,j/Ra,j

)

.

As in Sec. III, the more relevant multimode master equation (18) needs to be used for

a proper treatment of the quantum field thermodynamics. As pointed out, the modes

are effectively independent if the atom-injection distribution is random. Thus, one can

propose the ansatz that the complete steady-state multimode density matrix ρ(SS) will be

factorized in terms of the tensor product of the density matrices ρ j (SS) of the individual

modes: ρ(SS) =
⊗

j

ρ j (SS). Therefore, in particular, each multimode diagonal element is the

product of single-mode diagonal elements, such that

ρ
(SS)
diag ({ n }) =

∏

j

ρ(SS)nj ,nj
, (35)

where ρ
(SS)
nj ,nj ≡ ρ

j (SS)
nj ,nj , i.e., for each mode j, the same functional form (34) applies. Then,

for the steady state generated by Eq. (18),

0 = −
∑

j

(

∏

k 6=j

ρ(SS)nk,nk

)

{

Re, j

[

(nj + 1) ρ(SS)nj ,nj
− nj ρ

(SS)
nj−1,nj−1

]

+Ra, j

[

nj ρ
(SS)
nj ,nj
− (nj + 1) ρ

(SS)
nj+1,nj+1

]

}

,

(36)

where each term (labeled by j) has the form of the right-hand side of the single-mode

equation (15). Accordingly, the right-hand side of Eq. (36) vanishes term by term because

ρ
(SS)
nj ,nj ≡ ρ

(SS)
n,n

∣

∣

∣

single−mode
(with n ≡ nj), given by (34), is the steady-state solution of the

single-mode equation (15). This sequential argument shows that the steady-state multimode
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reduced field density matrix is

ρ
(SS)
diag ({ n }) =

∏

j

[

Nj

(

Re,j

Ra,j

)nj
]

= N
∏

j

(

Re,j

Ra,j

)nj

, (37)

where N =
∏

j Nj =
∏

j

[

1−
(

Re,j/Ra,j

)]

. This automatically guarantees the trace normal-

ization condition Tr
[

ρ(SS)
]

= 1, where the trace is computed with Tr [ ] =
∑

{n} [ ]diag =
∑

ns1

∑

ns2
. . . [ ]diag.

The closed-form solution (37) of the steady-state multimode density matrix can be inter-

preted as representing a thermal state with an effective temperature T = β−1 defined from

the detailed-balance Boltzmann factor

e−βωj =
Re,j

Ra,j

=
Pe,j

Pa,j

, (38)

where ω ≡ ωj is the positive frequency associated with the given field mode labeled by j.

Of course, Eq. (38) is the same as Eq. (32), but we are now verifying that the Boltzmann

detailed-balance condition is a restatement of the more general steady-state condition of the

field master equation. Thus, Eqs. (37) and (38) generate the manifestly thermal form of the

steady-state reduced field density matrix

ρ
(SS)
diag ({ n }) =

∏

j

[

e−njβωj(1− e−βωj)
]

=
1

Z

∏

j

e−njβωj , (39)

where Z = N−1 =
∏

j Zj =
∏

j

[

1−
(

Re,j/Ra,j

)]−1
. In this factorization, the single-mode

density matrix is

ρ(SS)nj ,nj

∣

∣

∣
=

1

Zj
e−njβωj , (40)

with Zj = N−1
j . These are the familiar expressions that completely characterize a thermal

state, including all moments of the probability distribution; in particular, the average steady-

state occupation numbers per mode are given by the familiar Planck distribution

〈nj〉
(SS) ≡ Tr

[

njρ
(SS)
diag ({ n })

]

=
∑

{n}

nj ρ
(SS)
diag ({ n }) =

∞
∑

nj=0

nj ρ
(SS)
nj ,nj

=
1

eβωj − 1
. (41)

In Eq. (41), the trace is computed as discussed after Eq. (37), and the result follows from

the factorization (39) and normalization conditions for all the single-mode density matrices.

The Planck distribution (41) for the occupation number averages is in agreement with the

earlier result for the radiation probability, Eq. (29).
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A crucial point in the derivation of the thermal characterization of the state of the

quantum field, Eqs. (39) and (41), is again the requirement of a unique temperature defined

uniformly by the Boltzmann factor of Eq. (38). The existence of a unique temperature—

which has a conformal character driven by CQM, as shown in Sec. V—and the density-matrix

results of this section prove that the field is described by a thermal state near its steady-state

configuration. The results hold under the diagonal property of the density matrix leading

to the master equation (18, e.g., due to random injection times of the atomic cloud. This

remarkable finding has additional thermodynamic consequences, as will be briefly discussed

in the next section, along with closing remarks.

VII. IMPLICATIONS AND OUTLOOK

Our detailed analysis of the field equations, geodesics, and density matrix proves the

thermal nature of the steady state of the acceleration radiation field (HBAR) due to time-

randomly injected freely falling atoms in the Boulware state of the generalized Schwarzschild

black hole. This confirms the validity of the results of Ref. [15], in a more general setting

and including a detailed simultaneous accounting of all the field modes. Most importantly,

the thermal property of the field density matrix is completely governed by the conformal

near-horizon physics of the black hole. This is due to the fact that the field modes near the

horizon are described by the CQM Hamiltonian; and the scale symmetry of these modes is

responsible for the thermality of the HBAR field. This conformal thermal nature involves

both the Hawking temperature and additional thermodynamic consequences—remarkably,

they both appear to behave in ways analogous to the thermodynamic properties of the black

hole itself.

In principle, a complete thermodynamic framework can be established by computing

the entropy directly from the density matrix in its quantum von Neumann form. As a

back-of-the-envelope calculation to anticipate the result, one can consider the single-mode

density matrix (15) as in Ref. [15], whence (by straightforward algebra), for a generalized

Schwarzschild metric,

ṠP = βH
˙〈ns〉ω = βHĖP , (42)

where both ṠP and ĖP should be properly interpreted as sums over all the modes. As a result,

using the Hawking temperature (33) and its relationship with the black hole parameters
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(mass M or related r+), one concludes that the HBAR entropy is given by

ṠP =
1

4

∣

∣ȦP

∣

∣ , (43)

where
∣

∣ȦP

∣

∣ is the change in the event horizon area associated with HBAR emission of photons

(with the absolute value to account for the signs). This result, which is structurally identical

to the Bekenstein-Hawking entropy of the black hole itself, will be rigorously justified in the

second paper of this series, where a larger thermodynamic correspondence between the

HBAR field and black hole thermodynamics will be fully developed [25]. For example, for

the generalized Schwarzschild geometry, this shows that there is deep connection between

the HBAR radiation field and the black hole, with a correspondence

(

SP , EP

) β=βH←−−→
(

SBH,M
)

, (44)

which is established at the common Hawking temperature TH = β−1
H . Moreover, as will be

discussed in [25], these analog relations can be further extended to rotating and charged

black holes (Kerr-Newman geometry), with angular momentum and charge variables.

In closing, this article has analyzed the essential features of the acceleration radiation

for an atomic cloud falling into a Schwarzschild black hole, and it paves the way for a more

comprehensive thermodynamic framework.
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Appendix A: Derivation of the master equation for the field—Eqs. (15) and (18)—

and related general properties

In this appendix, we provide the details of the derivation of the field master equation.

We will start by showing the basic algebra that leads from Eq. (10) to its single-mode

version (15), and focusing on the diagonal terms of the reduced field density matrix. This will

be followed by a discussion of the single-mode off-diagonal terms and the general structural

form of the multimode version. In all cases, we will consider atoms that are injected in the

ground state: ρA = |b〉 〈b|.

1. Generic form of the master equation in terms of field operators

As shown in the main text, the right-hand side of the field master equation (10) involves a

double integral of the partial trace of double commutators (11). When the replacements (12)

and (13) are made in Eq. (11), with the upper limit τf = τ ,

∫ τf

τi

∫ τ ′

τi

dτ ′dτ ′′ TrA
[

V ′, [V ′′, ρPA]
]

= g2
∫

τ ′>τ ′′

d2τ
(

e−iντ ′eiντ
′′

Φ′Φ′′ ρ+ eiντ
′

e−iντ ′′ρΦ′′Φ′
)

− g2
∫

τ ′>τ ′′

d2τ
(

eiντ
′

e−iντ ′′Φ′ ρΦ′′ + e−iντ ′eiντ
′′

Φ′′ ρΦ′
)

,

(A1)

where d2τ = dτ ′dτ ′′, and the region of integration is the domain I =

{τi ≤ τ ′′ ≤ τ ′; τi ≤ τ ′ ≤ τf}, which we represent loosely as I = {τ ′ > τ ′′}; referring to Fig. 2,

this region is the blue-highlighted upper triangle. In each parenthesis of Eq. (A1), the second

term corresponds to the adjoint in Eq. (12). (This operation also includes the complex conju-

gates of the exponentials because the latter arise from the adjoint of the atomic operators.) A

more compact and convenient version of Eq. (A1) can be obtained by renaming the variables

in each of the second terms within the parentheses; this can be performed via the exchange of

symbols τ ′ ↔ τ ′′ that formally converts region I into region II = {τi ≤ τ ′ ≤ τ ′′; τi ≤ τ ′′ ≤ τf}
(which we represent loosely as II = {τ ′ < τ ′′}). In Fig. 2, region II is the green-highlighted
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FIG. 2: Regions covered by the two integration limits in Eq. (A1).

lower triangle. Thus, Eq. (A1) becomes

∫ τf

τi

∫ τ ′

τi

dτ ′dτ ′′ TrA
[

V ′, [V ′′, ρPA]
]

= g2





∫

I

d2τ e−iντ ′eiντ
′′

Φ′Φ′′ ρ+

∫

II

e−iντ ′eiντ
′′

ρΦ′Φ′′





− g2





∫

I

d2τ eiντ
′

e−iντ ′′Φ′ ρΦ′′ +

∫

II

eiντ
′

e−iντ ′′Φ′ ρΦ′′



 ,

(A2)

which can be recast into the form of Eq. (14) in the main text. The main advantage gained

by this coordinate relabeling is that it effectively leads to the coverage of the entire square

region I + II: in effect, for the second group of integrals, the integrand is symmetric and

it is to be integrated uniformly over the square region; but, for the first group of integrals,

this simplification only holds for the diagonal elements, as shown below.

2. Single-mode master equation

We are now ready to turn the master equation into the powerful form used in quantum

optics [30]. We will write the coarse-grained rate of change of the diagonal elements of the

reduced field density matrix dρP/dt, using Eq. (14). This can be done by considering the

three generic matrix elements in Eq. (14): 〈n|Φ′ Φ′′ρ |n〉, 〈n| ρΦ′Φ′′ |n〉, and 〈n|Φ′ ρΦ′′ |n〉.
For the single-mode version of the reduced field density matrix, the field operator is

Φ = asφs(r, t) + a†
s
φ∗
s
(r, t), which can be succinctly written as Φ = aφ + a†φ∗. Therefore,
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the three generic matrix elements are

〈n|Φ′Φ′′ ρ |n〉 = n ρn,nφ
′∗φ′′ + (n+ 1)ρn,nφ

′φ′′∗

+
√

(n+ 1)(n+ 2) ρn+2,n φ
′φ′′ +

√

n(n− 1) ρn−2,n φ
′∗φ′′∗

〈n| ρΦ′Φ′′ |n〉 = n ρn,n φ
′∗φ′′ + (n + 1) ρn,n φ

′φ′′∗

+
√

(n+ 1)(n+ 2) ρn,n+2 φ
′∗φ′′∗ +

√

n(n− 1) ρn,n−2 φ
′φ′′

〈n|Φ′ ρΦ′′ |n〉 = n ρn−1,n−1φ
′∗φ′′ + (n+ 1) ρn+1,n+1φ

′φ′′∗

+
√

n(n + 1) ρn+1,n−1 φ
′φ′′ +

√

n(n+ 1) ρn−1,n+1 φ
′∗φ′′∗ .

(A3)

In Eq. (A3), the following more primary results were used (as a direct consequence of the

properties of creation and annihilation operators):

〈n| a†
s
as ρ |n〉 = n ρn,n = 〈n| ρ a†

s
as |n〉 〈n| asa†s ρ |n〉 = (n + 1) ρn,n = 〈n| ρ asa†s |n〉

〈n| asas ρ |n〉 =
√

(n+ 1)(n+ 2) ρn+2,n 〈n| a†
s
a†
s
ρ |n〉 =

√

n(n− 1) ρn−2,n

〈n| ρ a†
s
a†
s
|n〉 =

√

(n+ 1)(n+ 2) ρn,n+2 〈n| ρ asas |n〉 =
√

n(n− 1) ρn,n−2

〈n| a†
s
ρ as |n〉 = n ρn−1,n−1 〈n| asρ a†s |n〉 = (n+ 1) ρn+1,n+1

〈n| as ρ as |n〉 =
√

n(n + 1) ρn+1,n−1 〈n| a†
s
ρ a†

s
|n〉 =

√

n(n+ 1) ρn−1,n+1 .

(A4)

It should be noted that the expanded products in terms of creation and annihilation op-

erators lead to twelve terms from Eq. (A3), of which ten are independent with additional

Hermitian symmetries. The basic structure of Eq. (14) involves a set of terms with two

factors each: the matrix elements (A4), and the integrals

J (sgn(π))
(ǫ′,ǫ′′) =

∫

I

d2τ e−i sgn(π) ντ ′ei sgn(π) ντ
′′

φ′
(ǫ′) φ

′′
(ǫ′′) , (A5)

where φ(ǫ), with ǫ = ±, are functions selected from φ and φ∗ according to the convention

φ(∓) = φ, φ∗ (in that order). The correct assignments of functions and signs can be read off

from Eqs. (A3) and (14). The property
[

J (sgn(π))
(ǫ′,ǫ′′)

]∗

= J (−sgn(π))
(−ǫ′,−ǫ′′) can be verified by direct

inspection.

If we assume that we can ignore the off-diagonal terms due to random injection averaging,

we can then focus on the four terms that correspond to the first lines of 〈n|Φ′Φ′′ ρ |n〉,
〈n| ρΦ′Φ′′ |n〉, and 〈n|Φ′ ρΦ′′ |n〉 in Eq. (A3). The justification of the selection of diagonal

elements due to random injection times will be analyzed in Appendix B. With this selection,
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the first and second terms on the right-hand side of Eq. (A2) become

〈

n
∣

∣

∫ τf

τi

∫ τ ′

τi

dτ ′dτ ′′
{

TrA[V
′V ′′ρPA] + h.c.

} ∣

∣n
〉

= g2





∫

I

d2τ e−iντ ′eiντ
′′
〈

n
∣

∣Φ′Φ′′ ρ
∣

∣n
〉

+ h.c.





= g2
∫

I+II

d2τ e−iντ ′eiντ
′′
[

φ′φ′′∗(n+ 1) ρn,n + φ′∗φ′′n ρn,n
]

= g2
[∫ τf

τi

dτ ′e−iντ ′φ′

∫ τf

τi

dτ ′′eiντ
′′

φ′′∗

]

(n + 1) ρn,n + g2
[∫ τf

τi

dτ ′e−iντ ′φ′∗

∫ τf

τi

dτ ′′eiντ
′′

φ′′

]

n ρn,n

= g2|Ie,s|2(n + 1) ρn,n + g2|Ia,s|2 n ρn,n = Pe,s (n + 1) ρn,n + Pa,s n ρn,n .

(A6)

and

−
〈

n
∣

∣

∫ τf

τi

∫ τ ′

τi

dτ ′dτ ′′
{

TrA[V
′ρPAV ′′] + h.c.

} ∣

∣n
〉

= −g2
∫

I+II

d2τ eiντ
′

e−iντ ′′
〈

n
∣

∣Φ′ ρΦ′′
∣

∣n
〉

= −g2
∫

I+II

d2τ e−iντ ′eiντ
′′
[

φ′∗φ′′n ρn−1,n−1 + φ′φ′′∗(n + 1) ρn+1,n+1

]

= −g2
[
∫ τf

τi

dτ ′e−iντ ′φ′∗

∫ τf

τi

dτ ′′eiντ
′′

φ′′

]

(n + 1)ρn+1,n+1− g2
[
∫ τf

τi

dτ ′e−iντ ′φ′

∫ τf

τi

dτ ′′eiντ
′′

φ′′∗

]

nρn−1,n−1

= −g2|Ia,s|2 (n + 1) ρn+1,n+1 − g2|Ie,s|2 n ρn−1,n−1 = −Pa,s (n+ 1)ρn+1,n+1 − Pe,s n ρn−1,n−1 .

(A7)

In the transition from the second to the third lines in Eqs. (A6) and (A7), the double

integrals, covering the whole square region I + II, admit the factorization into the product

of independent integrals with respect to τ ′ and τ ′′. The double integrals are probabilities

factored into the product of probability amplitudes, as can be seen by direct comparison

with Eqs. (4)–(5) and (6a)–(6b). Moreover, these integrals are particular cases of the general

pattern of Eq. (A5); specifically,

Pe,s = g2
[

J (+)
(−,+) + c.c.

]

= g2
[

J (+)
(−,+) + J

(−)
(+,−)

]

Pa,s = g2
[

J (+)
(+,−) + c.c.

]

= g2
[

J (+)
(+,−) + J

(−)
(−,+)

]

,
(A8)

where c.c. is the complex conjugate.

As a final step, combining all four terms from Eqs. (A6) and (A7) into Eq. (14), we get

the single-mode master equation for the field density matrix in terms of diagonal elements

only, as given by Eq. (15) in the main text. Furthermore, one can also compute the addi-

tional terms in Eq. (A1) that give off-diagonal density matrix elements, by including the
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corresponding matrix elements from Eq. (A3). Then, the more general single-mode master

equation for the reduced field density matrix reads

ρ̇n,n =− Re,s

[

(n+ 1) ρn,n − n ρn−1,n−1

]

−Ra,s

[

n ρn,n − (n+ 1) ρn+1,n+1

]

−
[

S+,s

√

(n + 1)(n+ 2) ρn+2,n + S−,s

√

n(n− 1) ρn,n−2

− (S+,s + S−,s)
√

n(n+ 1) ρn+1,n−1 + h.c.
]

,

(A9)

where

S±,s = r g2J±,s

J±,s =

∫ τf

τi

dτ ′
∫ τ ′

τi

dτ ′′ e∓iντ ′e±iντ ′′φs(r(τ
′), t(τ ′))φs(r(τ

′′), t(τ ′′)) .
(A10)

These integrals are also particular cases of the general pattern of Eq. (A5), with J±,s =

J (±)
(−,−). The coefficients S+,s and S−,s are squeezing factors that play a similar role as those

used in laser theory [28, 30]. As shown in the main text, Sec. VI, the master equation (15)

leads to a thermal density matrix; by contrast, the more general master equation (A9), when

S+,s, S−,s 6= 0, leads to a non-thermal density matrix that generates squeezed radiation.

3. Multimode master equation

For the multimode version of the reduced field density matrix, the field operator is

Φ =
∑

s

[

asφs(r, t) + a†
s
φ∗
s
(r, t)

]

, which can be succinctly written as Φ =
∑

j

[

ajφj + a†jφ
∗
j

]

.

Thus, the structural form of the master-equation terms giving the rate of change is similar

to Eqs. (15) and (A9), with an additional summation over modes. This additional ingredi-

ent involves double sums
∑

j,k because the right-hand side of Eq. (A3) is quadratic in Φ.

These sums include mode-diagonal terms (contributions j = k) that are identical to those

in Eq. (A9); moreover, there are extra off-diagonal terms (contributions j 6= k) that involve

creation and annihilation operators of different modes, as we will show next.
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The three generic matrix elements have the expansions

〈n|Φ′Φ′′ ρ |n〉 =
∑

j

[

nj ρn;n φ
′∗
j φ

′′
j + (nj + 1) ρn;n φ

′
jφ

′′∗
j

+
√

(nj + 1)(nj + 2) ρnj+2;n φ
′
jφ

′′
j +

√

nj(nj − 1) ρnj−2;n φ
′∗
j φ

′′∗
j

]

+
∑

j 6=k

[

√

nj(nk + 1) ρnj−1,nk+1;n φ
′∗
j φ

′′
k +

√

(nj + 1)nk ρnj+1,nk−1;n φ
′
jφ

′′∗
k

+
√

(nj + 1)(nk + 1) ρnj+1,nk+1;n φ
′
jφ

′′
k +
√
njnk ρnj−1,nk−1;n φ

′∗
j φ

′′∗
k

]

〈n| ρΦ′Φ′′ |n〉 =
∑

j

[

njρn;n φ
′∗
j φ

′′
j + (nj + 1)ρn;n φ

′
jφ

′′∗
j

+
√

(nj + 1)(nj + 2) ρn;nj+2 φ
′∗
j φ

′′∗
j +

√

nj(nj − 1) ρn;nj−2 φ
′
jφ

′′
j

]

+
∑

j 6=k

[

√

(nj + 1)nk ρn;nj+1,nk−1 φ
′∗
j φ

′′
k +

√

nj(nk + 1) ρn;nj−1,nk+1 φ
′
jφ

′′∗
k

+
√

(nj + 1)(nk + 1) ρn;nj+1,nk+1 φ
′∗
j φ

′′∗
k +
√
njnk ρn;nj−1,nk−1 φ

′
jφ

′′
k

]

(A11)

〈n|Φ′ ρΦ′′ |n〉 =
∑

j,k

[

√
njnk ρnj−1;nk−1 φ

′∗
j φ

′′
k +

√

(nj + 1)(nk + 1) ρnj+1;nk+1 φ
′
jφ

′′∗
k

+
√

(nj + 1)nk ρnj+1;nk−1 φ
′
jφ

′′
k +

√

nj(nk + 1) ρnj−1;nk+1 φ
′∗
j φ

′′∗
k

]

,

where the notation (17) for the indices of the density matrix has been simplified for these

transitional formulas according to the replacements { n } ≡ { n1, n2, . . . , nj, . . . } → n and

{ n }nj+q ≡ { n1, n2, . . . , nj + q, . . . }→ nj + q (with appropriate adjustments); for example,

ρ
(

{ n } ;{ n }
)

→ ρn;n and ρ
(

{ n } ;{ n }nj+2

)

→ ρn;nj+2, etc. In Eq. (A11), the required

primary identities involving creation and annihilation operators are an appropriate gener-

alization of Eq. (A4). Incidentally, for the last matrix element 〈n|Φ′ ρΦ′′ |n〉, there is no

explicit need to separate diagonal and off-diagonal elements (unlike the asymmetric formulas

of the first two matrix elements).

Then, from Eqs. (14) and (A11), the multimode master equation for the reduced field
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density matrix reads

ρ̇diag({ n }) = −
∑

j

{

Re, j

[

(nj + 1) ρdiag({ n })− nj ρdiag({ n }nj−1)
]

+Ra, j

[

nj ρdiag({ n })− (nj + 1) ρdiag({ n }nj+1)
]

−
[

S+,j

√

(nj + 1)(nj + 2) ρ
(

{ n }nj+2 ;{ n }
)

+ S−,j

√

nj(nj − 1) ρ
(

{ n } ;{ n }nj−2

)

− (S+,j + S−,j)
√

nj(nj + 1) ρ
(

{ n }nj+1 ;{ n }nj−1

)

+ h.c.

]}

−
∑

j 6=k

∑

ǫ′,ǫ′′=±

{[

R
(+)
(ǫ′,ǫ′′);j,k s

(+)
(ǫ′,ǫ′′);nj ,nk

ρ
(

{ n }nj−ǫ′,nk−ǫ′′;{ n }
)

+ h.c.
]

−
[

R
(−)
(ǫ′,ǫ′′);j,k s

(−)
(ǫ′,ǫ′′);nj ,nk

ρ
(

{ n }nj−ǫ′ ;{ n }nk+ǫ′′

)

+ h.c.
]}

,

(A12)

where the factors s
(±)
(ǫ′,ǫ′′);nj ,nk

=
√

[

nj +
1
2
(1− ǫ′)

] [

nk +
1
2
(1∓ ǫ′′)

]

arise from the cre-

ation/annihilation operator normalization (and ǫ = ±1, when used as an algebraic factor as

opposed to simple index). In addition, in Eq. (A12), the emission (Re, j), absorption (Ra, j),

and squeezing coefficients (S±,j), for each mode j, are defined as before [Eqs. (4)–(5),(6a)–

(6b), and A10)]. The new coefficients

R
(±)
(ǫ′,ǫ′′);j,k = r g2J (±)

(ǫ′,ǫ′′);j,k

J (±)
(ǫ′,ǫ′′);j,k =

∫ τf

τi

dτ ′
∫ τ ′

τi

dτ ′′ e∓iντ ′e±iντ ′′φ(ǫ′);j(r(τ
′), t(τ ′))φ(ǫ′′);k(r(τ

′′), t(τ ′′)) ,
(A13)

which generalize Eq. (A5), measure the degree of correlation of pairs of modes in all possible

combinations; in particular, they satisfy the conjugate relations
[

J (±)
(ǫ′,ǫ′′)

]∗

= J (∓)
(−ǫ′,−ǫ′′), which

can be applied to Eq. (A12).

Remarkably, Eq. (A13) is more general than stated above, as it can be extended to the

case j = k as well. In effect, Eq. (A12) can be succinctly written in a more compact form

as an unrestricted sum
∑

j,k

∑

ǫ′,ǫ′′=±, for all j, k that includes the diagonal elements—but

the formulas for the diagonal normalization coefficients need to be adjusted. This general

validity of Eq. (A13) will be used in Appendix B, for the injection averages.

Finally, it is also possible to extend Eq. (A12) to give the off-diagonal matrix elements of

ρ̇ on the left-hand side of a similar equation. As these off-diagonal elements are not of direct

use for the present work, we omit their expressions, which otherwise give obvious extensions

of the right-hand side.
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Appendix B: Coarse-grained injection averages and density-matrix diagonality

In this appendix, we address the properties of the injection-averaging procedure, and

outline the proof of the diagonal-reduction property for random injection times, leading to

Eq. (18).

The general results for the field master equation, as derived in Appendix A, apply to

the reduced density matrix ρP obtained by tracing out the atomic degrees of freedom, but

without enforcing the coarse-graining averaging procedure. Such “microscopic” or “bare”

results display the structural form of the master equation (A12), namely, the correct pat-

tern of matrix elements, but do not give the macroscopic coefficients that correspond to

an experimental setup with a specific injection-time distribution for the atomic cloud as

reservoir. The coefficients that complete the characterization of Eq. (A12) are R
(±)
(ǫ′,ǫ′′);j,k,

given in Eq. (B3) (which also describes the mode-diagonal elements). The outcome of the

injection-averaging procedure at the level of the master equation is to make the replace-

ment R
(±)
(ǫ′,ǫ′′);j,k −→ R

(±)
(ǫ′,ǫ′′);j,k. In particular, this procedure may generate cancellations and

additional symmetries, depending on the details of the injection process.

We will now proceed with the specific averaging for the cloud falling into a generalized

Schwarzschild black hole. The field modes, in their interaction with an individual atom,

have a functional form φs(r(τ), t(τ)), which includes a dependence on the injection time

ti. From the general theory leading to the microscopic coefficients, one can introduce this

distribution of initial times by the replacement ti → t0 + ∆ti, where t0 is a fiducial initial

time parameter, and then perform the average, according to the operational rule of Eq. (9),

on any relevant field quantity XP . Without any loss of generality, the initial value t0 = 0

can be chosen, so that ∆ti = ti; then,

XP =

∫

dti f(ti)X
P(ti) . (B1)

In Eq. (A12), this average behavior is encoded in the coefficients R
(±)
(ǫ′,ǫ′′);j,k = r g2J (±)

(ǫ′,ǫ′′);j,k,

so that, from Eq. (A13),

R
(±)
(ǫ′,ǫ′′);j,k =

∫

dtiR
(±)
(ǫ′,ǫ′′);j,kf(ti)

= r g2
∫

dti

∫

I

d2τ e∓iντ ′e±iντ ′′φ′
(ǫ′);j φ

′′
(ǫ′′);k

∣

∣

∣

∣ t′→t′+ti
t′′→t′′+ti

f(ti) ,
(B2)
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with the notation φ′
(−);j = φsj

(r(τ ′), t(τ ′)), φ′′
(+);j = φ∗

sj
(r(τ ′′), t(τ ′′)), etc. As displayed in

Eq. (B2), the initial-time shift with a statistical variable ti can be directly enforced inside

the integral, with the replacements t′ → t′+ ti, t
′′ → t′′+ ti. Then, the functional form of the

integrand in Eq. (B3) implies that these shifts only affect the product φ′
(ǫ′);j φ

′′
(ǫ′′);k, which is

thus solely responsible for the ti dependence.

An important point in the evaluation of the integrals in Eqs. (B1) and (B2) (and sim-

ilar relations) is the choice of integration limits for the formal variable ti. These can be

effectively pushed to infinity for a random distribution:
∫

dti ≡
∫∞

−∞
dti due to the short

memory of the reservoir in the Markovian approximation. More precisely, there are several

time scales involved: the cloud memory time ∆tM , the atomic time scale ∆tA ∼ 1/ν, the

field characteristic time scale ∆tP ∼ 1/ω ∼ 2π/κ (from the dominant part of the Planck

distribution), and the atomic cloud injection scale ∆tC ∼ T (which is used for the averaging

integrals). There is an associated hierarchy of time scales: ∆tM ,∆tA ≪ ∆tP ≪ ∆tC , where

the right-most side of the inequality gives the condition that the integration interval T needs

to satisfy for the establishment of a sufficiently random distribution.

Therefore, under such conditions, with the replacements t′ → t′+ ti, t
′ → t′′+ ti, Eq. (B2)

leads to

R
(±)
(ǫ′,ǫ′′);j,k =

[
∫

dti e
i(ωjǫ

′+ωkǫ
′′) ti f(ti)

]

R
(±)
(ǫ′,ǫ′′);j,k

∣

∣

∣

microscopic
, (B3)

where the coordinate-time dependence of the modes is explicitly given by φs(r, t) =

ϕs(r) e
−iωt, whence φ(ǫ);j = ϕ(ǫ);j e

iǫωt. As can be seen from Eq. (B3), the microscopic co-

efficient gets modified by an integral prefactor that is governed by an oscillatory integrand

inherited from the time dependence φs(r, t)e
−iωt of the modes themselves.

In this paper, we are interested in an atomic cloud with a statistical distribution of random

injection times . Then, in Eq. (B3), we can choose a uniform distribution f(ti) = 1/T ; thus,

the randomness inherent in ti will make the integral prefactor in Eq. (B3), average out to

zero unless the exponent itself is zero. Specifically, the critical condition arises from

lim
T→∞

1

T

∫ T/2

−T/2

dti e
iγti = δγ,0 , (B4)

where the Kronecker delta is zero unless γ = 0; here, γ = ωjǫ
′+ωkǫ

′′. Thus, the necessary

condition for R
(±)
(ǫ′,ǫ′′);j,k to be nonvanishing is

ωjǫ
′ + ωkǫ

′′ = 0 . (B5)
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As the frequencies ωj and ωk are both positive, the condition (B5) can only be satisfied

when ǫ′ and ǫ′′ have opposite signs; this implies that

ǫ′ = −ǫ′′ and ωj = ωk . (B6)

Consequently, the random-time injection-averaged coefficients are zero unless the mode func-

tions are: (i) complex conjugates of each other (ǫ′ = −ǫ′′); and (ii) they correspond to the

same frequency ωj = ωk. The former condition is also equivalent to the appearance of

pairs of creation and annihilation operators in the matrix elements, thus corresponding to

diagonal elements of the field density matrix when the frequency identity is enforced. This

argument shows that Eq. (B6) is a diagonality condition implied by a random distribution

of injection times. Under such conditions, the relevant coarse-grained field density matrix

is diagonal and given by Eq. (18). Specifically, Eq. (B6) shows that all the single-mode

squeezing coefficients (A10) and mode-off-diagonal coefficients (A13) become zero when the

averaging procedure is enforced. By contrast, the emission and absorption rates Re,j and

Ra,j are allowed to be nonzero, as Eq. (B6) is valid for them—-this can be seen by compar-

ison with the general expressions of Eq. (A8). In addition, direct inspection of Eq. (A12)

verifies that the only nonvanishing terms in the master equation are diagonal.

Appendix C: Geodesic equations in generalized Schwarzschild metric

Any static and spherically symmetric metric defined by Eq. (1), has invariance under

time translations and under spatial rotations involving (D − 1)(D− 2)/2 planes. All of the

angular momentum components but one can be fixed to define a single plane for the orbit

where an azimuthal angle φ can be used. The corresponding Killing vectors are ξ = ∂t and

η = ∂φ.

The free-fall spacetime trajectories are the geodesics. Their first-order form for timelike

geodesics can be easily set up with the constants of the motion: the mass µ and the conserved

quantities e = −ξ ·u = E/µ (energy per unit mass) and ℓ = η ·u = L/µ (angular momentum
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per unit mass), where u is the spacetime velocity. Thus, the geodesic equations are

dt

dτ
=

e

f(r)
. (C1)

dr

dτ
= −

√

e2 − f(r)

(

1 +
ℓ2

r2

)

, (C2)

dφ

dτ
=

ℓ

r2
. (C3)

In Eq. (C2), it is assumed the in-falling motion of the atom is analyzed.

The geodesic equations can be integrated to derive the atom’s proper time τ and the

Schwarzschild coordinate time t in terms of the radial variable r,

τ − τi = −
∫ r

ri

dr
√

e2 − f(r) (1 + ℓ2/r2)
≡ F (r) (C4)

t− ti = −
∫ r

ri

dr
e/f

√

e2 − f(r) (1 + ℓ2/r2)
≡ G(r) , (C5)

where ri is the radial coordinate of a fiducial point—for the cloud of atoms this a point, or

radial coordinate value, from which the atoms are injected with initial specific energy e and

initial specific angular momentum ℓ. Equations (C4) and (C5) have the functional forms

τ − τi = F (r) and t− ti = G(r), so that

τ − τi = H(t− ti) , where H = F ◦G−1 (C6)

is the composite function that implies a correspondence generically of the form τ = τ(t),

with specific initial values τi and ti.

The near-horizon expansions of Eqs. (C4) and (C5), up to first order in x = r − r+, are

τ = −x
e
+ const. +O(x2) , (C7)

t = − 1

f ′
+

ln x− Cx+ const. +O(x2) , (C8)

where

C =
1

2

[

1

e2

(

1 +
ℓ2

r2+

)

− f ′′
+

(f ′
+)

2

]

(C9)

is a constant that depends on the conserved quantities e and ℓ, as well as the black hole

parameters r+ and f ′
+ carried by f(r). Equations (C7) and (C8) have the correct behavior
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in the neighborhood of the horizon, with a logarithmically divergent coordinate time but

finite proper time.
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