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We present the first numerically stable nonlinear evolution for the leading-order gravitational
effective field theory (Quadratic Gravity) in the spherically-symmetric sector. The formulation
relies on (i) harmonic gauge to cast the evolution system into quasi-linear form (ii) the Cartoon
method to reduce to spherical symmetry in keeping with harmonic gauge, and (iii) order-reduction
to 1st-order (in time) by means of introducing auxiliary variables. Well-posedness of the respective
initial-value problem is numerically confirmed by evolving randomly perturbed flat-space and black-
hole initial data. Our study serves as a proof-of-principle for the possibility of stable numerical
evolution in the presence of higher derivatives.

I. INTRODUCTION

General Relativity (GR) is in excellent agreement with
an ever-growing body of experimental tests. At the same
time, theoretical considerations strongly suggest that the
theory is incomplete: It is not known how to consistently
couple GR to quantum field theories of matter once back-
reactions are non-negligible. Moreover, even classical
matter distributions are prone to gravitational collapse
and thus to the formation of curvature singularities, typ-
ically accompanied by geodesic incompleteness. See [1–4]
for singularity theorems in static and highly symmetric
settings and, e.g., [5, 6] for numerical explorations in less
symmetric and dynamical settings.

Said theoretical breakdowns strongly motivate to em-
bed GR into the modern framework of effective field the-
ory (EFT) and treat the Einstein-Hilbert action merely
as the leading-order term in a local-curvature expansion
of a general diffeomorphism-invariant action of gravita-
tional (and matter) degrees of freedom. Inconsistencies
in the coupling to matter and the formation of singu-
larities can then be interpreted as a consequence of ex-
trapolating the EFT beyond its regime of validity: As
the curvature grows during gravitational collapse, higher-
order terms in the EFT will eventually become non-
negligible and alter the dynamics of GR at some, as of
now untested, curvature scale. We may encounter this
scale anywhere between the largest currently probed cur-
vature scales and the Planck scale. Indeed, quantum fluc-
tuations are widely expected to induce such EFT cur-
vature corrections, cf. [7–11] for perturbative quantum
gravity, [12, 13] for string theory, and [14–16] for reviews
in the context of asymptotic safety.
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Since GR tends to hide regimes of growing curvature
behind event horizons [17], experimentally probing the
horizon-scale physics of black holes is presumably one of
the most promising ways to push the limits of the EFT
of gravity. A rapidly increasing number of gravitational-
wave (GW) events from black-hole binary mergers [18,
19] provide access to this, previously uncharted, strong-
gravity regime.

Utilizing this data to constrain new physics beyond
GR requires obtaining alternative predictions for the
leading-order corrections in the above gravitational
EFT. As large-curvature regimes reveal the nonlinear
character of (beyond) GR dynamics, such predictions
require numerical relativity simulations, cf. [20–23]
for pioneering work in numerical GR. It is, therefore,
crucial to find a well-posed numerical evolution for
said leading-order EFT corrections. The existence of a
well-posed initial value problem (IVP), see [24, 25] for
reviews in GR, could pose a restriction for any viable
theory. Certainly, a well-posedness IVP (for physically
meaningful sets of initial data) is necessary to perform
any stable numerical evolution.

First numerical simulations have been achieved in
specific beyond-GR theories such as dynamical Chern-
Simons [26, 27], Einstein-dilaton-Gauss-Bonnet [28–32],
Horndeski theories [33], K-essence [34], and a study of
EFT terms at quartic order in curvature [35]. A sta-
ble numerical evolution is guaranteed by either iterative
treatment [26, 27, 30], a dampening of high-frequency
modes [35], or by an established well-posed evolution at
weak coupling [31, 36–38]. In contrast, at strong cou-
pling the onset of ill-posed regimes has been observed
in [28, 29].

Here, we investigate Quadratic Gravity (QG), i.e., the
gravitational EFT including all independent terms up to
quadratic order in curvature – sometimes also referred
to as Stelle-gravity [8, 39]. At the formal level, it has
been shown – without any constraint to weak coupling –
that QG admits a well-posed IVP [40], see also [41].
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Accounting for EFT corrections to GR naturally im-
plies higher-order equations of motion. The latter are
theoretically disfavored by the Ostrogradski theorem [42]
which states that non-degenerate higher-derivative theo-
ries result in linearized degrees of freedom with opposite-
sign kinetic terms. Any non-vanishing coupling between
these modes implies the onset of a linear instability,
cf. eg. [43–46] for related recent developments in the con-
text of a unitary quantum evolution of QG.

We emphasize that an Ostrogradski (in)stability and
well-posedness are not necessarily related. On the one
hand, the Ostrogradski theorem is a physical state-
ment: theories that exhibit opposite-sign kinetic terms
can develop physical instabilities. On the other hand,
well-posedness is a mathematical property of partial-
differential equations (PDEs), crucial for numerical sim-
ulations, but not necessarily related to physical implica-
tions. In particular, the same theory can admit, both,
well-posed and ill-posed IVPs. We add that the absence
of any well-posed IVP would also signal a true physical
shortcoming.

In fact, the present work can be viewed as a proof
of principle for a higher-derivative gravitational theory
with Ostrogradski ghosts which nevertheless admits
a well-posed IVP and in which we can thus simulate
spacetime dynamics numerically. The proof in [40]
establishes the existence of a well-posed IVP at the
level of the four-dimensional equations of motion. As
in GR, it remains non-trivial to translate it into (3+1)
form to obtain a well-posed IVP suitable for actual
numerical evolution. Here, we do so in the reduced
sector of spherically-symmetric dynamics. This allows
us to present the first nonlinear evolution of physical
initial data in QG.

The rest of the paper is organized as follows: in Sec-
tion II, we review the well-posed IVP formulation of QG,
cf. [40]; in Section III, we use the Cartoon method [22, 47]
to reduce the evolution equations to spherical symme-
try and perform the order-reduction in the symmetry-
reduced setup; in Section IV, we present the resulting
stable numerical evolution for perturbations of flat space-
time as well as for perturbations of the Schwarzschild so-
lution and find no indications for ill-posed behavior; in
Section V we conclude with a summary and discuss the
implications of our results for future works.

As for conventions, we use the (−,+,+,+) signature,
we work in geometrized units where (c = 1, G = 1),
and use Latin letters as Lorentzian spacetime indices.
Round (square) brackets denote (anti-)symmetrization of
the enclosed pair of indices.

II. QUADRATIC GRAVITY AND THE NOAKES
EQUATIONS

Quadratic Gravity (QG) incorporates the leading-
order, i.e., curvature-squared, corrections to GR and can
be parameterized by the action

SQG =

∫
d4x
√
|g|
[

1

16πG
R+ αRabR

ab − βR2

]
. (1)

Note that we have chosen the minus sign in the last term
to agree with conventions in the equations of motion
in [40]. The first term is the common Einstein-Hilbert
term where we have, for the present section, re-instated
Newton’s constantG. In 4D, the most general corrections
of quadratic order in curvature can be parameterized by
the two dimensionless constants α and β. A potential
Riemann-squared term can be rewritten into the former
through the Gauss-Bonnet identity.

The associated equations of motion for quadratic grav-
ity (QG) contain (up to) 4th-order derivative terms [8]
and read

2Tab =(α− 2β)∇a∇bR− α�Rab −
(

1

2
α− 2β

)
gab�R

+ 2αRcdRacbd − 2βRRab −
1

2
(αRcdRcd − βR2)

+
1

16πG

(
Rab −

1

2
gabR

)
. (2)

Here, we have included an energy-momentum tensor Tab
for potential matter sources.

In the linearized theory, it has been shown, cf. [8], that,
in addition to the massless spin-2 mode of GR, the lin-
earized Ricci scalar and linearized traceless Ricci ten-
sor propagate a massive scalar and massive spin-2 modes
with respective masses

m2
0 =

1

32πG(3β − α)
, m2

2 =
1

16πGα
. (3)

The massive spin-2 mode is an Ostrogradski ghost, i.e.,
in the linearized theory, its kinetic term has the oppo-
site sign in comparison to the massless graviton. In [40],
Noakes finds that the nonlinear evolution can be formu-
lated with the same degrees of freedom. Following this
insight, the Ricci scalar R ≡ gabRab and the traceless

Ricci tensor R̃ab ≡ Rab−1/4 gabR can be elevated to in-
dependent variables, as indicated by the curly notation.
From here on, these should no longer be evaluated on
the metric. Rather, they are treated as independent evo-
lution variables. Re-expressing the parameters α and β
by the two masses m2

0 and m2
2, the equations of motion

can be separated into a trace (2nd equation below) and
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a traceless (3rd equation below) part, i.e.,

Rab(g) = R̃ab +
1

4
gabR , (4)

�R = m2
0R+ 2T cc , (5)

� R̃ab = m2
2R̃ab + 2T

(TL)
ab

− 1

3

(
m2

2

m2
0

− 1

)(
∇a∇bR−

1

4
gabm

2
0R
)

+ 2R̃cdCacbd −
1

3

(
m2

2

m2
0

+ 1

)
RR̃ab

− 2R̃ c
a R̃bc + w

1

2
gabR̃cdR̃cd . (6)

Here, we have supplemented the trace and traceless equa-
tions by the definition of the Ricci curvature in terms of
the metric (on the left-hand side) and in terms of the
fiducial variables (on the right-hand side), cf. Eq. (4).
The latter provides a 2nd-order evolution equation for the
metric in which the fiducial variables appear as sources,
i.e., without derivatives. The matter sources are also split
into trace and traceless part (indicated by a (TL) super-
script) and, in turn, only source the fiducial variables.
Furthermore, we have introduced the Weyl-tensor Cabcd
for brevity. The latter can equivalently be expressed in

terms of Rabcd, R̃ab, and R as

Cabcd = Rabcd + gb[cR̃a]d + gd[aR̃c]b +
1

6
ga[dgb]cR . (7)

Therefore, the metric appears in the trace and traceless
equation, cf. Eqs. (5)-(6), only as part of the covariant
derivatives as well as in Rabcd.

The trace and traceless Ricci variables R and R̃ab ap-
pear merely as ‘fiducial sources’, i.e., as terms without
derivatives. Thus, the metric equation, cf. Eq. (4), can
be treated as in GR where (generalized) harmonic coor-
dinates allow to express the Ricci tensor as a strongly
hyperbolic quasi-linear 2nd-order differential operator.
More explicitly, the Ricci tensor on the left-hand side
of Eq. (4) can be expressed as

Rab(g) = −1

2
gcdgab,cd + gc(aF

c
,b) +O1

ab(∂g) , (8)

where we use the usual comma-notation for partial
derivatives and F a = −gcdΓacd is a gauge potential which,
provided one works in (generalized) harmonic gauge, i.e.,
F a = 0 (F a = const), reveals the strongly hyperbolic
quasi-linear character. Additional lower-order derivative
terms are denoted by O1

ab(∂g).

With (generalized) harmonic coordinates at hand and
by expanding the Riemann tensor as well as all covariant
derivatives in terms of the metric, the evolution of the

variables gab, R, and R̃ab can be written as

gcdgab,cd = −2R̃ab −
1

2
gabR+O1

ab(∂g) , (9)

gcdR,cd = m2
0R , (10)

gcdR̃ab,cd = O2
ab(∂∂R, ∂R̃, ∂∂g) . (11)

Again, we summarize lower-order terms with O1
ab(∂g)

and O2
ab(∂∂R, ∂R̃, ∂∂g) with the notation in brackets in-

dicating the highest order of derivatives of these terms.
As will become clear below, their explicit form is irrele-
vant regarding well-posedness. Nevertheless, we explic-
itly provide their form in App. A, where we also correct
some typos in comparison to [40, 41].

The above system is not yet of diagonal quasi-linear
form due to both ∂∂R- and ∂∂g-terms appearing in the
traceless equation, cf. Eq. (11). However, the system is

amenable to diagonalization because of the lack of ∂R̃-
contributions in the (already diagonal-form) equations
for R (Eq. (10)) and g (Eq. (9)), see [40] for more formal
and general statements. More explicitly, the given PDEs
can be diagonalized by introducing extra variables Va ≡
R,a and habc ≡ gab,c and adding derivatives of the former
two equations to the system, i.e.,

gmnVa,mn = Oa(∂V, h) , (12)

gmnhabc,mn = Oabc(∂h) , (13)

gmnR̃ab,mn = O2
ab(∂V, ∂h, ∂R̃) . (14)

This extended system is now of diagonal quasi-linear
form and the standard theorems for hyperbolicity [48]
apply, cf. [40] for a more detailed proof and our separate
publication [49] for a full (3+1)-formulation of QG.

Treating R̃ab andR as independent variables, Eqs. (4)-
(6) only describe the physical evolution of QG if addi-

tional constraints guarantee that R̃ab and R equate to
their metric counterparts. This can be captured by intro-

ducing a constraint variable Cab = Gab−R̃ab+ 1/4 gabR,
describing the deviation of the fiducial variables from the
physical Einstein tensor. Demanding that Cab and its first
time derivative vanish (Bianchi constraints), ensures that
the initial data is physical. Similarly, since the above
formulation as a quasi-linear system requires harmonic
coordinates, we need to ensure that the initial data does
so too. Overall, the initial-data constraints read

F a = 0 , (15)

£nF
a = 0 , (16)

C b
a ;b = 0 , (17)

(£nC b
a );b = 0 , (18)

where £n denotes Lie derivatives along a timelike normal
vector na, orthogonal to the initial-data hypersurface.
A similar order-reduction as for the evolution equations
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above, cf. [40], ensures that also the propagation of the
constraints can be written as a quasilinear diagonal 2nd-
order system.

In addition, initial data has to obey the usual Gauss-
Codazzi (or Hamiltonian and shift) constraints of GR
which read

nanbCab = 0 , (19)

nahbcCab = 0 . (20)

Finally, also the physical constraints are preserved in
the temporal direction (secondary constraints).

Counting the number of pieces of independent ini-
tial data reveals that the nonlinear theory retains the
same number of degrees of freedom as the linearized one.
Eqs. (4)-(6)t constitute a set of 20 2nd-order evolution
equations (equivalent to the 10 4th-order equations in
Eq. (2)). At the same time, the harmonic constraints
(Eqs. (15)-(16)), the Bianchi constraints (Eqs. (17)-(18)),
and the Gauss-Codazzi constraints (Eqs. (19)-(20)) re-
quire 8 relations among the initial data (including the
respective secondary constraints), each. Overall this
amounts to 40 − 24 = 16 pieces of independent initial
data, corresponding to eight degrees of freedom, i.e., a
massless spin-2 (two degrees of freedom), a massive scalar
(one degree of freedom), and a massive spin-2 mode (five
degrees of freedom). We will keep track of this count-
ing in the order reduction and the reduction to spherical
symmetry below.

III. REDUCTION TO SPHERICAL SYMMETRY
VIA THE CARTOON METHOD

Unfortunately, choosing coordinates in which spherical
symmetry is explicit makes it impossible to maintain the
harmonic gauge condition �xa = 0 [50]. However, as
we have seen in the last section, the latter is a crucial
to achieve a well-posed formulation, cf. discussion below
Eq. (8). We, therefore, remain in Cartesian coordinates
(t, x, y, z) and follow the Cartoon method [22, 47] to make
use of the Killing vector fields associated with spherical
symmetry, i.e.,

ξµ1 = x(∂∂∂y)µ − y(∂∂∂x)µ ,

ξµ1 = y(∂∂∂z)
µ − z(∂∂∂y)µ ,

ξµ1 = z(∂∂∂x)µ − x(∂∂∂z)
µ .

Note that the bold font ∂∂∂x,y,z indicate the basis one-forms
and not partial derivatives. Expanding the respective
vanishing Lie-derivatives LξiXXX = 0 acting on tensorial
objects XXX, one can re-express partial derivatives in two
of the spatial directions, for instance (y, z), in terms of
the third, for instance x. For scalars Φ, vectors Ψa and
tensors Πab which are preserved along the Killing vector

field, one finds

∂yΦ =
y

x
∂xΦ ,

∂yΨa =
1

x

(
y ∂xΨa + Ψx δ

y
a −Ψy δ

x
c

)
,

∂yΠab =
1

x

(
y ∂xΠab − 2x δx(aΠb)y + 2y δy(aΠb)x

)
,

and equivalently for (y ↔ z). These relations allow us
to reduce all spatial derivatives in Eqs. (9)-(11) to those
with respect to a single coordinate, e.g., x.

Furthermore, a coordinate transformation from a co-
ordinate system in which the spherical symmetry is man-
ifest, i.e., transforming X = (t, r, θ, φ) back to Cartesian
coordinates X = (t, x, y, z), gives symmetry relations be-
tween tensor components via

Πab =
∂Xa

∂X
a

∂Xb

∂X
b
Πab . (21)

For the present case of spherical symmetry, transfor-
mation of the symmetry identities Πtθ = 0, Πtφ = 0,

Πrθ = 0, Πrφ = 0, Πθφ = 0, and Πθθ sin2 θ = Πφφ back
to Cartesian coordinates implies the relations

Πty =
yΠtx

x
, Πtz =

zΠtx

x
, (22)

Πxy =
xy (Πxx −Πyy)

x2 − y2
, Πxz =

xz (Πxx −Πyy)

x2 − y2
, (23)

Πyz =
yz (Πxx −Πyy)

x2 − y2
, (24)

Πzz =
(x2 − z2)Πyy − (y2 − z2)Πxx

x2 − y2
. (25)

Naturally, all of the above also holds for raised indices.

For R̃ab, we can additionally make use of tracelessness to
remove one further component.

With the above relations, the evolution equations in
Eqs. (9)-(11) (with the explicit form of lower-order terms
provided in App. A) can be expanded into evolution
equations for only eight independent variables which we
group into

u = (R, gtt, gtx, gxx, gyy) and v = (R̃tt, R̃tx, R̃xx), (26)

according to whether their associated evolution equations
are already quasi-linear or not. The set of eight 2nd-order
equations takes the form

∂2t u = O (u, v, ∂tu) , (27)

∂2t v = O
(
u, v, ∂tu, ∂tv, ∂

2
t u
)
. (28)

Unfortunately, the explicit expressions are too large to
meaningfully be displayed here. Instead, we provide
them, along with all the subsequent reductions, in an-
cillary files [70] and restrict the following discussion to a
schematic form. We note that, in distinction to Sec. II,
the above notation only keeps track of the order of time
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derivatives such that all instances of O can potentially
contain up to 2nd-order spatial derivatives.

The above 2nd-order evolution system naively propa-
gates 16 free initial data functions, i.e., 8 degrees of free-
dom. These are subject to physical constraints, which we
will come back to in Sec. III C. For now, we only want
to keep track of additional auxiliary constraints which
appear due to the order-reduction below.

A. Reduction to quasi-linear 2nd-order form

In analogy to the 4D-diagonalization procedure in [40],
we introduce additional auxiliary variables

u̇ = (Ṙ, ġtt, ġtx, ġxx, ġyy) ≡ ∂tu (29)

and differentiate the first two equations by time. Adding
the resulting equations to the evolution system results in

∂2t u̇ = O (u, v, u̇, ∂tu̇, ∂tv) , (30)

∂2t v = O (u, v, u̇, ∂tu̇, ∂tv) , (31)

∂tu ≡ u̇ , (32)

∂tu̇ = O (u, v, u̇) . (33)

In the above, we have added the definitions u̇ ≡ ∂tu to
the evolution equations. Indeed, these defining equations
for the auxiliary variables act as 1st-order evolution equa-
tions for u while the original evolution equations become
1st-order auxiliary constraints on u̇ since there are other
2nd-order evolution equations for the latter. Thereby,
the evolution system remains consistent with 21−5 = 16
free functions of initial data.

B. Reduction to 1st-order form

By introducing eight further auxiliary variables,

ü ≡ ∂tu̇ and v̇ ≡ ∂tv , (34)

the set of evolution equations is cast into a from in which
it becomes purely 1st-order in time, i.e.,

∂tü = O (u, v, u̇, ü, v̇) , (35)

∂tv̇ = O (u, v, u̇, ü, v̇) , (36)

∂tu̇ ≡ ü , (37)

∂tu ≡ u̇ , (38)

∂tv ≡ v̇ , (39)

ü = O (u, v, u̇) . (40)

These evolution equations, which we have supplemented
by the defining equations for the auxiliary variables u̇, v̇,
and ü, now denote 21 1st-order evolution equations.

It is now apparent that the original evolution equa-
tions for u take the role of five auxiliary constraints,
cf. Eq. (40), such that the overall number of free functions
to be specified as initial data remains 21− 5 = 16.

We emphasize, once more, that we have hidden
up-to-2nd-order spatial derivatives in the notation such
that the auxiliary constraint in Eq. (40) is by no means
algebraic but rather a 2nd-order spatial ODE.

A formal proof of well-posedness of the above evolu-
tion equations would either require a further reduction
of the remaining higher-order spatial derivatives, or to
analyse strong hyperbolicity as a first-order in time and
arbitrary-order in space (FTNS) system along the lines
of [51–53]. Instead of pursuing such a formal proof, we
focus on demonstrating a stable numerical evolution in
Sec. IV. Here, and in the following, we use the term ‘nu-
merical stability’ to distinguish our setup from physical
stability and emphasize that a reliable numerical explo-
ration of physical stability requires a numerically stable
setup. To be explicit, by numerical stability, we refer to
the apparent absence of growth modes in the constraints.

C. Physical Constraints

In spherical symmetry, the 24 physical constraints re-
duce to 12 since in each four-component constraint equa-
tion two Cartoon relations (arising from a relation equiv-
alent to Eq. (21) but for vectors) can be used. We are
therefore left with 21 − 5(auxiliary) − 12(physical) = 4
independent pieces of initial data, i.e., two degrees of
freedom.

More explicitly, the Hamiltonian and shift constraint
reduce to

Ctt ≡ Gtt − R̃tt +
1

4
gttR = 0 , (41)

Ctx ≡ Gtx − R̃tx +
1

4
gtxR . (42)

These physical constraints reproduce (some components
of) the auxiliary constraints, cf., Eq. (40), upon using

R(g) = R. Since R(g) = R and R̃ab(g) = R̃ab these are,
of course, the very relations which are supposed to be
enforced by the auxiliary constraints. This implies that
Hamiltonian and momentum constraints are automati-
cally fulfilled once the auxiliary constraints are fulfilled.

In the subsequent numerical analysis, we will monitor
the Hamiltonian constraint to confirm the absence of any
growth modes. Indeed, we find no indication for ill-posed
behavior.

Solving the constraints, both physical and auxiliary, is
a non-trivial task and will be addressed in future work.
Below, we will focus on perturbations of exact solutions
of the theory for which all constraints are fulfilled. More-
over, we focus on vacuum solutions of GR which, since
they are Ricci-flat, are exact solutions of QG as well.
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IV. NUMERICALLY STABLE EVOLUTION

Having derived a set of 1st-order (in time) evo-
lution equations for the spherically-symmetric sector,
cf. Eqs. (35)-(39), we now proceed to solve these numer-
ically. We evolve random-noise perturbations of (i) flat
spacetime, and (ii) Schwarzschild spacetime, cf. Sec. IV A
for details of the setup. In Sec. IV B, we perform con-
vergence tests to ensure that our system satisfies the ex-
pected order of convergence. In Sec. IV C, we monitor
the Hamiltonian constraint Ctt, cf. Eq. (41), in order to
confirm the absence of any growth modes.

A. Numerical method

We use a fourth-order finite difference method to
evaluate spatial derivatives and a fourth-order Runge-
Kutta method to evolve in time. The computational
domain is chosen as x ∈ (0, 10M ] (x ∈ (0, 10] for
flat spacetime), working in units of the mass M . We
evolve all our equations in a unigrid with Nx = 1025
points. Hence the grid resolution is ∆x ' 0.01M with
the CourantFriedrichsLewy condition [54] set to 0.25.
Therefore, as we increase Nx (or decrease ∆x), the time
discretization ∆t decreases.

We perform several simulations in order to test
whether the numerical evolution of random initial data
close to (i) flat spacetime and (ii) Schwarzschild space-
time is consistent with a well-posed IVP. For flat space-
time, we initialize the evolution at

u0 = (R, gtt, gtx, gxx, gyy) = (0,−1, 0, 1, 1) ,

v0 = v̇0 = u̇0 = ü0 = 0 . (43)

For Schwarzschild spacetime, we work in in Cartesian
Kerr-Schild coordinate such that

gtt,0 =

√
r

r + 2M
, gtx,0 =

2M

r

x

r + 2M
,

gxx,0 = 1 +
2Mx2

r3
, gyy,0 = 1 +

2My2

r3
,

R0 = 0 ,

v0 = v̇0 = u̇0 = ü0 = 0 , (44)

where r =
√
x2 + y2 + z2 and M is the mass of the

Schwarzschild black hole.

Given the respective background (u0,v0, u̇0, v̇0, ü0),
cf. Eq. (43) for flat and Eq. (44) for Schwarzschild space-
time, we add random noise to all components of initial

0 25 50 75 100 125 150 175 200
t/M

10 12

10 11

10 10

10 9

lo
g 1

0(
di

ffe
re

nc
e)

m0 = 0.01, m2 = 0.01
| tt, low tt, mid|
| tt, mid tt, high| × 16

FIG. 1: Self-convergence test for Schwarzschild spacetime,
evolved until t/M ' 200 with M the mass of the black hole.
We choose m0 = 0.01,m2 = 0.01 in units of M . We plot the
differences of Ctt with different resolutions. The differences
remain small during the entire evolution. The smaller resolu-
tion difference is rescaled by a factor of 16, in agreement with
the expected convergence rate of our implementation.

data, i.e,

ui(t = 0) = ui0 +AnoiseRAND(x) ∀ i = 1, . . . , 5 ,

vi(t = 0) = vi0 +AnoiseRAND(x) ∀ i = 1, . . . , 3 ,

u̇i(t = 0) = u̇i0 +AnoiseRAND(x) ∀ i = 1, . . . , 5 ,

v̇i(t = 0) = v̇i0 +AnoiseRAND(x) ∀ i = 1, . . . , 3 ,

üi(t = 0) = üi0 +AnoiseRAND(x) ∀ i = 1, . . . , 5 . (45)

Here, Anoise is a noise amplitude which we vary from
10−10 to 10−5 and RAND(x) generates random values
between -1 and 1. In Sec. IV B, we present the respective
self-convergence tests to validate our numerical imple-
mentation and to verify the expected rate of convergence
with decreased noise amplitude. Since the random noise
violates the constraints, the above simulations constitute
a robust stability test. In Sec. IV C, we verify explic-
itly that the Hamiltonian constraint does not exhibit any
growth modes that would signal an ill-posed IVP.

B. Convergence Tests

We perform standard convergence tests to confirm the
validity of our implementation and to demonstrate con-
sistency with convergence of numerical errors to a well-
posed continuum system. Since we apply fourth-order
finite-difference stencils, the expected convergence rate
is four. We choose a coarsest resolution of h0 = 0.01
and then decrease to different resolutions hi with i =
0, 1, . . . , 5 such that hi+1 = hi/2. Further, we decrease
the grid spacing by a factor of 2 when we increase the
resolution.

Standard convergence tests have to be performed with
respect to a specified norm, suitable for the given system
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m0 = 0.01, m2 = 0.01

0 2 4 6 8 10 12 14
simulation time t/(tstep × t)

2.0
2.5
3.0
3.5
4.0
4.5
5.0

log2(||Fh0||/||Fh1||)
log2(||Fh1||/||Fh2||)
log2(||Fh2||/||Fh3||)
log2(||Fh3||/||Fh4||)

FIG. 2: Exact convergence test. Both L2 (Above) and H1

(Below) are computed and show expected convergence ratio.

of evolution equations. If second-order spatial deriva-
tives of the evolution variables dominate the numeri-
cal evolution, the standard L2 norm may not be ap-
propriate and a different norm, such as H1, may be
more suitable, cf. [65, 66] for more comprehensive dis-
cussion. Indeed, the implemented system of evolution
equations, cf. Eqs. (35)-(39), may contain second-order
spatial derivatives. Due to the complexity of the system,
it is non-trivial to identify which of the evolution vari-
ables are dominated by such second-order spatial deriva-
tives. Therefore, we perform and compare convergence
tests with respect to both the conventional L2 as well as
the H1 norm.

Fig. 1 summarizes the result of these convergence test.
We plot differences (in L2 norm) of the constraint value,
Ctt, with different resolutions as a function of time.
The smaller resolution difference is re-scaled by a factor
of 16, which corresponds to the expected fourth-order
convergence rate, as detailed below. The differences
remain small and both lines lie on top of each other
which confirms the fourth-order convergence.

To be specific, the self-convergence ratio is given by

Cself = log2

||Fhi
− Fhi+1

||q
||Fhi+1 − Fhi+2 ||q

, (46)

where F is the state vector for all evolution variables, i.e.,
F = (u,v, u̇, v̇, ü)T , and || · ||q is a general expression for
different norms. In the following, we denote with || · ||L2

and || · ||H1 the L2 and H1 norm, respectively. These
norms are computed in a discrete approximation that
replaces each continuum norm [67].
The exact convergence ratio, with Fexact = 0, is given by

Cexact = log2

||Fhi − Fexact||q
||Fhi+1

− Fexact||q
= log2

||Fhi ||q
||Fhi+1

||q
. (47)

2.0
2.5
3.0
3.5
4.0
4.5
5.0

m0 = 0.01, m2 = 0.01

0 2 4 6 8 10 12 14
simulation time t/(tstep × t)

2.0
2.5
3.0
3.5
4.0
4.5
5.0

log2(||Fh0 Fh1||/||Fh1 Fh2||)
log2(||Fh1 Fh2||/||Fh2 Fh3||)
log2(||Fh2 Fh3||/||Fh3 Fh4||)
log2(||Fh3 Fh4||/||Fh4 Fh5||)

FIG. 3: Self-convergence test with flat spacetime as a func-
tion of simulation time. We compute both L2 (upper panel)
and H1 (lower panel) norms. Both cases exhibit the expected
convergence ratio.

2.0
2.5
3.0
3.5
4.0
4.5
5.0

m0 = 0.01, m2 = 0.01

0 100 200 300 400 500
t/M

2.0
2.5
3.0
3.5
4.0
4.5
5.0

log2(||Fh0 Fh1||/||Fh1 Fh2||)
log2(||Fh1 Fh2||/||Fh2 Fh3||)
log2(||Fh2 Fh3||/||Fh3 Fh4||)
log2(||Fh3 Fh4||/||Fh4 Fh5||)

FIG. 4: Self-convergence test for Schwarzschild spacetime
as a function of physical time. We compute both L2 (upper
panel) and H1 (lower panel) norms. Both cases exhibit the
expected convergence ratio.

Determining Cexact only requires two different resolutions
and is thus numerically cheaper than determining Cself.
Given the employed fourth-order scheme, the expected
convergence rate is four, in both cases.

The appropriate rescaling of the random noise with de-
creased resolution, is determined by the respective norm.
Let Ahi

be an amplitude of the random noise associated
with the respective resolution hi.
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For the L2 norm, we have

Cexact = log2

||Fhi
||L2

||Fhi+1 ||L2

∼ log2

O(Ahi
)

O(Ahi+1)
. (48)

Hence, for the fourth-order numerical scheme at hand,
we need to multiply the amplitude of random noise with
a factor of 1/16 when doubling the resolution.
For the H1 norm, we have

Cexact = log2

||Fhi
||H1

||Fhi+1 ||H1

= log2

||Fhi ||L2 + ||∇Fhi ||L2

||Fhi+1
||L2

+ ||∇Fhi+1
||L2

∼ log2

O(Ahi
)

2O(Ahi+1
)
, (49)

where ∇F is spatial derivative of F (not a covariant
derivative). To compute ∇F, the centered, second-order
finite-difference method is applied. In this case, the
norm is dominated by the derivative term. Hence, for
the fourth-order numerical scheme at hand, we need to
multiply the amplitude of random noise with a factor of
1/32 when doubling the resolution.
In both cases, the arguments also hold for the self-
convergence ratio.

For all convergence tests, we choose a coarsest noise
amplitude of Ah0 = 10−5. The self-convergence tests, are
performed for flat and Schwarzschild spacetime in the L2

and H1 norm, cf. Figs. 3 and 4. The exact convergence
tests for the L2 and H1 norm are shown in Fig. 2. In all
cases, we verify the expected convergence ratio, both in
L2 and H1, although the L2 result is slightly more noisy.
This is consistent with a well-posed evolution with re-
spect to both norms and we refrain from conclusively de-
termining whether second-order spatial derivatives dom-
inate the evolution. To do so, we would need to examine
the system of evolution equations, cf. Eqs. (35)-(39), term
by term.

C. Absence of growth modes in the constraint
violations

Here, we monitor the behavior of the Hamiltonian con-
straint, cf. Eq. (41), for sufficiently long evolution time.
Since the other constraints (and the evolution equations)
are coupled, it can be expected that violations of any
other constraint will percolate into the Hamiltonian con-
straint. The absence of growth modes in the constraint
violations suggests that we are evolving a well-posed IVP.

For flat spacetime, we evolve initial data up to simula-
tion time, t/(tstep×∆t) ' 15. We find that the Hamilto-
nian constraint first decays and then stabilizes, cf. Fig. 5.
This indicates that the evolution time is sufficiently long
for the constraint violations to settle into a near-stable

0 200 400 600 800 1000
t/M

10 11

10 9

10 7

10 5

10 3

lo
g 1

0[
||

tt
|| 2

]

m0 = 0.01, m2 = 0.01
Anoise = 10 5

Anoise = 10 6

Anoise = 10 7

Anoise = 10 8

Anoise = 10 9

Anoise = 10 10

FIG. 5: Constraint plot (L2-norm of the Hamiltonian con-
straint in Eq. (41)) for flat-space initial data, performing a
noise test with different noise amplitudes, ranging from 10−5

to 10−10, top to bottom. Each curve represents an increase by
a factor of ten in the initial amplitude over the curve below.

0 25 50 75 100 125 150 175 200
t/M

10 8

10 6

10 4

10 2

100

lo
g 1

0[
||

tt
|| 2

]

m0 = 0.01, m2 = 0.01
Anoise = 10 5

Anoise = 10 6

Anoise = 10 7

Anoise = 10 8

Anoise = 10 9

Anoise = 10 10

FIG. 6: Constraint plot (L2-norm of the Hamiltonian con-
straint in Eq. (41)) for Schwarzschild initial data with added
noise. Different noise amplitudes were chosen as described in
Fig. 5

state. There appear to be no growth modes in the con-
straint for flat-space initial data, at least during the mon-
itored time. We conclude that the performed noise test
finds no indications of numerically unstable or ill-posed
behavior.

Similar results persist for initial data corresponding
to a Schwarzschild black hole with mass M . We evolve
simulations until t/M ' 200 which suffices for the con-
straint violations to first decay and the to settle into a
near-stable state. We find no indication of numerically
unstable or ill-posed behaviour

In addition, we vary the masses m0 and m2 of the QG
spin-0 and spin-2 modes, cf. Eq. (3), in order to confirm
that the absence of growth modes in the constraint evo-
lution persists for a range of values for m0 and m2 in
the vicinity of the Schwarzschild mass M , cf. Fig. 7. We
observe numerically stable evolution for all tested values
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0 25 50 75 100 125 150 175 200
t/M

10 9

10 8

10 7

10 6

10 5

10 4
lo

g 1
0[

||
tt
|| 2

]
m0 = 0.1, m2 = 0.1
m0 = 0.1, m2 = 0.01
m0 = 0.01, m2 = 0.1
m0 = 0.01, m2 = 0.01

FIG. 7: Constraint plot for Schwarzschild initial data for
different QG mass parameters m0 and m2 (in units of the
Schwarzschild mass M).

of m0 and m2. The constraint decays and stabilizes over
the investigated time.

We emphasize that this does not test physical stabil-
ity. Even in mass-ranges (for the QG masses m0 and
m2) in which the Schwarzschild solution could become
physically unstable, we expect the constraint evolution
to be numerically stable. In particular, even during
a potential physical decay of Schwarzschild spacetime,
possibly to some other solution of QG [55, 56], the
constraints should be preserved. We will investigate
such physical (in)stability in future work.

Overall, we conclude that, both for flat-space and for
Schwarzschild initial data, no indications of numerically
unstable behavior are found. In conjunction with the
convergence tests performed in Sec. IV B, this strongly
suggests that the evolution is indeed well-posed.

V. CONCLUSION

As a proof of principle for well-posed numerical evo-
lution in beyond-GR theories with higher-curvature op-
erators, we successfully obtain the first fully nonlinear
time evolution in Quadratic Gravity, i.e., for a gravita-
tional theory including the lowest-order EFT corrections
to GR. The system of evolution equations is obtained by
(i) use of harmonic gauge to treat the Ricci scalar and
traceless Ricci tensor as independent variables, cf. [40],
(ii) reduction to spherical symmetry, which preserves har-
monic gauge by use of the Cartoon method [22, 47], and
(iii) order-reduction to a set of manifestly 1st-order (in
time) evolution equations.

We perform non-linear numerical simulations that
are fully consistent with an underlying well-posed IVP
for physically significant initial data. In particular, we
observe numerically stable dynamics, i.e., the absence of
any growth modes, in the spherically-symmetric sector
for random perturbations about flat spacetime and
about the Schwarzschild solution. (Being Ricci-flat, the

latter is also a solution of QG.)

This opens up several opportunities for future work.
As a direct application, we will investigate physically
(un)stable branches of Schwarzschild BHs and other ex-
otic BHs in QG, cf. [56–62], to determine the final state
of spherical gravitational collapse.

As a long-term goal, the present study strongly mo-
tivates that one can also establish a well-posed IVP in
full 3+1 dimensions, within computational infrastruc-
tures such as [63, 64]. We emphasize that while the
proof in [40] guarantees the existence of a well-posed
IVP also in (3+1) dimensions, the explicit construction
of such a formulation remains non-trivial. Establishing
such a well-posed IVP will eventually enable us to per-
form binary-black-hole mergers to extract GW signals in
this theory.

Finally, the presented methodology is, in principle,
applicable also to other theories with higher-order
equations of motion. As long as the order-reduced
equations of motion are amenable to diagonalization to
quasi-linear form, other higher-derivative theories may
also admit a well-posed IVP.
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Appendix A: Explicit form of lower-order terms

The explicit form of the lower-order terms in the metric
Eq. (9) is given by

O1
ab(∂g) = F cΓ(ab)c + 2gedΓce(aΓb)cd + gcdΓeadΓecb ,

(A1)

where the first term vanishes upon use of harmonic coor-
dinates. This comes about from the well-known expan-
sion of the Ricci-tensor in harmonic coordinates.

The explicit form of O2
ab(∂R, ∂R̃, ∂∂g) in the traceless

equation, cf. Eq. (11), is given by
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O2
ab(∂∂R, ∂R̃, ∂∂g) =− 1

3

(
m2

2

m2
0

− 1

)
R,ab−R̃cdgcfged (gef,ab + gab,ef − gae,fb − gfb,ae)

+
1

6

(
R̃abgefgcdgef,cd

)
+ gefgcdR̃e(a

(
gdf,b)c + gb)f,cd − gb)d,cf

)
+2R̃cd gce

[
2Γdf [e Γfa]b + gdf gmngfn,[a

(
ge]m,b + gbm,e] − ge]b,m

) ]
+gcd

[
2Γnc(a

(
ΓmdnR̃b)m + R̃b)n,d

)
+ 2Γmd(b

(
Γna)cR̃mn − R̃a)m,c

)
+gefgmngfn,cR̃e(b

(
gdm,a) + ga)m,d − ga)d,m

) ]
+m2

2R̃ab + 2T
(TL)
ab +

1

12

(
m2

2

m2
0

− 1

)
gabm

2
0R

− 1

3

(
m2

2

m2
0

+ 1

)
RR̃ab − 2gcdR̃acR̃bd +

1

2
gabR̃cdR̃cd . (A2)

We have sorted the contributions in terms of their order
in time derivatives: the first two lines collect all 2nd-
order terms; lines three to five all 1st-order terms; the
last two lines collect the 0th-order contributions.

Furthermore, we have underlined terms arising from

R̃cdRabcd (continuous) and from �R̃ab (dashed). The

former agree with [40] (apart from minor sign typos)
but the latter do not. In any case, as discussed in the
main text, a modification of these terms (as long as their
derivative order is preserved) does not impact Noakes’
proof of well-posedness.
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