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We present a new choice of initial data for binary black hole simulations that significantly improves
the efficiency of high-spin simulations. We use spherical Kerr-Schild coordinates, where the horizon
of a rotating black hole is spherical, for each black hole. The superposed spherical Kerr-Schild initial
data reduces the runtime by a factor of two compared to standard superposed Kerr-Schild for an
intermediate resolution spin-0.99 binary-black-hole simulation. We also explore different variations
of the gauge conditions imposed during the evolution, one of which produces an additional speedup
of 1.3.

I. INTRODUCTION

The exciting era of gravitational wave astronomy
started with the first detection of a gravitational-wave
(GW) in 2015 by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1–4]. The event, named
GW150914, was generated by a binary-black-hole (BBH)
system. About 50 detections have been published so far
[5, 6] and most of them were emitted by BBHs, includ-
ing GW190521 [7], the first detection of an intermediate-
mass black-hole (BH).

GW detection requires accurate waveform templates
to extract the astrophysical signal from the noisy data.
While a full analytic solution of BBH evolution is
not known, analytical approximations like the post-
Newtonian method can generate approximate BBH wave-
forms [8]. However, such approximations fail to describe
the strong-field regime as the black holes merge [8]. Nu-
merical relativity is currently the only way to model the
merger event and provide full inspiral-merger-ringdown
waveforms. Comparison between these numerically in-
formed waveforms and detected signals allows GW ob-
servatories to extract physical properties about compact
objects [4, 9] and measure possible deviations from gen-
eral relativity [10–13].

Since the first stable BBH simulations in 2005 [14–
16], numerical relativists have enlarged the parameter
space of simulations to include higher spins and mass
ratios [17–25]. Nowadays, for example, the SXS Collab-
oration has published BBH simulations of dimensionless
spin magnitude up to 0.998 in its catalog [25]. Though
all the BBH events published so far by LIGO and Virgo
have effective spin smaller than 0.9 (within 90% credi-
ble intervals) [5, 6], spin is not constrained to lie in this
range and there is evidence of nearly-extremal-spin BHs
in X-ray binaries [26–30]. Thus, we must have models of
high-spin BBH GW events so they can be searched for in
the detector data.

There are several interesting phenomena that can oc-
cur for a high-spin BBH and not for a non-spinning one.
Two examples are the hangup effect [31] and the flip-flop
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effect [32]. The hangup effect describes how the merger is
delayed or accelerated by spin-orbit coupling compared
to a non-spinning BBH merger, while the flip-flop effect
may reverse the spin direction of a progenitor BH by
spin-spin coupling. Both effects can be exaggerated by
near-extremal spins, and can only be further understood
by simulations. Furthermore, high-spin simulations are
needed for filling out the parameter space for surrogate
models [33–36] and effective-one-body models [37–40].
A recent development among surrogate models is NR-
Sur7dq4 (together with NRSur7dq4Remnant), which is
trained with numerical simulations of spin up to 0.8 [41].
An instance of effective-one-body calibrations using sim-
ulations of spin up to 0.98 can be found in Ref. [42].

Unfortunately, high-spin simulations are very compu-
tationally expensive, and rapidly increase in cost as the
spins are increased. For example, a 25-orbit spin-0.9
BBH simulation takes weeks to complete, while a 25-orbit
spin-0.99 simulation takes months to complete. Thus, a
more efficient method of performing the simulations is
highly desirable. Our objective in this paper is to develop
faster high-spin BBH simulations by changing gauge con-
ditions.

All simulations in this paper were done using the Spec-
tral Einstein Code (SpEC) [43]. SpEC uses the first-
order generalized harmonic evolution system to simulate
the spacetime [44]. Before evolving spacetime quanti-
ties, SpEC solves for the initial data for BBH evolution
using the extended conformal thin-sandwich formalism
[45, 46]. SpEC chooses the free data to be given by a
Gaussian-weighted combination of two single BH analytic
solutions [47]. A traditional choice for the single BH an-
alytic solution is Kerr-Schild (KS), while more recently
Harmonic-Kerr has been used successfully [48]. Simu-
lations starting with Harmonic-Kerr initial data are up
to 30% faster than ones starting with KS. However, the
Harmonic-Kerr initial data can only be solved for spins
smaller than 0.7 [48]. Ref. [49] extends Harmonic-Kerr
initial data to spin-0.9 BBH simulations by using a mod-
ified version of Harmonic-Kerr, but the overall compu-
tational efficiency is not greatly improved compared to
simulations using the KS initial data.

In this paper we develop and use several gauge con-
ditions both in the initial data and in the evolution.
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We compare their stability, efficiency, and gravitational
waveform output with the goal of making high-spin (di-
mensionless spin χ ≥ 0.9) simulations cheaper. Our
most successful choice of initial data reduces the cost of
χ = 0.99 aligned-spin simulations by nearly a factor of
two.

The rest of this paper is organized as follows: In Sec. II,
we describe the numerical methods that are crucial in
SpEC BBH simulations and fundamental in the following
discussion of this paper. In Sec. III, we introduce spher-
ical Kerr-Schild as a spherical version of KS and wide
Kerr-Schild as a modification of spherical Kerr-Schild
that increases the coordinate separation between the in-
ner and outer horizons. We will also briefly discuss how
we delay the transition from the initial data gauge to the
evolution gauge. In Sec. IV, we implement these new
configurations in single BH and BBH simulations, and
analyze their effect on computational cost, constraint vi-
olations, wavefroms, resolution, and apparent horizons.
We finally summarize the results and consider future de-
velopments in Sec. V.

Here are some conventions used in this paper. (1) un-
less specified, spin refers to the dimensionless spin χ.
Dimensionful spin refers to spin angular momentum per
unit mass, and is labeled by a. (2) We use geometric
units, i.e. G = c = 1. All dimensionful quantities in this
paper are then equipped with units that are an integer
power of M , the total ADM mass of a system. For ex-
ample, time and distance have units of M . (3) We use
letters at the beginning of the Latin alphabet (a, b, c, . . . )
as spacetime indices, and later letters (i, j, k, . . . ) as spa-
tial indices. (4) We reserve symbols gab, γij , α and βi for
spacetime metric, spatial metric, lapse, and shift.

II. NUMERICAL TECHNIQUES

In this section we provide an overview of some of the
numerical methods SpEC uses. We start by briefly de-
scribing the extended conformal thin-sandwich formal-
ism and SpEC’s choice of free data in Sec. II A. Next
we discuss the first-order generalized harmonic system
in Sec. II B. Finally, in Sec. II C we briefly describe the
configuration of the computational domain in SpEC.

A. Binary-black-hole initial data

We adopt the standard 3+1 form of the spacetime met-
ric gab:

ds2 = −α2 dt2 + γij
(
βi dt+ dxi

) (
βj dt+ dxj

)
, (1)

where α is the lapse, βi the shift, and γij the spatial met-
ric. In vacuum, the spacetime metric gab and its time
derivative ∂tgab must satisfy the Hamiltonian and mo-

mentum constraints:

R+K2 −KijK
ij = 0, (2)

Dj(K
ij − γijK) = 0, (3)

where R is the spatial Ricci scalar, Di the spatial covari-
ant derivative, Kij the extrinsic curvature, and K = Ki

i

the trace of the extrinsic curvature.
The spatial metric and extrinsic curvature are split us-

ing a conformal decomposition as

γij = ψ4γ̄ij , (4)

Kij = Aij +
1

3
γijK, (5)

where ψ is the conformal factor, γ̄ij the conformal metric,
and Aij the traceless part of Kij . Aij is further decom-
posed as

Aij = ψ−2Āij , (6)

Āij =
ψ6

2α

(
(L̄β)ij − ūij

)
, (7)

where ūij ≡ ∂tγ̄ij (note that γ̄ij ūij = 0 to uniquely fix
ūij [50]), and the vector gradient part (L̄β)ij is defined
as

(L̄β)ij ≡ D̄iβj + D̄jβi − 2

3
γ̄ijD̄kβ

k, (8)

with D̄j the covariant derivative associated with γ̄ij .
In the extended conformal thin-sandwich formalism,

γ̄ij , ūij , K and ∂tK are freely specifiable. The elliptic
solver in SpEC [51] computes ψ, α, and βi by solving:

D̄j

(
ψ6

2α
(L̄β)ij

)
− D̄j

(
ψ6

2α
ūij
)
− 2

3
ψ6D̄iK = 0, (9)

D̄2ψ − 1

8
ψR̄− 1

12
ψ5K2 +

1

8
ψ−7ĀijĀ

ij = 0, (10)

D̄2(αψ)− αψ
(

7

8
ψ−8ĀijĀ

ij +
5

12
ψ4K2 +

1

8
R̄

)
+ ψ5(∂tK − βk∂kK) = 0, (11)

where R̄ is the conformal Ricci scalar. Eqs. (4) and (5)
are then used to compute γij and Kij .

The free variables ūij and ∂tK are typically set to 0
to construct quasi-equilibrium initial data. SpEC sets
the remaining free variables γ̄ij and K using a superpo-
sition of two single BH spacetimes blended together by
a Gaussian weight function [47]. We define γρij and Kρ

to refer to these quantities for a boosted spinning BH,
where ρ = A,B labels each BH. γ̄ij and K are chosen to
be [47]

γ̄ij ≡ ηij +
∑
ρ

e−r
2
ρ/w

2
ρ(γρij − ηij), (12)

K ≡
∑
ρ

e−r
2
ρ/w

2
ρKρ, (13)
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where ηij is the 3D flat metric, rρ is the Euclidean dis-
tance from BH ρ, and wρ controls the falloff of BH ρ’s
contribution. We use wρ equal to 3/5 of the Euclidean
distance between the BBH’s L1 Lagrange point (Eu-
clidean center-of-mass) and BH ρ’s center. This choice of
wρ is wider than a BH’s size but still relatively far from
the companion BH.

The most common choice for the free data at each
BH is Kerr-Schild (KS), though using Harmonic-Kerr has
much promise for low-spin binaries [48]. In this paper, we
use a Kerr-Schild-like gauge where the horizon is spheri-
cal at each black hole to set the free data. We will discuss
the KS and KS-like gauges in Sec. III.

B. Generalized harmonic evolution system

SpEC evolves the initial data using the first-order gen-
eralized harmonic (GH) system [44]. (See Ref. [52–54]
for more details on the GH systems.) The coordinates
xa (referred to as generalized harmonic coordinates) sat-
isfy the inhomogeneous wave equation

Ha = ∇b∇bxa = −Γa, (14)

where Γa ≡ gbcΓabc is the trace of the Christoffel sym-
bol, and ∇a the gab-compatible covariant derivative. The
gauge source function Ha = Ha(xb, gcd) is any arbitrary
function dependent only on xb and gcd (but not deriva-
tives of gab). In these coordinates, the vacuum Einstein
equations can be cast into a manifestly hyperbolic form:

gcd∂c∂dgab =− 2∇(aHb)

+ 2gcdgef (∂egca∂fgdb − ΓaceΓbdf ), (15)

where Γabc = gadΓ
d
bc. After expanding Eq. (15) into a

first-order representation (done analogously to expand-
ing the covariant scalar field system [55, 56]) and adding
constraint damping terms (see [14, 44, 54, 57, 58] for de-
tailed discussions on constraint damping), we arrive at
the GH evolution equations implemented in SpEC:

∂tgab = −αΠab − γ1βiΦiab + (1 + γ1)βk∂kgab, (16)

∂tΠab = 2αgcd
(
gijΦicaΦjdb −ΠcaΠdb − gefΓaceΓbdf

)
− 2α∇(aHb) −

1

2
αncndΠcdΠab − αncΠcig

ijΦjab

+ αγ0
[
2δc(anb) − (1 + γ3)gabn

c
]

(Hc + Γc)

− γ1γ2βiΦiab + βk∂kΠab − αgki∂kΦiab

+ γ1γ2β
k∂kgab, (17)

∂tΦiab =
1

2
αncndΦicdΠab + αgjkncΦijcΦkab − αγ2Φiab

+ βk∂kΦiab − α∂iΠab + αγ2∂igab, (18)

where gab, Φiab ≡ ∂igab, Πab ≡ −nc∂cgab are the three
dynamical fields being evolved, γ0, γ1, γ2 and γ3 the con-
straint damping parameters, and na the future-pointing

unit normal to constant-t spatial hypersurfaces. See the
Appendix for values of γ0, γ1, γ2 and γ3 used in the sim-
ulations of this paper.

The simplest choice of gauge source function is the har-
monic gauge, where Ha = 0. The harmonic gauge dates
back to Einstein’s work [59] and has been an important
tool in many aspects of analytical general relativity [60–
62]. Unfortunately, using a harmonic gauge condition in
simulations of BBH mergers leads to explosive growth
of γ = det(γij) near the apparent horizons as two BHs
merge [63]. To suppress such growth, SpEC adopts the
damped wave gauge or damped harmonic (DH) gauge
Ha = Ha

DH [63]:

Ha
DH = µLn

a ln

(√
γ

α

)
− µS

βi

α
γai, (19)

µL = µS = e−(ln 1015)r2/σ2

[
ln

(√
γ

α

)]2
, (20)

where r is the Euclidean radius, and σ = 100M . Note
that the DH gauge reduces to the harmonic gauge to
machine precision for r ≥ σ.

SpEC uses the following gauge transition from the ini-
tial gauge Ha

init to the DH gauge Ha
DH during evolution:

Ha = F (t)Ha
init + [1− F (t)]Ha

DH, (21)

where

F (t) =

exp

[
−
(
t− t0
w

)4
]
, t ≥ t0

1, t < t0.

(22)

Here t0 is the start time and w is the temporal width of
the transition. Unless stated otherwise, we choose t0 =
0M and w = 50M . Note that this transition function
is not finely tuned. It is chosen because it decays to 0
rapidly for large t and has a continuous third derivative
at t = t0.

C. Computational Domain

SpEC adopts a dual-frame configuration for BBH sim-
ulations [64]. In the inertial frame the two BHs are orbit-
ing each other and deform as they merge. In contrast, in
the grid frame the BHs are at fixed coordinate locations
and are kept approximately spherical. The two frames
are related by a time-dependent analytic map determined
by feedback control systems in SpEC [65].

SpEC’s domain decomposition is described in the Ap-
pendix of Ref. [66], while the adaptive mesh refinement
(AMR) algoritm is described in Ref. [67, 68]. SpEC uses
spherical shells around each BH. The number of spher-
ical harmonic modes (`) used in the shells around BHs
is a direct proxy for how the shape of each BH affects
the computational cost of a simulation. High-spin BBH
simulations use ` ≥ 40, which results in not only many
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grid points, but also close spacing between grid points. A
simulation with more grid points requires more compu-
tation per time step, while a closer spacing between grid
points requires a smaller time step in order to maintain
stability. Both factors slow down the overall simulation.
With this in mind, we seek to reduce the angular resolu-
tion needed in high-spin BBH simulations, anticipating
faster simulations.

SpEC uses excision to avoid the physical singulari-
ties inside BHs. Specifically, the region within an in-
ner boundary for each BH is excluded from the compu-
tational domain. This boundary is called an excision
surface or excision boundary and lies slightly inside the
apparent horizon (AH) of each BH [54, 65]. Causality
prohibits any physical content in the interior region from
propagating out. The excision surface has to be placed
in a trapped region between the inner and outer hori-
zons for each BH. Since the distance between the inner
and outer horizons decreases as spin increases, the place-
ment of the excision boundary becomes increasingly dif-
ficult as the spin increases. As a result, smaller time step
sizes are necessary to track the apparent horizons and to
keep the excision boundary inside the narrow trapped
region. Thus, a gauge where horizons remain spheri-
cal for any spin should not only decrease the resolution
used by AMR but also reduce the workload in track-
ing the apparent horizons and controlling the excision
boundaries. At the outer boundary, suitable constraint-
preserving boundary condition [44] are imposed.

III. NEW INITIAL DATA AND GAUGE
CONDITIONS

We describe three modifications to SpEC’s current con-
figuration that will be explored in this paper. The major
modification is to introduce a Kerr-Schild-like gauge in
the free initial data, where the horizons are spherical for
any spin. We will refer to this choice as spherical Kerr-
Schild. The other two modifications are variants of the
spherical KS initial data. One variant increases the co-
ordinate distance between the inner and outer horizons
in spherical Kerr-Schild to construct what we refer to as
the wide Kerr-Schild gauge. The other variant keeps the
spherical Kerr-Schild data, but delays the transition to
damped harmonic gauge during the evolution.

A. Spherical Kerr-Schild

The Kerr metric in KS coordinates {t, x, y, z}, with
spin pointing along the z-axis,1 mass M , and angular

1 for spin not along the z-axis adding a 3d rotation suffices to
determine the metric.

  Original KS  Spherical KS

Outer Horizon Inner Horizon Excision Surface

FIG. 1. The xz-plane for a single BH with spin 0.9 along the
z-axis in KS coordinates (left) and spherical KS coordinates
(right). The left diagram shows that the excision surface and
both horizons are spheroids. The right one shows that in
spherical KS coordinates the excision surface and horizons
are spheres.

momentum aM = χM2 is:

gab = ηab + 2Hlalb, (23)

where ηab is the Minkowski metric,

H =
Mr3

r4 + a2z2
, (24)

la =

(
1,
rx+ ay

r2 + a2
,
ry − ax
r2 + a2

,
z

r

)
, (25)

and r implicitly given by

x2 + y2

r2 + a2
+
z2

r2
= 1 (26)

is the radial coordinate in Boyer-Lindquist coordinates.
Since we are only interested in astrophysical BHs, we
restrict ourselves to χ < 1. Then for any nonzero spin,

there are inner and outer horizons r± = (1±
√

1− χ2)M .
In the region r− < r < r+ any object must travel radi-
ally inward, while outside this region (r < r− or r > r+,
excluding horizons) an object can travel both radially
inward and outward. For high spins the horizons r± be-
come closer together and increasingly non-spherical in
the KS coordinate system, requiring greater angular res-
olution to simulate the BHs. This suggests that we might
mitigate the required resolution increase by using coor-
dinates in which the horizons are spherical, as we now
describe.

We denote the spherical KS coordinates by {t, x̄, ȳ, z̄}.
These are related to the KS coordinates {t, x, y, z} by

x̄

r
=

x√
r2 + a2

, (27)

ȳ

r
=

y√
r2 + a2

, (28)

z̄ = z. (29)

Equation (26) describes an oblate spheroid in {x, y, z}
and is equivalent to a sphere in {x̄, ȳ, z̄} coordinates.
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That is,

x̄2 + ȳ2 + z̄2 = r2. (30)

The left panel of Fig. 1 shows the inner and outer horizons
in KS as solid lines, and a sample excision surface as a
dashed line. The right panel of Fig. 1 shows the inner
and outer horizons, and excision surface but in spherical
KS coordinates instead. We will abbreviate spherical KS
as SphKS hereinafter.

B. Wide Kerr-Schild

Recall from Sec. II C that as the BHs inspiral, the exci-
sion regions track the BHs. The excision boundary must
be inside r+ but outside r− so that all information leaves
the computational domain and no boundary condition
must be applied. This becomes more difficult as the spin
increases, partly because the space between r+ and r−
decreases. We attempt to reduce the work of the control
system by expanding the region between the horizons by
performing a radial transformation. Note that the idea
of expanding the region between horizons in the initial
data is not new. For example, Ref. [69] applys a fisheye
radial transformation to the quasi-isotropic coordinates
to expand the horizon size. We here apply a different ra-
dial transformation to the SphKS coordinates. We refer
to this gauge as wide Kerr-Schild (WKS). We continue
using the notation in Sec. III A and denote the coordi-
nates of WKS as {t, x̃, ỹ, z̃}. We introduce a new variable
r̃ that is related to r and choose the coordinate transfor-
mation between WKS and SphKS as

x̃

r̃
=
x̄

r
, (31)

ỹ

r̃
=
ȳ

r
, (32)

z̃

r̃
=
z̄

r
. (33)

With this convention, Eqs. (26) and (30) are equivalent
to

x̃2 + ỹ2 + z̃2 = r̃2, (34)

i.e. a sphere of radius r̃ in WKS.
Starting with SphKS, we want a radial transformation

r → r̃ that keeps r+ fixed but shrinks r− radially inward
by some factor b, i.e.

r̃(r+) = r+, (35)

r̃(r−) = br−. (36)

We can achieve these relations with a quadratic:

r̃(r) =
1− b

r+ − r−
r2 +

br+ − r−
r+ − r−

r, (37)

with r−/r+ ≤ b ≤ 1 to ensure monotonicity, e.g., the
lower bound of b is ∼ 0.75 for a spin-0.99 BH. This b is a

10 1 100 101 102

r/M

0.8

0.9

1.0

1.1

r/r

b=1
b=0.95
b=0.9

b=0.8
r +
r

FIG. 2. The ratio r̃/r as a function of r for various squeezing
parameters b for a spin-0.9 BH with C = 3M and λ = 8M .
The horizontal axis (r/M) is on a logarithmic scale to show
both near-field and far-field behaviors. Since for b = 1 (no
squeezing) r̃ = r, the curve stays at 1. All curves tend to 1
far from the BH to preserve asymptotic flatness, while becom-
ing smaller than 1 inside the outer horizon. The reader can
confirm from the graph that the transformation in Eq. (38)
keeps r+ fixed.

squeezing parameter that controls how far r− is pushed
inwards after the transformation.

Unfortunately, this quadratic has the pathology that
the metric would no longer be asymptotically flat, so we
use the quadratic only near the BH, smoothly transition-
ing to r̃ = r far away from the BH. Specifically,

r(r̃) =

√
B2 + 4Ar̃ −B − 2Ar̃

2A

1

1 + e(r̃−C)/λ
+ r̃, (38)

where

A =
1− b

r+ − r−
, (39)

B =
br+ − r−
r+ − r−

= 1−Ar+. (40)

We write the relation as a function r(r̃) instead of r̃(r)
for easier implementation in SpEC. C and λ are param-
eters of the sigmoid function, controlling the center and
width of transition. Theoretically, we could choose C and
λ to satisfy e(r+−C)/λ ∼ 10−15 so that Eq. (37) holds
exactly inside r+ within numerical precision, but such
combinations always result in large Jacobians. A quan-
tity with large derivatives (and second derivatives) needs
sufficiently high resolution to be resolved, which increases
computational cost. In practice, because the starting
point of WKS is broadening the region between r+ and
r− nonlinearly, we simply choose C = 3M and λ = 8M .
This combination of C and λ maintains stable simula-
tions without increasing computational cost too much.
Fig. 2 shows r̃/r versus r for these C and λ.

C. Delayed evolution gauge transition

When studying evolutions using SphKS initial data
we noticed that the apparent horizons become spheroids
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around t = 50M when the gauge has mostly transitioned
to damped harmonic. With the change to a spheroidal
horizon we observe the expected increase in the required
angular resolution. Since the damped harmonic (DH)
condition is generally only necessary during merger, we
perform simulations where we delay the transition from
Ha

init to Ha
DH in an attempt to extend how long the hori-

zons remain (nearly) spherical. We change both t0 and
w in Eq. (22) and report our results in Sec. IV E.

IV. RESULTS

In this section, we test the new configurations de-
scribed in Sec. III by evolving multiple single BH and
BBH systems. In particular, we will compare the con-
straint violations, computational efficiency, AH shapes,
total number of grid points, and waveforms from differ-
ent simulations.

A. Single spherical Kerr-Schild black-hole

We evolve a spin-0.99 BH to time 4000M in both KS
and SphKS coordinates. We keep the domain decomposi-
tion the same by using the transformation Eqs. (27−29)
from the SphKS domain, such that any sphere is mapped
to a spheroid matching the given spin. AMR is disabled,
ensuring the domain decomposition and resolution are
unchanged throughout the simulations. We fix the radial
resolution in both coordinates but vary the angular res-
olutions, represented by `. The number of angular grid
points is then 2(`+1)2. We investigate 4 single BH simu-
lations: three in KS with ` = 22, 26, 30 and one in SphKS
with ` = 22.

In the top panel of Fig. 3 we show the L2-norm of the

metric errors gab − ganalyticab for all 4 simulations. The
blue lines represent the evolution using KS coordinates,
with ` = 22, 26, 30 corresponding to the solid, dashed
and dash-dotted styles. The metric error decreases as
the angular resolution increases, especially at early time
(before t < 500M). After t ∼ 1000M , the metric error
approaches a 10−7 error floor. This error floor appears
because the numerical error gets reflected at the outer
boundary and amplified when traveling inward [70].2 The
orange line is for the evolution using SphKS coordinates
with ` = 22.3 It reaches the same error floor at late time,
but is at least 10 times smaller than the metric error of
the ` = 22 KS simulation (the blue solid curve).

In the bottom panel of Fig. 3 we show the GH con-
straint energy Ec for these four simulations. The con-
straint energy (or constraint violation) used in this paper

2 The floor is decreased when we move the outer boundary farther
out.

3 Simulations in SphKS coordinates with higher `’s yield nearly the
same metric errors as the ` = 22 curve, so they are not shown.
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Co
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t
FIG. 3. Metric errors and constraint energy of four single BH
simulations. The top panel plots the L2-norm of the error of
the spacetime metric, i.e. the L2-norm of gab − ganalyticab . The
bottom panel plots the L2-norm of the constraint energy. The
blue lines represent the simulations using KS initial data, with
` = 22, 26, 30 in the solid, dashed, and dash-dotted line styles,
while the orange solid lines are results from the SphKS ` = 22
simulation. As ` increases, the KS simulations achieve lower
metric errors and constraint violations. The SphKS ` = 22
simulation has lower metric errors and constraint violations
than the KS ` = 22 case by factors of 10 and 103. Note that
the 10−7 error floor of the metric errors at late times is caused
by the outer boundary condition.

is defined as

Ec =

√∫
C2GH

√
γd3x∫ √

γd3x
. (41)

where

C2GH = δab[γij(CiaCjb + δcdCiacCjbd + γklδcdCikacCjlbd)
+ FaFb + CaCb]. (42)

Here δab is the 4D Kronecker delta and {Ca, Fa, Cia, Ciab,
Cijab} are the 5 constraints used in Ref. [44]. Note that
our definition of Ec is different from the one in Ref. [44].
Among the simulations using KS coordinates, the con-
straint violation is smaller as ` increases. In contrast to
the metric errors, the constraint violations do not hit an
error floor because of the use of a constraint-preserving
boundary condition [70]. We see that the SphKS evolu-
tion has constraint violation over a factor of 103 smaller
than the evolution in KS coordinates using the same an-
gular resolution (` = 22). Even compared to the KS
` = 30 case, the SphKS ` = 22 simulation still has smaller
constraint violation by a factor of 10.
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TABLE I. Parameters for the six BBH simulations studied in Sec. IV B and IV C. ~χA,B are the spin vectors of the progenitor-
BHs. D0, Ω0, ȧ0 and e are the initial coordinate separation, initial orbital frequency, initial rate of change of separation and
eccentricity. All these 6 simulations have mass ratio 1.

~χA,B Initial data gauge D0 [M ] Ω0 ȧ0 e # of orbits

(0, 0, 0.9) KS 15.450 1.4095×10−2 5.3578×10−4 ∼ 0.0003 ∼ 25

SphKS 15.450 1.42×10−2 4.5284×10−4 ∼ 0.0005 ∼ 25

(0, 0, 0.95) KS 11.580 2.0875×10−2 1.0650×10−3 ∼ 0.0007 ∼ 14

SphKS 11.580 2.1100×10−2 8.5921×10−4 ∼ 0.0005 ∼ 14

(0, 0, 0.99) KS 11.577 2.0384×10−2 1.4799×10−3 ∼ 0.0005 ∼ 14

SphKS 11.577 2.0808×10−2 1.1357×10−3 ∼ 0.0002 ∼ 14

Because the horizons are spherical in the SphKS gauge,
spacetime quantities are constructed and evolved directly
in spherical domains. In the KS gauge, quantities are
evolved in spheroidal domains, so a spatial map convert-
ing spheroids to spheres is necessary in the spectral cal-
culation of derivatives. The Jacobian and Hessian of this
spatial map and its inverse can introduce errors. Thus, in
Fig. 3 we see the single BH simulation in SphKS provides
a more accurate result than in KS.

The KS ` = 22 simulation takes 978 CPU hours to
reach t = 4000M , while the SphKS ` = 22 simulation
takes 948 CPU hours on the same number of cores. How-
ever, a better comparison is to the ` = 26 KS case, which
takes 1438 CPU hours and still has considerably larger
errors. It may not be surprising that we are able to reduce
the numerical error of single BH simulations by using co-
ordinates better adapted to the geometry of the BH, but
it is reassuring to have confirmation.

B. Spin-0.9 binary-black-hole simulations using
spherical Kerr-Schild initial data

We evolve 3 pairs of non-eccentric, non-precessing,
equal-mass, equal-spin BBH systems, corresponding to
spin 0.9, 0.95 and 0.99, all along the z-axis. Each pair
consists of a run with superposed KS initial data and
another run with superposed SphKS initial data. They
both merge after nearly the same number of orbits and
at nearly the same simulation time. The initial orbital
frequency Ω0 and the initial rate of change of separation
ȧ0 are tuned separately for each run, subject to a fixed
initial separation D0. We perform this tuning by eccen-
tricity reduction [71] to achieve a negligible eccentricity
(e < 0.0007). The specific values of these parameters, in-
cluding the number of orbits, are provided in Table I. Fur-
thermore, we simulate each BBH run at three resolutions,
Lev-1, Lev-2, and Lev-3. For Lev-i, the target truncation
error of the AMR algorithm is ∼ 2× 4−i × 10−4.

We focus on the spin-0.9 and spin-0.99 simulations in
this paper. Comparisons of CPU times and constraint en-
ergy (Eq. (41)) between the two gauges for the spin-0.9
and spin-0.99 simulations are shown in Fig. 4. Compar-
ison of waveforms for the spin-0.9 and spin-0.99 Lev-3

TABLE II. CPU times at the end of the six BBH simulations.
TKS and TSphKS are the CPU times with the KS and SphKS
initial data. We calculate the ratio TSphKS/TKS for each spin
and Lev in the fifth column. A smaller ratio means the SphKS
simulation is more efficient than the KS simulation. We see
improvements in all cases. The CPU time ratio ranges from
∼0.56 to ∼0.93. In the two most expensive runs, spin-0.95
Lev-3 and spin-0.99 Lev-3 runs, using the SphKS initial data
is almost two times faster than using the KS initial data.

Spin Lev TKS [hr] TSphKS [hr] TSphKS/TKS

0.9 1 10582 8307 0.785

2 16957 14628 0.863

3 23369 21272 0.910

0.95 1 7318 6778 0.926

2 10273 9094 0.885

3 22697 13104 0.577

0.99 1 14651 13147 0.897

2 28764 18312 0.637

3 70709 39583 0.560

simulations are shown in Fig. 5. Additionally, the CPU
times4 at the end of ringdown are recorded in Table II.
We will explain and analyze these figures and tables in
greater detail.

We do not show figures for the spin-0.95 case because
the spin-0.95 and spin-0.99 simulations share the same
qualitative behavior. However, we still provide the CPU
times of the spin-0.95 case in Table II to show the trend
that using SphKS accelerates BBH simulations more sig-
nificantly as the spin increases.

1. Efficiency and constraint energy

The top left panel of Fig. 4 shows the CPU time ratio
TSphKS/TKS as a function of simulation time for the spin-

4 Because the number of CPUs used may vary during a simulation,
CPU time is a better measure of efficiency than wallclock time
and we do not include wallclock time in this paper.
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FIG. 4. The left and right columns correspond to spin 0.9 and 0.99. The top row shows the ratio of CPU times (TSphKS/TKS)
between the same Lev using the SphKS and KS initial data. In all cases we see that initially the SphKS initial data is nearly two
times faster than the KS initial data, but late in the simulation this ratio gets closer to 1 since the majority of the simulation
is performed using the damped harmonic gauge. The bottom row shows the constraint energy for the different simulations at
the different resolutions. We see that in all cases the constraint violations between the SphKS and KS initial data are nearly
indistinguishable, demonstrating that the SphKS initial data can achieve similar constraint violations as the KS initial data at
significantly reduced computational cost.

0.9 BBH simulations, where TSphKS and TKS are the CPU
times of SphKS and KS runs. A ratio smaller than one
means SphKS is more efficient than KS. The smaller the
ratio the more efficient the SphKS simulation is. Since all
curves in the top left panel are below 1, the performance
of SphKS runs is overall better. The ratio TSphKS/TKS

at the end of the simulation (after ringdown) is listed in
Table II, together with the CPU times. This CPU time
ratio ranges from 0.79 to 0.91, which means a significant
improvement for a BBH simulation by switching to the
SphKS initial data.

The bottom left panel shows the constraint energy for
both gauges. Solid lines stand for KS while dashed lines
for SphKS. Curves of the same resolution (Lev) are plot-
ted in the same color. We see that the constraint en-
ergy is similar for the same Lev between the SphKS and
KS initial data. This is because AMR adjusts the tar-
get truncation error to control the constraint violations.
What the top and bottom panels together show is that
the SphKS initial data allows us to perform simulations
with the same constraint violations at a reduced compu-
tational cost. Furthermore, we observe exponential con-
vergence of the constraint energy between t ∼ 700M and
merger. Before t ∼ 700M the curves in different Levs
overlap and their values are much greater than the later
portion. This is because the AMR algorithm is disabled
in the wave zone before t ∼ 700M to avoid using excessive

computational resources to resolve the junk radiation.

2. Waveforms

We extract the strain h on multiple spherical surfaces
of Euclidean radii r and extrapolate rh to I + as a func-
tion of retarded time tret [72–76]. Note that rh is al-
ways center-of-mass-corrected in this paper. We show
the (l = 2,m = 2) and (l = 4,m = 4) modes of rh, de-
noted as rh22 and rh44, in the first row of Fig. 5. Only
the waveforms of the Lev-3 simulations are plotted. In
each graph the blue curve is data from the KS simulation
and the orange curve from the SphKS simulation.

The top left diagram of Fig. 5 shows the real part
of rh22 and rh44. For clearer comparison, these wave-
forms are both time-shifted and phase-shifted. Within
the range of the retarded time tret, we choose the point
tpeak at which |rh22| reaches its maximum, and shift the
horizontal axis by tpeak. We then multiply each waveform
by a phase such that the waveform is real and positive
at tpeak. In other words, after time-shifting and phase-
shifting, |rh22| is peaked (but not necessarily |rh44|) at
t = tpeak, and both rh22 and rh44 have zero phase at
time tret − tpeak = 0. This is similar to the proce-
dure in Ref. [48]. The waveforms of the KS and SphKS
simulations overlap very well after the junk radiation,
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FIG. 5. Strain rh (extrapolated to I +) as a function of retarded time for the Lev-3 simulations. The top and bottom rows are
for spin 0.9 and 0.99. The left column shows Re(rh22) and Re(rh44) while the right column shows |rh22| and |rh44|. Waveforms
in the left column are all time-shifted so that |rh22| (but not |rh44|) reaches its maximum at time 0. They are also phase-shifted
so that both rh22 and rh44 are real at time 0. Waveforms for KS and SphKS overlap well, except for the junk stage and tens
of M after merger in mode (4, 4). Waveforms in the right column are not time-shifted and only the junk parts are displayed.
The amount of junk radiation for both gauges is comparable.

tret & 700M , except for some . 0.001 deviations after
tret − tpeak ∼ 40M during the ringdown phase.

We quantify the similarity between two waveforms by
the mismatch M:

M(h1, h2) = 1−max
δφ,δt

[
|〈h1|h2,δφ,δt〉|√

〈h1|h1〉〈h2,δφ,δt|h2,δφ,δt〉

]
,

(43)

where h2,δφ,δt = eiδφh2(t+ δt) and h1, h2 are waveforms
in a specific mode. δφ and δt are parameters in phase-
and time-shifting to maximize the overlap between two
waveforms. The inner product 〈·|·〉 is defined as

〈f |g〉 =

∫ tf

ti

f(t)g∗(t)dt, (44)

where * denotes complex conjugation. The mismatch
is calculated for each mode (h22 or h44) over the time
domain, unlike Ref. [25], which considers the strain h be-
fore mode decomposition and calculates the inner prod-
uct over the frequency domain. We choose ti to be

700M after the earliest time in KS Lev-3 waveform and
tf = tpeak + 50M . For both the (2, 2) and (4, 4) modes,
the mismatch between KS Lev-2 and KS Lev-3 are at
the same level as the mismatch between KS Lev-3 and
SphKS Lev-3.5 Thus, the waveforms after junk radiation
passes are in good agreement between KS and SphKS.

The high-frequency fluctuation within tret . 700M is
the transient gravitational perturbation called junk ra-
diation. The origin of the junk radiation is the initial
data not representing the true spacetime snapshot of a
BBH system in quasi-equilibrium. The top right diagram
of Fig. 5 shows |rh22| and |rh44| during the junk phase.
This waveform is not time-shifted because we only care
about the qualitative comparison of junk radiation be-
tween the two gauges. Note that the retarded time tret

5 For the (2, 2) mode, the mismatch between KS Lev-2 and KS
Lev-3 is 6.44 × 10−6 while the mismatch between KS Lev-3 and
SphKS Lev-3 is 9.84 × 10−7. For the (4, 4) mode, the mismatch
between KS Lev-2 and KS Lev-3 is 6.72 × 10−5 while the one
between KS Lev-3 and SphKS Lev-3 is 1.61 × 10−4.
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can extend to negative values, and the waveform on this
negative time axis corresponds to perturbations in the
wave zone initial data. Both the KS and SphKS gauges
produce roughly the same amount of junk radiation in
the (2, 2) mode, while SphKS produces more than KS in
the (4, 4) mode.

C. Spin-0.99 binary-black-hole simulations using
spherical Kerr-Schild initial data

We omit a discussion of the spin-0.95 BBH data and
jump directly to the spin-0.99 BBH case because the ef-
ficiency and waveform comparisons are very similar.

1. Efficiency, constraint energy and waveforms

The top right panel of Fig. 4 shows the CPU time ratio
of the SphKS initial data to the KS initial data, while
the bottom right panel of Fig. 4 shows the constraint
energy at different resolutions for the two gauges. The
curves and axes are labeled the same as for the spin-0.9
BBH case. Overall, the behavior of the CPU time ratio
and constraint violations are similar to what we observed
for the spin-0.9 simulations. Specifically, the constraint
violations for the SphKS and KS initial data are very
similar, while the simulations using SphKS initial data
are cheaper than those using KS initial data. The Lev-
3 spin-0.99 SphKS simulation is almost two times faster
than the KS simulation.

The bottom row in Fig. 5 shows the waveforms of the
spin-0.99 BBH simulations for the KS (blue) and SphKS
(orange) initial data. The waveforms of the two gauges
overlap well in both modes (2, 2) and (4, 4), except for
some deviation at later times during ringdown. The mis-
match (Eq. (43)) between KS Lev-3 and SphKS Lev-3 is
also at the same order as between KS Lev-2 and Lev-3 for
each mode. We note that both gauges have roughly the
same amount (but not the exact same form) of junk radi-
ation in both the (2, 2) and (4, 4) modes, in contrast with
the spin-0.9 case where the SphKS gauge (4, 4) mode had
more junk radiation. The waveforms for both the SphKS
and KS initial data being very similar and the SphKS ini-
tial data simulation being nearly twice as fast for higher
resolutions demonstrate the advantage of using SphKS
initial data for accurate and efficient high-spin BBH sim-
ulations.

2. Apparent horizon analysis

SpEC decomposes the computational domain into mul-
tiple subdomains (Sec. II C). There is an innermost spher-
ical shell subdomain that encircles each BH and contains
the BH’s apparent horizon (AH). The shape of the AH
needs to be resolved, so we expect more spherical AHs to

FIG. 6. Apparent horizons of a progenitor-BH in the SphKS
spin-0.99 Lev-3 BBH system, at t = 0M (left) and t = 50M
(right). The apparent horizon is spherical at t = 0M , which is
a key feature of the SphKS gauge. The transition to damped
harmonic gauge is mostly complete by t = 50M , when we can
see that the horizon is no longer spherical.

require lower resolutions. For concreteness, we will focus
on the AHs of the Lev-3 spin-0.99 BBH simulations.

Fig. 6 shows the AH profile of a progenitor-BH at two
different times in the SphKS run. The left picture is at
the beginning of evolution (t = 0M), and clearly shows
that the horizon is spherical in the SphKS gauge. At
t = 0M , the simulation starts to undergo a smooth tran-
sition from the quasi-equilibrium gauge to damped har-
monic (DH) gauge, with the temporal width w = 50M
(Sec. II B). The right picture shows the AH at t = 50M ,
at which point the AH is already non-spherical. In ad-
dition to the images of the AH, we record the angular
resolution L used to construct AHs by the AH finder
[65], in the top panel of Fig. 7. The graph shows the
angular resolution L of Lev-3 runs in both gauges for
t < 500M . Because the AH in KS gauge starts as a
distorted spheroid, the angular resolution L in the KS
simulation stays at L = 22 immediately after the start
and throughout the DH gauge transition. This suggests
that the AH in the DH gauge is close to the spheroidal
AH in the KS gauge. In the SphKS gauge, L starts from
a relatively low value (13) because of the spherical shape
of the AH in the initial data and then climbs to a con-
stant value throughout the DH gauge transition. This
behavior of L matches our expectation.

Although the AHs quickly lose their spherical shape,
we have found that the SphKS increases the speed of
the simulation far beyond t ∼ 50M (see the top right
panel of Fig. 4 and also the top left panel of Fig. 8). In
the bottom panel of Fig. 7 we show the number of grid
points in the innermost shell surrounding each BH. We
see that even though the angular resolution used by the
AH finder is nearly identical once the transition to DH
gauge is complete, the number of points used near the
BHs is significantly lower for the SphKS initial data all
the way to t ∼ 2000M .
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FIG. 7. The top graph depicts the angular resolution L used
by the AH finder. L in the KS run stays constant immediately
after t = 0M , suggesting that the AHs in the DH and KS
gauges are similar. In the SphKS case, L starts at a relatively
low value and then increases to a constant during the DH
gauge transition. The bottom graph records the total number
of grid points in the innermost spheres surrounding the BHs.

3. Speedup analysis

Speeding up the simulations significantly while keep-
ing constraint violations and waveforms almost the same
is encouraging. In this section we identify the contri-
butions that lead to such a large speedup. It is almost
impossible to quantitatively decompose the speedup into
various algorithms’ contributions, but we may still obtain
some qualitative insight from several relevant diagnostics
of the evolution.

Fig. 8 shows four such quantities. They are the simu-
lation rate (dT/dt, i.e. the derivative of CPU time with
respect to simulation time), total number of grid points,
minimum grid spacing, and time step size. There are
six curves in each graph, representing various Levs and
gauges. Since most of the speedup occurs before the
merger (∼ 2340M), we restrict our plots to 0 ≤ t ≤
2300M .

The earlier graph of CPU time ratio versus simulation
time in Fig. 4 provides an overall comparison of computa-
tional cost. By contrast, an instantaneous comparison of
efficiency between gauges can be quantified by the deriva-
tive dT/dt, as shown in the top left panel of Fig. 8. A
slower simulation results in a higher curve in this graph,
since more CPU time is required to compute a unit of
simulation time. Given a fixed Lev, the curve for KS al-
most always lies above the one for SphKS, so a SphKS

run is faster than a KS run not only collectively, but also
at almost every moment. The difference in dT/dt be-
tween gauges is larger as Lev increases, meaning that the
SphKS gauge is especially useful if both high spin and
high accuracy are desired, as seen previously in Fig. 4.
We note that along the solid purple curve (KS Lev-3)
in Fig. 8 the value of dT/dt stays nearly constant af-
ter the beginning, but then plummets to the level of the
dashed purple curve (SphKS Lev-3) at ∼ 1400M . This
drop is related to the AMR algorithm (Sec. II C) rear-
ranging the shells near the BHs. Attempts to replicate
this domain configuration at earlier times led to unstable
simulations. We will continue observing this behavior at
1400M throughout the next several graphs.

To better understand the source of the speedup that
the SphKS initial data provides, let us first look at the
number of grid points used by the SphKS and KS simula-
tions as a function of time. The top right panel of Fig. 8
shows the number of grid points as a function of time for
both gauges and all three resolutions. While the Lev-1
and Lev-3 SphKS simulations have fewer grid points than
KS, the trends of their curves do not match the dT/dt
curves. For example, the number of grid points for the
Lev-3 simulations approach each other before t ∼ 250M ,
while dT/dt is still much smaller for the SphKS simula-
tion. More surprisingly, the Lev-2 SphKS simulation uses
more total grid points than the Lev-2 KS simulation, but
still has a smaller dT/dt. These differing trends between
simulation rate and number of grid points suggests that
there is another major contributing factor responsible for
the observed speedup.

Next we look at the CourantFriedrichsLewy condition
[77], by which the time step size is adjusted according
to the spacing between grid points. If the spacing is
narrower, then the time step size must be smaller, making
the simulation slower. We plot the minimum grid spacing
in the bottom left and the time step size in the bottom
right panel of Fig. 8. We see that the minimum grid
spacing for SphKS is larger than for KS in the first several
hundred M , except for the region t . 40M . However,
they both reach the same level later in the evolution for
all Levs. The bottom right panel of Fig. 8 shows that
the SphKS time step size is generally larger than the KS
time step. Again, the difference is also more noticeable
in the first several hundred M .

Focusing on the Lev-3 curves we see that SphKS has a
larger minimum grid spacing, a larger time step size and
faster simulation rate than KS in 40M < t < 1400M . We
also check that the minimum grid spacing is always lo-
cated in the innermost shells near BHs in this time range
for both KS and SphKS simulations. Around 1400M in
the KS simulation AMR changes the grid, resulting in
fewer grid points in the innermost shells (see Fig. 7) and
a minimum grid spacing, and a time step comparable to
the SphKS case. At this point the SphKS and KS sim-
ulations also have approximately the same dT/dt. This
leads us to conclude that the more sparse distribution of
grid points near the BHs in a simulation with SphKS ini-
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FIG. 8. Four quantities related to the speedup in the spin-0.99 BBH simulations. The top left graph shows the simulation rate
dT/dt, and we see that the speedup occurs throughout the evolution. The top right graph implies that the difference in the
total number of grid points between two gauges cannot fully explain the speedup. The bottom two graphs indicate that the
narrower grid spacing in the KS simulations is a key factor making them slower than the SphKS simulations. The decreased
grid spacing requires a smaller time step size and so the simulation progresses more slowly. Note that the abrupt change at
∼ 1400M in Lev-3 is shared among all four graphs and the bottom panel of Fig. 7 and is caused by an AMR decision.

TABLE III. Parameters of 3 BBH simulations using WKS
initial data with b ∈ {1, 0.95, 0.9}. Note that WKS of b = 1 is
equivalent to SphKS. In all three simulations, the mass ratio
is 1, χA,B = (0, 0, 0.9) and the number of orbits is about 25.
See Table I for definitions of parameters.

Initial gauge D0 [M ] Ω0 ȧ0 e

SphKS 15.450 0.0142 4.53×10−4 ∼ 0.0005

WKS b0.95 15.452 0.0142 4.56×10−4 ∼ 0.0003

WKS b0.9 15.455 0.0142 4.51×10−4 ∼ 0.0003

tial data is the major contributing factor to the speedup.

D. Binary-black-hole simulations using wide
Kerr-Schild initial data

We evolve a 25-orbit, non-precessing, non-eccentric,
equal-mass, spin-0.9 BBH system using the wide Kerr-
Schild (WKS) gauge (Sec. III B) with b = 0.95 and
b = 0.9 (recall that b = 1 corresponds to the SphKS
gauge). The parameters of initial setup are listed in Ta-
ble III. Their values are close to the previous spin-0.9
SphKS BBH run, so we compare these three simulations
together.

We find that the WKS simulations share most of the

properties of the SphKS simulations. Namely, there is no
consistent improvement in either CPU efficiency or con-
straint energy by switching from SphKS to WKS. Both
the strain modes Re(rh22) and Re(rh44) from different
gauges overlap well. However, the amount of junk radia-
tion significantly increases when b 6= 1. We find that the
junk is approximately doubled when b = 0.9 compared
to b = 1. Therefore, we do not recommend the use of
WKS for evolutions of high-spin BBHs.

E. Binary-black-hole simulations with delayed
evolution gauge transition

In this section we simulate BBH systems in SphKS
where we delay the transition from the initial spherical
gauge to damped harmonic (DH) gauge with the hope
that this further improves efficiency. We choose t0 =
4000M and w ∈ {50M, 100M, 400M} (see Eq. (22) for
the definitions of t0 and w). All of these cases share the
same initial parameters with the non-delayed-transition
SphKS spin-0.9 run in Table I. All runs have negligible
eccentricity (e < 0.0007) and we only focus on the highest
resolution, Lev-3.
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FIG. 9. CPU time ratio T/TKS (top panel) and constraint
energy (bottom panel) of the spin-0.9 Lev-3 BBH in SphKS
and delayed SphKS. The speedup by delaying the evolution
gauge is manifest, by a factor of 1.3 compared to SphKS and
1.5 compared to KS. We see that the speedup of the delayed
runs is mostly independent of the transition width. However,
a large increase in the constraint violations is observed at the
moment the gauge transition is started (t = 4000M). Con-
straint violations in the delayed gauge can reach several orders
of magnitude higher than the non-delayed one, immediately
after the transition time t = 4000M .

1. Efficiency and constraint energy

We plot the CPU time ratio T/TKS in the top panel of
Fig. 9. TKS, TSphKS and Tdelay are the CPU times of sim-
ulations with the KS initial data, the SphKS initial data
without delay and the SphKS initial data with delayed
transition of various widths w. A clear improvement is
seen in all delayed simulations, with the average reduc-
tion in final runtime being ∼ 25% compared to SphKS
and ∼ 32% compared to KS.

The temporal part of the DH gauge transition function
has a discontinuous fourth derivative at t0 (Eq. (22)),
which the high-order methods employed by SpEC may
be sensitive to. The fourth derivative is proportional to
1/w4, so a narrower width introduces a larger discon-
tinuity in the derivative, which can lead to larger nu-
merical errors. This feature shows up in the constraint
energy plot (the bottom panel of Fig. 9). All runs have
the same order of constraint violations before 4000M ,
but later the curves of delayed runs abruptly jump up
by several orders of magnitude at 4000M . The jump
in the constraint energy is larger as the temporal width
gets narrower since the derivative is larger and the gauge
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FIG. 10. A comparison of the strain rh between SphKS and
delayed SphKS for the spin-0.9 Lev-3 BBH simulations. The
top panel shows |rh44| in 3800M < tret < 4800M . We see the
unexpected fluctuation in the delayed transition curves for
all three temporal widths. To better see how the oscillations
change with increasing width, the bottom panel depicts the
relative difference in |rh44| of the delayed SphKS compared
to the SphKS simulations. The fluctuation is greater as the
temporal width w becomes narrower.

transition is steeper. This graph also suggests that only
a width of at least 400M would be acceptable for pro-
duction BBH simulations.

2. Waveforms

The large jump in the constraint violations at t =
4000M may result in unphysical effects in the waveforms.
We plot |rh44| in the top panel of Fig. 10 on the interval
3800M < tret < 4800M . We see that large oscillations
appear at t = 4000M in the delayed transition waveforms
that are absent in the non-delayed run. The amplitude
of the oscillations decreases with increasing width. This
is not surprising considering that the discontinuity in the
fourth derivative of the rolloff function decreases as 1/w4.
Note that the waveforms in different gauges overlap be-
fore the transition, suggesting that the oscillations are an
artifact of the non-smooth gauge transition.

To better see how the fluctuations depend on the tran-
sition width w, we calculate the relative difference in
|rh44| of the three delayed runs compared to the non-
delayed one, in the bottom panel of Fig. 10. The dif-
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FIG. 11. Four quantities for the speedup analysis of delaying the DH gauge transition in the spin-0.9 Lev-3 BBH runs. The top
left panel shows that a simulation in delayed SphKS is faster at almost every moment before 4000M . In the top right panel we
see the same level of time step sizes between non-delayed and delayed gauges, so time step is not a contributing factor of the
speedup. The bottom left graph confirms that the AH stays close to spherical before the onset of the gauge transition. From
the bottom right graph we conclude that the significantly smaller amount of grid points is responsible for the speedup from
delaying the gauge transition.

ference is in general smaller as the transition width in-
creases, which is reasonable since a narrower transition
induces a larger discontinuity in the fourth derivatives.
For example, the width-50M curve has relative differ-
ences at the order of 10−1 while the width-400M differ-
ences are 10−3.

To better understand how smoothness in a delayed
gauge transition function affects a waveform, we simulate
the same BBH system as above with SphKS initial data
but with a different gauge transition temporal function.
Instead of Eq. (22), we use

F (t) = exp

[
−
(

t

3500M

)10
]
, t ≥ 0. (45)

This temporal function is smooth after the start of a sim-
ulation and delays the DH gauge until t ∼ 2600M (when
F (t) = 0.95). The waveforms rh22 and rh44 have relative
difference (compared to the non-delayed SphKS simula-
tion) at the same order as the t0 = 4000M,w = 400M
SphKS simulation. We find that the high-frequency noise
in the waveforms is greatly reduced, but not completely
eliminated. Thus, the smoothness in the temporal tran-
sition of the evolution gauge is a factor causing the high-
frequency fluctuation, but not the main factor.

Given the growth in constraint violations and the ap-
pearance of fluctuations in the waveforms, we do not rec-
ommend delaying the gauge transition despite the signif-

icant speedup of the simulations.

3. Speedup analysis

In this section we examine the mechanism of the
speedup from delaying the DH gauge transition.We con-
sider three spin-0.9 Lev-3 simulations: KS initial data,
SphKS initial data without delay and SphKS initial data
with the delayed gauge transition of width w = 400M .
Figure 11 shows the simulation rate dT/dt, time step
size, angular resolution L used by the AH finder, and to-
tal number of grid points in these three simulations. The
blue curves represent the simulation with the KS initial
data, the orange curves are for the non-delayed SphKS
simulation, and the purple ones for the w = 400M de-
layed transition SphKS simulation.

The graph of simulation rate (the top left panel of
Fig. 11) indicates that the delayed SphKS simulation is
more efficient than the other two gauges at almost any
time, especially before the transition time t = 4000M .
The top right panel of Fig. 11 shows that the time step
sizes for the different gauges are nearly equal, so the
time step has no contribution to the speedup. In the
bottom left panel of Fig. 11 we see that the angular res-
olution L in the delayed SphKS simulation is initially
relatively low but then climbs to the level of the other
two gauges near t = 4000M . This is expected because
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the AH is spherical in the SphKS coordinates but highly
non-spherical in the DH gauge, and delaying the tran-
sition keeps the AH in a nearly spherical shape until
t = t0 = 4000M . The bottom right graph of Fig. 11
shows that the total number of grid points in the delayed
SphKS run is considerably smaller than the other two
gauges, especially before t = 4000M . Note that the num-
ber of grid points for delayed SphKS is 19%–32% smaller
than the other two gauges when 1000M < t < 4000M ,
which is comparable to the overall efficiency improve-
ment (1 − Tdelay,w400/TSphKS = 26%). Thus in a SphKS
simulation, delaying the DH gauge transition accelerates
the computation by substantially reducing the number of
grid points.

V. CONCLUSION

In this paper we develop new gauge conditions for BHs
with the goal of reducing the computational cost of high-
spin BBH simulations. We present several different at-
tempts, among which the most promising is the use of
spherical Kerr-Schild, where the horizons of a rotating
BH are spherical. For single BH evolutions using spher-
ical Kerr-Schild, we find a factor of 10 reduction in the
metric error and 1000 in the constraint energy, as com-
pared to Kerr-Schild with the same resolution. For BBH
evolutions, we see efficiency improvement with equal ac-
curacy. In general we find that the speedup is greater for
simulations with stricter truncation error tolerances and
higher spin. Specifically, we observe an impressive fac-
tor of two reduction in CPU time for the spin-0.99 Lev-
3 (standard resolution of SXS BBH simulations) case.
This new gauge condition will also reduce the computa-
tional cost of extending BBH simulations to higher spins
(e.g. χ = 0.999), allowing waveform catalogs and models
(such as surrogates [33–36]) tuned to numerical relativ-
ity to cover a larger and denser portion of the mass-spin
parameter space with significantly reduced cost.

While the main focus of this paper has been improve-
ments by changing the initial data, we also performed
some experiments where we delay the transition from the
initial data gauge to the damped harmonic gauge used in
the evolution. The goal is to keep the horizons spherical
for longer so that this further reduces the computational
cost of the simulations. In Sec. IV E we find that impos-
ing a spherical gauge condition during the evolution will
produce an additional speedup by a factor of 1.3. How-
ever, one must be careful not to introduce artifacts into
the waveforms when delaying the gauge transition.

Inspired by the benefit of delaying the evolution gauge,
we expect a dynamical spherical gauge condition to be
very useful for simulating high-spin BBHs. As future
work, one can develop a spherical version of damped
harmonic gauge, where the horizons of BHs can remain
(nearly) spherical during the whole evolution. As far
as the initial data gauge is concerned, one may con-
sider blending the spherical Kerr-Schild and Harmonic-

Kerr spatially, or even developing a spherical version of
Harmonic-Kerr with the hope to reduce both the com-
putational cost and junk radiation. Nonetheless, solely
changing the initial data as described in this paper is
certainly worthwhile.
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Appendix: γ0, γ1, γ2 & γ3 used in simulations

SpEC evolves the spacetime of BHs in the first order
GH formalism [44], which is given by Eqs. (16−18). We
consider four constraint damping parameters in this for-
malism for this paper, namely γ0, γ1, γ2 and γ3. These
parameters have been used to simulate BHs in previous
papers. The quantities γ0, γ1 and γ2 are the same as
those in Ref. [44, 68]. These three parameters are set to
nonzero values by default in a SpEC BBH simulation. γ3
in this paper is different from the γ3 used in Ref. [44].
Instead, our γ3 is the same as the parameter ρ used in
Ref. [58]. The authors of Ref. [58] set this parameter to 0
by default, while we explore the possibility of a nonzero
γ3 for single BH simulations in this paper.

We here provide the expressions of γ0, γ1, γ2 and γ3
used for simulations in this paper. Specifically, for single
BH simulations, we choose

γ0M = γ2M = 2 exp

[
−
( rO

7M

)2]
+ 0.001, (A.1)

γ1 = −1, (A.2)

γ3 = 2, (A.3)

where M is the total ADM mass of the system as usual.
γ0 and γ2 are spatially varying and depend on rO, the
Euclidean distance from the origin. We choose the origin
at the geometric center of a single BH. The choice γ1 =
−1 is adopted in the simulations of Ref. [44] as well, which
makes the GH system Eqs. (16−18) linearly degenerate.
Note that γ0, γ2 have dimension M−1 while γ1, γ3 are
dimensionless.

The expressions of the parameters for BBHs are more
complicated than for single BHs. In the ringdown phase,



16

we use

γ0M = γ2M = 0.001 + 7 exp

[
−
( rO

2.5M

)2]
+ 0.1 exp

[
−
( rO

100M

)2]
, (A.4)

γ1 = −1, (A.5)

γ3 = 0. (A.6)

In the inspiral phase, we use

γ0M = γ2M = 0.001 + 0.075 exp

[
−
(
rOascale
2.5D0

)2
]

+
4M

MA
exp

[
−
(
rAascale

7MA

)2
]

+
4M

MB
exp

[
−
(
rBascale

7MB

)2
]
, (A.7)

γ1 = 0.999

{
exp

[
−
(

rO
10D0

)2
]
− 1

}
, (A.8)

γ3 = 0, (A.9)

where MA,MB are the initial Christoudoulou masses [78]
of BH A,B, and rA, rB are the Euclidean distances from
BH A,B. D0 is the initial separation between the two
BHs, used in Table I and III. ascale is equivalent to the
(dimensionless) expansion factor a used in Ref. [64, 65].
ascale is tuned by the control system in SpEC [65], so
it is time-dependent. The three distance variables rA,
rB and rO are measured in the distorted frame of a BBH
simulation. The distorted frame is an intermediate frame
between the grid frame and the inertial frame, and we
point interested readers to Ref. [65] for details on the
relation among these frames. Note that we do not specify
the measurement frame of rO for a single BH simulation,
because the grid, the distorted and the inertial frames
are identical for single BHs in this paper.
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