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Laser frequency noise (LFN) is the dominant source of noise expected in the Laser Interferometer
Space Antenna (LISA) mission, at ∼7 orders of magnitude greater than the typical signal expected
from gravitational waves (GWs). Time-delay interferometry (TDI) suppresses LFN to an accept-
able level by linearly combining measurements from individual spacecraft delayed by durations that
correspond to their relative separations. Knowledge of the delay durations is crucial for TDI ef-
fectiveness. The work reported here extends upon previous studies using data-driven methods for
inferring the delays during the post-processing of raw phasemeter data, also known as TDI ranging
(TDIR). Our TDIR analysis uses Bayesian methods designed to ultimately be included in the LISA
data model as part of a “Global Fit” analysis pipeline. Including TDIR as part of the Global Fit
produces GW inferences which are marginalized over uncertainty in the spacecraft separations and
allows for independent estimation of the spacecraft orbits. We demonstrate Markov Chain Monte
Carlo (MCMC) inferences of the six time-independent delays required in the rigidly rotating approx-
imation of the spacecraft configuration (TDI 1.5) using simulated data. The MCMC uses fractional
delay interpolation (FDI) to digitally delay the raw phase meter data, and we study the sensitivity
of the analysis to the filter length. Varying levels of complexity in the noise covariance matrix are
also examined. Delay estimations are found to result in LFN suppression well below the level of
secondary noises and constraints on the armlengths to O(30) cm over the ∼2.5 Gm baseline.

I. INTRODUCTION

Gravitational waves (GW) are now an important con-
tributor to our understanding of the universe and have
already unlocked many developments since their momen-
tous first detection in 2015. Space-based GW detection
with the Laser Interferometer Space Antenna (LISA)
opens the possibility of detecting the majority of ex-
pected GW sources which lie in the 0.1 mHz – 0.1 Hz
band [1]. Targeting a launch in the 2030s, LISA will mea-
sure the GW induced optical pathlength change between
freely falling test masses using laser beams exchanged
between a rotating array of three separate spacecraft in
heliocentric orbit with mean inter-spacecraft distances of
2.5 million km [1]. These distances make it impossible
to keep the “arms” of the interferometer equal, leaving
the laser frequency fluctuations ∆ν

ν present in the data

at a fractional frequency amplitude of 10−13 Hz−1/2 while
typical GW signals are found near 10−21 Hz−1/2, burying
signals by six to eight orders of magnitude.

Time-delay interferometry (TDI) is a well-studied
method to suppress laser frequency noise (LFN) suffi-
ciently below the level necessary to achieve the mission
science goals. TDI works by applying linear combina-
tions of the interferometric data series shifted by the light
travel time (i.e “delay times” or “delays” or “armlengths”
throughout this paper) between spacecraft to digitally
represent an equal-length interferometer, manifesting a
data product with LFN common to all points of inter-
ference, effectively cancelling the overwhelming LFN and
leaving the signal information intact [2]. TDI requires
knowledge of the delay times at each inter-spacecraft in-

terference point which are functions of the separations
and will vary on the order of ∼ 1 m/s. Delay time in-
put to the TDI equations requires an accuracy estimated
to range from ∼ 3–100 ns (or 1–30 m) depending on the
sample rate, assumptions on the motion of the LISA con-
stellation and interferometric measurement configuration
to suppress LFN adequately [3, 4]. A psuedo-random
noise laser phase modulator will be encoded into the
phasemeter measurements sent to Earth for use in ex-
tracting the spacecraft separations in the pre-data pro-
cessing step, which also involves synchronization of the
clocks on-board each spacecraft [4]. TDI is reviewed ex-
tensively in Ref. [5] and recent developments include new
TDI combinations using spacecraft velocities and accel-
erations that numerically solve for delays [6], a Doppler
shift scaling operation on TDI combinations for imple-
mentation of frequency domain phase measurements [7]
and demonstration of the coupling between the on-board
anti-aliasing filter and the time dependence of the delays
in TDI performance [8].

However as demonstrated in [9], it is possible and ben-
eficial to suppress LFN in the post-processing of the raw
data products, rather than relying on the pre-processed
ranging information which could reduce the amount of
inter-spacecraft communication required, serve as redun-
dancy for the ranging measurement, and provide an al-
ternative method for noise mitigation [10]. This method
is known as Time-Delay Interferometric Ranging (TDIR)
and has been shown to successfully suppress LFN by de-
termining the delay parameters required for TDI by mini-
mizing the noise power in the raw data. The average light
travel time error was shown to range from ∼0.8–133 ns
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depending on the integration time and orbit model used
[9]. Various recent studies have also demonstrated meth-
ods of data-driven LFN suppression. Principal compo-
nent analysis in the frequency domain was implemented
to produce LFN-free data products and independent de-
lay estimation using raw phasemeter measurements as
input to the likelihood function in the LISA data model
in Ref. [11]. A related example of direct use of the in-
terferometer measurements rather than transformed TDI
variables in Ref. [12] generalizes the time dependence of
the delays without truncating the expansion to first or
second order.

A key component to TDIR, as demonstrated in Ref. [9]
and built upon in this work, is fractional delay inter-
polation (FDI), shown to work well for LISA require-
ments [10]. Data is telemetered to Earth at a sampling
rate approximately 107 times less than what is required
for 100 ns accuracy of the delays. FDI reconstructs the
signal at the intermediate time steps between samples
that correspond to the delays by convolving the signal
with a windowed-sinc filter. The filter length corresponds
to the amount of data that must be removed from the
interpolated segment since only the portion where the
filter was completely immersed in the convolution is us-
able. Less data loss is better for LISA since interruptions
in data acquisition are expected. Ref. [10] found that at
a sampling rate of 10 Hz using a LaGrange window with
filter lengthN = 15 meets the interpolation error require-
ments to suppress the LFN below the secondary noises.
We explore methods in section II B to reduce data loss
due to FDI and show that a smaller estimate of the over-
sampling required for FDI is achievable in section III B.

The work presented here aims to extend upon the ideas
of TDIR noise minimization using Bayesian probabilistic
methods, namely a Markov Chain Monte Carlo (MCMC)
algorithm to infer the delays from the raw phase mea-
surements. The product is a package-able function that
can be incorporated into the various GW search algo-
rithms being developed for the LISA mission. Bayesian
methods in gravitational wave data analysis have proved
highly successful in the interpretation of LIGO/Virgo de-
tections [13–16]. A brief example of the algorithm’s suc-
cess in LFN suppression is shown in figure 1 and is further
discussed in section III D. The black curve is an exam-
ple of raw science measurement data containing LFN that
has been suppressed (purple) to well below the secondary
noises (green) by the TDI X channel using the maximum
likelihood point estimates from the posterior distribution
function sampled by the MCMC. The right hand panel
of the figure shows the marginalized posterior distribu-
tion functions for the six inferred armlengths (measured
separately on the outward and return directions between
each spacecraft pair).

Inferences of astrophysical signal properties are made
using parameterized models of the LISA response to in-
cident GWs, which include the detector armlengths in
the modeling. This introduces the opportunity to in-
clude TDIR delay estimation into GW signal extraction

models by treating the delays as additional parameters in
these models and inferring their values by what optimally
agrees with the data. This also allows for an indepen-
dent estimation of the orbital motion of the spacecraft
and a natural way to marginalize over uncertainty in the
spacecraft separations. This approach to TDIR will also
be used to measure the degree to which uncertainty in
the ranging measurement can exist without disrupting
the GW information. Second generation (TDI 2.0) LFN
cancellation which accounts for at least the first order
time dependence of the delays requires knowledge of the
relative spacecraft velocities which is often given by an
analytic model for the spacecraft orbits. Another benefit
to this data-driven ranging is the option to generalize to
arbitrary orbital motion where the velocities are treated
as additional parameters in the model and solved for us-
ing techniques that integrate along the path length be-
ing measured. This is essentially a technique that solves
for the relative orbital motion of the LISA constellation.
By exploring various configurations, we can improve effi-
ciency by finding what best yields the correct parameters
in the analysis.

Before the recent split interferometry design for LISA
[17], armlength accuracy of ≤ 30 ns was expected to be
achievable under a 100 ns requirement ([9],[10]). We up-
date the armlength accuracies attainable using the split
interferometry design in section III D. In the remainder
of this paper, we will demonstrate the performance of the
MCMC TDIR algorithm on simulated data using a rigid
rotating approximation to the LISA orbits. The paper is
organized as follows: Section II describes how LFN en-
ters in the LISA measurement system and provides the
MCMC algorithm details. Section III covers the results
and discussion of the performance testing on simulated
data. We conclude and outlook to future use of the al-
gorithm in section IV.

II. TDIR IMPLEMENTATION USING MCMC
SAMPLING

A. LISA Measurement Description

The LISA measurement system is assumed here to op-
erate under the split interferometry design described in
[17] which combines three interferometric measurements
to extract the GW signal. Each spacecraft contains two
test masses and two optical benches that send and re-
ceive signals in both the clockwise and counter clock-wise
directions of the rotating spacecraft array. Labeling con-
ventions vary widely across TDI studies, but we follow
that of [18] and add the modifications necessary for split
interferometry. The science measurement sij containing
the GW signal is the laser light received from the optical
bench on distant spacecraft i that is adjacent to the local
optical bench j. The test mass measurement εij measures
the motion of the test mass on spacecraft j adjacent to
spacecraft i, and the reference measurement τij interferes



3

(a)
(b)

FIG. 1: (a) TDI X channel residual of the LFN using maximum likelihood parameters from the MCMC posterior
(purple) compared to analytic optical metrology (OMS) and test mass (TM) noise PSD (green) which is an

approximate representation of the GW sensitivity. The LFN component to the science measurement s32 (black) is
also shown to demonstrate LFN input to spacecraft #1 measurements before TDI suppression. (b) Marginalized

posterior distribution functions of the six independently measured delay estimates in nanoseconds for data
containing LFN only. The distributions are centered on the true value for the armlength.

the laser received on the optical bench adjacent to space-
craft i on spacecraft j with the other optical bench on
spacecraft j.

Viewing the array face-on and following the diagram
in Fig. 2, spacecraft separations in the clock-wise direc-
tion (L

′

i) are indicated with a prime and counter clock-
wise directions are un-primed (Li). Because the array
is rotating, the distance between two spacecraft will dif-
fer depending on the direction the laser light is traveling
due to the Sagnac effect (Li 6= L

′

i). Spacecraft sepa-

rations are also time-dependent with L̇i∼1 m/s but we
ignore this for now and assume the array is in rigid ro-
tation, therefore requiring the “flex-free” [5] version of
TDI (“TDI 1.5” [11]) only for this analysis. pij is the
laser frequency noise on the optical bench adjacent to
spacecraft i on spacecraft j. Laser light received in a sci-
ence measurement sij has laser noise pji,k that has been
delayed by the light travel time Lk/c from spacecraft i
to j combined with pij . The ,k notation indicates the
time delay operator Dk that acts on a function f(t) as
Dkf(t) = f(t − Lk

c ). Optical bench motion noise is de-
layed in the science measurements in the same form as
laser noise and is assumed here to be suppressed along
with LFN in the analysis, but is included as a contri-

bution to the overall optical metrology system (OMS)
noise. The remaining OMS noise (readout, shot, etc.) is
assumed to be contained in the science measurement only
and is denoted by nOMS

ij . Test mass (TM) motion noise
entering into εij measurements is combined in the term
nTM
ij . Ignoring the gravitational wave signal and focusing

mainly on LFN suppression here, the six measurements
on spacecraft 1 are as follows in (1). Cyclic permutation
of both indices yields the remaining 12 measurements.

s21 = p12,3′ − p21 + nOMS
21

τ21 = p31 − p21

ε21 = p31 − p21 − 2nTM
21

s31 = p13,2 − p31 + nOMS
31

τ31 = p21 − p31

ε31 = p21 − p31 + 2nTM
31 (1)

B. Data Model and MCMC Implementation

The goal of the MCMC is to estimate the delays ap-
plied to the first generation (rigidly rotating) Michaelson
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FIG. 2: Schematic showing direction of primed and
un-primed delays. Primed delays are clock-wise,

un-primed delays are counter clock-wise.

“XYZ” TDI combinations [5] for effective LFN suppres-
sion. Cyclic permutation of indices in X(t) in Eq. 2 is
applied for Y (t) and Z(t). The parameters estimated are

all delay operators k̂ that appear after a comma.

X(t) = (s31 + s13,2̂) + (s21 + s12,3̂′ )2̂′ 2̂ − (s21 + s12,3̂′ )− (s31 + s13,2̂)3̂3̂′

+
1

2
((τ21 − τ31)2̂′ 2̂3̂3̂′ − (τ21 − τ31)3̂3̂′ − (τ21 − τ31)2̂′ 2̂ + (τ21 − τ31))

+
1

2
((ε31 − τ31)2̂′ 2̂3̂3̂′ + (ε31 − τ31)3̂3̂′ − (ε31 − τ31)2̂′ 2̂ − (ε31 − τ31))

− 1

2
((ε21 − τ21)2̂′ 2̂3̂3̂′ − (ε21 − τ21)3̂3̂′ + (ε21 − τ21)2̂′ 2̂ − (ε21 − τ21))

+ (ε12 − τ12)3̂′ − (ε12 − τ12)3̂′ 2̂′ 2̂ − (ε13 − τ13)2̂ + (ε13 − τ13)2̂3̂3̂′

(2)

Our TDIR analysis uses Gibbs sampling for the in-
dividual armlength parameters in a Metropolis-Hastings
MCMC algorithm that utilizes Bayes’ Theorem (3) to

estimate the posterior distribution p(~θ|~d) of the delay

parameters ~θ = {L̂1, L̂2...} given the data ~d. FDI using
a Lagrange-windowed sinc filter is applied at each iter-
ation of the chain to precisely determine the time series
delayed by the proposed armlength.

p(~θ|~d) ∝ p(~d|~θ)p(~θ) (3)

We assume a uniform prior p(~θ) = U [Lmin, Lmax] where
Lmin and Lmax are the approximate minimum and max-
imum armlengths in lightseconds over the course of a

year in orbit. The data ~d = {X̃(f), Ỹ (f), Z̃(f)} are the
Fourier transforms of the TDI channels using the pro-
posed delay parameters as input at each MCMC itera-
tion. The Gibbs sampler draws each individual parame-
ter separately from a Gaussian distribution centered on
the last accepted value for a given parameter in units of
time with a standard deviation that alternates between
105/c, 103/c, 102/c and 1/c seconds. 50000 steps were
taken for all chains presented here except those in section
III D which used 100000 steps. O(104) samples are taken
on one CPU in around half the time of the duration of

the data being analyzed.

Equation (3) is implemented in logarithmic space, and
the log likelihood function (4) for the complex-valued

random variables in ~d, neglecting constant normalization
factors, is

ln p(~d|~θ) =

fmax∑
i=fmin

− ln(|C|)i −

X,Y,Z∑
j,k

d†jC
−1
jk dk


i

 ,
(4)

where fmin = 10−4 Hz and fmax is restricted to 0.1 Hz
instead of 1 Hz which is typically the assumed maxi-
mum of the LISA band. Interpolation error increases
dramatically at frequencies near the 1 Hz maximum, so
by restricting the maximum band of the likelihood func-
tion to 0.1 Hz (which is just below the transfer frequency
f∗ = c/L), we find in section III B that better parameter
accuracy is achieved using a lower sampling rate and sig-
nificantly shorter filter length. Reducing the size of the
filter length is desirable as it results in less data loss each
time the signal is interrupted.

The noise covariance matrix C(f) describes the TM

and OMS noises present in the d†j and dk terms (i.e.

X̃(f), Ỹ (f) and Z̃(f) channels). All noises on each test
mass and optical bench are independent and assumed
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to be stationary. We explore three versions of the co-
variance matrix at varying levels of complexity. The
first is the set of noise orthogonal “AET” channels [19]
which are combinations of the XY Z channels that re-
sult in a GW-insensitive T channel and, under the as-
sumption of an equal arm configuration, results in a di-
agonal noise covariance matrix. We examined whether
the equal-arm assumption in the noise covariance ma-
trix had any effect on the arm length parameter esti-
mation by deriving an unequal-arm XYZ noise covari-
ance matrix (CUNEQUAL) to compare with results us-
ing the simplified equal-arm XYZ matrix (CEQUAL) and
the AET matrix (CAET). Comparisons are described in
section III C and although the complexity of the noise
covariance matrix is not expected to have a significant
effect on LFN supression, we tested whether it would
have a significant effect on armlength recovery since ac-
curate armlengths could affect the GW parameter esti-
mation. We provide the unequal XYZ matrix for the
rigidly rotating (TDI 1.5) scenario in Eqs. (A1) and
(A2) of the Appendix for potential need in the future.
The diagonal elements of the equal-arm XYZ matrix

are CEQUAL
jj = 16 sin2 (2πfL)SOMS

y + (8 sin2 (4πfL) +

32 sin2 (2πfL))SOMS
y and the off-diagonal elements are

CEQUAL
jk = (4STm

y + SOMS
y )(−4 sin (2πfL) sin (4πfL)).

The AET matrix contains only the diagonal terms where

CAET
00 = CAET

11 = CEQUAL
jj − CEQUAL

jk and CAET
22 =

CEQUAL
jj + 2CEQUAL

jk .

The first term of Eq. (4) is a constant throughout
all iterations of the MCMC for the equal-arm XYZ and
AET implementations, but is updated for each proposed
sample of the chain for the unequal-arm XYZ version
since C is updated with each proposed armlength. The
second term is the χ2 portion of the likelihood function
which is used to examine the data generation method in
section III A and the filter length tests in section III B.

III. PERFORMANCE TESTING

A. Data Simulation

To test the effectiveness of our TDIR algorithm, day-
long segments of data sampled at 4 Hz were simulated.
Laser frequency noise is white noise in the LISA band
10−4−1 Hz with fractional frequency power spectral den-
sity (PSD) SLFN

y = 10−26Hz−1. The remaining test mass
(TM) motion and optical metrology system (OMS) noise
PSDs [1] converted to fractional frequency are

STM
y (f) = (2πfc)−2(3× 10−15)2

(
1 +

(
4× 10−4

f

)2
)(

1 +

(
f

8× 10−3

)4
)

Hz−1 (5)

SOMS
y (f) =

(
2πf

c

)2

(1.5× 10−11)2

(
1 +

(
2× 10−3

f

)4
)

Hz−1. (6)

Because we use FDI both for data simulation and esti-
mating the delays, we first confirmed that the LFN sup-
pression was not falsely successful due to cancellation of
common interpolation error. The minimum filter length
required for a given sampling rate as given in [10] is deter-
mined by the maximum interpolation error in the LISA
band which has a threshold of 10−8 for LISA specifica-
tions. We used the maximum error equation given in [10]
and calculated the minimum LaGrange filter length re-
quired for a sampling rate of 4 Hz and found N ≥ 49.
Data generated using the LaGrange window with N=49
was compared to data beginning with a 1 kHz sampling
rate using a LaGrange window with N=101 and then
down-sampled to 4 Hz. Both oversampling by a factor
of 500 and using a filter length higher than necessary is
assumed to be a sufficient comparison to data generated
at the sampling rate of the analysis. Arm-length poste-
riors are compared in Fig. 3a. The χ2 term of likelihood
function for the two data sets containing laser noises only
(Fig. 3b) are also included to show that the likelihood
values are unchanged as well, demonstrating that the use

of the same interpolation scheme for data simulation and
data analysis does not mislead our conclusions.

B. Interpolation Filter Performance

We examined which part of the band gave the max-
imum interpolation error for a 4 Hz sampling rate and
found that, for all LaGrange-windowed filter lengths
tested between 3 and 201, the maximum interpolation
error was always due to frequency bins above 0.1 Hz and
was usually near 1 Hz. We found that restricting the
maximum frequency bin summed over in the likelihood
function to 0.1 Hz resulted in a few orders of magnitude
greater accuracy in the armlength estimation, allowing
us to test whether a shorter filter length is possible when
the part of the band with the highest interpolation error
is excluded. While the simulated data used to test the
MCMC armlength recovery used the theoretical best case
N=49 for the LaGrange-windowed filter under a sampling
rate of 4 Hz, the MCMC algorithm ran over varying filter
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(a) (b)

FIG. 3: (a) Comparison of MCMC posteriors for the two data generation methods. Corner plots are arm-length
posteriors subtracted by the true values used in the data generation. Shaded regions are 90% credible interval.

Comparing over-sampled plus interpolated data using an initial sampling rate of 1× 103 Hz and N=101
downsampled to 4 Hz (green) to interpolated-only data using the LaGrange filter with N=49 (blue). (b) Comparison

of the χ2
i sum over frequency bins distributions for the two data generation methods.

lengths to determine the minimum filter length possible.
We tested the LaGrange filter over N = 59, 49 and the
remaining odd integers decreasing from 43 to 19. The
armlength posteriors in units of deviation from the ex-
pected values used in the simulation in nanoseconds and
their corresponding

∑
i χ

2
i posteriors are shown in Fig.

4.

Some filter lengths were excluded from the corner plot
in the figure for clarity, but we found that all filter
lengths above N=21 recovered the same delay distribu-
tions. While N = 23 is the minimum filter length re-
quired before parameter accuracy degradation, the χ2

behavior between N = 23 and 27 does not match the
higher filter lengths tested so we adopted the filter length
of N = 29 where the flat asymptotic trend in the median
χ2 begins. This results in 7.25 s of data loss compared to
12.25 s using N = 49. Data losses from interpolation will
accumulate over the multi-year mission lifetime when in-
terruptions cause gaps of missing samples. Minimizing
data losses due to filtering is especially important for the
long duration LISA sources that will remain in band for
the entirety of the mission.

The 0.1 Hz cut-off in the likelihood function also allows
for a lower sampling rate since the oversampling factor of
5 requirement for FDI [10] was estimated for mitigation
of high frequency aliasing. Data bandlimited to 1 Hz saw

sufficient LFN suppression using an oversampling factor
of 2, and a sampling rate of 3 Hz was also found to be
comparable. The cubed Blackman filter mentioned in
[10] can use a slightly shorter filter length than the La-
Grange filter at 4 Hz, but the Lagrange filter resulted in
a smoother and smaller amplitude LFN residual.

C. Parameterized Noise Covariance Matrix

Using an interpolation filter length of N = 29, we ex-
amined whether including the delay parameters in the
noise covariance matrix had any affect on delay estima-
tion or LFN suppression. Figure 5a compares the delay
posteriors in deviations from truth values in nanoseconds
for the AET, equal-arm XYZ and the full unequal-arm
XYZ. No significant differences were found in either pa-
rameter estimation accuracy (Table I) or LFN suppres-
sion, (Fig. 5b) so the LFN suppression does not appear
to be sensitive to changes in armlength in the noise co-
variance matrix. However we will revisit this comparison
in the future when we use the algorithm alongside other
analyses with data containing high signal-to-noise GW
signals. Waveform models are dependent on armlength
parameters, so we can study whether GW parameter es-
timation could benefit from the unequal-arm noise co-
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FIG. 4: Delay posteriors at varying LaGrange window filter lengths with their corresponding median χ2 values.
Posterior estimates are given as the difference from truth values used in the data simulation in nanoseconds. Data

was sampled at 4 Hz using LaGrange filter length N=49. By restricting the frequency band in the likelihood to
below 0.1 Hz, all filter lengths tested above N=21 achieve similar delay estimates. N=29 marks the beginning of the

asymptotic portion of the filter length vs χ2 distributions.

variance matrix. D. Including Secondary Noises

Concentrating on posteriors using a LaGrange filter
length of N = 29 under the equal-arm XYZ noise co-
variance matrix assumption, we take a closer look at the
accuracy achieved in estimating the armlengths that are
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(a) (b)

FIG. 5: (a) Posterior delay time estimates using the AET, equal and unequal arm versions of the noise covariance
matrix. Estimates are given as the difference from truth values used in the data simulation in nanoseconds. No

significant differences in estimates were found. (b) Posterior delay time point estimates from the maximum of the
likelihood distribution as input to the X channel. s31 (black) is shown as an example of the data. The resulting
residual of the LFN portion of the data is shown for the AET (purple), equal (blue) and unequal arm (green)

versions of the noise covariance matrix. Placement of the (0,0) and (0,1) elements of each matrix are shown which
are representative of the entire matrix.

Covariance Matrix δL3 (ns) δL2 (ns) δL1 (ns) δL
′
3 (ns) δL

′
2 (ns) δL

′
1 (ns)

AET −0.653+22.21
−16.9 −1.02+15.39

−17.77 −15.95+2.51
−33.13 −7.03+11.08

−24.55 4.29+20.54
−16.26 4.23+20.71

−18.72

Equal-arm XYZ −4.57+13.28
−23.04 −1.26+15

−21.58 −16.2+1.89
−32.68 −5.38+14.09

−22.76 1.45+19.05
−15.9 7+24.4

−11.43

Unequal-arm XYZ −2.84+12.33
−22.35 −1.01+16.94

−18.55 −18.31−3.38
−36.11 −5.93+12.34

−24.27 0.26+15.85
−17.15 4.49+24.55

−18.7

TABLE I: Median and 90% credible interval delay estimates for the AET, equal and unequal arm versions of the
noise covariance matrix. Estimates are given as the difference from truth values used in the data simulation in

nanoseconds. Numbers correspond to Fig. 5a.

used as input to TDI to form the residual shown in Fig.
6b. Our previous results did not include a realization
for the secondary noises, and so we expect the minimum
χ2 to be 0 and, due to our flat priors and small correla-
tions between parameters, expect the marginalized pos-
teriors to peak at the true value for the armlengths. Now
comparing posteriors from data that included secondary
noises versus data containing LFN only, we see the size of
the statistical error is comparable as expected (Fig. 6a).
Posteriors of data containing LFN only are centered on
the input delays and data with the secondary noises are
usually centered and are within ∼1σ. A more thorough

analysis of the statistical robustness of our sampling algo-
rithm is needed, but the sampler passes these qualitative
tests which are sufficient at this stage of development.

Table II summarizes the posteriors in figure 6a, and
we find that the least accurate parameter for data with
secondary noises has a median accuracy of 18.51 ns or
5.5 m, and the most accurate parameter has a median
accuracy of 0.07 ns or 2.1 cm. Most parameters with
secondary noises were accurate to O(1) ns or ∼ 30 cm.
The deviation from truth appearing in the δL1 posterior
is due to the particular secondary noise realization in the
data. This was confirmed by running the MCMC over
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multiple instances of simulated secondary noises where
we found statistical fluctuations were random and not
specific to one parameter. Using the set of parameters
that resulted in the maximum likelihood of the chain as
input to the TDI X channel, the resulting residual is
at the expected sensitivity for GW detection (Fig. 6b).
The LFN component to data that enters the X channel
is suppressed well below the secondary noises.

IV. CONCLUSION AND FUTURE WORK

We demonstrate Bayesian estimation of inter-
spacecraft distances for use in post-processed TDI for
the rigidly rotating LISA scenario using a Markov Chain
Monte Carlo algorithm with fractional delay interpo-
lation for the nanosecond precision delays. This data
driven approach allows for flexibility in various key areas
of LISA data analysis, and is shown to sample posteri-
ors in less time than the duration of data being analyzed.
The restricted bandwidth included in the likelihood func-
tion allows for a lower telemetered sample rate, a shorter
FDI filter length requiring less data loss and higher ac-
curacy in armlength parameter estimation to O(30) cm.
The noise covariance matrix complexity does not affect
accuracy or LFN suppression in GW-free data.

The demonstrations in this paper used ideal station-
ary Gaussian noise simulations, and thus did not consider
the impact of imperfections in the data. Two anticipated
data imperfections for LISA are gaps and noise transients
or “glitches”. The TDIR algorithm is designed to process
short segments of data, adiabatically reconstructing the
time-varying delays after analysis of several segments. In
principal this approach is robust to gaps in the data, as
the analysis can be performed between gaps with addi-
tional continuity constraints on the inferred delays from
one segment to the next. The drawback to this approach
is the loss of data at the beginning and end of each short
segment due to the filtering, the impact of which will

depend on the specific frequency and duration of data
interruptions.

Glitches will appear in the data “seen” by the TDIR
algorithm as excess broad-band noise, effectively raising
the noise “floor” below which the LFN must be sup-
pressed to minimize the likelihood. If left unmitigated,
glitches will primarily increase the uncertainty in the in-
ferred delays. While the size of the affect glitches will
have on TDIR should be studied, we ultimately envision
the ranging inferences to be part of a global noise fit
which includes a model for glitches similar to what has
been used in the analysis of LIGO-Virgo data [14].

Near-term future work on the TDIR algorithm will ex-
tend to time-dependent delays (TDI 2.0) for an analysis
of the benefits of independent spacecraft orbit reconstruc-
tion and incorporate the ranging model into GW anal-
ysis algorithms such as Ref. [20] to study the interplay
between simultaneous recovery of armlengths and GW
parameters.
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Appendix: Unequal-Arm Noise Covariance Matrix

The diagonal elements of C are Cjj =< |Xj(f)|2 >

and off-diagonal elements are Cjk =< Xj(f)Xk(f) >
where X = {X,Y, Z}. The TM and OMS components of
the diagonal elements are listed separately for simplicity
and then combined to form each matrix element (Cjk =
CPM
jk + COMS

jk .) The matrix is Hermitian so only the first
three off-diagonal elements are listed.



10

(a) (b)

FIG. 6: (a) Comparison of armlength posteriors using data that included TM and OMS noises with LFN (orange)
vs data containing LFN only (purple). Estimates are given by sample values subtracted by the truth values that

were used as input in the data simulation in nanoseconds. (b) X channel residual of full data containing
LFN+TM+OMS noise using maximum likelihood parameters from MCMC posterior (orange) compared to analytic

OMS and TM noise PSD (green). X channel residual of LFN data using maximum likelihood parameters from
MCMC posterior (purple). The science measurement s32 (black) is also shown to demonstrate LFN input to

spacecraft #1 measurements before TDI suppression.

Model δL3 (ns) δL2 (ns) δL1 (ns) δL
′
3 (ns) δL

′
2 (ns) δL

′
1 (ns)

Secondary Noises Included −2.52+14.04
−22.96 −1.25+14.6

−18.4 −18.51+0.71
−35.52 −5.72+15.27

−24.37 −0.07+19.11
−15.85 6.15+25.07

−13.7

LFN-only −1.1+18.5
−16.1 −0.6+16.7

−19.7 −0.4+18.3
−16.1 0.3+19.8

−18.1 1.3+17.4
−15.9 0.8+18.4

−20.8

TABLE II: Median and 90% credible interval delay accuracy for data that included the OMS and TM noises vs
LFN-only data. Estimates are given as the difference from truth values used in the data simulation in nanoseconds.
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