
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Discriminating between different scenarios for the
formation and evolution of massive black holes with LISA

Alexandre Toubiana, Kaze W. K. Wong, Stanislav Babak, Enrico Barausse, Emanuele Berti,
Jonathan R. Gair, Sylvain Marsat, and Stephen R. Taylor
Phys. Rev. D 104, 083027 — Published 21 October 2021

DOI: 10.1103/PhysRevD.104.083027

https://dx.doi.org/10.1103/PhysRevD.104.083027


Discriminating between different scenarios for the formation and evolution of massive black holes
with LISA

Alexandre Toubiana,1, 2 Kaze W.K. Wong,3 Stanislav Babak,1, 4 Enrico Barausse,5, 6

Emanuele Berti,3 Jonathan R. Gair,7, 8 Sylvain Marsat,1 and Stephen R. Taylor9
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Electromagnetic observations have provided strong evidence for the existence of massive black holes in the
center of galaxies, but their origin is still poorly known. Different scenarios for the formation and evolution of
massive black holes lead to different predictions for their properties and merger rates. LISA observations of
coalescing massive black hole binaries could be used to reverse engineer the problem and shed light on these
mechanisms. In this paper, we introduce a pipeline based on hierarchical Bayesian inference to infer the mixing
fraction between different theoretical models by comparing them to LISA observations of massive black hole
mergers. By testing this pipeline against simulated LISA data, we show that it allows us to accurately infer the
properties of the massive black hole population as long as our theoretical models provide a reliable description
of the Universe. We also show that measurement errors, including both instrumental noise and weak lensing
errors, have little impact on the inference.

I. INTRODUCTION

The detection of gravitational waves in the 10-1000 Hz
band over the last six years by the LIGO/Virgo collabora-
tion [1–3] has allowed us to infer for the first time the pop-
ulation of stellar-mass black hole (BH) binaries in the Uni-
verse [4, 5], shedding some light on their possible formation
channels (see e.g. [6–22]). Scheduled for 2034, the Laser In-
terferometer Space Antenna (LISA) [23] will be sensitive to
gravitational waves in the mHz band, and will reveal a vir-
tually unexplored population of compact binaries. Some of
the anticipated sources include Galactic binaries, which will
be so numerous that they will form a stochastic foreground
dominating over instrumental noise but should also include
≈ 104 individually resolvable binaries [24, 25], and massive
black hole binaries (MBHBs) with total mass in the range 104-
109 M� [26–31].

Electromagnetic observations indicate that massive BHs
(MBHs) are present in the centers of most galaxies in the lo-
cal universe [32–36], including our own Galaxy [37–40] and
M87 [41], and that their properties are correlated with those of
their host galaxies, suggesting a synergistic growth [33, 42–
45]. Unfortunately, these observations are sensitive only to
active MBHs up to z ∼ 7 (cf. e.g. [46]), or local ones for
which we can observe the gas/stellar dynamics. Gravitational
waves will allow us to probe much more distant MBHs: LISA
will be capable of detecting MBHBs up to z ∼ 20, provided
that they exist at such high redshift [23]. In this paper, we
address the question of how these observations can help con-
strain scenarios for the formation and subsequent evolution of
MBHs.

The population of MBHBs that LISA will observe is the

result of a complex evolutionary path, whose details are still
largely unknown. Two open issues, of particular importance
for LISA, can be highlighted. First, which astrophysical
mechanisms provided the seeds that grew into MBHs? Sev-
eral scenarios have been proposed, suggesting seed masses
ranging from 102 to 105 M�, forming at z ∼ 15 − 20 (see
e.g. [47] for a review). Once these intermediate mass BHs
form, they are thought to grow via gas accretion and succes-
sive mergers. Following the merger of two galaxies hosting
a BH at their center, dynamical friction drives the BHs to the
center of the newly formed galaxy, where they may form a
bound binary system [48] (see however Ref. [49] for the pos-
sibility that a significant fraction of galaxy mergers may never
produce a bound MBHB). If this happens (at ∼ pc separation
for systems of ∼ 108M�), dynamical friction becomes inef-
ficient and other processes take over to control the binary’s
evolution, including three body interactions with stars (stel-
lar hardening)[50, 51], gas-driven migration [52–58] or in-
teractions with other MBHs [29, 30, 59]. The efficiency of
these processes is uncertain, but they are crucial because it is
not until ∼ 10−2 pc separations that gravitational wave emis-
sion is sufficient to make the binary coalesce within a Hubble
time. Whether MBHBs can transition efficiently from pc to
sub-pc separation is therefore still uncertain, which is usually
referred to in the literature as the “last parsec problem” [48].
The physics of BH seeding at high redshift and the last parsec
problem significantly affect the properties of the population of
events that LISA will observe, such as the component masses
and spins, the redshift, and the rates themselves. Thus, by
accumulating observations with LISA, one can in principle
reverse engineer the problem, and shed light on these mecha-
nisms.
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We focus here on the ability of LISA to distinguish between
different seeding scenarios. We improve upon Refs. [27, 60]
in a number of ways. We use a more refined treatment of
selection effects; we use updated astrophysical models, with
improved treatment of the baryonic physics, of the formation
of MBH pairs, of the hardening of MBHBs and of the effect
of SN winds and accretion on MBH evolution; and we use
more realistic assumptions about the LISA data, including an
up to date model of the LISA instrument, and more realistic
models for the gravitational waveforms generated by merging
MBHs. We use the predictions of the semianalytic model of
Ref. [61] (with updates described in Refs. [29, 30, 62–64]) for
the evolution of galaxies and MBHs to simulate LISA data.
This model has light seed (LS) and heavy seed (HS) variants,
differing in the prescription for the initial masses of BHs. We
consider the possibility that the population of MBHs is de-
scribed by a mixture between the LS and HS scenarios. We
treat the mixing fraction between models as a hyperparame-
ter controlling the population, and estimate it from simulated
data sets using a hierarchical Bayesian framework. We test the
robustness of our analysis by using the predictions of different
semianalytic simulations to generate data, and assess the im-
pact of measurement errors (due to detector noise and weak
lensing) on our inference of the MBHB population.

This paper is organized as follows. In Sec. II we explain
how LISA data is simulated and how we perform parameter
estimation. Sec. III describes the astrophysical models used
for the population of MBHs and our mixing procedure. In
Secs. IV and V we review the main aspects of the hierarchical
Bayesian analysis and how to combine it with results from
numerical simulations. We present our main results in Sec. VI
and our conclusions in Sec. VII.

II. DATA SIMULATION AND PARAMETER ESTIMATION

LISA will observe the last stages of the coalescence of MB-
HBs, where higher harmonics can be comparable in ampli-
tude to the (2,±2) harmonics [65–69]. Therefore, we use the
phenomenological approximant PhenomHM [70] to generate
the signal and perform parameter estimation. In this work
we consider, for simplicity, quasicircular binaries with com-
ponent spins aligned or antialigned with the orbital angular
momentum (we comment on this in Sec. III). We compute
the full LISA response and parametrize MBHBs as described
in [69, 71]. Denoting by m1 and χ1 the mass and spin of the
heaviest BH in a binary and by m2 and χ2 those of its compan-
ion, we define the chirp mass asMc = (m1m2)3/5/(m1+m2)1/5,
the mass ratio as q = m1/m2 ≥ 1 and the symmetric mass ratio
as η = q/(1 + q)2. We also introduce the effective spin χ+ and
the corresponding antisymmetric combination χ−, defined as
χ+,− = (m1χ1 ± m2χ2)/(m1 + m2). We adopt the cosmologi-
cal parameters reported by the Planck mission (2018) [72] to
compute the luminosity distance DL from the cosmological
redshift z. Recall that source-frame (subscript s) and detector-
frame (subscript d) masses are related via md = (1 + z)ms.
We use the SciRDv1 noise curve [73], including the confu-
sion noise due to Galactic binaries [74], and assume a low-

frequency cutoff of 10−5 Hz in the LISA noise power spectral
density. We assume a mission duration of four to ten years
and an ideal 100% duty cycle.

For our purposes we will not need state-of-the-art MBHB
parameter estimation, but just realistic error estimates for the
intrinsic parameters of the source and for the luminosity dis-
tance. Therefore, we work in the zero-noise approximation
[75] and simply compute the Fisher information matrix [76]
to obtain the errors on source parameters, and more specifi-
cally we use the extended Fisher formalism of Ref. [77]. A
more complete parameter estimation study is in preparation.
As shown in Fig. 1, astrophysical models predict some events
with large mass ratios and/or large spins, far outside the range
of validity of current waveform models. Again, for simplicity,
we will use PhenomHM for our calculations.

The chirp mass is the best measured parameter, and because
we can observe the late inspiral and the merger-ringdown with
high signal-to-noise ratio (SNR) up to thousands, we can mea-
sure the mass ratio and the spin of the primary quite accu-
rately. For the heaviest systems, we can also measure the spin
of the secondary. As for distance measurements, the error due
to weak lensing dominates over the statistical error at high
redshifts. We use the (pessimistic) model of [78], which esti-
mates that the error due to lensing goes as

σDL,lensing

DL
= 0.066

[
1 − (1 + z)−0.25

0.25

]1.8

. (2.1)

We include this error by convolving the measured LISA pos-
terior distribution with a Gaussian of width σDL,lensing. The
error due to weak lensing propagates into the determination
of source-frame masses.

III. MASSIVE BLACK HOLES CATALOGUES

A. Semianalytic models

To describe the expected population of MBHBs detectable
by LISA, we utilize the semianalytic galaxy formation model
of Ref. [61], with updates described in Refs. [29, 30, 62–64].
Our model relies on dark matter halo merger trees produced
with an extended Press-Schechter formalism [79], modified
to reproduce the results of N-body simulations [80]. Bary-
onic structures contained in the halos are evolved along the
branches and through the nodes of these merger trees. These
structures include: a diffuse intergalactic medium with pri-
mordial metallicity, which accretes onto the halos either by
getting shock-heated to the halo virial temperature (in large
low-redshift systems) or along cold flows (at high redshift
and/or small systems) [81–83]; a cold interstellar medium
where star formation takes place, and which we assume to
be in the form of disks and/or bulges; stellar disks and bulges;
and nuclear compact configurations, i.e. nuclear star clusters
and MBHs. The latter, which are obviously of crucial impor-
tance for this work, are assumed to grow from high-redshift
seeds by accretion – thus shining as quasars and active galac-
tic nuclei (AGNs) – and coalescences. The model also ac-
counts for AGN feedback (i.e., the effect of AGN jets, disk
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winds and radiation) and supernova feedback (i.e., supernova
explosions). Both processes can affect the evolution of bary-
onic structures, quenching star formation (mainly in large and
small systems, respectively), ejecting/heating up nuclear gas,
and also suppressing accretion onto MBHs. In order to min-
imize the uncertainties, the model is calibrated to a number
of observations at both galactic and nuclear scales [30, 61–
64, 84, 85]. Nevertheless, as already mentioned, the predic-
tions for LISA are crucially dependent on the assumptions
made about two poorly-understood processes: the formation
of the high-redshift seeds and the “delays” with which MBHs
come together and eventually coalesce after a galaxy merger.

As our fiducial astrophysical scenario, we adopt Model-
delayed of [29], of which we consider two variants, with ei-
ther LSs or HSs. In the LS model, MBHs grow from the rem-
nants of Pop III stars at z & 15 [86]. We seed large ha-
los collapsing from the 3.5σ peaks of the primordial den-
sity field, and to describe the Pop III stellar mass func-
tion we use a log-normal distribution centered at 300M�
and with rms of 0.2 dex (with an exclusion region between
140 and 260 M� to account for pair instability supernova
explosions). The mass of the seed MBH is then assumed
to be ∼ 2/3 of the initial Pop III star mass, to account
for the mass loss during the supernova explosion. In the
HS model, MBHs form instead with masses already ∼ 105

M�. In more detail, we use the model of Ref. [87], in
which seeds form from the collapse of proto-galactic disks
as a result of bar instabilities, at z & 15 and in halos
with spin parameter and virial temperature below criti-
cal threshold values. The latter are given by Eq. (4) – with
Qc = 2.5 – and Eq. (5) of Ref. [87], and we use Eq. (3) of the
same work to set the seed mass. As for the delays between
galaxy/halo and BH mergers, Ref. [29] accounts for the dy-
namical friction between the dark matter halos (including the
effect of tidal disruption and evaporation); for the timescales
associated (on much smaller ∼ pc scales) to stellar harden-
ing1, gas-induced migration and interactions with additional
MBHs (brought in by later galaxy mergers); and finally for the
gravitational-wave driven evolution timescale at sub-pc sepa-
rations. The timescale associated to the binary’s evolution at
∼kpc separations is instead neglected in Refs. [29, 61], on
the premise that it should be negligible when compared to the
other timescales involved. Recently, however, large scale cos-
mological simulations have challenged this notion [49], i.e.
they have found that evolution timescales on those large
separations can be significant. This prompted Ref. [30] to
include an additional timescale in the semianalytic model of
Refs. [29, 61] to account for the binary’s evolution at ∼kpc
separations. Moreover, Ref. [30] also modified the supernova
feedback model of Refs. [29, 61] to account for the possibility
that supernova winds may quench not only star formation, but
also accretion onto MBHs in low-mass, high-redshift galax-

1 As suggested by N-body simulations [51], the stellar hardening
timescales are computed from the density at the mass influence radius
of the binary, i.e. the radius at which the enclosed stellar mass is twice
the binary mass.

ies [88]. We implement this effect by assuming that the
growth of the gas reservoir off which the MBH accretes is
curtailed in systems with escape velocity (from the bulge)
lower than 270 km/s [88]. We refer to the model including
these additional ingredients (delays on scales of hundreds of
pc and SN feedback on BH accretion) as SN-delays, adopting
the same designation as in Refs. [30, 31].

We use the semianalytic model to produce simulated pop-
ulations of MBHBs, including information on their masses,
spins and redshift. It is worth noting that the eccentricity of a
binary and the degree of alignment of the component spins de-
pend on the mechanism that triggers the merger. For instance,
triple/quadruple interactions between MBHs can lead to large
eccentricities as a result of Kozai-Lidov resonances [89, 90]
and/or chaotic interactions [91, 92]. Binaries merging in
a gas-rich environment tend to have aligned spins, because
of the Bardeen-Petterson effect [93, 94], i.e. the gravito-
magnetic torques exerted by the circumbinary disk. We also
stress that the evolution of the spin under accretion is de-
scribed in our model by neither coherent nor chaotic ac-
cretion, but by the hybrid model of Ref. [62]. The latter
incorporates Bardeen-Petterson torques, is intermediate
between chaotic and coherent accretion, and reproduces
the sample of spin measurements from iron Kα lines.

These effects are included in our semianalytic model (cf.
in particular Refs. [29, 61, 62]), with the final remnant
mass and spin produced by the MBH merger computed
via fitting formulae reproducing the results of numerical-
relativity simulations [95, 96]. However, the information
on spin alignment and eccentricity is not fully exploited in
the analysis performed for this paper. Indeed, because Phe-
nomHM covers only quasicircular binaries with component
spins aligned or antialigned with the orbital angular momen-
tum, we simply take the projection of spins along the orbital
angular momentum and neglect the eccentricity. Nevertheless,
the information on the spin alignment is partially contained in
the effective spin of the binary. To complete the set of pa-
rameters θ needed to describe LISA events, we draw the sky
location uniformly on the sphere, the phase at coalescence and
the polarization uniformly in [0, 2π], and the inclination angle
cos ι uniformly in [−1, 1]. We assume a time to coalescence of
at most one year, and we do not consider the part of the signal
below 10−5 Hz.

B. Population properties

When running the simulations, we use only one of the seed-
ing prescriptions. However, the population of MBHs in the
Universe is unlikely to be described by any of these “pure”
models, but rather by a mixture of models. Following [27],
we introduce a mixing fraction α between the LS and HS sce-
nario and define the full (unnormalized) MBHB population
distribution to be

Npop(θ|α) = αNpop(θ|LS) + (1 − α)Npop(θ|HS). (3.1)

In the following, we will denote the normalized population
distribution by ppop(θ|α) and the predicted rate by Rev (in
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(a) Without SNR threshold.

(b) With an SNR threshold of 10.

FIG. 1. Normalized population distribution for different values of the mixing fraction between the fiducial LS and HS models. We show
the 68% and 90% confidence intervals. The (source-frame) chirp mass distribution is the most sensitive to α. The redshift distributions of
detectable events look much more similar, unlike the effective spin distributions, as discussed in the main text.
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FIG. 2. Normalized population distributions predicted by our fiducial model and the SN-delays model, both in the LS and HS scenarios. We
show the 68% and 90% confidence intervals. While the chirp mass distributions in the two models are quite similar, the redshift and effective
spin distributions are not.

yr−1), such that Npop(θ|α) = Rev(α)ppop(θ|α), with similar def-
initions for the LS and HS models. The rate for a given value
of the mixing fraction is

Rev(α) =

∫
Npop(θ|α)dθ = αRev(LS )+(1−α)Rev(HS ), (3.2)

where Rev(LS ) =
∫

Npop(θ|α)dθ is the rate for the LS model,
and similarly for HS.

For a given SNR threshold, we denote by Rdet(α,SNR) the
number of events (per year) above this threshold. In Table I we
provide the annual rates for the LS and HS scenarios2, as well
as the number of detectable events by LISA assuming an SNR
threshold of 10, which we use in the remaining of the paper.
For comparison, we also give the results for an SNR threshold
of 20. The LS scenario predicts more merger events, but many
of these have low SNR and are not detectable by LISA. On the
contrary, almost all events in the HS scenario are detectable.

In Fig. 1 we show the normalized population distribution
for different values of α in a ”corner plot” [97]. In the lower
panel we show only events that have an SNR above 10. We use
“transformed” parameters (e.g. log10Mc,s, arcth χ+) to make
the salient features of the distributions more evident. As ex-
pected, the HS model predicts binaries with higher masses

2 Note that we use a different noise curve and SNR threshold than [29, 30],
hence the difference in the rates of detectable events.

LS HS

Fiducial

Rev (yr−1) 234.3 23.98

Rdet(10) (yr−1) 53.01 23.89

Rdet(20) (yr−1) 29.85 23.67

SN-delays

Rev (yr−1) 11.82 5.94

Rdet(10) (yr−1) 1.11 5.92

Rdet(20) (yr−1) 0.29 5.73

TABLE I. Number of events per year Nev and number of detectable
events per year with LISA with two different SNR thresholds,
Rdet(10) and Rdet(20). The LS scenario predicts more events than
the HS one, but many of them are not detectable by LISA. Rates in
the SN-delays models (bottom) are substantially lower than in our
fiducial model (top).

than the LS model. When mixing between them, we get a
double-peaked distribution, whose relative weights depend on
the value of α. After imposing an SNR cut, lighter events are
suppressed, and the relative weights change due to the fact that
many LS events are not detectable. The effect of the SNR cut
can be clearly seen in the redshift distribution: high-redshift
events predicted in the LS scenario are not detectable, and as a
consequence the LS and HS redshift distributions after the cut
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look much more similar. On the contrary, the effective spin
distributions are easier to distinguish after imposing the SNR
cut. This is because of the correlation between effective spin,
redshift and chirp mass, which can be seen in the upper panel.
The physical explanation is that the events that survive the
SNR cut in the LS scenario tend to be closer and more mas-
sive (both because of the SNR threshold and because the BHs
had more time to grow via accretion and mergers). Accre-
tion also leads to larger spins for this subset of the population.
Moreover, the presence of gas around binaries tends to align
the spins through the Bardeen-Petterson effect, which in turn
translates into larger values of the effective spin.

In Fig. 2 we compare the normalized population distribu-
tion predicted by the SN-delays model to our fiducial model,
both in the LS and HS cases, without any SNR threshold. No-
tice that the chirp mass distributions of the fiducial and SN-
delays models are reasonably similar, but the redshift and ef-
fective spin ones are very different. The glaring difference in
redshift distributions is due to the additional delays included
in the SN-delays model, whereas the one in spin distributions
is due to supernova feedback, which expels the gas surround-
ing the BHs in shallow potential wells, resulting in binaries
with more isotropic spin orientations and smaller component
spin magnitudes.

In Table I we also provide the rates predicted by the SN-
delays model. We see that the rates not only differ substan-
tially between the LS and HS scenarios, but also between the
fiducial and SN-delays model. A simple way to provide ro-
bustness to this rate variation is to introduce an additional
parameter into the model, allowing both the mixing fraction
α and the total number of events over the observation pe-
riod Nα to be hyperparameters that we constrain using the ob-
served events. Although we will ultimately marginalize over
the number of observations and focus on the mixing parame-
ter, this approach ensures that our inference will be robust as
long the model can match the parameter distribution of events,
even if the total number of events varies significantly from the
semianalytic model predictions.

IV. HIERARCHICAL BAYESIAN ANALYSIS

Assuming that MBHB events are distributed following the
mixing prescription of Eq. (3.1), and introducing the overall
number of events as an additional parameter characterizing
the population, as described in the previous section, the pop-
ulation distribution is described by two hyperparameters, α
and Nα. By observing many events, we will measure the dis-
tribution of MBHB parameters θ (such as masses, spins and
redshifts), and from this we will be able to infer the hyper-
parameters. Working in a Bayesian framework, our goal is
to estimate the posterior distribution of the hyperparameters
from a set of observed MBHB events, d. To do so, we use
a similar approach to the “top-down” derivation of [98]. We
assume that each MBHB event is independently drawn from
the population distribution ppop(θ|α,Nα). Independence is a
highly non-trivial assumption for LISA, since the data stream
will contain many signals at the same time, from sources of

different types, including extreme mass ratio inspirals, Galac-
tic binaries and MBHBs. However, given the expected event
rates for LISA sources (see Table I) and the long duration of
the LISA mission, these sources are unlikely to have signifi-
cant overlap with one another. As a result each source will be
sensitive to an independent set of components of the instru-
mental noise. This means that it should be reasonable to treat
each MBHB observation as independent.

Under this assumption the probability that, in a certain ob-
servation period, a total of Nt events occur in the Universe,
with parameters θθθ, and producing associated strain data, d, in
the detector, is given by

p(d, θθθ,Nt |α,Nα) = p(d|θθθ,Nt)ppop(θθθ,Nt |α,Nα). (4.1)

Assuming that the population of MBHBs is described by a
mixture between two independent populations, the second
term can be modeled as a Poisson distribution

p(θθθ,Nt |α,Nα) ∝ NNt
α e−Nα

Nt∏
k=1

[
f (α)ppop(θk |LS) + (1 − f (α))ppop(θk |HS)

]
,

(4.2)

where

f (α) =
αRev(LS)

αRev(LS) + (1 − α)Rev(HS)
(4.3)

is the expected fraction of events in the Universe that come
from the LS population.

Not all the Nt events that occur are detectable. Whether the
k’th event is detectable is a property of the associated data,
dk, only. As shown in [98], assuming the events are statis-
tically independent, substituting Eq. (4.2) into Eq. (4.1) and
marginalizing over the unobserved data yields the following
joint likelihood for the detected events:

p(d, θθθ,Nt |α,Nα) ∝ exp {−Nα( f (α)Ξ(LS) + (1 − f (α))Ξ(HS)}

×NNobs
α

Nobs∏
i=1

p(di|θi)
(

f (α)ppop(θi|LS)

+(1 − f (α))ppop(θi|HS)
)
, (4.4)

where Nobs is the number of above threshold events observed
and Ξ(LS) = Rdet(LS)/Rev(LS) is the fraction of events in the
LS population expected to be detectable, which is given by

Ξ(LS) =

∫
dθ ppop(θ|LS)

∫
d,detectable

dd p(d|θ)

=

∫
dθ ppop(θ|LS)pdet(θ), (4.5)

where the last equality defines pdet(θ), the probability of de-
tecting an event with parameters θ. The quantity Ξ(HS) is de-
fined in an analogous way for the HS population. In this work
we use the SNR to quantify detectability and assume that an
event, d, is detectable if SNR[d] >SNRthreshold. Since we work
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in the zero-noise approximation, we evaluate this using the op-
timal SNR to determine the detectability of each source. The
selection function, Ξ(LS), is equal to the fraction of events in
the population that have SNR above the threshold.

The final form of the posterior distribution on α and Nα is
obtained by marginalization over the parameters of the indi-
vidual events, θθθ, in Eq. (4.9) and using Bayes’ theorem. After
some rearrangement we obtain

p(α,Nα|d) =
p(d|α,Nα)p(α,Nα)

p(d)

∝
p(α,Nα)

∏Nobs
i=1 p(di)

p(d)
NNobs
α exp[−NαΞ(α)]

×

Nobs∏
i=1

∫
dθi

p(θi|di)ppop(θi|α)
pi(θi)

, (4.6)

in which p(θi|di) = p(di|θi)pi(θi)/p(di), pi(θi) denotes the prior
used to obtain some posterior samples in an initial analysis of
event-i, and we have introduced

Ξ(α) = f (α) Ξ(LS) + (1 − f (α))Ξ(HS) (4.7)
ppop(θ|α) = f (α)ppop(θ|LS) + (1 − f (α))ppop(θ|HS). (4.8)

In an analysis of LISA data we would construct this poste-
rior on both hyperparameters. However, the parameter of
most interest is the mixing fraction α, and so we will focus
on this here. We proceed by marginalizing over the rate pa-
rameter, Nα. We first specify that the hyperprior is separable,
p(α,Nα) = p(α)p(Nα), and then assume a scale-invariant prior
on the rate, p(Nα) ∝ 1/Nα. The scale-invariant 1/Nα prior is
natural when the order of magnitude of the rate is uncertain,
as is the case here. After this marginalization we obtain

p(α|d) =
p(d|α)p(α)

p(d)

∝
p(α)

∏Nobs
i=1 p(di)

p(d)

Nobs∏
i=1

∫
dθi

p(θi|di)ppop(θi|α)
pi(θi)Ξ(α)

.

(4.9)

If Ni posterior samples have been obtained for event i using
the reference prior pi(θi), these can be used to obtain a Monte
Carlo approximation to the integrals in the preceding equation

p(α|d) =

Nobs∏
i=1

 1
Ni

Ni∑
j=1

ppop(θi, j|α)
pi(θi, j)Ξ(α)


× p(α)

∏Nobs
i=1 p(di)
p(d)

, (4.10)

where θi, j is the parameter vector for the j’th sample for source
i. The individual event and overall evidences, p(di) and p(d),
are useful for model selection but merely enter as a normaliza-
tion constant when the interest is on parameter estimation, as
here. Therefore, we discard all evidence terms from our anal-
ysis. For the prior on α, we take a flat distribution in [0, 1].

We note that the quantity f (α) is directly interpretable as the
fraction of events in the Universe that are drawn from the LS

model, while the mixing fraction α, as we have defined it, is
not. However, these are related by the simple transformation
given in Eq. (4.3), and so the posterior for f (α) can readily be
derived from that for α and vice versa.

After inferring a posterior distribution on α, we can con-
struct the posterior predictive distribution (PPD) for the pa-
rameters of future observed events

PPD(θ|d) =

∫
dα ppop(θ|α)p(α|d). (4.11)

When performing simulations, comparing the PPD with the
population distribution used to generate the data provides a
guide to the quality of the inference.

V. ESTIMATING THE PROBABILITY DENSITY
FUNCTION

From Eq. (4.10), we can see that the hierarchical Bayesian
analysis requires being able to evaluate the probability den-
sity function of the population distribution. However, semian-
alytic models only provide samples from the population dis-
tribution, not the analytic probability density function. In this
work, we use a kernel density estimator (KDE) [99, 100] to
approximate the population probability density function from
the samples. More specifically, we use the Gaussian KDE
implementation of scipy [101]. In Appendix A, we provide
additional details on how the KDE is computed.

The required accuracy on the estimation of the probabil-
ity density function increases with the number of observed
events. The accuracy of the KDE is limited by the number of
simulation points at our disposal, in particular for the HS vari-
ant of our fiducial astrophysical model (∼ 2500 points). This
leads to a systematic error, which dominates over statistical
errors when increasing the number of observed events, and
leads to systematic biases in the hierarchical Bayesian anal-
ysis. Similarly, from Eq. (4.10) it can be seen that the error
on ln(p(α|d)) due to a misevaluation of the selection function
increases linearly with the number of observed events. In our
case, the accuracy to which the selection function is computed
depends on the accuracy of the selection function for the LS
and HS models: cf. Eq. (4.7). In Appendix B, we show that
using too few points to compute these terms also leads to sys-
tematic biases. To mitigate these issues, we make an approx-
imation: we take the probability density function computed
from the KDE to be the “true” probability density function of
our fiducial astrophysical model, and use it to generate mock
data. By doing this, the data generation process is fully con-
sistent with the probability density function used in the hier-
archical Bayesian analysis, avoiding systematic biases. We
compute the selection function for the LS and HS variants of
our fiducial astrophysical model by generating many (∼ 106)
events from the KDE and computing the fraction of detectable
events. We then use Eq. (4.7) to evaluate the selection func-
tion for any value of α. This approximation should be seen
as the limit where we have enough simulation points to build
very accurate KDEs and compute the selection function to
high precision. In Appendix C we compare the population
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FIG. 3. Posterior distribution on α for observation sets with an increasing number of observed events, generated using different values of the
mixing fraction α0: α0 = 0.2 (left), α0 = 0.5 (middle) and α0 = 0.8 (right). The posteriors peak near the true value and become narrower as we
increase the number of events.

distribution of the LS and HS variants of the fiducial astro-
physical model computed from numerical simulations to the
one obtained from the KDEs, computed as described in Ap-
pendix A. Note that, when building the KDE that will serve as
our fiducial astrophysical model, we use arcth χ1,2 instead of
arcth χ+,− to make sure that the spins are in the physically al-
lowed range. The distributions are overall in very good agree-
ment, so we expect that our results should not depend much
on this approximation.

VI. RESULTS

We start by testing our pipeline in the limit where the pa-
rameters of the source are perfectly measured by LISA, and
we perform two experiments. In the first one (Sec. VI A)
we generate mock observation sets using the predictions of
our fiducial astrophysical model, as computed from the KDE,
and use this same model in the hierarchical Bayesian anal-
ysis. In the second experiment (Sec. VI B) we use the SN-
delays model to generate mock observation sets, but still use
our fiducial astrophysical model in the hierarchical Bayesian
analysis. The goal of this second experiment is to test if we
could still draw meaningful conclusions if the population of
MBHBs in the Universe were different from the one used in
the data analysis pipeline. In Sec. VI C we discuss the impact
of measurement errors in the analysis. In all cases we use an
SNR threshold of 10 to define detectability of a source.

A. Model-consistent inference

We start by investigating how the inference on α improves
with the number of observed events. Although we do not use
information on the rates in the inference, we make sure that
the number of events in the data sets is realistic for a LISA
mission duration of four to ten years, given the predicted rates
(see Table I). In Fig. 3, we plot the log-posterior on α for ob-
servation sets with an increasing number of observed events.
In the left panel, the data set was generated with a mixing frac-
tion α0 = 0.2 between the LS and HS variants of our fiducial

astrophysical model, in the middle panel with α0 = 0.5, and
in the right panel with α0 = 0.8. The posteriors peak near the
true value and become narrower as we increase the number
of events. We observe a sharp drop in the posterior close to
the extremal values. This is because as α → 0 (α → 1) the
resulting population is no longer compatible with the light-
est (heaviest) events. Moreover, due to our choice of mixing
prescription in Eq. (3.1) and to the higher event rate of the
LS variant, the population distribution varies faster for small
values of α, so the posterior is narrower for α0 ' 0 than for
α0 ' 1.

FIG. 4. Evolution of the shift and the error on α (90% confidence
interval) with the number of observed events. We consider two sets
of observations, with 50 events (crosses) and 200 events (dots). The
color scale indicates the value of α0. As expected, they tend do de-
crease as we observe more events. The fact that the points are equally
distributed on both sides of the αmax = α0 line indicates that there is
little systematic bias in our analysis.

In order to have a more global view, we generate several
observation sets with an increasing number of events, drawing
the mixing fraction uniformly in [0, 1]. We estimate the shift
on α as the difference between the maximum-posterior point
αmax and the injection value α0, and the error on the mixing
fraction ∆α as the 90% confidence interval centered around
the median value. In Fig. 4 we plot these quantities for two
selected values of the number of observed events. The color
scale indicates the value of the injected mixing fraction α0 for
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(a) 50 events. (b) 200 events.

FIG. 5. Kullback-Leibler divergence between the PPD and the population distribution for different observation sets generated with different
values of α0. On the left (right) panel the observation sets contain 50 (200) observed events. The smaller the KL divergence, the better our
inference of the population distribution. Increasing the number of events tends to improve the inference, as expected.

(a)Worst case. (b)Mid-range case.

(c)Mid-range case. (d)Best case.

FIG. 6. Population distribution and PPD for four sets of observations generated with different values of α0. Each observation set contains 100
events. On the upper-left and lower-right panels we show the cases that yield the largest and smallest values of the KL divergence among the
cases shown in Fig. 5. The other two panels show cases yielding mid-range values of the KL divergence.
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FIG. 7. Comparison between the population distribution for the SN-delays model and the PPD for an observation set containing 20 events from
the same catalogue. Different rows refer to the HS variant (α0 = 0, top), a mixing fraction α0 = 0.5 between the HS and LS variants (middle),
and the LS variant (α0 = 1, bottom). Panels on the left refer to the detectable population; panels on the right, to the intrinsic population.



11

each observation set. As expected, both tend to decrease as
we observe more events. Also, note that the points are equally
distributed on both sides of the αmax = α0 line, indicating
that there is little systematic bias in our analysis, as we would
expect given that the models used to generate and analyze the
data are consistent. We find that the error on α tends to be
smaller for injected values close to 0 or 1, with even smaller
errors in the former case, in agreement with our discussion on
the shape of the posterior above.

Next, we assess our ability to infer the population distri-
bution from an observed data set, using the PPD defined in
Eq. (4.11). In order to make a quantitative comparison, we
compute the Kullback-Leibler (KL) divergence [102] between
them, defined as

DKL =
∑
θ

p1(θ) ln
(

p1(θ)
p2(θ)

)
, (6.1)

with p1 and p2 the distributions we wish to compare. In Fig. 5,
we plot the KL divergence between the PPD and the popula-
tion distribution for data sets of 50 and 200 observed events,
taking the population distribution as the reference distri-
bution (p1). Given the similarity between the distributions
(as indicated by the smallness of the KL divergence), the
results would not be significantly altered had we chosen
the PPD as the reference distribution. The KL divergence
tends to be smaller for larger data sets, meaning that our in-
ference on the population distribution improves. As a trend,
the largest values of the KL divergence correspond to α0 ∼ 0.
This is because the population distribution varies faster for
small α, so even small (statistical) deviations in the estimation
of the mixing fraction lead to larger discrepancies between the
PPD and the population distribution for α0 ∼ 0. As an illus-
tration, in Fig. 6 we compare the PPD obtained from four
simulated LISA data sets of 100 observed events gener-
ated with different values of α0 to the corresponding pop-
ulation distribution. Those realizations are chosen to span
the range of values of KL divergences. As can be seen in
the upper-left panel, even in the worst case (the largest value
of the KL divergence among the cases shown in Fig. 5) we
can reconstruct the population distribution reasonably well.
The other panels show the comparison between the PPD and
the population distribution for data sets of 100 events yield-
ing mid-range values of the KL divergence and for the data
set yielding the smallest one. Overall, this pipeline allows us
to infer the population distribution accurately when the model
used to generate the data is the same as the one used in the
pipeline. We will now test the robustness of this pipeline by
using different models in the two stages.

B. Robustness

We mix the HS and LS variants of the SN-delays model as
described in Eq. (3.1), and generate data sets of 20 observed
events for α0 = 0, α0 = 0.5 and α0 = 1. We run our pipeline
on these observation sets, still using our fiducial astrophys-
ical model in the hierarchical Bayesian analysis and com-
pare the PPD to the population distribution. The results are

shown in Fig. 7. In each case, we show both the intrinsic dis-
tribution and the detected one (where detection is defined by
imposing an SNR threshold of 10). For α0 = 0 (top panels),
we can reproduce reasonably well the chirp mass distribution
of the detectable population, but we overestimate the fraction
of small-Mc events in the intrinsic population. This is because
the HS variant of the SN-delays model has a tail extending to
lighter values than the HS variant of the fiducial model, as
can be seen on Fig. 2. Our pipeline compensates for this by
adding events from the LS variant, and since only ∼ 25% of
LS events are detectable, the fraction of light events in the in-
trinsic population is overestimated. Similarly, for α0 = 0.5
(middle panels) the PPD agrees reasonably well with the pop-
ulation distribution of the chirp mass for detectable events,
but this time the fraction of light events in the intrinsic pop-
ulation is underestimated. This is due to the difference in the
fraction of detectable events between the LS variant of our
fiducial model and the SN-delays model (see table I). For a
given number of detected light events, the latter predicts twice
as many light events in the intrinsic population as our fiducial
model. Finally, for α0 = 1 (bottom panels) even the chirp
mass distribution of detectable events is badly estimated. This
is due to a tail of heavy events predicted by the LS variant of
the SN-delays model, which causes our pipeline to estimate
α0 to be different from 1. In all three cases, due to the differ-
ences in the fiducial and SN-delays population, redshift and
spin distributions are poorly reconstructed.

These results show that this pipeline would lead to erro-
neous predictions if the population of MBHBs is too different
from the one predicted by our astrophysical models. Note that
in the LS SN-delays model we do not expect to observe 20
events even for a ten-year mission duration, but this does not
change our previous conclusion.

C. Including measurement errors

We now wish to consider two sources of error: weak lensing
and statistical errors due to detector noise. They are accounted
for with the following procedure. For each event predicted by
the model:

(1) we draw a new value of the luminosity distance from a
Gaussian distribution centered at the original value with
variance given by the lensing error of Eq. (2.1), keeping
the detector-frame mass constant;

(2) from that new event, we draw a shifted event from
a multinormal Gaussian distribution with covariance
given by the Fisher information matrix at that point;

(3) if this new event has SNR above the threshold, we per-
form parameter estimation;

(4) we broaden the posterior distribution of the luminosity
distance (and therefore of the redshift and the source
frame mass) with the lensing error of Eq. (2.1).

For step (3), we use the Fisher information matrix instead of
doing a full Bayesian analysis in order to speed up computa-
tions. Some events from the LS variant have very low SNR
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of order unity, and in those cases the Fisher information ma-
trix is poorly conditioned. For this reason, events with such
low SNRs might end up with large enough SNRs to be de-
tected after applying the Fisher matrix shift of step (2). This
is not physically realistic, since the detector noise is unlikely
to make such events detectable, and therefore between steps
(2) and (3) we discard all events that have SNR below 5 be-
fore the shift.

FIG. 8. Error on α and KL divergence between the rescaled posterior
distribution of α and the (flat) prior. As we include the different
sources of error, ∆α tends to increase and DKL tends to decrease,
reflecting a degradation in the measurement of α. Note that these
are the errors and KL divergences for the rescaled posterior, i.e. we
artificially bring the number of detected events to 1, as detailed in the
main text.

In order to assess the impact of measurement errors, we
generate data sets of 500 events (before applying the de-
tectability criterion) for α0 drawn randomly in [0, 1], and con-
sider three scenarios:

(i) there is no noise, i.e., none of the steps above are ap-
plied;

(ii) there is only detector noise, i.e., only steps (2) and (3)
are applied;

(iii) there is both detector noise and lensing noise, i.e. all
four steps are applied.

Note that steps (1) and (2) modify the number of detectable
events, therefore we have to include these effects in the com-
putation of the selection function. Moreover, increasing the
number of observed events tends to narrow the posterior dis-
tribution, so in order to scale out this effect and allow for a
fair comparison between the three different scenarios, we de-
fine a ”rescaled” posterior distribution p̃(α|d) = p(α|d)1/Nobs .
In Fig. 8 we plot on the x-axis the error on α (obtained from
the rescaled posterior) and on the y-axis the KL divergence
between the rescaled posterior distribution of α and the (flat)
prior on α, for different data sets and in the three scenarios.
The color scale indicates the value of α0. The larger the KL
divergence, the more information we gain from the data set.
As expected, including the different sources of error tends to
decrease the KL divergence and increase ∆α. The dotted lines
going from the top-left to bottom-right link simulations with

the same underlying populations, and show (slight) degrada-
tion in the measurement of α. Note that the KL divergence is
larger and the error smaller for α0 ∼ 0 and also for α0 ∼ 1,
in agreement with the discussion on the shape of the poste-
rior in the previous subsection. Finally, we do not observe the
appearance of systematic biases when including measurement
errors.

FIG. 9. Population distribution and PPDs obtained in the no-noise
and detector+lensing noise scenarios for a representative case. The
data set contains 500 events (before applying the detectability crite-
rion). Including measurement errors barely affects our ability to infer
the population distribution.

Although the determination of α gets slightly worse when
including the different sources of error, this barely affects our
inference of the population distribution of MBHBs, as can be
seen in Fig. 9. There, we compare for a representative case
the population distribution to the PPDs obtained in the no-
noise and in the detector+lensing noise scenarios, which look
very similar.

Finally, we performed a last test: we generated data sets in-
cluding both sources of noise in steps (1) and (2), but we did
not include the effect of lensing in the hierarchical analysis,
i.e. step (4). Moreover, we used the selection function ob-
tained when accounting only for the detector noise. Our goal
is to assess how our analysis would be biased if we did not
properly model the effect of lensing. We observe a tendency
to bias the measurement of α towards higher values, but no
real impact on the PPD. This could be an artifact of our sim-
plistic model, and should be verified through further work.
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VII. CONCLUSIONS

In this paper we discussed of the ability of LISA to dis-
tinguish between different astrophysical models for the for-
mation and evolution of MBHs by inferring the population of
MBHBs. We introduced a mixing fraction between astrophys-
ical models to account for the possibility that the population
of MBHBs in the Universe cannot be described by one single
model. More specifically, we mixed between two variants of
the same model: one that predicts that MBHs form from LSs
and another from HSs. We built a pipeline based on the hier-
archical Bayesian framework to measure the mixing fraction
from LISA observations, and infer the population of MBHs.
We have shown that this pipeline allows us to reconstruct ac-
curately the population of MBHBs if it is similar to the one
used in the pipeline, but not if the populations are too differ-
ent.

This problem could be mitigated by introducing more flex-
ibility in the population model, at the cost of having greater
uncertainty in the inferred population distribution. One ap-
proach would potentially be to include additional mixing frac-
tions: one could in principle mix between as many models as
desired. However, given the large uncertainty surrounding as-
trophysical models, we believe a better alternative is to use
a theory-agnostic approach. We are currently working on a
simplified astrophysical model for the formation and evolu-
tion of MBHs where the population of MBHBs depends on
physically meaningful hyperparameters controlling the initial
mass distribution, the delay between dark matter halo merg-
ers and MBHB mergers, etcetera. We could then perform a
hierarchical Bayesian analysis to infer these hyperparameters
from LISA observations.

We have shown that measurement errors due to lensing and
detector noise will not significantly impact our ability to in-
fer the MBHB population. On the other hand, mismodelling
the effect of weak lensing could lead to biases in our analysis.
In our model, this bias has a negligible impact on our infer-
ence of the population of MBHBs, but this could be due to the
simplicity of our model and will have to be further verified
for different models. Finally, we commented on an important
aspect: analyses based on results from numerical simulations,
such as ours, require a large number of points in order to prop-
erly evaluate the probability density function of the theoretical
model and the selection function, and thus avoid systematic
biases. We estimate that at least a few tens of thousands of
points are needed.

Concerning our astrophysical model, we mixed the dis-
tributions a posteriori, i.e. with the results obtained by
running numerical simulations with LSs and HSs indepen-
dently. Therefore, our model cannot account for mergers
between BHs formed from LSs and HSs and how they im-
pact the population distribution. This could be included
by mixing the seeding prescriptions a priori, when running
the simulations. We could then use these results to assess
the validity of our a posteriori approach. We leave this for
future work.
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Appendix A: Kernel density estimation

From a set of ns samples drawn from the distribution
ppop(θ|α), the KDE approximates its probability density func-
tion as

p̂pop(θ|α) =
1
ns

ns∑
i=1

KH(θ − θi), (A1)

where KH is the kernel function. We choose to work with
Gaussian KDEs, where, denoting by nd the dimensionality of
the parameter space,

KH(y) =
1

(2π)nd/2
[det(H)]−1/2e−

1
2 y

T H−1y. (A2)

In the Gaussian KDE implementation of scipy [101], H is
taken to be proportional to the identity matrix. The propor-
tionality constant is called the bandwidth of the KDE, and is a
very important parameter, since it defines the smoothing scale
of the approximation to the target probability density func-
tion. In Fig. 10 we show the approximations to the population
probability density function of log10(Mc,s) that we obtain us-
ing different values of the bandwidth (noted bw).

For too large values of the bandwidth, we cannot resolve
the features of the distribution, and for too small values, the
resulting probability density function is not smooth. We deal
with this issue by choosing the bandwidth that minimizes the
integrated squared error

∫
dθ(ppop(θ|α) − p̂pop(θ|α))2. In prac-

tice, it is estimated by using a Monte Carlo averaging, and the
quantity we seek to minimize is [103]∫

dθ p̂pop(θ|α)2 −
2
ns

ns∑
i=1

p̂pop,−i(θi|α), (A3)

where the sum runs over the ns samples drawn from ppop(θ|α)
used to approximate the integral, and p̂pop,−i(θ|α) is the KDE
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FIG. 10. Comparison between different KDE approximations to the
population probability density function of log10Mc,s, using different
values of the bandwidth. If the bandwidth is too small the KDE is
not smooth, and if it is too large we cannot resolve the features of
the distribution. For the case shown here, a bandwidth of 0.08 is a
good choice. This value was obtained by minimising the integrated
squared error, as described in the main text.

obtained using all ns samples but the ith one. The value of 0.08
used in Fig. 10 was obtained with this method. We also apply
it to compute the bandwidth of the KDE for the LS and HS
population distributions.

Appendix B: Systematic biases due to misevaluation of the
selection function

The selection function used to obtain the results of this pa-
per was computed with Eq. (4.7). We generated 8×105 events
for the LS and HS variants from the KDE and computed the
terms Ξ(LS) and Ξ(HS) individually. In Fig. 11 we compare
this selection function with one obtained using only 2 × 103

points to compute each term. There is a clear discrepancy be-
tween the two functions, which reflects on the population in-
ference as can be seen in Fig. 12. There we compare the shift
versus error on α plots obtained using each of these selection
functions. Clearly, using too few points to compute the selec-
tion function leads to systematic biases, as can be seen by the
fact that many more points are below the αmax = α0 line than
above. We do not expect to observe thousands of MBHBs
with LISA, but we have chosen this large number of events to
emphasize this effect. Even for fewer events we could be bi-
ased due to misevaluation of the selection function, and a large
number of points from numerical simulations will be needed
to mitigate this effect (see also [104]). Moreover, third gener-
ation ground-based detectors are expected to detect thousands
of events, and will face this same problem. In our study, this
systematic bias becomes negligible when using O(105) points
for each model.

Appendix C: Comparison between KDE and the population
obtained from simulations

In Fig. 13 we compare the population distribution predicted
from numerical simulations to the one obtained from building
a KDE on it.

FIG. 11. Comparison between the selection functions obtained using
different numbers of points.

(a)We use 8 × 105 points to evaluate the selection function of the LS
and HS variants.

(b)We use 2 × 103 points to evaluate the selection function of the LS
and HS variants.

FIG. 12. Evolution of the bias and the error on α using the selection
function in blue in Fig. 11 (top) and the one in orange (bottom). We
can clearly observe a systematic bias in the latter case due to mise-
valuation of the selection function.
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FIG. 13. Comparison between the population distributions obtained
from numerical simulations and the KDE we build from it. We pur-
posefully did not smooth the corner plot in order to reflect the real
level of agreement between the two distributions. The top and bottom
panels refers to the LS and HS variants, respectively. The “bumpy”
histograms for the HS variant (in particular for the spin) highlight
that we do not have enough points to build an accurate enough KDE
for our purposes. However the two distributions are overall in good
agreement, and therefore we expect that the approximation of using
the KDE as our “true” fiducial astrophysical model should not sensi-
bly affect our results.
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