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Abstract

An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation

with a Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random

initial times, the radiation is thermal. The existence of this radiation is due to the acceleration

of the vacuum field modes with respect to the falling atom. Its properties can be traced to the

dominant role of conformal quantum mechanics (CQM) in the neighborhood of the event horizon.

We display this effect for a scalar field, though the acceleration radiation has a universal conformal

behavior that is exhibited by all fields in the background of generic black holes.
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I. INTRODUCTION

Hawking’s seminal work on black hole radiance through quantum processes [1, 2] has given

rise to a research area that also includes black hole thermodynamics [3, 4]. A related phe-

nomenon was discovered by Unruh [5], following earlier work by Fulling and Davies [6, 7],

and showing that an accelerated observer in flat spacetime detects particles in the Minkowski

vacuum. Additional insights into the Hawking and Unruh effects, and black hole thermody-

namics, are of great interest due to their apparent universality, and as a litmus test of any

candidate theories of quantum gravity.

In this paper, we probe an aspect of the deep connections between Hawking and Un-

ruh radiation via a gedanken experiment where an atom falls freely into a Kerr (rotating)

black hole in a Boulware-like vacuum and emits radiation with a spectrum similar to black

hole radiance. The existence of such connections for the physical systems involved in this

gedanken experiment is partly suggested by the equivalence principle; however, naive appli-

cations of this principle are known to be very subtle, as in Ref. [8], where particular cases

are discussed as the “qualitative equivalence principle.” Thus, it is of significant relevance to

prove the validity of this concept in a fairly general instance of acceleration radiation by free

fall involving rotating black holes. In addition, showing this correspondence paves the way

for additional connections at the level of the thermodynamics for black holes and free-fall

acceleration radiation, as will be discussed elsewhere. In order to achieve these goals, we

generalize the insightful quantum-optics setup of Refs. [9, 10] (and related work [11, 12]),

as well as the conformal derivation of Ref. [13], from the Schwarzschild to the Kerr metric.

The Kerr geometry is the solution of the 4D vacuum Einstein field equations with a rotating

black hole of mass M and angular momentum J , given by

ds2 = −∆

ρ2
(dt− a sin2 θdφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
[

(r2 + a2)dφ− adt
]2

(1)

in Boyer-Lindquist coordinates (t, r, θ, φ). In Eq. (1), a = J/M is the Kerr parameter, the

auxiliary variables

∆ = r2 − 2Mr + a2 and ρ2 = r2 + a2 cos2 θ (2)

are introduced, and we use geometrized units c = 1, G = 1. This extension is of cru-

cial relevance because such black holes: (i) provide models that closely match astronomi-

cal observations of gravitationally collapsed objects with angular momentum that generate
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gravitational waves [14]; (ii) are conceptual laboratories that test the robustness of extreme-

gravity effects that are not artifacts of the spherical symmetry of the Schwarzschild solution.

The nontrivial technical subtleties involved in the Kerr geometry make this generalization

challenging, including the notoriously difficult problem of describing geodesic motion (for

the atoms in free fall) in the Kerr geometry. Thus, completion of this program is a significant

test of the general nature of the proposed properties of the acceleration radiation by free

fall.

With this background in mind, we will show that these radiation processes are driven by

conformal symmetry, in which a part of the system looks identical under arbitrary magni-

fications near the outer event horizon [13]. This conformal invariance has been highlighted

in Ref. [15] as arising from the presence of an unbounded gravitational blueshift as the

event horizon is approached. These forms of conformal invariance further point to the con-

nections between black hole thermodynamics and horizon conformal symmetries that have

been shown to provide a statistical foundation for the Bekenstein-Hawking entropy [16–18].

The relation of a 2D conformal field theory (CFT) with the near-horizon asymptotic sym-

metries has been studied for extremal and near-extremal black holes within the Kerr/CFT

correspondence [19]–[22]. In addition, in Ref. [15], the two-point functions of 2D CFT are

used to derive the thermal radiance of a non-extremal Kerr black hole. Another aspect of

near-horizon conformal behavior is conformal quantum mechanics (CQM) [23–28], which is

also analyzed as a (0+1)-dimensional CFT [29, 30]; here, near-horizon CQM governs the

thermodynamics of a Schwarzschild black hole through a singular statistical mode counting

that requires renormalization [25, 26]. Thus, we will show that: (i) the non-extremal Kerr

geometry exhibits an asymptotically exact near-horizon CQM that extends the scope of

Refs. [25, 26, 31] and (ii) acceleration radiation is created by free fall into a non-extremal

Kerr black hole in a Boulware-like vacuum, with a dominant CQM contribution that re-

sembles a thermal spectrum at the Hawking temperature. This confirms that robustness

of the results of Refs. [9, 10, 13] and [25, 26, 31]—beyond spherical symmetry—and high-

lights the universality of near-horizon CQM. The CQM universality is a manifestation of

the conformal symmetry experienced by all fields in the black hole background. Such prop-

erty can be also plausibly expected from the physical near-horizon blueshift [15], which is

revealed in the corotating frame in the near-horizon region. However, a rigorous derivation

of the role played by CQM and conformal symmetry is critically important, given the known
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complexities of the Kerr geometry.

The remainder of this paper is organized as follows. In Sec. II, we study the scalar field

equations in general, and in their near-horizon CQM form. In Sec. III, we consider the

interaction between the field and an atom, and the ensuing probabilities. The near-horizon

spacetime trajectories are analyzed in Sec. IV. Section V deals with the final expressions for

the emission and absorption probabilities and the thermal radiation properties. The article

ends with the conclusions in Sec. VI, followed by the appendices: on the derivation of the

near-horizon CQM equations (A) and the vacuum states (B).

II. KLEIN-GORDON EQUATION IN KERR GEOMETRY AND NEAR-

HORIZON CQM

In the Kerr geometry of Eq. (1), we will consider the non-extremal case, with M > a, for

which ∆′
+ ≡ ∆′(r+) = r+ − r− 6= 0 (and where the prime denotes radial derivative). The

outer (r+) and inner (r−) horizons of the black hole are given by the roots of the equation

∆ = 0, i.e., r± = M ± (M2 − a2)1/2. The Kerr geometry is stationary and axisymmetric

as the metric components are independent of the coordinates t and φ respectively, with

associated Killing vectors ξ(t) = ∂t and ξ(φ) = ∂φ. Equation (1) can be rewritten in a more

illuminating form

ds2 = −∆ρ2

Σ2
dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

Σ2

ρ2
sin2 θ (dφ−̟dt)2 (3)

with

Σ2 = (r2 + a2)2 −∆ a2 sin2 θ and ̟ = −gtφ/gφφ . (4)

Equation (3) describes a frame-dragging rotation with position-dependent angular velocity

̟ relative to the external reference system [34]. This picture is mandatory within the

ergosphere, which is limited by the largest root of gtt = 0, where ξ(t) becomes spacelike. As

the outer event horizon is approached, ̟ becomes the angular velocity of the black hole,

ΩH = lim
r→r+

̟ =
a

2Mr+
=

a

r2+ + a2
. (5)

We will now consider the interaction of a real scalar field of mass µΦ with an atom of
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mass µ in the gravitational background of a Kerr black hole. The scalar field satisfies the

Klein-Gordon equation

[

�− µ2
Φ

]

Φ ≡ 1√−g
∂µ

(√−g gµν ∂νΦ
)

− µ2
ΦΦ = 0 . (6)

In addition, for a metric of the form (1), Eq. (6) reduces to

−Σ2

∆

∂2Φ

∂t2
−4Mra

∆

∂2Φ

∂t ∂φ
+

(

1

sin2 θ
− a2

∆

)

∂2Φ

∂φ2
+

∂

∂r

(

∆
∂Φ

∂r

)

+
1

sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

−µ2
Φρ

2Φ = 0 .

(7)

This scalar-field equation is a particular case (for spin s = 0) of the Teukolsky equation [35].

Due to the structural form of Eq. (7), the resulting conformal behavior displayed below is

universal, namely, it is exhibited by all fields (with arbitrary spin) in the background of

generic black holes.

Equation (7) can be studied via the separation of variables

φωlm(r, t) = R(r)S(θ) eimφe−iωt (8)

(replacing Φ = φωlm to specify the mode functions; see next section), where r = (r, θ, φ).

Specifically, the functions R(r) ≡ Rωlm(r) and S(θ) ≡ Sωlm(θ) satisfy the equations given in

Appendix A. These functions depend on the frequency ω and the quantum numbers l, m.

In particular, Sωlm(θ) are oblate spheroidal wave functions of the first kind [36]. Moreover,

the coordinate change [15],

t̃ = t , φ̃ = φ− ΩHt , (9)

with

φω̃lm(r, t) = R(r)S(θ)eimφ̃e−iω̃t̃ , ω̃ = ω −mΩH , (10)

defines a frame that is corotating with the black hole at the angular velocity ΩH , and with

shifted frequency ω̃. The associated Killing vector ξ(t̃) = ξ(t) + ΩHξ(φ) is timelike when

sufficiently close to the event horizon. The horizon H is a null hypersurface with respect

to this Killing vector ξ(t̃); and the associated surface gravity κ = −(∇µξν)(∇µξν)/2 (with

r = r+) takes the value

κ =
∆′

+

2(r2+ + a2)
. (11)

We will systematically enforce the near-horizon expansion, denoted by
(H)∼ , in terms of
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x ≡ r − r+ ≪ r+. This involves the replacements

∆(r)
(H)∼ ∆′

+ x [1 +O(x)] , ∆′(r)
(H)∼ ∆′

+ [1 +O(x)] , ∆′′(r) = ∆′
+ = 2 . (12)

Then, the radial near-horizon leading order of Eq. (7) is

[

1

x

d

dx

(

x
d

dx

)

+

(

ω̃

2κ

)2
1

x2

]

R(x)
(H)∼ 0 , (13)

as derived in Appendix A. The correspondence with the standard form of CQM can be

established with the Liouville transformation R(x) ∝ x−1/2u(x), whence the near-horizon

reduced radial function u(x) satisfies

d2u(x)

dx2
+

λ

x2
[1 +O(x)] u(x) = 0 , (14)

where

λ =
1

4
+ Θ2 , Θ =

ω̃

2κ
. (15)

The scale invariance of Eq. (14) under a rescaling of x can be seen from the form

of the effective potential Veff(x) = −λ/x2, such that the 1D Schrödinger Hamiltonian

H = p2x/2m + Veff(x) describes the strong coupling regime of CQM. This operator, along

with the dilation operator D and special conformal operator K (defined using a time param-

eter conjugate to H ), produces the noncompact SO(2,1) algebra. A manifestation of this

conformal symmetry is the disappearance of all characteristic field scales; in particular, µΦ

plays no role in the near-horizon physics. As pointed out in Sec. I, the existence of this form

of conformal symmetry has been emphasized in Ref. [15] as a consequence of a gravitational

blueshift that grows without limit towards the event horizon, thus asymptotically erasing

any other physical scales. This gravitational frequency shift is revealed by looking at the

time part of the metric, with corotating coordinate time t̃, as shown in Appendix A. The

SO(2,1) algebraic structure, along with the singular near-horizon effective potential, have

been shown to determine the thermodynamics of a Schwarzschild black hole [25]. The emer-

gence of the CQM Hamiltonian for the Kerr geometry shows the universality of near-horizon

CQM.

A pair of linearly independent solutions to Eq. (14) is given by u(x) ∝ x1/2±iΘ. When

combined with their time dependence from Eq. (10), this yields

Φ±(CQM)

ωlm ∝ R±(CQM) eimφ̃e−iω̃t̃ ∝ x±iΘeimφ̃e−iω̃t̃ , (16)
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which are outgoing/ingoing CQM modes normalized as asymptotically exact WKB local

waves [26]. The φ̃ dependence is kept for consistency in subsequent calculations of excita-

tion probabilities in the presence of frame dragging in the near-horizon region. Incidentally,

to leading order in the near-horizon expansion, R±(x)
(H)∼ e−iω̃(t∓r∗), where the tortoise

coordinate r∗ for the Kerr metric is defined through the equation dr∗ = f−1dr, where

f = ∆/(r2 + a2). This equivalence is shown in Appendix A. In practice, our preferred use of

the CQM modes makes the near-horizon conformal behavior more explicit. In what follows,

we will consider the outgoing modes to find the excitation probability for an atom falling

freely towards a Kerr black hole in a Boulware-like vacuum state; as shown in Sec. V, the

ingoing modes do not contribute to the probability amplitude.

The generic Boulware-like vacuum can be defined with respect to the Boyer-Lindquist

coordinates in the rotating frame (9). Such a choice is similar to the Boulware vacuum as-

sociated with ordinary Schwarzschild coordinates in the Schwarzschild geometry; however,

as the Kerr geometry is stationary, with significant frame dragging, the relevant coordi-

nates (9) are adapted to the black hole rotation. As discussed in Appendix B, the standard

inclusion of the asymptotic regions, past/future null infinity I ∓, implies the existence of

superradiant modes that complicate the ordinary definition of the vacuum—possible con-

structions that circumvent this issue are discussed therein. Alternatively, the asymptotic

regions at I ± can be replaced with bounded-domain boundary conditions (e.g., Dirichlet)

by enclosing the system within a boundary or mirror M placed inside the speed-of-light

(SOL) surface [37]. The SOL surface is defined as that outside which an observer can no

longer have the angular velocity ΩH and ξ(t̃) becomes null. Then, the superradiant modes

and the Unruh-Starobinsky effect would be removed, yielding a unique Boulware vacuum

|BM〉, as well as a Hartle-Hawking vacuum analog [38]—these are the natural states adapted

to a frame corotating with angular velocity ΩH .

III. EXCITATION OF A FREELY FALLING ATOM INTO THE KERR BLACK

HOLE

We consider a two-state atom falling freely into the black hole. This problem can be tackled

with an approach similar to that of Refs. [9, 10, 13], with the field in a Boulware-like vacuum.

(See Appendix B for a discussion of modes and vacuum states.) The atom’s Hamiltonian is
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given by Hat = (|a〉〈a| − |b〉〈b|) ν/2 (with ~ = 1), where |a〉 and |b〉 are the atom’s excited

and ground states respectively, and ν is the atomic transition frequency. The field operator

is expanded with a complete set of orthonormal modes φs(r, t) as

Φ =
∑

s

[asφs(r, t) + h.c.] , (17)

where as is the field lowering operator that annihilates the vacuum, and the field quanta

are scalar (spin-0) “photons.” The symbol h.c. stands for the Hermitian (adjoint) conju-

gate. The atom-field interaction is formally treated as a weak monopole coupling in the

interaction picture (which is an analog model of a dipole coupling for spin-1 photons in

electromagnetism), with

V̂I(τ) = g [asφs(r(τ), t(τ)) + h.c.]
(

σ
−
e−iντ + h.c.

)

, (18)

where σ
−
is the atom’s lowering operator, g is the interaction strength, and τ is the atom’s

proper time. In Eqs. (17) and (18), the symbol s stands for the set of “quantum num-

bers” that provide complete characterization of the mode: it includes the frequency ω of the

mode and any additional numbers associated with the geometry and separation of variables.

For the Kerr geometry in 3 spatial dimensions, this is s = {ω, l,m}, where {l, m} are the

spheroidal number and the “magnetic” quantum number associated with angular momen-

tum. (When quantization is enforced in a finite box, the frequencies involve a third discrete

number. Also, for the particular case of the Schwarzschild geometry, these reduce to the

usual numbers associated with spherical symmetry and angular momentum.)

Equation (18) allows for free-fall virtual processes of the atom transitioning from the

ground state |b〉 to the excited state |a〉, and creating a field-mode quantum (state s), with

an excitation probability [32, 33], which is the emission probability for the field mode s,

given by

Pe,s =

∣

∣

∣

∣

∫

dτ 〈1s, a|V̂I(τ)|0s, b〉
∣

∣

∣

∣

2

≡ g2|Ie,s|2 , (19)

gIe,s is the corresponding probability amplitude (which, more precisely, is the integral above

multiplied by −i). In a similar way, the absorption probability is given by

Pa,s =

∣

∣

∣

∣

∫

dτ 〈0, a|VI(τ)|1s, b〉
∣

∣

∣

∣

2

≡ g2|Ia,s|2 , (20)

where gIa,s is the absorption probability amplitude. Equations (19) and (20) can be

evaluated with the interaction potential of Eq. (18) and using the proper-time parametrized
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atom’s geodesic (free-fall spacetime trajectory) with given initial conditions. This problem

does not have a closed analytical form, but the near-horizon approximation gives expres-

sions for the geodesics and the excitation probability. We will show that, the final result,

asymptotically exact in the near-horizon expansion, resembles a Planck distribution.

IV. NEAR-HORIZON SPACETIME TRAJECTORY OF THE ATOM IN FREE

FALL

The free-fall spacetime trajectory of the atom can be found most efficiently by reducing

the geodesic equations to their first-order form, using the four constants of the motion: the

energy E and the axial component of angular momentum Lz, given by

E = −pt = −ξ(t) · p , Lz = pφ = ξ(φ) · p (21)

(as follows from the 4-momentum p and the Killing vectors), in addition to the invariant

mass µ and the Carter constant Q [39]. In this work, as we will explicitly use the proper

time τ along the geodesic. (An alternative, convenient choice, e.g., in Ref. [39], is to use

a rescaled affine parameter λ = τ/µ.) Moreover, we will rewrite these equations with the

specific conserved quantities (normalized by mass)

e =
E

µ
, ℓ =

Lz

µ
, (22)

and

q =
Q
µ2

=

(

pθ
µ

)2

+ cos2 θ

[

a2
(

1− e2
)

+

(

ℓ

sin θ

)2
]

. (23)

The standard procedure yields [39]

ρ2
dr

dτ
= −

√

R(r) (24)

ρ2
dθ

dτ
= ±

√

Θ(θ) (25)

ρ2
dφ

dτ
= −

(

ae− ℓ

sin2 θ

)

+
a

∆
P(r) (26)

ρ2
dt

dτ
= −a(ae sin2 θ − ℓ) +

r2 + a2

∆
P(r) . (27)

In Eqs. (24)–(27), the following auxiliary quantities have been defined

P(r) = e(r2 + a2)− aℓ (28)
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R(r) = [P(r)]2 −∆
[

r2 + (ℓ− ae)2 + q
]

(29)

Θ(θ) = q− cos2 θ

[

a2(1− e2) +
ℓ2

sin2 θ

]

. (30)

The set of equations (24)–(27) gives dxµ(τ)/dτ , where xµ(τ) ≡
(

t, r, θ, φ
)

, in terms of func-

tions of (r, θ), independently of φ and t. This coordinate independence is due to the axisym-

metric and stationary nature of the metric. But the combined dependence with respect to

(r, θ) still makes Eqs. (24)–(27) be apparently coupled in the form dxµ(τ)/dτ = Uµ(r, cos θ).

However, decoupling of this system is possible by combining the corresponding geodesic

equations (24) and (25) into the single separable equation dr/
√

R(r) = ∓dθ/
√

Θ(θ), where

R(r) and Θ(θ) are given in Eqs. (28)–(30). With the substitution y ≡ cos θ and writing

F (y) = 1/
√

Θ(y) (1− y2), this integrated equation becomes

∫

dr
√

R(r)
= ∓

∫

F (y)dy . (31)

In principle, Eq. (31) gives a formal solution y(r) in terms of elliptic integrals—the general

solutions for all cases are discussed in Ref. [40]. Therefore, this separation procedure shows

that all the geodesic equations (24)–(27) can be reparametrized as functions of r; explicitly,

dxµ(τ)

dτ
= Uµ(r, y(r)) . (32)

The obvious strategy implied by Eq. (32), motivated by the physics (e.g., here for a freely

falling system), is to follow the motion with respect to the radial variable r (e.g., as the event

horizon is approached). Of course, the geodesics are parametrized in terms of the proper time

τ , but the radial geodesic (24) provides a relationship between τ and r (including the decou-

pling procedure). Once the inverse relation τ(r) is formally established, the other geodesic

equations (25)–(27) give the complete set of formal solutions xµ(τ) ≡
(

t(r), r, θ(r), φ(r)
)

as

functions of r. In general, this is a difficult problem; however, for our purposes, we will find

explicit and remarkably simple near-horizon equations, as will be shown next.

The near-horizon limit of the geodesic equations can be enforced by expanding around r+,

in terms of the variable x = r − r+, using the strategy outlined in the previous paragraph.

The near-horizon expansion of the radial geodesic (24) becomes

ρ2+
dx

dτ

(H)∼ −
√

c20 − c1x+O(x2) , (33)
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where ρ2+ ≡ ρ2+(θ) = r2+ + a2 cos2 θ. The constants

c0 = P(r+) =
(

r2+ + a2
)

(e− ΩHℓ) (34)

c1 = −4er+c0 +∆′
+

[

r2+ + (ℓ− ae)2 + q
]

(35)

are dependent on the conserved quantities of the motion; in particular, c0 is proportional to

the energy measured in the frame dragged with the angular velocity ΩH , i.e.,

ẽ = −ξ(t̃) · p = e− ΩHℓ > 0 . (36)

At first sight, the strategy of describing the motion in terms of x (i.e., the task of finding the

functional relationship τ = τ(x)) is complicated by the θ dependence in the radial geodesic

equation (24) via the quantity ρ2+(θ), a problem that persists in the near-horizon limit (33).

But this is the problem whose formal solution we outlined with Eqs. (31) and (32). In

particular, the near-horizon form of Eq. (31) reduces to

∫

dx
√

c20 − c1x

(H)∼ ∓
∫

F (y)dy , (37)

where the constants are given in Eqs. (34) and (35); again, this is expressible in terms of

elliptic integrals of the first kind [40]. Therefore, this procedure shows that all the geodesic

equations (24)–(27) can be reparametrized with respect to x, as implied by Eqs. (32) and

(37). An exact solution for y(x) can be circumvented in the near-horizon limit as the

particle will reach the horizon at a given value θ+ of the polar coordinate. The parameter

θ+ has a simple interpretation: it is an effective “initial condition” for the particle to cross

the horizon with θ-dependent coordinate values (due to the axisymmetric geometry). This

approach involves the leading near-horizon order, so that G(cos θ)
(H)∼ G(cos θ+) for any

function with nonvanishing zeroth order. Specifically, this leads to the replacement ρ2
(H)∼

ρ̂2+ ≡ r2+ + a2 cos2 θ+. In other words, for the near-horizon radiation problem, the relevant

range of θ can be restricted. Then, the proper-time relation τ = τ(x) follows by integrating

Eq. (33),

τ = −kx+O(x2) + const , (38)

where k = ρ̂2+/c0. Next, to obtain the functional relationships t = t(x) and φ = φ(x) to

leading order, we can divide Eqs. (26) and (27) respectively by Eq. (24)— this directly

removes the θ-dependent ρ2 factors; thus, by straightforward integration, the near-horizon
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expansions are

t
(H)∼ − 1

2κ
ln x− Cx+O(x2) , (39)

φ̃
(H)∼ αx+O(x2) . (40)

In Eq. (40), we have evaluated φ̃ = φ − ΩHt (by combining solutions for φ and t) because

the CQM modes in Eq. (16) explicitly depend on this corotating azimuthal variable. Most

importantly, even though both φ and t have logarithmic terms proportional to ln x, these

cancel out when combined into the locally well-defined coordinate φ̃. Finally, for the sake of

completeness, the constants C and α can be computed by collecting all theO(x) terms arising

from the functions on the right-hand side of Eqs. (24)–(27); a straightforward calculation

gives

C =
1

2κ

[

1

2

c1
c20

+
2r+
R2

+

(ẽ+ ΩHℓ)

ẽ
− 1

2κR2
+

− ΩH

ẽ

(

aes2+ − ℓ
)

]

(41)

and

α = ΩH
r+
κR2

+

−
(

aes2+ − ℓ
) (

ΩHa− 1/s2+
)

R2
+ẽ

, (42)

where R2
+ = r2+ + a2 and s+ = sin θ+. Remarkably, the constants C, α, and k, as shown in

Sec. V, do not play a direct role in the radiation formula.

V. NEAR-HORIZON EXCITATION PROBABILITY AND RADIATION PROP-

ERTIES

We are now ready to use the reparametrization of the geodesics in terms of the near-horizon

coordinate x to compute the emission probability for the atom in free fall. Replacing

Eqs. (16), (38), (39), and φ̃(x) in Eq. (19) gives

Pe,s = g2k2

∣

∣

∣

∣

∫ xf

0

dx x−iσe−iqx

∣

∣

∣

∣

2

, (43)

where xf is an upper bound of the near-horizon approximation, k = ρ̂2+/c0, and the param-

eters in the integral are σ = ω̃/κ (for the purely outgoing radiation modes Φ+(CQM)
s

) and

q = Cω̃ + kν + αm. The integrand of Eq. (43) involves two competing oscillatory functions

f1(x) ≡ x−iω̃/κ = e−i(ω̃/κ) lnx and f2(x) ≡ e−iqx that select the near-horizon region [13],

with ν ≫ ω̃ , αm, and the outcome is independent of C and α. Such behavior displays the

dominant physics that is invariant under arbitrary magnifications. This form of conformal
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dominance is due to the CQM modes and the associated logarithmic dependence of t on x,

with the near-horizon wavefronts piling up in a Russian-doll geometric sequence [13]. Then,

the amplitude integral is given by
∫ xf

0
dx x−iσe−iqx ≈ q−1

√

2πσ/(e2πσ − 1) eiδ, where δ is a

real phase. Thus, the resulting radiation spectrum is governed by the emission probability

Pe,s =
2πg2ω̃

κν2

(

e2πω̃/κ − 1
)−1

, (44)

which is the central result of this paper.

Some important remarks are in order. First, the only nonzero contributions in Eq. (43),

leading to Eq. (44), arise from the purely outgoing CQM component Φ+(CQM)
s

, for which

σ = ω̃/κ; if, instead, the ingoing CQM component were used, the logarithmic terms would

cancel, yielding σ = 0 and a vanishing outcome. For that reason, any generic Boulware-like

state |B〉 will give a Planck distribution (44). (See Appendix B.)

Second, it is noteworthy that the probability amplitude of Eq. (44) corresponds to a

Planck statistical distribution that is a function of the variable ω̃ = ω −mΩH , with mΩH

as a generalized chemical potential that favors the black hole’s tendency to remove its

conserved quantum numbers. Incidentally, this functional combination corresponds to the

thermodynamic change δM − ΩHδJ , which also relates to the coupling with fields and

particles (orbital parameters, gyroscope precession, and Sagnac effect [41]).

Finally, the appearance of the Planck function in Eq. (44) shows its apparent equivalence

to a thermal distribution with the Hawking temperature TH = β−1
H = κ/2π (proportional to

the surface gravity κ). Interestingly, this arises from the emission of a pure state by a single

atom, with definite correlations between the modes encoded in the phase of the integral

in Eqs. (19) and (43). However, the setup can be extended to a model consisting of an

ensemble of freely-falling atoms forming a cloud, as in Refs. [9, 10]; if the initial conditions

for their spacetime trajectories are random, then, the outgoing radiation field would be

effectively thermal . Mathematically, Eqs. (19) and (44) give the probability of emission of

a field quantum; similarly, Eq. (20) gives the absorption probability Pa,s (for the transition

from field state 1s to 0s) [32, 33], which formally reduces to ω̃ → −ω̃; this yields

Pe,s

Pa,s
= e−βH ω̃ . (45)

The interpretation of the ratio (45) as modeling a thermal distribution with a Boltzmann fac-

tor [32, 33] has been used for black hole thermodynamics [42, 43]. Furthermore, the physical
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origin of this factor can be traced to the CQM waves, as in Eq. (43). The Boltzmann-factor

analysis of the thermal nature of the radiation can be expanded by considering the reduced

density matrix of the field, as in Ref. [9], where the radiation field is called horizon bright-

ened acceleration radiation (HBAR). The corresponding master equation for the diagonal

elements ρn,n of a given single mode,

ρ̇n,n = −Re,s

[

(n + 1) ρn,n − n ρn−1,n−1

]

−Ra,s

[

n ρn,n − (n+ 1) ρn+1,n+1

]

, (46)

admits a steady-state distribution that is indeed thermal for random initial injection times of

the atomic cloud. Here, the rate coefficients Re,s and Ra,s are proportional to Pe,s and Pa,s.

The implementation of the thermal condition of the radiation field requires that the Boltz-

mann factor (45) be satisfied as above for all field modes. A detailed analysis of this HBAR

density-matrix approach—including nontrivial generalizations to simultaneous modes, to

the Kerr geometry, and with an all-encompassing thermodynamic correspondence—is in

progress, and will be reported elsewhere.

VI. DISCUSSION

In this paper, we have shown that the acceleration radiation of an atom falling freely into a

Kerr black hole in a Boulware-like vacuum is driven by the near-horizon physics. Specifically,

this Unruh (acceleration) radiation can be traced to the dominance of near-horizon CQM

modes in the excitation probability, which can be physically motivated by the unbounded

gravitational blueshift experienced as the atoms approach the event horizon [15]. This

radiation is due to the acceleration of the reference frame in which the vacuum field modes are

defined with respect to the freely falling atom (locally inertial frame) [44]; thus, its existence

agrees with the qualitative equivalence principle [8], and generates a spectrum with the

Hawking-Unruh temperature T = κ/2π. As a result, our work serves as general proof of the

validity of this qualitative equivalence principle, with an associated correspondence between

free-fall acceleration radiation and Hawking radiation. Furthermore, the HBAR radiation

field of an atomic cloud with random initial times has a thermal character, as will be further

analyzed in a forthcoming article, where a larger set of thermodynamic correspondences will

be shown.

Moreover, our analysis covers all 4D black holes subject to the no-hair theorem [39]:
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the Schwarzschild geometry (a = 0, as in Ref. [13]) and Kerr-Newman black holes with

electric charge Q, obtainable via ∆ −→ r2−2Mr+a2+Q2 (in geometrized units, with unit

Coulomb constant). This shows the universality of this form of conformal symmetry and

the robustness of the ensuing acceleration radiation for all 4D black holes, consistent with

the near-horizon gravitational blueshift.

Finally, our work highlights the simplicity of the near-horizon framework as a tool to

tackle otherwise intractable problems, and elucidates the connection of the acceleration

radiation with (0+1)-dimensional CFT.
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Appendix A: Separation of variables and derivation of the near-horizon CQM equa-

tion

In this appendix, we summarize two important topics: (i) the basics of separation of variables

in Boyer-Lindquist coordinates; and (ii) three derivations of the near-horizon CQM equation.

1. Separation of variables in Boyer-Lindquist coordinates

When the separation of variables of Eq. (8) is enforced in Eq. (7), the radial function

R(r) satisfies the equation

d

dr

(

∆
dR

dr

)

+

[

(r2 + a2)2ω2 − 4Mramω + a2m2

∆
− Λs − a2ω2 − µ2

Φr
2

]

R = 0 , (A1)
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where Λs is the separation constant extracted from the angular equation for spheroidal wave

functions [35, 36]

1

sin θ

d

dθ

(

sin θ
dS

dθ

)

+

[

a2ω2 cos2 θ − m2

sin2 θ
+ Λs − a2µ2

Φ cos2 θ

]

S = 0 (A2)

(most commonly studied for µΦ = 0). As Eq. (A2) defines a Sturm-Liouville problem, the

regular solutions form a complete orthogonal set labeled by a discrete “spheroidal” number

l. Additionally, the separation constant Λs depends on the other quantization parameters:

m and ω, as well as the Kerr parameter a and the field mass µΦ (both ω and µΦ appear in

the dimensionless combinations aω and aµΦ).

2. Derivation of the near-horizon CQM equation

A first derivation starts from the full-fledged radial equation (A1). Implementing the

near-horizon expansion with Eq. (5) selects the dominant terms, which are the first one (with

radial derivatives) and the ratio in the square brackets. In the latter, it is straightforward

to complete squares using the definition of the angular velocity ΩH of the black hole. This

converts the radial equation (A1) into the leading radial near-horizon equation

[

1

x

d

dx

(

x
d

dx

)

+

(

ω̃
(r2 + a2)

∆′
+

)2
1

x2

]

R(x)
(H)∼ 0 , (A3)

which is equivalent to Eq. (13), when Eq. (11) for the surface gravity is used. As shown in

the main text, Eq. (A3) can be reduced to its normal form with the Liouville transformation

that yields the standard CQM Hamiltonian of Eq. (14).

A second derivation involves the alternative, equivalent expression for the Kerr metric

given by Eq. (3). While this equation gives the covariant metric, it can easily be inverted to

get the contravariant components needed for the Klein-Gordon equation (6). Then, in the

near-horizon region, instead of Eq. (7) or Eq. (A1), one can directly write

[

− Σ2

ρ2∆

∂

∂t̃2
+

ρ2

Σ2 sin2 θ

∂

∂φ̃2
+

1

ρ2
∂

∂r

(

∆
∂

∂r

)

+
1

ρ2
∂

∂θ2

]

Φ (A4)

(H)∼
[

−(r2 + a2)2

ρ2∆

∂

∂t̃2
+

1

ρ2
∂

∂r

(

∆
∂

∂r

)]

Φ
(H)∼ 0 , (A5)

due to the leading behavior ∆(r)
(H)∼ ∆′

+ x, which selects the radial-time sector of the metric.

Equation (A5) reproduces again the asymptotically exact equation (13).
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A third derivation can be completed by using the equivalent tortoise coordinate r∗ for

the Kerr metric, which is defined through the equation

dr∗
dr

=
1

f(r)
, (A6)

where

f ≡ ∆

(r2 + a2)
, (A7)

so that

r∗ =

∫

r2 + a2

∆
dr . (A8)

This coordinate choice is made so that the radial-time sector of the metric appears as near-

horizon conformally flat and pushes the horizon radially to minus infinity. Notice that the

scale factor f(r) plays the same role as the homologous factor in generalized Schwarzschild

coordinates. In the corotating coordinates (9), the radial function R(r) satisfies the wave

equation
[

d2

dr2∗
+ ω̃2

]

R(r) = 0 . (A9)

Most importantly, Eq. (A9) with the tortoise coordinate is equivalent to its counterpart with

the regular Boyer-Lindquist radial variable, Eq. (A3) or Eq. (13). The ingoing and outgoing

waves
{

e−iω̃(t̃+r∗), e−iω̃(t̃−r∗)
}

in terms of r∗ correspond to the conformal ingoing/outgoing

modes x∓iΘ of CQM. This is expected from the fact that we have just mapped the near-

horizon physics from one coordinate frame to another. A simple proof of this equivalence,

at the level of the differential equations, follows from the definition (A6) of this coordinate

transformation, whose near-horizon leading form dr∗/dr
(H)∼ dr∗/dx

(H)∼ 1/(f ′
+x) implies that

d2

dr2∗
+ ω̃2 = 0

(H)∼ (f ′
+)

2 x
d

dx

(

x
d

dx

)

+ ω̃2 = 0 =⇒
[

1

x

d

dx

(

x
d

dx

)

+
ω̃2

(f ′
+)

2

1

x2

]

R(x)
(H)∼ 0 ,

(A10)

where f ′
+ = ∆′

+/(r
2
+ + a2), which is identical to Eq. (13).

A final remark is in order. The equivalence of Eqs. (13) and (A9) also implies that they

both have associated conformal symmetry. As discussed in Ref. [15], the conformal invariance

of Eq. (A9) can be viewed as physically generated by an exponential gravitational blueshift

near the event horizon. This result can be understood by looking at the metric components

in corotating coordinates, as obtained by direct inspection of Eq. (3), with the definitions of

Eq. (9) [or via the inverse metric for the corresponding Klein-Gordon equation (A4)]. Thus,
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the t̃-time component of the metric is

gt̃t̃ ≡ ξ(t̃) · ξ(t̃) = −ρ2∆

Σ2

(H)∼ − ρ2+
(r2+ + a2)

f+(x) (A11)

in the near-horizon region, with f+(x) being the near-horizon approximation of the function

f(r) of Eq. (A7). Comparison of Eq. (A11) with the gtt component in the generalized

Schwarzschild geometry shows that they are proportional and have the same near-horizon

behavior, but with the Kerr metric expressed in terms of the corotating time t̃. Specifically,

this happens in such a way that the metric component is −gt̃t̃ ∝ ∆ ∝ f+(x) ∝ x. The

frequency ω of a photon with four-wavevector k, as perceived by corotating observers with

normalized four-velocity U , is ω = −U · k = −ξ(t̃) · k/V , if V is the normalization factor

defined in the conventional way ξ(t̃) = VU , i.e., V =
√−gt̃t̃; thus, the frequency shift is

governed by the rule ω ∝ V −1, which shows that V is also the frequency shift factor, and is

singular at the event horizon (blueshifted at the event horizon with respect to asymptotic

infinity, and redshifted for the reverse relationship). When recast in terms of the logarithmic

tortoise coordinate (A8), such behavior is the exponential gravitational frequency shift [15].

Appendix B: Field modes and vacuum states

Kerr field modes and vacuum states have been analyzed in Refs. [45, 46]. A vacuum state |0〉
is defined via a complete set of positive-frequency modes Φs with annihilation operators âs

such that âs |0〉 = 0. The Kerr-geometry modes below are denoted ϕΛ
s
, where s = {ω, l,m}

and Λ labels in, up, out, and down [47]. With the notation H∓ for the past/future horizons

and I
∓ for past/future null infinity, the up mode ϕup

s
(with radial function R−

s
) initially

emerges from H− (reflecting back to H+ and transmitting to I +, with coefficients A−
s
and

B−
s
); and the in mode ϕin

s
(with radial function R+

s
) is initially ingoing from I − (reflecting

and transmitting to I + and H+ respectively, with coefficients A+
s
and B+

s
). The out and

down modes are the corresponding time-reversed solutions (i.e., Rout
s

= R+∗
s

and Rdown
s

=

R−∗
s
). Moreover, these modes map asymptotically to the CQM modes (16) in the form

ϕout
s

(H)∝ Φ+(CQM)

s
, ϕin

s

(H)∝ Φ−(CQM)

s
(B1)

(with the proportionality coefficients defined above; also R∓
s

(H)∝ R±(CQM)). By contrast, the

up and down modes ϕup,down
s

include both near-horizon components Φ±(CQM)
s

.
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Now, generic Boulware-like vacua are defined via the positive-frequency modes above

with respect to the Killing vector ξ(t) = ∂/∂t, i.e., in Boyer-Lindquist coordinates. The past

Boulware vacuum |B−〉 is defined in terms of the basis
{

ϕup
s
, ϕin

s

}

(with values on the past

Cauchy surface H− ∪ I −); and similarly for the future Boulware vacuum |B+〉 in terms of
{

ϕout
s

, ϕdown
s

}

(with Cauchy values on H+ ∪ I +). In Ref. [45], |B−〉 and |B+〉 were shown

to be inequivalent due to the superradiant modes needed for a complete basis—these are

the up/down modes (in each basis) with the frequency range 0 < ω < mΩH (for co-rotating

waves, m > 0). This problem originates from the mismatch of frequencies ω and ω̃ associated

with the Killing vectors ξ(t) and ξ(t̃) (naturally adapted to I ± and H± respectively). These

Boulware states and Eq. (B1) can be used to find the excitation probability of a freely falling

atom.

As discussed in Sec. V, any generic Boulware-like state |B〉 will give a Planck distri-

bution (44). In particular, for the basis sets associated with |B±〉, the purely outgoing

components that give Eq. (44) are extracted accordingly (ϕout
s

for |B+〉 and ϕup
s

for |B−〉);
this leaves the interpretation of the superradiant modes (for −mΩH < ω̃ < 0), as an addi-

tional technicality. Moreover, this calculation shows that, for the future Boulware vacuum

|B+〉, the superradiant modes are subsumed in the Planck distribution [35]; in addition, from

ϕout
s

(H)∼ B+∗
s

Φ+(CQM)
s

[including the proportionality coefficients in Eq. (B1)], and as Ts = B+∗
s

is the amplitude transmission coefficient, the modified Eq. (44) accounts for the greybody

factors Γs = |Ts|2. If the past Boulware vacuum |B−〉 is chosen, the classical superradiant

modes also give rise to the Unruh-Starobinsky radiation (quantum superradiance) [48] of

the vacuum at I +.

Additionally, for fermion fields, the definition of quantum states is less constrained, and

there are other candidate Boulware states [49].
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