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Calculations of the evolution of cosmological perturbations generally involve solution of a large
number of coupled differential equations to describe the evolution of the multipole moments of the
distribution of photon intensities and polarization. However, this “Boltzmann hierarchy” commu-
nicates with the rest of the system of equations for the other perturbation variables only through
the photon-intensity quadrupole moment. Here I develop an alternative formulation wherein this
photon-intensity quadrupole is obtained via solution of two coupled integral equations—one for
the intensity quadrupole and another for the linear-polarization quadrupole—rather than the full
Boltzmann hierarchy. This alternative method of calculation provides some physical insight and a
cross-check for the traditional approach. I describe a simple and efficient iterative numerical solution
that converges fairly quickly. I surmise that this may allow current state-of-the-art cosmological-

perturbation codes to be accelerated.

PACS numbers:

I. INTRODUCTION

Linear-theory calculations of the evolution of primor-
dial density perturbations provide the foundation for
the interpretation of cosmic microwave background and
large-scale-structure measurements. They are thus an
essential tool in the construction of our current cosmo-
logical model and in the continuing quest for new cosmo-
logical physics.

The calculations, which trace back over 50 years
[1], involve time evolution of a set of coupled differ-
ential equations [2] for the metric perturbations and
for the dark-matter, baryon, neutrino, and photon den-
sity and velocity perturbations. There is also a (nomi-
nally infinite) “Boltzmann hierarchy” of differential equa-
tions for the higher moments (quadrupole, octupole,
etc.) of the photon-intensity and photon-polarization
and neutrino-momentum distributions. The photon hi-
erarchies can be truncated at some maximum multi-
pole moment l,,x =~ 30 to provide sufficient precision
for the monopole, dipole, and octupole from which the
higher-order moments (which provide the CMB tem-
perature/polarization power spectra) can be obtained
through a line-of-sight integral [3]. Higher-order exten-
sions to the tight-coupling approximation (TCA) [4, 5],
improved numerical integrators, and novel approxima-
tions to free-streaming relativistic particles [5]) have pro-
vided incredible code acceleration to what is still a fairly
complicated numerical calculation. At present, virtually
all work in cosmology now relies on two publicly available
codes, CAMB [6] and CLASS [5], which combine speed and
precision with model flexibility.

These codes are now extremely efficient and reliable.
However, modern cosmological analyses, which employ
Markov chain Monte Carlos to map the likelihood in a
multi-dimensional parameter space, require these codes
to be run repeatedly, thus employing signficant compu-
tational resources. It is thus worthwhile to explore new
numerical approaches. New approaches can also often

provide new insights into the physics and may perhaps
provide tools that can be applied to other problems.

It was realized that for primordial tensor perturbations
(i.e., gravitational waves), the Boltzmann hierarchy can
be replaced by a small set of integral equations (IEs)
[7, 8], an approach used in Refs. [9, 10] A similar ap-
proach was discussed for scalar perturbations (primordial
density perturbations) in Ref. [11], but not implemented
numerically.

Here, I re-visit this integral-equation approach for pri-
mordial density perturbations. I discuss simplifications
to the equations in Ref. [11] and describe a specific im-
plementation where the Boltzmann hierarchy for all pho-
ton intensity/polarization multipole moments from the
quadrupole (I = 2) and higher are replaced by two IEs,
one for the photon quadrupole, and another for the po-
larization quadrupole. I discuss the numerical solution
of these integral equations and how the initial conditions
for the IEs are set from an early-time solution obtained
with the TCA. I describe an iterative algorithm to solve
these integral equations simultaneously with the differ-
ential equations for the other perturbation variables. I
show results from two simple numerical codes that are
identical except for the replacement of the photon Boltz-
mann hierarchy in the first with the two integral equa-
tions in the second. Numerical experiments with these
codes suggest that this iterative IE algorithm may, with
further work, allow current state-of-the-art codes to be
accelerated.

This paper is organized as follows. Section II, presents
and discusses the integral equations. Section IIT pro-
vides the differential equations for the other perturbation
variables (i.e., for neutrinos, dark matter, baryons, and
the metric) and describe how the two integral equations
are combined with these other equations. Section IV
describes a simple algorithm to solve the integral equa-
tions numerically and how the initial conditions for the
IE solver are obtained from the tight-coupling approx-
imation at early times. This Section also describes an



iterative algorithm to solve them in tandem with the dif-
ferential equations. Section VI describes the two rudi-
mentary codes to evolve the Boltzmann hierarchy and the
IE equations. I then present and discuss results of the
calculation. Section VII concludes with a discussion of
possible concerns and ideas for further steps. Appendix A
provides the photon Boltzmann equations in the notation
used here, and Appendix B provides details of the algo-
rithm to solve the integral equation. The codes are pro-
vided at https://github.com/marckamion/IE for read-
ers interested to follow up on calculational details that
cannot be inferred from the presentation here.

II. FORMALISM

If we have a spectrum of initial curvature fluctuations
with power spectrum Pg (k) = (|Rg|?), then the CMB
temperature/polarization power spectra are

CXX' = (2n%) ! / K dk Pr (k) AN (o) AY (7o), (1)

for X, X’=T,E with “T” the temperature and “E” the E-
mode of the polarization. The transfer functions A% (7)
are obtained through solution of differential equations
for the time evolution of the relativistic gravitational po-
tentials, the baryon, dark-matter, photon, and neutrino
densities and bulk velocities, and the higher moments of
the photon and neutrino momentum distributions. The
moments of the intensity distribution of photon momenta
are the transfer functions A7, (7) and the moments of the
distribution of photon polarizations are AF (7).

The temperature transfer functions can be written as’

T 1 fu (1) ,
AEI(T) = ~/7—1 dT/g(TaT/){[_G /%(T/) +Arl£0(7_l) ]l(m)
Lag(r') | 1 / LL (@)
) 4 S| R + o
(2)
where © = k(r — 7’); a dot denotes a partial deriva-

tive with respect to 7; and g(7,7') = (d/dr')e="("7") =
i(r") e="(m™) is the visibility function. The initial con-
formal time 7; must be taken to be deep in the tight-
coupling regime and will be discussed more below. Here,
k(1) = dr/dr is the opacity, the derivative of the
Thomson-scattering optical depth with respect to con-

I The notation here resembles largely that in Ref. [5]. The differ-
ences are that (i) the photon AEL here is one quarter of theirs;
(ii) the R here is the inverse of their R; (iii) the & here is their
7'51; (iv) the « here is their h + 6n. The II here is the same as
that in Ref. [3] and is IT = (Fy2 + G0 + G~2)/4 in terms of the
variables in Ref. [5].

formal time, and

) = [ " dm #(m), (3)

Also, R (z) = —3 [ji(z) + 3j; ()] [12, 13] in terms of
spherical Bessel functions j;(z), and 6y, (7) is the baryon
velocity. It is related to the photon velocity (suppressing
hereafter the subscript & for notational economy) 6 (7) =
3kAT, (1) through

b, = —HOp + k26, + 2 (0, — 0y),

- ()
where H(7) = a/a and R(7) = (3/4)ps(7)/p~(T), the
scale factor in units of 3/4 of that at matter-baryon equal-
ity (pp(7) and p-(7) are mean baryon and photon energy
densities, respectively). The baryon sound speed c; is in-
creasingly important on small scales but has little effect
on the larger distance/angular scales relevant for CMB
fluctuations. Here, h(7) is the standard synchronous-
gauge perturbation variable, and a(7) = h(7) + 6n(7) in
terms of the commonly used synchronous-gauge variable
().

The function II(7) is a linear combination of the
photon-intensity and polarization quadrupoles; for sim-
plicity, I refer to it here as the polarization quadrupole.
It can also be written as an IE,

II(7) = AJ () + 9Es(7), (5)

with

B = [ gtr 2D, )

(k(r —7))°

The CMB E-mode transfer function is then AF(7) =
(3/4)\/ (L + 2)!/(l = 2)\E; (7).

A derivation of Egs. (2) and (5) will be provided in
Ref. [14] using the total-angular-momentum formalism
[13], but it is easily verified that they agree with Eq. (18)
in Ref. [15], Egs. (74) and (77) in Ref. [12], and with the
IEs in Ref. [7]. It can also be verified, using the relation,
(20 + 1)ji(2) = Lji1(2) — (L+ D (@) (which RV-(z)
and jj(z) also satisfy), that differentiation of these two
IEs recovers the usual Boltzmann hierarchy as given, for
example, in Egs. (2.4) of Ref. [5] or Eq. (63) of Ref. [16].
Thus, these two IEs are formally equivalent to the Boltz-
mann hierarchy. For completeness, the Boltzmann hier-
archy is provided in the notation/conventions used here
in Appendix A.

III. TMPLEMENTATION

The left flowchart in Fig. 1 shows the interdependency
between the different perturbation variables in the dif-
ferential equations for their evolution. In the middle
are the metric-perturbation variables h and a. These



(a)
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FIG. 1: Flow charts for the perturbation calculation with (a) the Boltzmann hierarchy and (b) the integral-equation approach.
An arrow points from an element that appears in the differential equation for the element it points to. Ingredients that appear
in the integral equation for a given quantity are indicated in (b) with an integral sign. As both figures indicate, the higher
moments (I > 3 for AT and AY and > 2 for E;) communicate to the rest of the system of equations only through the quadrupole
(I = 2). The diagrams also indicate that in both cases, the photon-intensity quadrupole AT feeds into the rest of the system
of equations only through the photon velocity 6., and similarly for the neutrino quadrupole.

are sourced by the baryon, dark-matter, neutrino, and
photon densities and bulk velocities. Apart from the
baryon-photon coupling that connects 6, and 6, the
only communication between the different matter com-
ponents is through the metric perturbations. The neu-
trino velocity is connected to the neutrino quadrupole

% which is then connected to an infinite tower of Boltz-
mann equations for the higher-order neutrino moments
A} for [ > 3. The same can be said for the photon
velocity, except that there are two infinite Boltzmann
hierarchies for the higher photon-intensity and photon-
polarization moments. When considered in tandem, the
photon monopole and dipole equations combine into a
second-order differential equation that resembles that for
a driven simple harmonic oscillater (discussed below);
this describes oscillations of the amplitude of the photon-
baryon fluid driven by changes in the metric perturba-
tions and in the photon quadrupole.

In the line-of-sight approach [3], the Boltzmann hier-
archy is solved up to a maximum multipole lyax ~ 30
to obtain the photon monopole, dipole, and quadrupole,
and IT to reasonable accuracy. The C; are then obtained
by evaluating the integrals in Eqgs. (2) and (5).

AsFig. 1 illustrates, the two (nominally) infinite towers
of photon differential equations—one for the temperature
moments (A} for [ > 3) and polarization moments (E,
for [ > 2)—communicate with the rest of the system of
equations only through the photon-intensity quadrupole
AT. Thus, one can replace the two photon Boltzmann
hierarchies with a pair of integral equations, one for AT
and another for II. The rest of the system of equations
is then exactly the same as in the Boltzmann approach.

In this approach we retain the two lowest-order equa-

tions, for the photon monopole (I = 0) and dipole (I = 1).
These equations are,

. 1 1.

Af=—26,->h

o 37 6

with ©.,4(7) = 0(7) — 05(7). These equations are sup-
plemented by those,

0, = K*(A] — 2A7) — 0., (7)

1. .
Oop = —0p — §h7 0, = —HO, + cfk:Qéb +

K
R
for the baryon density and velocity, respectively. There
is also an equation, §. = —%h, for the CDM-density per-
turbation (the CDM peculiar velocity vanishes in syn-
chronous gauge).

The photon quadrupole AJ (1) in Eq. (7) is obtained
at early times by the TCA (up to second order in &1,
as described in Refs. [4, 5] for improved speed/precision).
The two equations for the early-time evolution of 6., and
0, can also be replaced by their TCA, with the slip @71,
evaluated (again, up to second order £~1) [4, 5].

At later times, the quadrupole is obtained from Eq. (2)
with | = 2, along with Eq. (5) for the time evolution of
II(7). With this approach, the equations in Eq. (7) com-
bine to describe a driven oscillator damped by the photon
quadrupole [17]. The photon quadrupole is provided at
early times by the TCA and at later times from the in-
tegral equation.

For completeness, the Einstein equations are

97177 (8)

}'L + gh = —87TGa2 [5Ptot + Séptot] s (9)

2

o 44
g(h — &) = 87Ga? gpﬂy + gp;ﬁu + by |, (10)



Note that the the Einstein equations are written here in
terms of the energy and momentum densities, but not
the anisotropic stress. In this way, the photon-intensity
quadrupole AT (7) communicates with the rest of the set
of perturbation equations only through Eq. (7). The IEs
for massless neutrinos are obtained from those for pho-
tons, but setting II = £ = 0. These IEs have come into
play in the development of an effective ultra-relativistic-
fluid approximation [5].

IV. NUMERICAL SOLUTION OF THE
INTEGRAL EQUATIONS

The IEs here are Volterra equations of the second kind,
which are typically solved as follows [18, 19]. A pair of
such equations has the form,

o) = / KO8 (t, )% (s)ds + g°(t). (1)

with a,8 = 1,2 (and implied sum over repeated a,f
not not ij). They are solved on a mesh of N uniformly
spaced time steps t; = a + ih with ¢ = 1,2,..., N, with
h = (t —a)/N. The integrals are then evaluated with
the trapezoidal rule. The solution to the IEs are then
foz,O = 9Ga,0 and

i—1
o fo + YKL | el
j=1

(W —~ ;thf?) ff=h %

(12)
For the pair of Volterra equations we deal with here, the
2 x 2 matrix on the left-hand side must be inverted at
each time step [19]. The ordinary differential equations,
which must be solved simultaneously, are simply stepped
forward in time (i.e., Euler integration).

This algorithm works well if the kernels K*(t,s) are
smooth and slowly varying. The visibility function in our
integrands are smoothly varying after decoupling begins
to occur, at redshifts z < 1400 (7 2 230 Mpc). The
perturbation variables that multiply it, as well as the
radial eigenfunctions, are also relatively smooth. The
trapezoidal-rule integration therefore works reasonably
well. However, for early conformal times (7 < 230 Mpc)
during tight coupling, when £ > H, the visibility func-
tion is very sharply peaked at 7/ — 7. The trapezoidal
rule will therefore be inaccurate (unless we take a huge
number of time steps).

To remedy this, and to improve the transition from
tight coupling, we replace the trapezoidal rule in A7’
with one in de=*(™7"). More precisely, we write the inte-
grand in terms of the visibility function, (d/dT’)e’”(T’T/),
times the more slowly-varying perturbation variables.

The integrals can then be written,
10) = [ a5 [ s
dr’

S ()
n=1""kn

+ (;ﬁ,)nl (k — n’)] : (13)

where K, = k(7 — nh), and h is the small conformal-
time step. The remaining «’ integrals can then be done
analytically and the derivative df /dx’ approximated by
differencing. Details are provided in Appendix B.

By expanding the integrand f(7) to linear order, as in
Eq. (13), we obtain a result that is exact for variations
of f(7) that are up to linear in k. At early times, this
then reproduces the first-order TCA (to order £ 1), even
for one step that is not necessarily small compared with
k=1, The second-order TCA is then recovered by evalu-
ating the IE with two time steps. This allows a smooth
transition from the TCA approximation to the IE algo-
rithm in Appendix B as long as the TCA values for the
perturbation variables are stored for at least two time
steps. At late times, the visibility function in Eq. (13)
can be Taylor expanded to linear order in Ax. Doing so
then recovers the trapezoidal scheme in Eq. (12).

The formula in Eq. (12) requires for each time step ¢ a
sum over all earlier timesteps ;7 < ¢. However, given the
e~ "(™7') factor in the visibility function in the integrand,
the sum can for all practical purposes be started, for any
given 7; at some j such that x(7;, 7j) < ATmax =~ 10—20.
If the other factors in the integrand are slowly varying,
this yields a precision degradation of < =4 7max,

When the IE solver first begins, the photon-baryon
fluid is still tightly coupled, and so the visibility function
has support only over values of 7/ fairly close to 7; i.e.,
(t—7") < N#i~1. The argument x = k(7—7") of the radial
eigenfunctions in Eq. (2) is thus small, and so the radial
eigenfunctions can be approximated as ja(z) ~ x2/15,
RY(2) ~ —1/5, j4(z) ~ (2/15)x. The integrand cannot,
however, be approximated simply by the R'M(x) term,
because IT is O(£~ 1) times 6. The third (i.e., the )
term contributes, at lowest order in the TCA.
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V. ITERATIVE SOLUTION OF INTEGRAL
AND DIFFERENTIAL EQUATIONS

The next step is to consider how to solve the differen-
tial equations for the rest of the system simultaneously
with the integral equations for the photon quadrupoles.
These differential equations include those for the metric-
perturbation variables, and the baryon and dark-matter
densities and velocities. They also include differential
equations for the neutrino perturbation variables. As the
focus here is on the photon hierarchy, I will assume here
that the neutrino perturbation variables can be obtained



with a generalized-dark-matter [20] approximation; com-
ments on the iterative-IE solution of the neutrino hierar-
chy are then presented below.

In trying to solve these differential equations in tandem
with the integral equations for the photon quadrupoles,
we encounter a chicken-and-egg problem: The differential
equations for the rest of the system require knowledge of
AT (1), but the IEs for AT (7) cannot be obtained without
the solution to the DEs.

It turns out, though, that this problem can be solved
with a simple iterative algorithm. Here, we start with
some initial ansatz for AJ(7) and II(7) and then solve
the DEs for all the other perturbation variables with
this ansatz. We then integrate the IEs using the solu-
tions to those DEs to obtain new values of A (7) and
II(7). We then iterate. Of course, there is no guarantee
a priori that this iterative procedure will converge to the
correct answer, but some simple numerical experiments
show that this procedure converges, and does so fairly
quickly, even for a lousy (e.g., AT (7) = II = 0) initial
ansatz for the IE solutions.
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FIG. 2: The CMB visibility function %(7o,7) as a function of
conformal time. It is shown to indicate the range of conformal
times, peaked at 7 ~ 280 Mpc, that contribute to the observed
CMB power spectra from recombination.

VI. NUMERICAL RESULTS

I have written a rudimentary C code to calculate the
transfer functions for the perturbation variables with the
iterative numerical implementation described here. To
simplify, I approximate neutrinos (taken to be massless)
as a generalized-dark-matter component with w = ¢? =

"
¢z, = 1/3 [20]. I stop the code at redshift z ~ 560,
after recombination but before reionization, and use an
analytic approximation (which takes into account only
radiation and nonrelativistic matter at these times) for
the expansion history. I use an ionization history from

HyRec-2 [21]. To compare this IE approach with the
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FIG. 3: The transfer function A3 (7) for the CMB photon-
intensity quadrupole as a function of conformal time 7 for
a Fourier mode of wavenumber k£ = 0.2 Mpc (which cor-
responds roughly to a CMB multipole moment I ~ 3000).
The black curve shows the results of the full Boltzmann hi-
erarchy as a function of conformal time. The other curves
show results of the iterative integral-equation solution, taking
AT (1) = 0 = I(7) as an initial ansatz. The yellowish curve
shows the result for AJ () after the first iteration—i.c., af-
ter integrating the differential equations for all perturbation
variables except AJ (1) and TI(7) and then integrating the in-
tegral equations for AJ(7) and II(7) using the results of the
differential equations. The red curve shows results after three
iterations, and the blue curve after five iterations. The thick-
ness of the curves is such that if two are indistinguishable, the
agreement between the two is O(0.1%).

standard Boltzmann hierarchy, I also wrote a second code
that is identical in every way except that it swaps out the
integral equations for AT (7) and II(7) for the complete
photon Boltzmann hierarchy. The code uses an off-the-
shelf differential-equation solver [22] with adaptive step
size, although not necessarily optimized for stiff equa-
tions.

In the IE code, the handoff from the TCA to the IE
solver takes place at 7 = 160 Mpc. The Boltzmann code
uses the same TCA at early times and then starts the full
Boltzmann hierarchy at 7 = 160 Mpc. The Boltzmann
code follows the Boltzmann hierarchy up to lpna.x = 50
(which T found was required to keep the perturbation
variables stable over the 7 range considered here). The
results are similar, and the code a bit quicker, for smaller
Imax- The differential-equation solver in the Boltzmann
code runs with a relative error requirement of 10~° and
absolute error of 10~%. The integral equations are evolved
on a time grid that has spacing A7 = 1.0 from 160 Mpc <
7 < 240 Mpc and 350 Mpc < 7 < 450 Mpc, and AT =
0.5 Mpc for 240 Mpc < 7 < 350 Mpc, for a total of 401
grid points. The time required for the IE part of the
calculation scales as the square of the number of grid
points.

Fig. 2 shows the visibility function, which indicates the



conformal-time regime, 250 Mpc < 7 < 400 Mpc, over
which the source functions for the CMB power spectra
are evaluated.

Fig. 3 illustrates the results of the numerical experi-
ment. Shown there are results for the photon-intensity
quadrupole AT (7) of the Boltzmann code and the itera-
tive integral-equation results, starting from a naive initial
ansatz AL (1) = TI(7) = 0. Results are shown for k = 0.2
Mpc, which corresponds roughly to CMB multipole mo-
ments [ ~ 3000, near the upper limit of current mea-
surements. The frequency of oscillations in the transfer
function are reduced at smaller k, and so the numerical
algorithm should, if anything, work even better at lower
k.

The results are shown for one iteration (yellow), three
iterations (red) and (five iterations) blue. The iterative
solutions converge first at early times and then require
more iterations to converge at later times. The overlap
between the black and blue (5 iterations) curves indi-
cates that the agreement is at the O(0.1%) level over the
conformal-time range that contributes to the observed
CMB power spectra. This IE code takes ~ 0.15 times as
long to run as the Boltzmann code, implying that each
iteration can be completed in ~ 1/30 the time required
for the Boltzmann code. Both codes are fairly rudimen-
tary, and so these time comparisons should be taken with
a grain of salt. Still, these results suggest that this may
provide a route to speeding up the standard Boltzmann
codes.

There may be room for even further improvement. The
results shown in Fig. 3 are obtained using the most naive
possible initial ansatz for AY(7) and II(). The number
of iterations required for convergence to the required pre-
cision can be reduced if one starts with a better initial
guess for these quantities. It should be possible to derive
a simple semi-analytic ansatz that interpolates between
the well-understood early-time TCA behavior and the
late-time behavior, which comes from the Sachs-Wolfe
effect.

One should, however, be able to do even better. These
calculations are not performed in isolation. In cosmo-
logical MCMC analyses, the Boltzmann codes are run
repeatedly to map the likelihood functions in a multi-
dimensional cosmological-parameter space. Thus, each
time the calculation is done, it has presumably already
been done for a nearby point in that cosmological pa-
rameter space. Thus, it should be possible to start the
iterative algorithm by using the results for AT (7) and
II(7) from a previous run. To test this, I ran the code
using as the initial ansatz the results for A (7) and II(7)
from a prior run with € reduced by 2%. This code con-
verges to O(0.1%) after just one iteration.

VII. CONCLUSIONS AND IDEAS FOR
FUTURE WORK

I have presented an alternative formulation of the equa-
tions for the evolution of cosmological perturbations in
which the infinite Boltzmann hierarchy for the photon
distribution function is replaced by a pair of integral
equations. There is no new physics here—it is simply
a recasting of the equations in a way that may lead to
physical insight and alternative schemes for numerical
solution. As was known from the line-of-sight approach
[3], CMB fluctuations are determined only by the pho-
ton monopole (energy density), dipole (peculiar velocity ),
and quadrupole (more specifically, IT). In the Boltzmann
hierarchy, these are the result of some complicated trans-
fer of power between these lower moments of the photon
distribution function and an infinite tower of higher mo-
ments. The IE formalism shows, however, that the lower
moments, and in particular the quadrupole moment, at
the surface of last scatter (i.e., those that enter into the
line-of-sight integration) are simply described by the ex-
act same equations that describe the lower moments that
we see.

I have shown that simple iterative solution of the com-
bined system of integral and differential equations does a
pretty good job at reproducing the results of the Boltz-
mann calculation in a fraction of the time. This exercise
also shows that the IE formalism can be implemented nu-
merically without (apparently) any significant numerical
instabilities—this was not a foregone conclusion, given
the occurrence of instabilities in some IE solvers [18], as
well as those that may arise from finite /;,,x in the Boltz-
mann hierarchy.

There is, however, far more work that needs to be
done before we know whether this approach can imple-
mented to speed up a code like CLASS or CAMB. These
codes benefit from a number of insights and clever al-
gorithms, whereas what I have presented here is fairly
naive. Those codes also have controlled errors, whereas
the grid spacing in my calculation was guessed to provide
an 0(0.1%) precision in AT (7).

The spacing of the conformal-time grid points in the
integral-equation solver is an obvious thing to explore.
In this calculation I simply estimated the number of
grid points that would be required for O(0.1%) precision.
However, the distribution of grid points can certainly be
optimized to provide the desired observables (e.g., CMB
and matter power spectra) to the required precision.
Good results can probably also be obtained for smaller
k with fewer grid points, given the smoother integrands
at lower k. The current code also sums over all prior
grid points. However, given the high opacity at early
times, the sum can be restricted only to grid points that
are at an optical depth Ax < 5 earlier. There are also
algorithms, more sophisticated than the trapezoidal-rule
algorithm used here, on numerical solution to Volterra
equations (e.g., Ref. [23]) in the literature that may be
worth exploring. There may be alternative implemen-



tations of the integral/differential equations that may be
better suited for numerics. For example, it should be pos-
sible to eliminate the differential equations for the photon
monopole and dipole and replace the integral equation for
the quadrupole AJ (1) with that for the monopole Ad (7).
Or perhaps the differential equation for AT(7) can be
included and the integral equation replaced by one for
AT (7). Finally, it may be worthwhile to explore whether
the convergence of the iterative algorithm can be opti-
mized with an appropriate initial ansatz for Ad(7) and
II(7).

While the photon hierarchies are still account for a
significant fraction of the computational time of mod-
ern Boltzmann codes, they are, given the powerful ODE
solvers employed now by CLASS, no longer necessarily
the rate-limiting step in these codes. Thus, the order-
of-magnitude speedup observed in the numerical exper-
iments presented here will not necessarily translate to
a similar speedup in those codes for basic cosmological
models. Still, the codes can become far slower when the
effects of massive neutrinos are included, especially for
nondegenerate neutrino masses. If neutrinos are massive,
their phase-space distribution depends on the magnitude
of the neutrino momentum, as well as its angle. There
is thus in principle an infinitude (approximated as some
finite number) of neutrino Boltzmann hierarchies, one
for each neutrino-momentum magnitude. An iterative
IE equation approach for neutrinos, analogous to that
explored here for photons, may thus prove to be quite
profitable.
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Appendix A: Boltzmann hierarchy

For completeness and comparison with prior work, I
provide the Boltzmann equations for the photon mo-
ments in the notation used here. These equations are
derived by differentiating Eqs. (2) and (5) with respect
to 7. The independent variable 7 appears in the limit
of integration, the visibility function, and in the radial
eigenfunctions, and all of the radial eigenfunctions sat-
isfy the spherical-Bessel-function relation, (20141)j/(z) =
lji-1(x) — (I +1)j;41(x). The monopole and dipole equa-
tions are already provided in Eq. (7). The equations for
[ > 2 are

. . K k(L + 1)
e I
5 3 2 125
L Ki-2) k(1 + 3) 1
E = —HEH-THEZA— ST El+1+r55H5127

with T = AT + 9E;.

Appendix B: Details of the IE solver

We first define functions IT(7,7’) and I''(r,7') by
writing

B>
93
—
2

Il

/ dr'g(r, 7 I (1, 7").
/ dT/g(Tv TI)IH(Ta T/)'

=

—

2
[

(B1)

The integrals are then discretized, taking into account
the fact that II(7) appears in IT(7,7) and I''(7,7'), in
the following way. We define two sums,

1
Ag,i+1 = Z(IJ'T+1M/J'+ +IJ'TWJ'> - TOHjJrlwiJr
J<i
3
Moy = 32 (LW + DIW) - ST W,
J<i
where Hz = H(Ti), I;I‘ - IT(Ti—i-laTj)a and I]H =

I(7;11,7;). Here the weight functions are

wt =

Ak
f e—R(Ti+17Tj+l) (1 - e_A’ij _ 1- (1 + Aﬁ"j)e i

Alij
e~ (Tit1,7j41)

W, =
J A/ij

[1-(1+ A/fj)e_A“f]

where Ax; = k(7j+1) — k(7;). These weight functions
approach Wf — Akj/2 and W; — Ak;/2 at late times,
thus recovering Eq. (12) (written as an integral over k,
rather than 7). At early times, Wf —1—(Ak)~! and
Wi — (Ak)~!; this then recovers the first-order tight-
coupling approximation, Ay = (2/5)II = (4/45)(& +
20p)/%k, even from one time step in the evaluation of
the integral—the second-order TCA is reproduced by two
time steps.

The discretized quadrupoles are then,

0 0
I + A%

Hi+1 7 W+ 5
T 107

1
Ag,i-u = Ag,i-H + TOH?+1WZ‘+- (B3)

).

(B2)
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