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In astrophysical scenarios with large neutrino density, like supernovae and the early universe,
the presence of neutrino-neutrino interactions can give rise to collective flavor oscillations in the
out-of-equilibrium collective dynamics of a neutrino cloud. The role of quantum correlations in
these phenomena is not yet well understood, in large part due to complications in solving for
the real-time evolution of the strongly coupled many-body system. Future fault-tolerant quantum
computers hold the promise to overcome much of these limitations and provide direct access to
the correlated neutrino dynamic. In this work, we present the first simulation of a small system
of interacting neutrinos using current generation quantum devices. We introduce a strategy to
overcome limitations in the natural connectivity of the qubits and use it to track the evolution of
entanglement in real-time. The results show the critical importance of error-mitigation techniques
to extract meaningful results for entanglement measures using noisy, near term, quantum devices.

I. INTRODUCTION

The flavor evolution of neutrinos in dense astrophysical
environments have, by now, a long history. It has been
pointed out by Pantelone, Raffelt, and Sigl [1, 2] and
others that, through forward scattering, neutrinos can
exchange their flavors. Given an anisotropic initial dis-
tribution in energy and/or angle as found in supernovae,
neutron star mergers, or the early universe, the neutrino
energy flux versus energy and flavor may be impacted by
this non-trivial quantum many-body evolution. This can
in turn affect the dynamics of these environments and
other observable signatures, including nucleosynthesis in
the ejected material (see [3, 4] for recent reviews).

The Hamiltonian for neutrino flavor evolution in a
dense neutrino environment includes three terms: the
vacuum mixing that has been determined from solar and
accelerator neutrino experiments [5], the forward scatter-
ing in matter leading to the well known MSW effect [6, 7],
and neutrino-neutrino forward scattering.

In the neutrino flavor basis, the vacuum term includes
diagonal contributions describing the mass differences be-
tween different neutrino flavors and an off-diagonal term
characterized by a mixing angle θv. The interaction de-
scribing forward scattering in matter is diagonal in the
flavor basis. The neutrino-neutrino interaction can ex-
change flavors of two neutrinos and has a forward scat-
tering amplitude that depends on the angle between their
momenta. For the two-flavor case considered here, this
interaction is proportional to the dot product ~σi ·~σj of the
SU(2) matrices describing the different flavor amplitudes
of the two neutrinos

Vij ∝
(

1− ~qi · ~qj
‖~qi‖‖~qj‖

)
~σi · ~σj . (1)

Here we denoted by ~qk the momentum of the k-th neu-
trino and with ~σk = (σxk , σ

y
k , σ

z
k) the vector of Pauli op-

erators acting on its amplitude. Generalization to the

three-flavor case is straightforward in principle; here we
assume the µ and τ flavors evolve similarly.

For this simplified two-flavor case, we seek to under-
stand the time and space evolution of the set of ampli-
tudes from a Schrödinger equation:

|Φ(t)〉 = exp[−iHt]|Φ0〉, (2)

with H the total Hamiltonian including both the vacuum
and forward-scattering interaction contributions. For
simplicity here we consider |Φ0〉 to be a product state, but
generalizations to arbitrary states are straightforward.

Most often these quantum equations have been treated
on the mean-field level by replacing one of the spin oper-
ators in Eq. (1) by its expectation value, yielding a set of
non-linear coupled differential equations. This makes the
calculations tractable for several hundred energies and
angles on modern computers (see eg. [8]). More recently,
studies of neutrino propagation as a quantum many-body
problem have appeared, including for example [9–16].
These works highlight the importance of understanding
the role of quantum correlations, such as entanglement,
in order to quantify beyond mean-field effects in out-of-
equilibrium neutrino simulations. A direct solution of the
Schrödinger equation in Eq. (2), for a system of N con-
figurations in energy and angle, incurs a computational
cost that is exponential in N . This has limited early ex-
plorations of the problem to systems with N = O(10)
neutrinos. An alternative to reach larger system sizes,
explored recently by one of us in Refs. [15, 16], employs
a Matrix Product State representation for |Φ(t)〉 which
allows one to track the exact time evolution in situations
where entanglement never grows too much. For condi-
tions leading to strong entanglement instead, simulations
on digital/analog quantum computers have the potential
to tackle the full neutrino dynamics while still enjoying
a polynomial computational cost in system size N [17].

In this work we explore the time-dependent many-body
evolution of the neutrinos on a current-generation digital
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quantum computer. In Sec. II we introduce in more detail
the SU(2) spin model used to describe collective neutrino
oscillations and describe an implementation of the time
evolution operator appearing in Eq. (2) suitable for an
array of qubits with linear connectivity. We present the
results obtained for a a small system with N = 4 neu-
trino amplitudes in Sec. III and provide a summary and
conclusions in Sec. IV.

II. SPIN MODEL FOR NEUTRINO
OSCILLATIONS

For the simplified two-flavor case studied here, the
state of the system can be described as an amplitude for
a neutrino of each energy Ei (equal to the magnitude of
momentum ‖~qi‖) and direction of momentum (denoted
by q̂i), with α↑ and α↓ describing the amplitude of be-
ing in the electron flavor or in a heavy (µ or τ) flavor
respectively. These two amplitudes can be encoded in an
SU(2) spinor basis. In this basis, the Hamiltonian can
be written in terms of Pauli operators as the sum of a
one-body term, describing both vacuum oscillations and
forward scattering in matter,

H1 =
1

2

∑
i

[(−∆i cos 2θv +A)σzi + ∆i sin 2θvσ
x
i ] , (3)

and a two-body term, coming from the neutrino-neutrino
forward-scattering potential Vij from Eq. (1), which takes
the following form [12]

H2 =
∑
i<j

η[1− q̂i · q̂j ]~σi · ~σj . (4)

In the one-body term, θv represents the vacuum mix-
ing angle, while the strength is given by ∆i = δm2/(2Ei)
with δm2 the mass squared difference for neutrinos of dif-
ferent flavor. The matter potential enters as the diagonal
contribution in the one-body term through the constant
A =

√
2GFne, with GF the Fermi coupling constant and

ne the electron density.
As described in the introduction, the two-body term is

a sum over spin-spin interactions with a coupling depend-
ing upon the relative angle between them. The overall
strength depends on the neutrino density as

η =
GF√
2V

=
GFnν√

2N
, (5)

with N the number of neutrino momenta considered,
given by the neutrino density nν times the quantization
volume V . The Hamiltonian is similar to a Heisenberg
model, but the two-body term is all-to-all rather than
nearest neighbor. Its coupling strength η ∝ 1/N assures
that the energy of the system is extensive. This allows us
to obtain a well-defined many-body solution, in the limit
of large numbers of neutrino momenta by extrapolating
in system size N .

Currently available quantum devices are able to per-
form only a relatively limited number of operations while
maintaining a high fidelity [18], this in turn poses limits
on the maximum time that could be reached in the sim-
ulation of neutrino dynamics. Given this practical con-
straint, it is then useful to consider a test case where the
one- and two-body interaction terms are similar in mag-
nitude and the evolution can occur rapidly. An example
is the environment of order ≈ 100 km from the surface
of a proto-neutron star in a core collapse supernovae.
Here the background matter density has decreased to a
point where its contribution to the Hamiltonian is simi-
lar in magnitude to the neutrino-neutrino forward scat-
tering. The relative angles of neutrino propagation are
fairly small as neutrinos are emitted from a typical proto-
neutron star radius of order 10 km. In the neutrino bulb
model [8] one further assumes the evolution in a super-
novae depends only on the energy and the angle from the
normal. Averaging over the azimuthal angles results in
an average coupling 〈1−q̂i ·q̂j〉 = 1−cos(θi) cos(θj). Often
a further simplification, usually called single-angle ap-
proximation, is made where an average coupling is taken
between all pairs of neutrinos, resulting in a two-body
term simply related to the square of the total spin S of
the many-body state.

For our test case, we take a monochromatic neutrino
beam with energy Eν = δm2/(4η) and measure energies
in units of the two-body coupling η. In order to avoid
the symmetries introduced by the single angle approxi-
mation, we employ an anisotropic distribution of momen-
tum directions using a simple grid of angles with

θpq = arccos(0.9)
|p− q|
N − 1

. (6)

This is similar to the standard bulb model as the relative
couplings 1− cos(θpq) are small.

The final Hamiltonian for the simple model we imple-
ment here can be written compactly, in units of η, as

H =

N∑
k=1

~b · ~σk +

N∑
p<q

Jpq~σp · ~σq , (7)

with the external field ~b =
(√

1− 0.9252, 0,−0.925
)

ob-
tained by choosing the mixing angle θv = 0.195 and pair
coupling matrix Jpq = (1− cos (θpq)). Note that in this
model we set the matter potential A in the one-body
contribution to the Hamiltonian Eq. (3) to zero.

A. Real time evolution

The major challenge in implementing the time evo-
lution in Eq. (2) in a quantum simulation is to find
an accurate approximation to the evolution operator
U(t) = exp[−iHt] that can also be decomposed efficiently
into local unitary operations [17]. A simple and popular
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approach is to use a first-order Trotter-Suzuki decompo-
sition [19] of the propagator leading to the approximation

U1(t) =

N∏
j=1

e−it
~b·~σj

N∏
p<q

e−itJpq~σp·~σq , (8)

which is correct up to an additive error ε = O(t2). Past
experience with the Euclidean version of this evolution
operator in Quantum Monte Carlo suggests that a bet-
ter approximation to the full propagator U(t) can be
obtained by using the exact propagators for pairs (see
eg. [20, 21]). In order to construct this alternative ap-
proximation, we first rewrite the Hamiltonian in Eq. (7)

manifestly as a sum of
(
N
2

)
two-body Hamiltonians acting

on each pair of qubits

H =

N∑
p<q

(
~b · (~σp + ~σq)

N − 1
+ Jpq ~σk · ~σq

)
:=

N∑
p<q

hpq . (9)

We can then define an approximate propagator U2 using
the exact pair propagator as follows

U2(t) =

N∏
p<q

e−ithpq :=

N∏
p<q

upq . (10)

Note that the implementation of this operator is efficient
since each pair Hamiltonian acts non-trivially only on a
4 × 4 subset of the total Hilbert space and therefore, as
shown for instance in Refs. [22, 23], can be implemented
exactly using at most 3 entangling operations. Note that
the error in this approximation still scales as O(t2) but
now with a possibly reduced prefactor. In Appendix A
we present a direct comparison between the two approx-
imations. Finally, the approximation order could also be
improved by symmetrizing over the ordering of operators
or by applying symmetry transformations (see eg. [24]).

Owing to the long range of the interactions, a naive
implementation of this scheme will require either a device
with all-to-all connectivity (like trapped ion systems [25])
or an extensive use of the SWAP operation, represented
in matrix form as

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (11)

The effect of this operation is to exchange the state of
two qubits. One can then use this operation to bring a
pair of qubits that we want to interact close to each other
by applying a sequence of SWAP gates of order N . Since
we need to apply all possible pair interactions, we will
show that it is actually possible to carry out a complete
step, under the unitary in Eq. (10), without incurring any
overhead due to the application of the SWAP operations.
The scheme is inspired by the more general fermionic
swap network construction presented in Ref. [26].

We illustrate this idea using the diagram shown in
Fig. 1 for a simple case with N = 4 neutrinos. Start-
ing from the initial state on the left, we first apply the
unitaries upq from Eq. (10) to the odd bonds: for the
N = 4 case, these are the bonds between the (1, 2) and
(3, 4) pairs of qubits. Before moving to the next pairs,
we also apply a SWAP operation to the same pairs we
just acted upon. The resulting unitary operation is de-
noted as a double line joining qubits in Fig. 1 and the
net effect is that at the next step the qubits that have
interacted get interchanged. Given the discussion fol-
lowing Eq. (10) above, this modified two-qubit unitary
still requires at most 3 entangling operations. At the
end of a sequence of N such combined operations we will
have implemented the full unitary in Eq. (10) while, at
the same, we inverted the ordering of qubits, as shown
in Fig. 1. This approach requires exactly the minimum
number

(
N
2

)
of nearest-neighbor pair operations, while

the shifted ordering can be controlled completely, and
efficiently, by classical means. Note that if we were to
repeat at this point the same swap network in reverse
order, the full unitary will correspond to a second order
step for time 2t and the final ordering of qubits will be
restored to it’s original one. This is the strategy used
in Refs. [15, 16] to study the neutrino Hamiltonian with
Matrix Product States. In this first implementation on
quantum hardware, we focus instead on a single, linear-
order, time step.

Note that since we are only using nearest neighbor two-
qubit gates, the total number of entangling gates required
for a full time evolution step is bounded from above by
3
(
N
2

)
while the maximum number of single qubit opera-

tions is bounded by 15
(
N
2

)
. As we will see in the results

presented below, the presence of a large number of arbi-
trary single qubit rotations seems to be the limiting factor
in implementing this scheme on the quantum device we
used in this first exploration.

III. RESULTS WITH FOUR NEUTRINOS

In order to study the build up of correlations and en-
tanglement generated by the time-evolution under the
Hamiltonian in Eq. (7), we first initialize a system of
N = 4 qubits in the following product state

|Φ0〉 = |e〉 ⊗ |e〉 ⊗ |x〉 ⊗ |x〉 = |↑↑↓↓〉 . (12)

We then preform one step of time evolution for time t
by applying the N layers of nearest-neighbor gates as
described in the previous section. This corresponds to
a single Trotter-Suzuki step for different values of the
time-step. The four SU(2) spins representing the neutri-
nos are mapped to qubits (2, 1, 3, 4) on the IBMQ Vigo
quantum processor [27], whose connectivity is schemati-
cally depicted in Fig. 2. The resulting qubits are linearly
connected, allowing us to carry out natively the complete
simulation scheme depicted in Fig. 1 above.
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FIG. 1. (Color online) Pictorial representation of the swap
network used in our simulation in the case of N = 4 neutrinos.

FIG. 2. (Color online) Layout of the IBM Quantum Canary
Processor Vigo [27]. Shown are the five qubits, labeled from
0 to 4, and their connectivity denoted as solid black lines.

The first observable we compute is the flavor polariza-
tion of individual neutrinos as a function of time. Since
the spin Hamiltonian in Eq. (7) is invariant under the si-
multaneous exchanges 1↔ 4 and 2↔ 3, while the flavor
content of the initial state |Φ0〉 gets reversed by it, we
show directly the probability Pinv(t) to find a neutrino in
the opposite flavor to the starting one it had at t = 0. In
the limit of no error, Pinv(t) should then by the same for
the pair of neutrinos (1, 4) and (2, 3). The errors in the
approximation of the propagator in Eq. (10) do not ex-
actly follow this symmetry, with deviations in the range
3− 7%. We show the results for Pinv obtained with the
approximate evolution operator U2(t) as solid black lines
in Fig. 3, for the pair (1, 4), and in Fig. 4 for the pair
(2, 3). The ideal, and symmetric, result is shown instead
as a purple dashed line. We see that the approximation
error is very small up to relatively large time ηt ≈ 6. As
we discuss more in detail in Appendix A, this is in large
part an effect of using the pair propagator U2(t) instead
of the naive first order formula in Eq. (8).

The results shown in Fig. 3 and Fig. 4 were obtained
using either the real quantum device (right panels de-
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FIG. 3. (Color online) Inversion probability Pinv(t) for neu-
trinos 1 and 4: the red circle and brown square correspond
to the bare results, the blue triangle and the green diamond
are obtained after error mitigation(see text). The left panel
(VM) are virtual machine results while the right panel (QPU)
are results obtained on the Vigo [27] quantum device.

noted QPU) or a local virtual machine simulation em-
ploying the noise model implemented in Qiskit [28] (left
panels denoted by VM) initialized with calibration data
from the device. In both plots we report the results (de-
noted by [bare]) obtained directly from the simulation
and including only statistical errors coming from a fi-
nite sample size (here and in the rest of the paper we
use 8192 repetition, or “shots”, for every data point), as
well as results obtained after performing error mitigation
(denoted by [mit]). This corresponds to a final post-
processing step that attempts to reduce the influence of
the two main sources of errors: the read-out errors associ-
ated with the imperfect measurement apparatus and the
gate error associated with the application of entangling
gates. The latter error is dealt with using a zero noise
extrapolation strategy (see [29, 30] and Appendix B for
additional details).

As seen also in previous similar calculations (see for in-
stance [31, 32]), the VM results obtained using the simu-
lated noise are much closer to the ideal result than those
obtained with the real device. This is also reflected in the
fact that the error mitigation protocol is not as successful
with the real QPU data as it is with the simulated VM
data. This behaviour is possibly linked to the substantial
noise caused by the presence of a large number of single
qubit operations (up to 90 rotations for time evolution +
2 for state preparation) together with the relatively large
CNOT count of 18. In fact, the performance of error mit-
igation for the results with the largest state preparation
circuits presented in [32] is superior to the one obtained
here, despite the use of the same device, the same error
mitigation strategy and a comparable number of entan-
gling gates (15 CNOT in that case) while the number of
rotations was only 14. This suggests coherent errors con-
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FIG. 4. (Color online) Inversion probability Pinv(t) for neu-
trinos 2 and 3. The notation is the same as for Fig. 3.
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FIG. 5. (Color online) Inversion probability Pinv at the initial
time t = 0 for the first neutrino. Black solid circles are results
from the Vigo QPU [27] while the red squares correspond to
results obtained using the VM with simulated noise. Also
shown are extrapolations to the zero noise limit, for both the
QPU (green line) and the VM (blue line), together with the
extrapolated value (greed triangle up and blue triangle down
respectively). The dashed orange line denotes the result for a
maximally mixed state.

stitute a considerable fraction of the overall error seen in
the results above.

In order to highlight the difficulties encountered when
performing noise extrapolation for this data, we plot in
Fig. 5 the results obtained from both the QPU (black cir-
cles) and the VM (red squares) for the inversion probabil-
ity of the first neutrino at the initial time t = 0 together
with a linear extrapolation using the first two points for
the QPU (green line) and the first three points for the VM
(blue line). The exact result is of course Pinv(0) = 0 and
we see that neither strategy is able to predict the correct

value. The horizontal dashed line is the value expected
when the system is in the maximally mixed state, corre-
sponding to full depolarization. As shown in the data, for
the real QPU results, only the first level of noise extrapo-
lation contains useful information and a more gentle noise
amplification strategy, like the one proposed in Ref. [33],
could provide a substantial advantage over the strategy
adopted here.

A. Dynamics of entanglement

In order to track the evolution of entanglement in the
system we perform complete state tomography for each
of the 6 possible qubit pairs in our system by estimating,
for each pair (k, q), the 16 expectation values

Mk,q
α,β(t) = 〈Φ(t)|Pαk ⊗ P βq |Φ(t)〉 , (13)

with Pk = {1, X, Y, Z} the basis for U(2) and |Φ(t)〉 the
state obtained from |Φ0〉 by applying the time-evolution
operator as in Eq. (2). In principle, we might reconstruct
the density matrix for the pair of qubits (k, q) directly
from these expectation values as

ρDkq(t) =

4∑
α=1

4∑
β=1

Mk,q
α,β(t)Pαk ⊗ P βq . (14)

In practice however, we can only estimate the matrix

elements Mk,q
α,β(t) to some finite additive precision, and

the approximation in Eq. (14) is not guaranteed to be a
physical density matrix (positive definite and with trace
equal to 1). In this work we use the common approach
(see eg. [34]) of performing a maximum-likelihood (ML)
optimization, while enforcing the reconstructed density
matrix ρML

kq (t) to be physical. We note in passing that it
is possible to devise operator basis that are more robust
than the choice used in Eq. (13) (see eg. [35]) but we
didn’t explore this further in our work.

In order to propagate the effect of statistical errors
into the final estimator for ρML

kq (t), we use a resampling

strategy similar to what was introduced in [32] but using
a Bayesian approach to determine the empirical posterior
distribution. We provide a detailed description of the
adopted protocol in Appendix B 1.

1. Entanglement entropies

As we mentioned in the introduction, one of the main
differences between a mean field description and the full
many-body description of the dynamics of the neutrino
cloud is the absence of quantum correlations, or entan-
glement, in the former. Past work on the subject [13, 14]
looked at the single spin entanglement entropy defined as

Sk(t) = −Tr [ρk(t) log2 (ρk(t))] , (15)
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FIG. 6. (Color online) Single spin entanglement entropy for
neutrino 2. Black square are bare results obtained from the
QPU, red triangles are results obtained by amplifying the
noise to ε/ε0 = 3, the blue circles are obtained using Richard-
son extrapolation, the turquoise plus symbols indicate results
obtained using the standard exponential extrapolation and
the green diamonds correspond to the results obtained from
a shifted exponential extrapolation using the maximum value
of the entropy (indicated as a dashed orange line).

with ρk(t) the reduced density matrix of the k-th spin.
A value of the entropy Sk(t) different from zero indicates
the presence of entanglement between the k-th neutrino
and the rest of the system.

In our setup, we compute the one-body reduced den-
sity matrix from the maximum-likelihood estimator of
the pair density matrix defined above, explicitly

SML
k;q (t) = −Tr

[
ρML
k;q (t) log2

(
ρML
k;q (t)

)]
, (16)

where the reduced density matrices are computed from

ρML
k;q (t) = Trq

[
ρML
kq (t)

]
, (17)

and Trq denotes the trace over the states of the q-th
qubit. We combine the 3 values obtained in this way for
each neutrinos as follows: the estimator for the single-
spin entanglement entropy is obtained from the average

Savg
k (t) =

1

3

∑
q

SML
k;q (t) , (18)

summing over pairs containing the k-th spin, while as an
error estimate we use the average of the 3 errors.

As for the case of the inversion probability Pinv(t) stud-
ied in the previous section, the substantial noise present
in the QPU data prevents us from using the full set of
results at the 4 effective noise levels. In order to over-
come this difficulty, we have performed zero noise ex-
trapolations using only results for effective noise levels
r = ε/ε0 = (1, 3) and performed a Richardson extrap-
olation (in this case equivalent to a simple linear fit as
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FIG. 7. (Color online) Pair entanglement entropy for the
neutrino pair (1, 2) starting as |e〉 ⊗ |e〉 (left panel) and pair
(2, 4) which starts as the flavor state |e〉 ⊗ |x〉 (right panel).
Results obtained directly from the QPU are shown as black
squares (r = 1) and red triangles (r = 3) while blue circles and
green diamonds indicate mitigated results using Richardson
and the Shifted Exponential extrapolations respectively. For
the Shifted Exponential ansatz we use the maximum value of
the entropy (indicated as a dashed orange line).The magenta
triangle indicates a mitigated result with Shifted Exponential
extrapolation below zero within errorbars.

done in Ref. [30]), a two point exponential extrapola-
tion [29], and an exponential extrapolation with shifted
data. The latter technique consists in shifting the data
for the entropy by −1 (it’s maximum value) so that the
result, in the limit of large noise, tends to 0 instead of
log2(2) = 1. We then shift back the result obtained after
extrapolation. The exponential extrapolation method is
well suited for situations where expectation values decay
to zero as a function of the noise strength ε, while main-
taining a consistent sign, and this shift allows us to make
the data conform to this ideal situation (see Appendix B
for more details on the method). The impact on the ef-
ficacy of the error mitigation is dramatic as can be seen
in the results presented in Fig. 6 for the entropy of the
second neutrino (the entropies for the other neutrinos fol-
low a similar pattern; see Appendix C for all four results).
The results with the standard exponential extrapolation
are presented as the turquoise plus symbols, they are
almost the same as those obtained using Richardson ex-
trapolation (blue circles) and show a significant system-
atic error. On the contrary, the results obtained with the
Shifted Exponential extrapolation (green diamonds) are
much more close to the expected results with our pair
propagator (solid black curve). We expect more general
multi-exponential extrapolation schemes, like those pro-
posed in Refs. [36, 37], to enjoy a similar efficiency boost
in the large noise limit achieved with deep circuits.

Using the reconstructed pair density matrix ρML
kq (t),

we can clearly also evaluate directly the entanglement
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entropy of the pair

SML
kq (t) = −Tr

[
ρML
kq (t) log2

(
ρML
kq (t)

)]
. (19)

In Fig. 7 we show the result of this calculation for the pair
(1, 2), which started as electron flavor at t = 0, and the
pair (2, 4) which started instead as heavy flavor states.

2. Concurrence

In order to better understand these quantum correla-
tions, we also compute the concurrence [38] for all the
pair states. This measure of entanglement is defined for
a 2 qubit density matrix as

C(ρ) = max {0, λ0 − λ1 − λ2 − λ3} , (20)

where λi are the square roots of the eigenvalues, in de-
creasing order, of the non-Hermitian matrix

M = ρ (Y ⊗ Y ) ρ∗ (Y ⊗ Y ) , (21)

with the star symbol indicating complex conjugation.
The usefulness of this measure is its relation with the en-
tanglement of formation [38, 39], which is the minimum
number of maximally-entangled pairs needed to represent
ρ with an ensemble of pure states [39].

The definition of concurrence in Eq. (20) does not lend
itself as easily to be adapted in an error extrapolation
procedure as the one we used to obtain the mitigated re-
sults in the previous sections. This is due to the presence
of the max function in the definition of the concurrence:
when the error is sufficiently strong to make the differ-
ence in eigenvalues

C̃(ρ) = λ0 − λ1 − λ2 − λ3 (22)

negative, the concurrence in Eq. (20) ceases to carry in-
formation about the error free result. For this reason, we

will regard C̃ as an “extended concurrence” which varies
smoothly for large error levels and perform the truncation
to positive values only after the zero noise extrapolation.
The results obtained from the simulation on the Vigo
QPU are shown in Fig. 8 for two pairs of neutrinos: pair
(1, 2) starting as like spin at t = 0 and pair (2, 4) which
started as opposite flavors. The complete set of results
for all pairs can be found in Fig. 10 in Appendix C.

The bare results are shown as black squares and we can

immediately notice why the definition of C̃ is so impor-
tant in our case: the only bare data point with a measur-
able concurrence C(ρ) is at t ≈ 6.7η−1 for pair (2, 4) (the
right panel in Fig. 8) while all the other results, including
those obtained with a larger noise level (red triangles),
are compatible with zero. In this situation, no mitigation
of C(ρ) would be possible.

By keeping the negative contributions, we see that the
bare results often contain a substantial signal, while those
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FIG. 8. (Color online) Extended concurrence C̃ for two pairs
of neutrinos, (1, 2) in the left and (2, 4) in the right panel.
The convention for the curves and date point used here is the
same as in Fig. 7. The gray area indicates the region where
the concurrence C(ρ) is zero. The maximum value for the
concurrence is shown as a dashed orange line.

at a higher error rate are already almost at the asymp-

totic value C̃ = −0.5 expected for a completely depolar-
ized system [40]. This allowed us to perform error extrap-
olation using both the Richardson and Shifted Exponen-
tial ansatz. Similarly to what we observed for the entan-
glement entropies in the previous section, the Shifted Ex-
ponential ansatz (with shift −0.5) produces consistently
better results than Richardson extrapolation. This in-
dicates that we are more close to the asymptotic large
error regime than the small error limit used to motivate
a polynomial expansion. The resilience of the exponen-
tial extrapolations to large errors, especially augmented
by an appropriate shift, is seen here to be critical in ex-
tracting physical information from quantum simulations
carried out near the coherence limit of the device used
for the implementation.

IV. CONCLUSIONS

In this work, we presented the first digital quantum
simulation of the flavor dynamics in collective neutrino
oscillations using current quantum technology. The re-
sults reported her for the evolution of flavor and entangle-
ment properties of a system with N = 4 neutrino ampli-
tudes are not directly indicative to the behavior at large
N � 1 but nevertheless show that current quantum de-
vices based on superconducting qubits are starting to be-
come a viable option for studying out-of-equilibrium dy-
namics of interacting many-body systems. The reduced
fidelity in the results obtained here, compared to the sim-
ulations reported previously in Ref. [32] employing the
same quantum processor and a comparable number of
entangling gates, points to the importance of control-
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ling unitary errors associated with the imperfect imple-
mentation of arbitrary single-qubit rotations (on average
< 1% for the device used in both works). In future work
we plan to explore the use of more advanced error mit-
igation strategies, such as Pauli twirling [41] or symme-
try protection [24], to achieve a better overall fidelity.
A complemantary strategy to the use of digital quan-
tum devices as discussed in the present work would be
to adopt quantum platforms, like trapped ion quantum
devices [25], that are able to physically implement all-to-
all interactions similar to those needed for the neutrono
Hamiltonian in Eq. (7). This analog simulation strategy
can possibly be implemented in the near term on systems
with 50− 100 neutrino amplitudes (see e.g. Ref. [42]).

We showed the zero-noise error extrapolation using a
shifted Gaussian ansatz to be remarkably efficient in pre-
dicting the expected error-free estimator of observables.
Given the large circuits employed in this work, past ex-
perience with zero-noise extrapolations (see eg. [31, 32])
suggest the exponential ansatz to be appropriate due to
the large noise rates, and we find it to indeed outperforms
Richardson extrapolation in this regime. The current re-
sults highlight the importance of using alternative mea-
sures of entanglement to the entropy in order to extract
reliable information about quantum correlations in the
states generated on the quantum device. Using the pair
concurrence together with the entropy provides a robust
way to detect entanglement even in the presence of sub-
stantial noise, like in the results shown here. We expect

these insights, and the mapping of the neutrino evolu-
tion problem into a swap network, to prove very valuable
in future explorations of out-of-equilibrium neutrino dy-
namics with near-term, noisy, quantum devices.

After the completion of the present work we have be-
come aware of Ref [43]. which also present results ob-
tained from simulating collective neutrino oscillations on
current generation quantum devices.

ACKNOWLEDGMENTS

This work was supported by the InQubator for Quan-
tum Simulation under U.S. DOE grant No. DE-
SC0020970, by the Quantum Science Center (QSC), a
National Quantum Information Science Research Cen-
ter of the U.S. Department of Energy (DOE), by the
U.S. Department of Energy under grant No. DE-FG02-
00ER41132, DE-SC0021152 and by the U.S. National
Science Foundation under Grants No. PHY-1404159
and PHY-2013047. Benjamin Hall acknowledges sup-
port from the U.S. Department of Energy (DOE) through
a quantum computing program sponsored by the Los
Alamos National Laboratory (LANL) Information Sci-
ence & Technology Institute. We acknowledge use of the
IBM Q for this work. The views expressed are those of
the authors and do not reflect the official policy or posi-
tion of IBM or the IBM Q team.

[1] J. T. Pantaleone, Neutrino oscillations at high densities,
Phys. Lett. B 287, 128 (1992).

[2] G. Sigl and G. Raffelt, General kinetic description of rel-
ativistic mixed neutrinos, Nuclear Physics B 406, 423
(1993).

[3] H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective Neu-
trino Oscillations, Ann. Rev. Nucl. Part. Sci. 60, 569
(2010), arXiv:1001.2799 [hep-ph].

[4] S. Chakraborty, R. Hansen, I. Izaguirre, and G. Raffelt,
Collective neutrino flavor conversion: Recent develop-
ments, Nuclear Physics B 908, 366 (2016), neutrino Os-
cillations: Celebrating the Nobel Prize in Physics 2015.

[5] M. C. Gonzalez-Garcia and Y. Nir, Neutrino masses and
mixing: evidence and implications, Rev. Mod. Phys. 75,
345 (2003).

[6] L. Wolfenstein, Neutrino Oscillations in Matter, Phys.
Rev. D 17, 2369 (1978).

[7] S. Mikheyev and A. Smirnov, Resonance Amplification
of Oscillations in Matter and Spectroscopy of Solar Neu-
trinos, Sov. J. Nucl. Phys. 42, 913 (1985).

[8] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Sim-
ulation of coherent nonlinear neutrino flavor transforma-
tion in the supernova environment: Correlated neutrino
trajectories, Phys. Rev. D 74, 105014 (2006).

[9] N. F. Bell, A. A. Rawlinson, and R. Sawyer, Speed-up
through entanglementmany-body effects in neutrino pro-
cesses, Physics Letters B 573, 86 (2003).

[10] A. Friedland and C. Lunardini, Do many-particle neu-

trino interactions cause a novel coherent effect?, Journal
of High Energy Physics 2003, 043 (2003).

[11] R. F. Sawyer, “Classical” instabilities and “quantum”
speed-up in the evolution of neutrino clouds, arXiv e-
prints , hep-ph/0408265 (2004), arXiv:hep-ph/0408265
[hep-ph].

[12] Y. Pehlivan, A. B. Balantekin, T. Kajino, and
T. Yoshida, Invariants of collective neutrino oscillations,
Phys. Rev. D 84, 065008 (2011).

[13] E. Rrapaj, Exact solution of multiangle quantum many-
body collective neutrino-flavor oscillations, Phys. Rev. C
101, 065805 (2020).

[14] M. J. Cervia, A. V. Patwardhan, A. B. Balantekin, S. N.
Coppersmith, and C. W. Johnson, Entanglement and col-
lective flavor oscillations in a dense neutrino gas, Phys.
Rev. D 100, 083001 (2019).

[15] A. Roggero, Entanglement and many-body effects
in collective neutrino oscillations, arXiv e-prints ,
arXiv:2102.10188 (2021), arXiv:2102.10188 [hep-ph].

[16] A. Roggero, Dynamical phase transitions in models of
collective neutrino oscillations, arXiv e-prints (in prepa-
ration).

[17] S. Lloyd, Universal quantum simulators, Science 273,
1073 (1996).

[18] J. Preskill, Quantum Computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[19] M. Suzuki, General theory of fractal path integrals
with applications to manybody theories and statistical

https://doi.org/10.1016/0370-2693(92)91887-F
https://doi.org/10.1016/0550-3213(93)90175-O
https://doi.org/10.1016/0550-3213(93)90175-O
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1146/annurev.nucl.012809.104524
https://arxiv.org/abs/1001.2799
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2016.02.012
https://doi.org/10.1103/RevModPhys.75.345
https://doi.org/10.1103/RevModPhys.75.345
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1103/PhysRevD.74.105014
https://doi.org/https://doi.org/10.1016/j.physletb.2003.08.035
https://doi.org/10.1088/1126-6708/2003/10/043
https://doi.org/10.1088/1126-6708/2003/10/043
https://arxiv.org/abs/hep-ph/0408265
https://arxiv.org/abs/hep-ph/0408265
https://doi.org/10.1103/PhysRevD.84.065008
https://doi.org/10.1103/PhysRevC.101.065805
https://doi.org/10.1103/PhysRevC.101.065805
https://doi.org/10.1103/PhysRevD.100.083001
https://doi.org/10.1103/PhysRevD.100.083001
https://arxiv.org/abs/2102.10188
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.22331/q-2018-08-06-79


9

physics, Journal of Mathematical Physics 32, 400 (1991).
[20] D. M. Ceperley, Path integrals in the theory of condensed

helium, Rev. Mod. Phys. 67, 279 (1995).
[21] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schi-

avilla, K. E. Schmidt, and R. B. Wiringa, Quantum
monte carlo methods for nuclear physics, Rev. Mod.
Phys. 87, 1067 (2015).

[22] G. Vidal and C. M. Dawson, Universal quantum circuit
for two-qubit transformations with three controlled-not
gates, Phys. Rev. A 69, 010301 (2004).

[23] F. Vatan and C. Williams, Optimal quantum circuits for
general two-qubit gates, Phys. Rev. A 69, 032315 (2004).

[24] M. C. Tran, Y. Su, D. Carney, and J. M. Taylor,
Faster digital quantum simulation by symmetry protec-
tion, PRX Quantum 2, 010323 (2021).

[25] C. Monroe, W. C. Campbell, L. M. Duan, Z. X. Gong,
A. V. Gorshkov, P. Hess, R. Islam, K. Kim, N. Linke,
G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, Pro-
grammable Quantum Simulations of Spin Systems with
Trapped Ions, arXiv e-prints , arXiv:1912.07845 (2019),
arXiv:1912.07845 [quant-ph].

[26] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney,
A. Aspuru-Guzik, G. K.-L. Chan, and R. Babbush,
Quantum simulation of electronic structure with linear
depth and connectivity, Phys. Rev. Lett. 120, 110501
(2018).

[27] 5qubit backed: IBM Q team, IBM Vigo backend spec-
ification v1.0.2 (2020), retrieved from https://quantum-
computing.ibm.com.

[28] H. A. et al., Qiskit: An open-source framework for quan-
tum computing (2019).

[29] S. Endo, S. C. Benjamin, and Y. Li, Practical quantum
error mitigation for near-future applications, Phys. Rev.
X 8, 031027 (2018).

[30] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R.
Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J.
Dean, and P. Lougovski, Cloud quantum computing of an
atomic nucleus, Phys. Rev. Lett. 120, 210501 (2018).

[31] A. Roggero, A. C. Y. Li, J. Carlson, R. Gupta, and G. N.
Perdue, Quantum computing for neutrino-nucleus scat-
tering, Phys. Rev. D 101, 074038 (2020).

[32] A. Roggero, C. Gu, A. Baroni, and T. Papenbrock,
Preparation of excited states for nuclear dynamics on a
quantum computer, Phys. Rev. C 102, 064624 (2020).

[33] A. He, B. Nachman, W. A. de Jong, and C. W. Bauer,
Zero-noise extrapolation for quantum-gate error mitiga-
tion with identity insertions, Phys. Rev. A 102, 012426
(2020).

[34] K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F.
Sacchi, Maximum-likelihood estimation of the density
matrix, Phys. Rev. A 61, 010304 (1999).

[35] J. Czartowski, D. Goyeneche, M. Grassl, and
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of the approximation error ε is quadratic in the time-step
t for both approximations [19]. The pair approximation
is expected, however, to perform better in practice for
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important due, for instance, to strong cancellations be-
tween the one-body and two-body contributions in the
Hamiltonian. In the neutrino case, these situations can
occur with appropriate initial conditions so that, for typ-
ical states in the evolution, we have for most pairs
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where we used the short-hand (cf. Eq. (9) in main text)
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~b

N − 1
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Since the difference between the two approximation is
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FIG. 9. (Color online) Panel (a) shows the error in matrix 2-
norm Eq. (A3) of the two approximations U1 and U2 described
in the text. Panel (b) shows the state fidelity and the right
panels show results for the inversion probability Pinv(t). Panel
(c) is for neutrino 1 while panel (d) is for neutrino 2.

more direct measure of accuracy for our specific setup by
considering instead the state fidelity

f(t) =
∣∣〈Ψ1/2(t)|Ψ(t)〉

∣∣2 (A4)

between the exact state |Ψ(t)〉 at time t and one of its
approximations

∣∣Ψ1/2(t)
〉

obtained using either U1 or U2.
We show f(t) for both approximations in panel (b) of
Fig. 9. The result here suggest that instead the pair ap-
proximation produces a state with a higher fidelity than
the simple linear propagator U1, especially at relatively
long time-steps t ∈ [4, 8].

Finally, since we are mostly interested in flavor observ-
ables diagonal in the computational basis, we also show
a direct comparison of the inversion probability for two
out of the N = 4 neutrinos using both approximations
and the exact propagator (panels (c) and (d)). These
results show more clearly that the pair approximation
allows us to correctly describe the evolution of flavor for
substantially longer times than the canonical U1 approx-
imation. The results reported here do depend on the
specific choice of ordering of qubits in the time evolution
layers shown in Fig. 1. In both the present analysis and
the simulation results in the main text we used the best
ordering which we empirically found to be (1, 3, 2, 4) as
one would’ve expected based on the initial state and the
criterion Eq. (A1) above.

A more rigorous discussion of the relative accuracy be-
tween the canonical first order and the pair approxima-
tion, together with the effect of ordering choices, will be
explored in future work.

Appendix B: Error mitigation

In the following subsections we describe in more detail
the error mitigation techniques used in this work.

1. Propagation of statistical uncertainties

In this section we describe the procedure we have
adopted for propagating statistical errors in the results
reported in the main text. We found that careful treat-
ment of statistical errors was important for non linear
functions of the expectation values like entropy and con-
currence of a reconstructed density matrix.

In the following, we will symbolically denote as 〈O〉,
expectation values of Pauli operators which can be mea-
sured directly on the device. These are, for instance, the
expectation values 〈XX〉, 〈XY 〉, etc. needed to recon-
struct a two-qubit density matrix.

We use a Bayesian approach to perform inference from
the bare counts obtained from the device. The idea is
best described initially for the simple case of a single
qubit measurement. The probability of obtaining m mea-
surements of the state |1〉 out of a total of M trials can
be modelled as a binomial distribution

Pb(m; p) =

(
M

m

)
pm(1− p)M−m , (B1)

with p the probability of a |1〉 measurement. In order to
infer the parameter p from a given sample mi of mea-
surement outcomes, we use Bayes theorem

P (p|mi) =
P (mi|p)P (p)∫
dqP (mi|q)P (q)

. (B2)

For the single qubit measurement, we use the binomial
distribution as likelihood P (mi|p) and, in order to obtain
a posterior P (p|mi) in closed form, we use the conjugate
prior of the binomial: the beta distribution

Pβ(p;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1 . (B3)

Here α, β > 0 are the parameters defining the distribu-
tion and with α = β = 1 we obtain a uniform distribu-
tion. The advantage of using the Beta distribution as a
prior is that, after a measurement mi of the system is
available, the parameters (α0, β0) of the prior distribu-
tion get updated as

αi = α0 +mi βi = β0 +M −mi . (B4)

Intuitively we can interpret the parameters (α0, β0) of the
prior as assigning an a-priori number of measurements
to the measurement outcomes, which are then updated
as more measurements are performed. In this work we
used a simple uniform prior corresponding to the choice
α0 = β0 = 1 for the prior parameters.

After the inference step described above, we calculate
the expectation value of a generic non-linear function
〈F [O]〉 by sampling new outcomes m′k using the posterior
distribution. More in detail, we generate a new artificial
measurement m′k after the measured mi by the following
procedure
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• sample a value p′k from the posterior P (p′k|mi)

• sample a new measurement outcome m′k from the
likelihood Pb(m

′
k; p′k)

The new measurements m′k obtained in this way are
then samples from the predictive posterior distribution.

Using an ensemble of size L obtained in this way, we
compute 〈F [O]〉 by taking an average of the results ob-
tained for each individual sample

〈F [O]〉 ≈ 1

L

L∑
k=1

F [Ok] . (B5)

The error bars reported in the main text are 68% confi-
dence intervals which we found in most cases where well
approximated by a Gaussian approximation.

This scheme is complete only for single qubit measure-
ments but a generalization to generic multiqubit observ-
ables can be obtained in a straightforward way. In the
situation where we are estimating expectation values over
N qubits, the probability of measuring a specific collec-
tion of N bit strings mi in M repeated trials can be de-
scribed with a multinomial distribution with N probabil-
ities. We use this distribution as the likelihood P (mi|~p)
in Bayes theorem and, for similar reasons as above, we
take its conjugate prior distribution: the Dirichlet distri-
bution (also initialized as uniform as for the Beta above).
The procedure we follow is otherwise exactly equivalent
to what we described above.

2. Read-out mitigation

The qubit measurements on a real device are not per-
fect and it is therefore important to understand the as-
sociated systematic errors. We refer the reader to Ap-
pendix. H.1 of Ref. [32] for a more detailed derivation
of the exact procedure we employ and the motivations
behind it. Here, we instead describe the main difference
with the scheme described there which comes from the
use of the Bayesian inference scheme described in the
previous subsection.

In the calculations presented here, we work under the
assumption that read-out errors are independent on each
qubit and perform a set of 2N calibration measurements
ci (requiring two separate executions) to extract the
parameters (~e0, ~e1) of the noise model (see Eq.(H1) of
Ref. [32]). In order to consistently propagate the sta-
tistical uncertainties associated from the finite sample
statistic used to estimate the noise parameters, we use
an additional layer of Bayesian sampling using a binomial
prior for the two error probabilities (en0 , e

n
1 ) associated to

each qubit n.
Using a single pair of error probability vectors εi =

(~e0, ~e1)i, obtained either by direct measurement or by
sampling from the posterior, we can generate a linear

transformation Ci that maps a set of (in general multi-
qubit) measurements mi to a new set m̃i with reduced
read-out errors (see Ref. [32] for more details).

The complete procedure that we use to generate an
ensemble of measurements {m̃′i} with read-out mitigation
starting from a single calibration measurement ci and
Pauli operator measurement mi is as follows

• sample a value p′k from the posterior P (p′k|mi)

• sample a new measurement outcome m′k from the
likelihood Pb(m

′
i; p
′
k)

• for each qubit n = {1, . . . , N}

– sample a pair (e′n0 , e
′n
1 ) of error probabilities

from the posterior P (en0 , e
n
1 |ci)

• use the sampled error probabilities (~e′0, ~e
′
1) to gen-

erate the linear transformation C′k

• apply the sampled correction matrix C′l to m′k to
obtain the read-out mitigated estimator m̃′k

The resulting ensemble of measurements can be used
directly to estimate expectation values and confidence in-
tervals as described above. In this way, we avoid having
to explicitly construct the variance of the correction ma-
trix C′l using maximum likelihood estimation and then
propagating the error perturbatively to arbitrary observ-
ables as done in Ref. [32].

3. Zero-noise-extrapolation

For observables like the inversion probability, we adopt
the procedure developed in Ref. [32]. For entanglement
observables we adopt a two point shifted exponential ex-
trapolation that we briefly describe here. We denote the
entanglement observable as 〈F [O]〉(L)(r) where L is the
number of samples used and r denotes the noise level of
the circuit, proportional to the number of CNOT gates
in the circuit. We first note that in the case of very high
noise levels, denoted here with 〈F [O]〉(r → ∞) the den-
sity matrix corresponds to the maximally mixed state
given by 1/4. Therefore, the concurrence in this case is
−1/2 and the pair entanglement saturates to 2.

Using an estimate for the large noise expected value
〈F [O]〉(r →∞), we can then consider a simple exponen-
tial extrapolation of the form

〈F [O]〉(L)(r)− 〈F [O]〉(r →∞) = A
(L)
F e−αr , (B6)

with α and A
(L)
F the parameters of the model which can

be obtain using results at two different noise levels r and
r′. The zero-noise extrapolated result in this model cor-
responds to the limit r → 0 and is given simply by the

estimated A
(L)
F . More explicitly this becomes

A
(L)
F = 〈F [O]〉(L)(r)

(
〈F [O]〉(L)(r′)
〈F [O]〉(L)(r)

)r/(r−r′)
, (B7)
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and the zero noise extrapolated observable is

〈F [O]〉(L)(0) = A
(L)
F + 〈F [O]〉(r →∞) . (B8)

Finally, the estimated statistical error is obtained by cal-
culating the standard deviation of the L copies as above.

Appendix C: Additional data for concurrence and
entanglement entropy

Here we show the full set of results for both entangle-
ment entropy and concurrence for all the other pairs of
qubits not shown in the main text. We denote with a
magenta triangle, data-points that fall below zero for the
entropy as in Fig. 8 of the main text.
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FIG. 10. (Color online) Single spin entanglement entropy for
all four neutrinos. Black square are bare results obtained
from the QPU, the blue circles are obtained using Richardson
extrapolation and the green diamonds correspond to the re-
sults obtained from a shifted exponential extrapolation using
the maximum value of the entropy (dashed orange line). The
magenta triangle indicates a mitigated result with Shifted Ex-
ponential extrapolation below zero within errorbars.
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FIG. 11. (Color online) Pair entanglement entropy for all
pair of neutrinos. Black square are bare results obtained
from the QPU, red triangles are results obtained by ampli-
fying the noise to ε/ε0 = 3, the blue circles are obtained using
Richardson extrapolation and the green diamonds correspond
to the results obtained from a shifted exponential extrapola-
tion using the maximum value of the entropy (indicated as
a dashed orange line). The magenta triangle points are mit-
igated results with Shifted Exponential extrapolation below
zero within errorbars.
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FIG. 12. (Color online) Entanglement concurrence for all the
pairs of qubits. The maximum value for the concurrence is
shown as a dashed orange line.
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