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Priti Gupta,1, ∗ Béatrice Bonga,2 Alvin J. K. Chua,3 and Takahiro Tanaka1, 4

1 Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2 Institute for Mathematics, Astrophysics and Particle Physics,

Radboud University, 6525 AJ Nijmegen, The Netherlands
3 Theoretical Astrophysics Group, California Institute of Technology, Pasadena, CA 91125, United States

4Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Dated: July 26, 2021)

Extreme mass ratio inspirals (EMRIs) will be important sources for future space-based
gravitational-wave detectors. In recent work, tidal resonances in binary orbital evolution induced by
the tidal field of nearby stars or black holes have been identified as being potentially significant in the
context of extreme mass-ratio inspirals. These resonances occur when the three orbital frequencies
describing the orbit are commensurate. During the resonance, the orbital parameters of the small
body experience a ‘jump’ leading to a shift in the phase of the gravitational waveform. In this paper,
we treat the tidal perturber as stationary and restricted to the equatorial plane, and present a first
study of how common and important such resonances are over the entire orbital parameter space.
We find that a large proportion of inspirals encounter a low-order resonance in the observationally
important regime. While the ‘instantaneous’ effect of a tidal resonance is small, its effect on the
accumulated phase of the gravitational waveform of an EMRI system can be significant due to its
many cycles in band; we estimate that the effect is detectable for a significant fraction of sources.
We also provide fitting formulae for the induced change in the constants of motion of the orbit due
to the tidal resonance for several low-order resonances.

PACS numbers:

I. INTRODUCTION

The three observation runs by gravitational-wave
(GW) observatories LIGO and VIRGO have unveiled
an exciting number of detections [1, 2], thereby allow-
ing probes of binary dynamics in the strongly gravitat-
ing regime and discovering more about binary formation
channels [3, 4]. By the early 2030s, the Laser Interferom-
eter Space Antenna (LISA) and Taiji/TianQin will probe
the cosmos at lower frequencies (∼ mHz range) [5, 6, 67].
One of the promising and exciting sources for these space
gravitational wave antennae is inspirals of stellar-mass
compact objects of mass µ ∼ 1 - 100M� into supermas-
sive black holes (SMBHs) of mass M ∼ 105 - 107M�.

At leading order in mass ratio, the smaller body can be
treated as a point-like particle moving along a geodesic
orbit around the large black hole. At subsequent orders,
a ‘self-force’ arises from the small body’s interaction with
its own gravitational perturbation that moves the orbit
away from the geodesic of the Kerr spacetime [7–10]. The
dissipative piece of the self-force is predominantly respon-
sible for the inspiral, while the conservative piece shifts
the orbital frequencies. A typical EMRI is expected to
spend more than a year in observational band and un-
dergoes ∼ 105 orbital cycles around the central massive
black hole, i.e., about 106 radians in gravitational-wave
phase. GWs from such inspirals carry intricate details
about the curvature of black holes, hence offering high
precision tests of General Relativity (GR) in the extreme
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mass ratio limit.

There are two independent channels to form an EMRI.
The “traditional” channel operates through scattering
and capture processes. These can put stellar-mass ob-
jects in galactic nuclei close enough to the central massive
BHs in galactic centers for the object to be gravitation-
ally bound to the SMBH [11–16]. Recently, an alternative
formation channel for EMRIs around accreting massive
black holes has been proposed [15, 16] and is referred to as
the wet formation channel. In this channel, stellar-mass
black holes (and stars) on inclined orbits are captured
by the accretion disk, and under the influence of den-
sity wave generation and head wind migrate towards the
central SMBH [17]. Despite the fact that roughly 1% lo-
cal galaxies and 10% high-redshifted galaxies have active
galactic nuclei [18, 19], this wet EMRI formation channel
is fairly efficient and expected to be equally important (if
not more important) as the traditional channel. The two
formation scenarios have distinct characteristics: EM-
RIs formed in the dry environment of traditional capture
channels are expected to have higher eccentricities and
higher inclinations than EMRIs formed in the wet en-
vironment of accretion disks when they enter the LISA
band. For this reason, capture channels are particularly
interesting for our study. The EMRI event rate depends
on the population of compact objects, their stellar den-
sity profile around each SMBH, and also the mass and
spin of SMBH. All of these properties are highly uncer-
tain, even for our galaxy. According to [20], the detection
rate of EMRIs formed through the traditional formation
channel by LISA is estimated to be from a few tens to a
few thousand per year, if the detection threshold of SNR
is 20.
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It is unlikely that all EMRIs can be treated as com-
pletely isolated for the duration in the LISA band. For in-
stance, studies based on a Fokker-Planck simulation sug-
gest that a population of 40M� BHs can be close to Sagit-
tarius A?, with a median distance ∼ 5 AU [14, 21, 22].
According to [11, 23], brown dwarfs can be at an approx-
imate distance of ∼ 30 AU for Sgr A?. If this holds for
even 10% of EMRI events, the detection rate for the ob-
servation of tidal resonances can be approximated to be
a few yr−1 [22]. If an EMRI system is not isolated but
is instead influenced by another astrophysical object, the
tidal perturbation (even though relatively small to the
background) can modify the orbital dynamics and GW
radiation of the EMRI system resulting in phase vari-
ations in the gravitational waveform [22, 24]. For an
EMRI formed in a wet environment, the active accretion
disk itself can be treated as a tidal perturber. Also, in
this scenario, dynamical friction caused by the disk in-
teraction may leave imprints on GWs [17, 25]. Recently,
there has also been work focusing on the “dephasing” of
EMRI signal due to the dynamical friction caused by dark
matter halos around SMBH [26–28]. All these effects are
likely to be detectable with future GW observatories.

We focus on tidal resonances caused by the tidal field
generated by close stars/BHs near the EMRI system [22].
During most of the EMRI inspiral, the tidal field of
nearby objects can be neglected. However, when the
three fundamental orbital frequencies describing the or-
bit become commensurate, a tidal resonance occurs1.
As a result, the gravitational potential of the tidal per-
turber measurably changes the orbit of the small BH
and thereby the gravitational radiation it emits. GWs
undergoing such resonances will therefore encode infor-
mation — although limited — about the environment
of the galactic center, which is difficult to obtain from
electromagnetic observations.

To prepare for the upcoming low-frequency stage of
GWs, we need our waveform models to be very accurate
because gravitational wave observations rely on matched
filtering techniques that are extremely sensitive to the
phase of the gravitational waves emitted by the system.
Accurate waveform modeling is not only required to ex-
tract the signal, but also a prerequisite to parameter esti-
mation. Since the phase is directly related to the orbital
evolution, it is necessary to take the tidal fields into con-
sideration.

Using the two-timescale expansion [30], the orbital
phase can be expanded with respect to the mass ratio
η = µ/M (considering a body of mass µ orbiting an

1 Tidal resonances occur under more general conditions than self-
force resonances, which require nωr+kωθ = 0. A tidal resonance
occurs when the three orbital frequencies of the EMRI and the
three of the perturber are commensurate [29]. However, in this
paper we treat the perturber as static, hence its corresponding
orbital frequencies do not play a role in resonance condition.

SMBH of mass M) as

ψ =
1

η

(
ψ(0) + η1/2ψ(res) + ηψ(1) +O(η3/2)

)
, (1.1)

where ψ(0)/η denotes the orbital phase determined by
the averaged dissipative piece of the first order self-force
whereas ψ(1) denotes the post-adiabatic order derived
from the remaining oscillatory piece of the first order
self-force and dissipative piece of the second order self-
force. Corrections to the phase due to resonance scale
as the square root of the inverse of mass ratio. These
corrections thus become large over an EMRI inspiral,
dominating over post-adiabatic effects. Significant ef-
forts focusing on the computation of the self-force are
made by the community to model EMRI waveforms [31–
33]. While self-force calculations are tedious, resonances
(both self-force and tidal) will further complicate this
enterprise [22, 34, 35, 70]. Recent work has shown the
impact of self-force resonances on parameter estimation,
suggesting that parameter estimates of a resonant EMRI
orbit are likely to be biased if resonances are not taken
into account in waveform modeling [36].

In this paper, we develop analytic and numerical tools
to study tidal resonances with the aim of surveying the
orbital parameter space and investigating how often tidal
resonances occur in realistic inspirals. We compute the
accumulation in phase after a tidal resonance has been
encountered by an EMRI to understand their impact on
waveforms. We investigate properties of tidal resonances
such as the effect of spin of the central massive black hole,
and the orbital parameters of the EMRI on the strength
of each resonance and the resulting phase shift.

The outline of the paper is as follows. In Sec. II, we
recall basic properties and evolution equations for Kerr
geodesic motion and introduce the concept of tidal res-
onances. In Sec. III, we describe the analytic and nu-
merical computations to obtain the inspiral and change
in conserved quantities. In Sec. IV, we present our re-
sults and show the dependence of tidal resonances and
accumulated phase shift on orbital parameters. We also
compare the analytical estimate of jump with the nu-
merical code by implementing the tidal effects and 5PN
equations of motion using the forced osculating orbital
elements method. We summarise the results in Sec. V.
In the appendix A, we discuss the suppression of certain
tidal resonances and provide fitting formulae for different
resonances, respectively. Throughout this paper, we use
geometrical units with c = G = 1 where c is the speed of
light and G is the gravitational constant.

II. FORMULATION

In this section, we begin with an overview of Kerr
geodesics and set up the notation and conventions that
we use. Next, the tidal force is added in the evolution
equations leading us to the tidal resonance condition. We
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also discuss the relevant time scales and our assumptions
about the tidal perturber.

A. Bound geodesics

Since the discovery of Kerr Solution in 1963, the Kerr
black hole has been extensively studied [37, 38]. We be-
gin by summarizing the generic geodesic motion in Kerr
spacetime [39–42]. Consider a point-like body of mass
µ orbiting a Kerr black hole described by mass M and
spin parameter a. We use Boyer-Lindquist coordinates
{r,θ,φ} and Mino time λ to describe the geodesic equa-
tions:

(
dr

dλ

)2

=
[
E(r2 + a2)− aLz

]2
−∆

[
r2 + (Lz − aE)2 +Q

]
≡ R(r) , (2.1a)(

dθ

dλ

)2

= Q− cot2θL2
z − a2cos2θ(1− E2)

≡ Θ(θ) , (2.1b)

dφ

dλ
= Φr(r) + Φθ(cos θ)− aLz , (2.1c)

dt

dλ
= Tr(r) + Tθ(cos θ)− aE , (2.1d)

The quantities E,Lz, and Q are the orbit’s energy (per
unit µ), axial angular momentum (per unit µM), and
Carter constant (per unit µ2M2). Here, ∆ = r2−2Mr+
a2 and the Mino time parameter λ is related to proper
time τ by dλ = dτ/Σ, where Σ = r2 + a2cos2θ. The
explicit forms of functions in Eqs. (2.1c) and (2.1d) can
be found in Fujita & Hikida’s paper, Ref [42].

By introducing λ the radial and angular equations of
motion are completely decoupled as can be seen in Eqs.
(2.1a) and (2.1b). Therefore, for a bound orbit, radial
motion r(λ) and angular motion θ(λ) become periodic
functions with Mino-time periods Λr,Λθ defined as [42],

Λr = 2

∫ ra

rp

dr√
R(r)

, Λθ = 4

∫ π/2

θmin

dθ√
Θ(θ)

, (2.2)

where ra, rp are the values of r at the apoapsis and pe-
riapsis respectively and θmin is the minimum value of θ
(measured from the black hole’s spin axis). The motion
in t and φ can be written as a sum of three parts: a linear
term with respect to λ, an oscillatory radial part with pe-
riod Λr, and an oscillatory angular part with period Λθ
as follows:

t(λ) = t0 + Γtλ+ t
(r)
λ + t

(θ)
λ , (2.3)

φ(λ) = φ0 + γφλ+ φ
(r)
λ + φ

(θ)
λ . (2.4)

In the above equations, t0 and φ0 describe the ini-
tial conditions. The quantities Γt and γφ describe the

frequency of coordinate time and φ with respect to λ,
respectively, which are given by [42]

Γt = 〈Tr(r)〉λ + 〈Tθ(cosθ)〉λ + aLz , (2.5)

γφ = 〈Φr(r)〉λ + 〈Φθ(cosθ)〉λ − aE , (2.6)

where 〈. . . 〉λ represents the time average over λ.
The associated frequencies with Mino-time periods are

given by

γr,θ,φ =
2π

Λr,θ,φ
. (2.7)

The frequencies associated with distant observer time
can be obtained by taking the ratio of the Mino-time
frequencies to Γt:

ωr,θ,φ =
γr,θ,φ

Γt
. (2.8)

Unlike Keplerian orbits, bound Kerr geodesics are triperi-
odic. The radial frequency ωr is associated with oscilla-
tions in the radial direction. The polar frequency ωθ is
associated with oscillations in the θ direction, while the
azimuthal frequency ωφ describes the rotations around
the central BH spin axis. The frequencies of the preces-
sional motions of the periastron and the orbital plane are
ωr − ωφ and ωθ − ωφ, respectively. As shown in Fig. 1,
in the weak field regime, these three frequencies asymp-
tote to the frequency predicted by Kepler’s law whereas,
in the strong field, they increasingly deviate from each
other and evolve at different rates. Orbits are marginally
stable at the separatrix and beyond this point, they be-
come plunging orbits.

Besides the three constants of motion: {E,Lz, Q}, the
Kerr geodesic orbit can be characterised by another set
of parameters: the semi-latus rectum p, the orbital ec-
centricity e, and orbital inclination angle I. These pa-
rameters are defined by

p :=
2rpra

M(rp + ra)
, (2.9)

e :=
ra − rp
ra + rp

, (2.10)

I := π/2− sgn(Lz) θmin . (2.11)

For later convenience, we also introduce x = cos I.

B. Tidal resonances

Gravitational waves from EMRIs will encode the in-
formation of curvature around the central black hole. In
addition to this invaluable data, they can also be used
to probe the stellar distribution in galactic centers. In
our study, we consider an EMRI within the influence of
an external tidal field. The information about the tidal
environment created by a stellar-mass object near EMRI
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FIG. 1: Dimensionless fundamental frequencies as a function
of semi-latus rectum for orbital eccentricity e = 0.33 and or-
bital inclination 30◦. The spin parameter a of central massive
BH is set to be 0.9. The vertical grey line marks the location
of the separatrix.

is treated in a fully relativistic framework by comput-
ing the perturbation to the Kerr spacetime (discussed in
Sec. III A).

The geodesic equations in Kerr are integrable, i.e.,
there exists one integral of motion for each degree of
freedom. The integrability allows one to introduce a set
of “action-angle” variables, such that the “angle” vari-
ables qi parameterize a torus and the conjugate “action”
variables Ji are functions of the constants of motion
{E,Lz, Q}. This method is advantageous in obtaining
the frequencies of Kerr orbits [40] and including devia-
tions to the geodesic motion due to different forces. Thus,
we rewrite the EOM in this formalism to describe the dy-
namics in (r, θ, φ) [43].

dqi
dτ

= ωi(J) + εg
(1)
i,td(qφ, qθ, qr,J) + ηg

(1)
i,sf(qθ, qr,J)

+ O(η2, ε2, ηε) , (2.12)

dJi
dτ

= εG
(1)
i,td(qφ, qθ, qr,J) + ηG

(1)
i,sf(qθ, qr,J)

+ O(η2, ε2, ηε) . (2.13)

The parameter ε = M?M
2/R3 characterizes the strength

of the tidal field produced by the perturber M?, and R
is the distance of the tidal perturber from M . As can be
seen from the above equations, at zeroth order (on short
timescales ∼ M), a particle with mass µ is well approx-
imated by a geodesic of the background spacetime. At
this order, action variables are conserved, and qi increases
at a fixed rate in time. However, in secular timescale
(∼M/η) the EMRI orbit deviates from geodesic motion
due to the particle’s self-force (gi,sf ,Gi,sf) [7–10]. The
leading order self-force motion is an adiabatic inspiral.
Over the longer timescale, it is necessary to consider var-
ious post-adiabatic corrections currently under develop-
ment [44, 45]. Since we are interested in the tidal field
from a nearby star or BH, another term denoting the tidal
force is introduced in evolution equations (gi,td,Gi,td).

The tidal force depends on the axial position of the small
body φ unlike the self-force (due to axisymmetry of the
Kerr spacetime). The tidal force acts as a purely con-
servative force in contrast to the self-force which is both
conservative and dissipative. Given the conservative na-
ture of the tidal force, at leading order, the tidal force can
be neglected throughout most of the inspiral except when
a resonance is encountered (this is also demonstrated in
Fig. 9.) The mathematical description of the tidal res-
onance is similar to the resonance effect induced by the
self-force itself [46]. Both resonances are transient be-
cause the orbital frequencies are changing due to radia-
tion reaction. The main difference between the two res-
onances is the force that causes it (the tidal force versus
the self-force).

From here, we will focus on the tidal force G
(1)
i,td and

drop the subscript ‘td’. Each component of this force
can be written as a Fourier series in terms of the angle
variables

G
(1)
i (qφ, qθ, qr,J) =

∑
m,k,n

G
(1)
i,mkn(J)ei(mqφ+kqθ+nqr) .

(2.14)
For ergodic (non-resonant) orbits, the exponential term
in the equation is rapidly oscillating in time averaging to
zero over multiple orbits. Thus, generic m, k, n modes do
not contribute to secular change in J. However, during an
inspiral, it can happen that for a set of integers (m, k, n)

ωmkn := mωφ + kωθ + nωr = 0 . (2.15)

When this happens in the presence of a tidal perturber,
a tidal resonance occurs. During resonance, the orbital
motion is restricted to a subspace of the full orbital three-
torus T3 = {qr, qθ, qφ}. When Eq. (2.15) is satisfied, the
phase in Eq. (2.14) will be stationary near that time,
and the exponential factor will vary slowly. The corre-

sponding force amplitude G
(1)
i,mkn is non-vanishing after

averaging over many orbital cycles, and therefore induces
a secular change in J. Generically for resonances, lower-
order ones, i.e., those with small integers m, k and n
are more important than those with higher integers (this
trend is also reported for self-force resonances [35] and
mean-motion resonances [29]).

It is useful to mention the relevant timescales in our
physical setting. The fastest timescales are the orbital
periods ∼ O(M) which can be defined using the three
orbital frequencies as,

Tr = 2π/ωr, Tθ = 2π/ωθ, Tφ = 2π/ωφ.

The radiation reaction (or slow) time τrr scales as M/η.
Another important time scale is the resonance duration
τres. From the fact that the phase in Eq. (2.14) changes
slowly during a resonance, we can estimate its scale. In
particular, expanding the phase variable qmkn := mqφ +
kqθ +nqr in a Taylor series around the time at which the
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system encounters resonance, τres,0

qmkn(τ) = qmkn(τres,0) + (mωφ + kωθ + nωr)(τ − τres,0)

+
1

2
(mω̇φ + kω̇θ + nω̇r)(τ − τres,0)2 + · · · .

(2.16)

The frequency and its derivative are evaluated at τres,0.
For non-zero integers m, k, n, the second term mωφ +
kωθ + nωr = 0 at τres,0. Thus, the duration of resonance
is given by the condition that the third term becomes
O(1), i.e.,

τres ∼

√
2

mω̇φ + kω̇θ + nω̇r
∼M

√
1

η
. (2.17)

Hence, the resonance time scale is longer than the or-
bital time scale and shorter than the radiation reaction
time scale. Lastly, another key timescale is the orbital
period of tidal perturber Ttd ∼ 2π

√
R3/M . In our anal-

ysis, we ignore the dynamics of the tidal perturber. This
assumption of a stationary third body is valid as long
as τres � Ttd. However, if the third body is close to
the EMRI on the equatorial plane, thereby violating the
static approximation, the resonance condition is altered
in the following way

m(ωφ ± Ωφ,td) + kωθ + nωr = 0 . (2.18)

In other words, the leading effect of the motion of the
perturber would be the change in time of occurrence of
resonance. Of course, the tidal force itself will also be dif-
ferent: instead of being time-independent, it will need to
include the dynamical effects of the motion of the tidal
perturber. However, the time-dependence of the tidal
perturber is expected to be subdominant to the lead-
ing order quadrupolar field and therefore not considered
in this paper (for a more extensive discussion about the
modeling of the tidal field itself, see Sec. III A). Since for
all resonances we consider Ωφ,td � ωφ, this shift is negli-
gible in evaluating the resonance strength. Note that the
condition above is very similar to the resonance condition
of mean motion resonances discussed in [29]. In fact, the
tidal resonances considered in this paper are a subset of
the relativistic mean motion resonances: tidal resonances
are mean motion resonances for which the motion of the
outer object can be considered static.

III. ANALYTIC AND NUMERICAL
IMPLEMENTATION

Here, we describe the methods used to model the tidal
force and calculate the jump in conserved quantities due
to a tidal resonance. We also discuss the procedure for
determining EMRI inspiral orbits.

A. The jump across tidal resonance

An EMRI can pass through a tidal resonance dur-
ing the observationally relevant period. It can lead to
a ‘jump’ in constants of motion relative to the adiabatic
prescription. After spending hundreds of orbital cycles in
the resonance region, the parameters of the inspiraling or-
bit are different from those calculated from an adiabatic
evolution. Flanagan and Hinderer [46] gave an analytic
expression for this deviation in the context of self-force
resonances. The change across a tidal resonance is also
well approximated by a very similar equation

∆Ji = ε

∫ ∞
−∞

G
(1)
i (qφ, qθ, qr,J)dτ

= ε
∑
s=±1

√
2π

|Γs|
exp

[
sgn(Γs)

iπ

4
+ isχ

]
×G(1)

i,sm,sk,sn(J) . (3.1)

Here, χ = mqφ0+kqθ0+nqr0 and Γ = mω̇φ0+kω̇θ0+nω̇r0,
and the quantities qi0 and ω̇i0 are phases and frequency
derivatives evaluated at τres,0 respectively. As discussed
below Eq. (2.14), after long time averaging, only the
components satisfying the tidal resonance condition con-
tributes to a secular change in conserved quantities.
Therefore, the jump across the resonance is evaluated
by summing over non-vanishing harmonics of the tidal
force Gi,mkn after orbit averaging. In principle, s ranges
over all integers but since low-order resonances are dom-
inant we only sum over s = ±1. All the quantities are
evaluated at resonance. The change across resonance is
proportional to ε/η1/2.

To calculate the tidal force G
(1)
i , we incorporate the

influence of the third object, the tidal perturber, on the
EMRI system by calculating its induced tidal deforma-
tion of the central BH spacetime. The induced deforma-
tion causes the small object of the EMRI to coherently
accelerate when resonance occurs. Thus as a first step,
we need the perturbation hαβ to the central BH’s space-
time due to the tidal field. This is obtained by solving
the Teukolsky equation [47] in the slow-motion limit (the
radius of curvature R associated to the external space-
time is taken to be much larger than the BH’s scales, i.e.,
M/R � 1) followed by metric reconstruction so that the
resulting metric is in the ingoing radiation gauge [48].
Another metric describing a tidally deformed black hole
given by Eric Poisson also exists [49], which is in the
lightcone gauge with coordinates adapted to this gauge
and does not rely on metric reconstruction. However, this
metric is only valid in the slow spin limit and we would
like to explore the entire range in spin of the central black
hole. Therefore, we use the metric in [48]2.

2 Note that there is an overall factor of two missing in hαβ in [48];
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The metric given by [48] includes only quadrupolar l=2
modes because the higher multipoles will be smaller by
a relative factor of O(M/R). For l =2, allowed values
for azimuthal number m are −l to l. However, the m=0
mode is excluded from the metric3. For simplicity, we
restrict the position of the tidal perturber to the equato-
rial plane. Under this restriction, the Newmann-Penrose
scalar ψ0 (see Eq. (17) in [48]) is zero for m = ±1 modes.
As the metric does not contain m = 0 modes, we plan
to include them in our future work. Therefore, the met-
ric perturbation in our setting only contains m = ±2
modes. The input for the metric reconstruction proce-
dure is zm. At leading order, these coefficients are deter-
mined by the electric and magnetic quadrupole moment
tensor denoted by Eab, and Bab, respectively (see Eq. (7)
in [48]). Quadrupole moment tensors scale as [51]

Eab ∼
1

R2
, Bab ∼

V
R2

,

where V ∼
√
M +M?

R
is the orbital velocity of the third

body. In this paper, we set the magnetic-type tensor to
be zero as we assumed the tidal perturber to be station-
ary. In a general setting, the dynamics of the third body
should be taken into account. To summarize our assump-
tions, we consider a stationary tidal perturber restricted
to the equatorial plane and take into account only its
l = 2 and m = ±2 contributions in the tidal resonance.

The tidal perturber is aligned along the x-axis and for
the electric tidal moment tensor we take the following
form:

Eab =
M?

R3
(2∇ax∇bx−∇ay∇by −∇az∇bz) , (3.2)

where x, y, and z are the Cartesian-like coordinates
(see Sec. IXB of [52]). We substitute this as input to
obtain hαβ in the ingoing radiation gauge in advanced
Eddington-Finkelstein coordinates (called Kerr coordi-
nates in [48]).

Next, we perform a coordinate transformation
from the advanced Edington-Finkelstein coordinates
{v, rEF, θEF, φEF} to Boyer-Lindquist coordinates
{t, r, θ, φ}:

dv = dt+

(
1 +

2Mr

r2 − 2Mr + a2

)
dr , (3.3a)

drEF = dr , (3.3b)

dθEF = dθ , (3.3c)

dφEF = dφ+
a

r2 − 2Mr + a2
dr . (3.3d)

see footnote 17 in [50] for details. After correcting for this factor,
dLz/dt agrees in the slow spin limit with dLz/dt for hαβ given
in [49].

3 These modes are included in the slow-spin limit metric given by
Poisson [49].

Given hαβ , the induced acceleration with respect to the
background Kerr spacetime is

aα = −1

2
(gαβKerr + uαuβ)(2hβλ;ρ − hλρ;β)uλuρ , (3.4)

with uα the unit vector tangent to the worldline of the
EMRI’s small mass µ. The instantaneous change rate of
the constants of motion are [24]

dLz
dτ

= aφ , (3.5)

dQ

dτ
= 2uθaθ − 2a2cos2θutat + 2cot2θuφaφ . (3.6)

The energy E is conserved as the spacetime is station-
ary. With these equations in hand, we obtain dLz/dτ
and dQ/dτ due to the stationary phase harmonics of the
tidal force, Gi,mkn, as a function of χ (see Eq. (3.1)).
Another quantity needed for the computation of jump is
Γ which contains information about the resonance dura-
tion is obtained from the rate of change of the orbital
frequencies at the time of resonance.

B. Method of determining inspiral

For the evolution of an EMRI orbit, we use the numer-
ical data for the gravitational-wave fluxes dissipated by a
stellar-mass object with bound orbits around a Kerr BH
of spin parameter a for large sets of orbital parameters.
The derivation of GW fluxes in the data sets used meth-
ods presented in Refs. [53–55] based on the formalism
developed by Mano, Suzuki, and Takasugi (MST) [56–
59]. The data shared with us by Fujita was produced for
the extension of their recent paper dealing with equato-
rial inspirals at adiabatic order [31].

Using the MST code, the adiabatic change of constants
of motion was computed for a number of data points in
the semi-latus rectum p, the orbital eccentricity e, and
the orbital inclination I for different spin parameters. We
obtained dCi/dt in phase space {p, e, I} through polyno-
mial fitting where Ci = {E,Lz, Q}. Further, the secular
evolution of orbital parameters P i = {p, e, I} is derived
from those of Ci = {E,Lz, Q} using〈

dP i

dt

〉
=
∑
j

(T−1)ij

〈
dCj

dt

〉
, (3.7)

where T j
i ≡ ∂Cj/∂P j is the Jacobian matrix for the

transformation from {E,Lz, Q} to {p, e, I}. Using this
approach, we obtain accurate orbits at inexpensive com-
putational cost. One caveat is that the numerical data
sets of GW fluxes are obtained only for orbital eccentric-
ity e upto 0.7 and each data set is truncated at p ∼ 6M
for each value of the spin.4 Therefore, accuracy of our

4 When numerical fluxes become available across the parameter
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numerical fitting for fluxes below 6M is limited by the
available data sets and we rely on extrapolation for the
change in fluxes in this region.

Returning to Eq. (3.1), we obtain the change in fre-
quencies during an inspiral from these numerical fits and
evaluate Γ. For the implementation of the analytic ex-
pressions of fundamental frequencies [40, 42], our code
employs the ‘Kerr Geodesic’ Package from the Black Hole
Perturbation Toolkit [60].

IV. RESULTS

In this section, we investigate the orbital parameter
space and find some trends regarding the number of res-
onances encountered and the strength of each resonance
as a function of the spin of the central massive black hole
and the orbital parameters of the EMRI. We compute the
accumulated phase shift due to different tidal resonances
and show the affected parameter space. In addition to
calculating the jump semi-analytically, we have also im-
plemented the tidal effects using the forced osculating or-
bital elements method [61, 62]. The numerical evolution
establishes that, as expected, the tidal force can be ne-
glected throughout most of the EMRI evolution except
during resonances. Moreover, the numerical evolution
not only agrees qualitatively with the general features of
tidal resonances, but also quantitatively. In particular,
the numerically evaluated jumps agree remarkably well
with the semi-analytic methods, thereby supporting the
validity of both methods, which are implemented inde-
pendently.

A. Inspirals crossing tidal resonances

Our aim is to span the complete orbital parameter
space that is likely relevant for observationally important
EMRI events. With the help of numerical data, we can
compute the inspiral for both prograde (0 ≤ I < π/2)
and retrograde orbits (π/2 < I < π) by picking initial I
from the set ∈ [20◦, 50◦, 80◦, 100◦, 130◦, 160◦]. The spin
parameter are chosen from the set a/M ∈ [0.1, 0.5, 0.9]
ranging from a slowly rotating central BH to a rapidly ro-
tating one. For the orbital eccentricity e, the range varies
from 0.0125 ≤ e ≤ 0.7 with grid spacing ∆e = 0.0125.
The values of p are not randomly sampled but are cho-
sen such that the resonance condition in Eq. (2.15) is
satisfied for some low order integers n, k, and m.

We find that every inspiral encounters at least one
lower-order resonance. As also seen for self-force reso-
nances, higher-order resonances have smaller jumps com-
pared to lower-order ones [35]. In Fig. 2, we show the

space at inexpensive computational costs, we plan to extend our
fittings in future work.

low-order tidal resonances (i.e n, k ∈ [−4, 4];m = 0,±2)
shown by black contours in the e - p plane for different
spin parameters of the central black hole. As discussed
in Sec. III A, when the tidal perturber is on the equato-
rial plane, m = ±1 modes are zero. In the upper panel,
prograde geodesics are considered with I = 50◦ whereas
in the lower panel, resonances are shown for retrograde
geodesics with I = 130◦. We see that the value of p at
which resonances occur depends strongly on EMRIs or-
bital parameters. For instance, comparing the plots in
the upper panel, the same resonance contour is in a dif-
ferent location on the e - p plane as the spin parameter
varies (left to right) .

As an example, we show an inspiral (in red) evolving
in the e - p plane with a = 0.9 and I = 50◦. As the orbit
shrinks and circularizes due to radiation reaction it passes
through four low-order tidal resonances before it plunges.
When a resonance occurs at large p, the tidal field is
stronger leading to a larger jump in conserved quantities.
Note that for retrograde orbits (lower panel) resonances
occur at larger values of p as compared to prograde orbits
thereby experiencing a larger tidal force. Also, at large
p, the EMRI systems evolve relatively slowly, spending
more time in resonance. To access the secular impact
of tidal resonances on EMRIs the time remaining after
crossing each resonance is also of importance. The space-
based low-frequency interferometers will be able to track
the evolution of EMRI waves for years. In the example
shown, for an inspiral with parameters M = 4× 106M�
and µ = 30M� the observational time after crossing the
n : k : m = −3 : 0 : 2 resonance is about 10 yrs whereas
the −3 : 4 : −2 resonance is crossed ∼ 1.5 yrs before
plunge.

B. Dependence on orbital phase

When we introduce the tidal perturber on the equa-
torial plane, the spacetime describing the central black
hole and the tidal perturber is no longer axisymmetric.
As shown in Eq. (2.13), the tidal force depends on the
axial position of the small body. Hence, the change in
conserved quantities is sensitive to EMRI’s orbital phase
on entering the resonance. To illustrate this dependence,
we first compute dLz/dt and dQ/dt for some resonance
with non-zero m, k, n. After orbit averaging, the sum in
Eq. (2.14) can be written as,〈

G
(1)
i (qφ, qθ, qr,J)

〉
≈ G(1)

i,mkn(J)ei(mqφ0+kqθ0+nqr0) + {c.c.}. (4.1)

In Fig. 3, we show dependence of average change rate of
conserved quantities on qφ0 for an inspiral orbit (shown
in Fig. 2) crossing the 3 : 0 : −2 resonance with
a = 0.9. Note that 〈dLz/dt〉 and 〈dQ/dt〉 are made non-
dimensional by factoring out ε/M .

The phases qr0 and qθ0 determine the values of r and
θ at resonance. Here, we set qθ0 = 0 and qr0 = 0 when
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FIG. 2: The upper panels shows the tidal resonance contours for prograde orbits with orbital inclination 50◦ for different spin
parameters of the central BH in e - p plane. The contours label correspond to integers n, k,m. In the right figure (upper panel),
an inspiral is shown in red starting at e = 0.7 and p = 9M . During the evolution, p shrinks and e decreases due to radiation
reaction. We see that before plunging, the orbit crosses multiple tidal resonances (We also show m = 0 modes encountered by
EMRIs. However, in our analysis we only consider tidal resonances with m = ±2 modes). The lower panels show the tidal
resonance contours for retrograde orbits with orbital inclination 130◦ for different spin parameters.

the orbit enters resonance meaning that the orbit enters
resonance at θ = I and r = rmin. The azimuthal phase
qφ0 describes the motion of a small object with mass µ
around the central BH spin axis. The change induced in
constants of motion has sinusoidal dependence on phase,
i.e., sin(mqφ0). Therefore, depending on this phase an
orbit may cross the tidal resonance without “feeling” its
effect. In our analysis, to determine the impact of tidal
resonances, we will fine-tune the phase value such that
the change in Lz and Q due to resonance is maximum.
In that sense, our results show the upper limit of in-
fluence caused by these resonances. The phase depen-
dence is easily retrieved by multiplying the results here
by sin(mqφ0 + kqθ0 + nqr0).

C. Trends and fitting formulae

In addition to the information of orbital phase, to es-
timate the jump in the constants of motion induced (see
Eq. 3.1) by tidal resonances, we need the rate of change in
orbital frequencies (Γ) and tidal force amplitude Gi,mkn.

First, we survey the orbital parameter space and com-
pute dLz/dt and dQ/dt for different resonances to find
some interesting trends. Using the numerical data ob-
tained by evaluating the analytic expressions given in
Eqs. (3.5) and (3.6) we made 3-D {a, e, x} fitting formu-
las by making a polynomial ansatz of the form Cijka

iejxk

up to some order in i, j, k and then fitting the numeri-
cal data points simultaneously to obtain the coefficients
Cijk. These numerical fits allow inexpensive calculations
of dLz/dt and dQ/dt due to a tidal resonance.

We find that for all the resonances encountered by an
inspiral before plunge the change in Lz and Q increases
as we go from low to high eccentricity regardless of the ro-
tation direction of the orbit, i.e., prograde or retrograde.
In Fig. 4, we show an increase in both quantities with ec-
centricity for the 3 : 0 : −2 resonance. The dots represent
the values obtained from the semi-analytic calculations
and curves denote the obtained fitting. The agreement
between the semi-analytic evaluation and fitting agrees
remarkably well with the error always less than 1%.

Another interesting pattern is observed with a varia-
tion in the spin parameter of SMBH. As shown in Fig. 5,
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FIG. 3: Average change rate of z-component of angular mo-
mentum (red-solid) and Carter constant (blue-dotted) as a
function of orbital phase qφ0 for an orbit crossing the n : k :
m = 3 : 0 : −2 resonance with a = 0.9. Both 〈dLz/dt〉 and
〈dQ/dt〉 are normalised by ε and powers of M to be dimen-
sionless.
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FIG. 4: Dependence of average change rate of the z-
component of angular momentum (red-solid) and Carter con-
stant (blue-dotted) on the orbital eccentricity for n : k : m =
3 : 0 : −2 with spin parameter and orbital inclination set to
0.9 and 50◦, respectively. Both rates of change increase with
increasing eccentricity. The factor e2/(e − 1)2 ensures that
dLz/dt and dQ/dt are zero for circular orbits (e = 0) since ωr
is zero in that case. The dots represent the values obtained
from semi-analytic calculation and curves denote the obtained
fitting.

for prograde orbits, dLz/dt and dQ/dt decrease as the
spin parameter increases. This change directly trans-
lates to the kick induced during resonance implying that
for rapidly spinning central massive objects the reso-
nance strength is smaller. However for retrograde or-
bits, dLz/dt and dQ/dt increase as the spin parameter
increases. This is expected because the resonance occurs
at larger p values (see low panel Fig. 2). Thus, the acting
tidal force is greater for retrograde orbits.

We also find that as the orbital inclination angle is
varied from high to low, dQ/dt and dLz/dt decreases for
both prograde and retrograde orbits. In Fig 6, we show
both the quantities for the 3 : 0 : −2 resonance. The

I = 50°, e = 0.3 , 3ωr - 2ωϕ = 0
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FIG. 5: Dependence of average change rate of the z-
component of angular momentum (red-solid) and Carter con-
stant (blue-dotted) on spin of central BH for n : k : m = 3 :
0 : −2 with eccentricity and orbital inclination set to 0.3 and
50◦, respectively. Both quantities decrease with increasing
spin of SMBH.
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FIG. 6: Dependence of average change rate of the z-
component of angular momentum (red-solid) and Carter con-
stant (blue-dotted) on orbital inclination for n : k : m = 3 :
0 : −2 with eccentricity and spin set to 0.3 and 0.9, respec-
tively. As we go from high to a low inclination angle, dQ/dt
decreases whereas dLz/dt appears to be largely insensitive to
the orbital inclination angle. The insensitivity of dLz/dt to
inclination angle is however only true for resonances with k
= 0.

change in Lz appears to be insensitive to change in in-
clination, but it is only true for resonances with k = 0.
In Fig. 7, dependence of dQ/dt and dLz/dt on the or-
bital inclination is shown for the prograde orbit crossing
3 : − 4 : 2 resonance. Similarly, the case for retrograde
orbit crossing 3 : −4 : −2 resonance is shown in Fig. 8.
In our study, we found that resonances with k = odd in-
tegers are suppressed, i.e., they do not cause a jump in
conserved quantities. This unique feature is discussed in
Appendix A.

The fitting formulae to obtain change in Q and Lz
by the 3 : 0 : −2 (prograde orbits) resonance are given
by Eqs. (4.2) and (4.3) respectively. The fitting depends
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e = 0.7, a = 0.9 , 3ωr - 4ωθ + 2ωϕ = 0
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FIG. 7: Dependence of average change rate of the z-
component of angular momentum (red-solid) and Carter con-
stant (blue-dotted) on orbital inclination for n : k : m = 3 :
−4 : 2 with eccentricity and spin set to 0.7 and 0.9, respec-
tively. As we go from high to a low inclination angle, dQ/dt
and dLz/dt decreases for the prograde orbit.
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FIG. 8: Dependence of average change rate of the z-
component of angular momentum (red-solid) and Carter con-
stant (blue-dotted) on orbital inclination for n : k : m = 3 :
−4 : −2 with eccentricity and spin set to 0.7 and 0.9, respec-
tively. As we go from high to a low inclination angle, dQ/dt
and dLz/dt decreases for the retrograde orbit.

on orbital parameters {a, e, x} and sinusoidally on orbital
phases qφ0 and qr0 at resonance. The prefactor e2/(e−1)2

ensures that dLz/dt and dQ/dt are zero for circular or-
bits (e = 0) since ωr is zero for this case. Note that
〈dLz/dt〉 and 〈dQ/dt〉 are normalised by multiplying a
factor of (ε/M)−1. The Mathematica notebook with fit-
ting formulae for other resonances (including 3 : 0 : 2) is
made available on [63].

D. Computation of induced jump and consistency
with numerical evolution

The estimate of induced jump in conserved quantities
across a resonance is evaluated using the analytical ex-
pression given by Eq. (3.1). For example, using this ex-
pression for an orbit crossing the 3 : 0 : −2 tidal res-

onance, the maximum jumps (by setting qr0 = qθ0 =
0, qφ0 ∼ 0.785) induced in Lz and Q are

∆Lz,max = 7.4× 10−6, ∆Qmax = 1.8× 10−5 .

The above values are shown for an EMRI with mass ratio
η = 7.5× 10−6 (for M = 4× 106M� andµ = 30M�) and
orbital parameters {a, p, e, x} ∼ {0.9, 8.35, 0.62, 0.643} at
resonance under influence of a tidal perturber with mass
30M� at a distance of 10 AU from the SMBH.

To perform a consistency check on the analytical cal-
culation, we separately implemented the tidal force com-
puted from the metric perturbation hαβ using the forced
osculating orbital elements method [62, 76]. For the in-
clusion of radiation reaction effects, we employ a newly
developed solver of the PN fluxes that takes into account
the correction up to 5PN order and tenth order in eccen-
tricity [31, 63]. We use 5PN fluxes to drive the inspiral
in our osculating code instead of MST fluxes because PN
fluxes are easier to implement and MST flux data sets are
limited to p ∼ 6M . In the osculating geodesics approach,
the instantaneous tangential geodesics are referred to as
osculating orbits. The transition between osculating or-
bits corresponds to the change in orbital elements. The
inspiral motion is constructed from a smooth sequence of
tangent geodesics where the driving forces are radiation
reaction (5PN fluxes) and the tidal force caused by the
perturber. We ran two simulations for an inspiral orbit
with and without the effect of the tidal force taking the
same initial conditions for the orbit as shown in Fig. 2.
To extract the size of the jump, we compute the differ-
ence between the full trajectory (tidal force + 5PN) and
adiabatic (only 5PN) trajectory.

In Fig. 9, we show the differences ∆Lz (left) and ∆Q
(right). The apparent thickness of the lines shown in the
figures is caused by oscillations on the orbital timescale.
The orbit spends hundreds of cycles in the resonance
regime which lasts about 17 days. It also shows that
the tidal force significantly affects the inspiral around
the resonance only.

An EMRI orbit can enter the resonance with any or-
bital phase thus affecting the size of the jump. We first
find the value of qφ0 at which ∆Qmax matches ∆Q in the
plot (right panel of Fig. 9) by solving

∆Qmax sin(−2qφ0) = ∆Q.

This yields qφ0 ∼ 0.23. Then, we use this phase to check
what the numerical value of ∆Lz should be based on the
maximum value it can take analytically, i.e., ∆Lz,max.
Our check yields ∆Lz ∼ 3.2 × 10−6, which agrees with
the jump estimated from numerical evolution (left panel
of Fig. 9). This computation verifies the jump estimated
using the semi-analytic expression. Hereafter, we rely on
the semi-analytical estimate of the jump (obtained using
the numerical strategy discussed in Sec. III B) to study
the impact of tidal resonances on gravitational waves.
However, the numerical osculating code is being used in
our ongoing work to perform a more detailed investiga-
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tion of strategies and implications for the modeling and analysis of tidally perturbed EMRIs [64] (see Sec. V).

〈
dQ

dt

〉
=

e2

(e− 1)2

(
6166.4(a2(e5(1.x6 − 3.3657x5 + 4.2989x4 − 2.64672x3 + 0.82724x2 − 0.11322x− 0.0325)

+ e4(−2.561x6 + 8.6411x5 − 10.9856x4 + 6.73865x3 − 2.14181x2 + 0.2942x+ 0.01469) + e3(2.4592x6

− 8.338x5 + 10.4957x4 − 6.38662x3 + 2.10369x2 − 0.307742x− 0.02541) + e2(−1.0576x6 + 3.73285x5

− 4.57117x4 + 2.7179x3 − 0.98419x2 + 0.16744x+ 0.023683) + e(0.2142x6 − 0.77253x5 + 0.858453x4

− 0.46584x3 + 0.23502x2 − 0.054646x− 0.0146077)− 0.0131998x6 + 0.0442585x5 − 0.057625x4

+ 0.0360626x3 − 0.01073x2 + 0.0130161x− 0.00683955) + a(e5(−1.41091x6 + 4.70494x5 − 5.98812x4

+ 3.7815x3 − 1.17999x2 + 0.082132x+ 0.01024) + e4(3.63694x6 − 12.1218x5 + 15.3555x4 − 9.7812x3

+ 3.11081x2 − 0.16016x− 0.03945) + e3(−3.51743x6 + 11.7153x5 − 14.6986x4 + 9.5462x3 − 3.1598x2

+ 0.048679x+ 0.06504) + e2(1.56518x6 − 5.20606x5 + 6.36726x4 − 4.35903x3 + 1.5984x2 + 0.10196x

− 0.06398) + e(−0.31407x6 + 1.02894x5 − 1.14294x4 + 0.9495x3 − 0.45183x2 − 0.10985x+ 0.03645)

+ 0.02657x6 − 0.066807x5 + 0.0859032x4 − 0.0523576x3 + 0.0151582x2 − 0.00205405x+ 0.0944331)

+ e5(0.50946x6 − 1.6744x5 + 2.1131x4 − 1.3159x3 + 0.3583x2 + 0.00554x+ 0.04718) + e4(−1.32659x6

+ 4.35489x5 − 5.48625x4 + 3.45939x3 − 0.77303x2 − 0.060315x− 0.168315) + e3(1.3068x6 − 4.2645x5

+ 5.36471x4 − 3.47472x3 + 0.6569x2 + 0.15588x+ 0.26122) + e2(−0.58987x6 + 1.944x5 − 2.42323x4

+ 1.67565x3 − 0.186175x2 − 0.1797x− 0.22711) + e(0.12024x6 − 0.39217x5 + 0.49435x4 − 0.42018x3

− 0.0448911x2 + 0.118569x+ 0.12802)− 0.00827x6 + 0.02662x5 − 0.03651x4 + 0.0195x3 − 0.05746x2

+ 0.000836659x+ 0.000193748)

)
sin(−2qφ0 + 3qr0) ,

(4.2)

〈
dLz
dt

〉
=

e2

(e− 1)2

(
13.8664(a2(e5(x4 + 1.70942x3 − 0.812785x2 − 0.538936x− 0.32076) + e4(−4.11606x4

− 4.79651x3 + 1.781x2 + 2.27585x+ 1.11764) + e3(7.17415x4 + 5.67992x3 − 1.22333x2 − 4.01184x

− 1.64238) + e2(−7.25395x4 − 3.92149x3 − 0.0528632x2 + 3.96175x+ 1.36426) + e(4.21764x4

+ 1.69592x3 + 0.404326x2 − 2.33394x− 0.756895) + 0.012012x4 − 0.0125696x3 + 0.0127552x2

− 0.00766985x− 0.000627702) + a(e5(0.289607x4 − 3.94961x3 − 3.9027x2 − 1.82132x+ 0.710913)

+ e4(−0.370237x4 + 12.6334x3 + 15.3809x2 + 6.2625x− 2.47674) + e3(−0.377266x4 − 17.4934x3

− 25.9795x2 − 9.31769x+ 3.78052) + e2(1.09716x4 + 14.3769x3 + 25.2598x2 + 7.96198x− 3.5384)

+ e(−0.864082x4 − 7.40462x3 − 14.5161x2 − 4.3349x+ 1.92547)− 0.0109531x4 + 0.0114339x3

− 0.0375848x2 − 0.00156484x+ 0.00169788) + e5(−0.328544x4 + 0.766588x3 + 1.98025x2 + 5.37844x

+ 2.57726) + e4(0.850133x4 − 2.02349x3 − 7.73277x2 − 19.233x− 9.3297) + e3(−0.8120x4 + 2.0503x3

+ 13.0406x2 + 29.8651x+ 14.6449) + e2(0.320494x4 − 0.886721x3 − 12.3364x2 − 26.4222x− 13.0807)

+ e(−0.0228461x4 + 0.142487x3 + 7.20898x2 + 14.7695x+ 7.35985) + 0.00829816x4 − 0.0186416x3

+ 0.0256575x2 + 0.0190106x+ 0.0117907)

)
sin(−2qφ0 + 3qr0) ,

(4.3)

E. Impact on gravitational waveform

For an EMRI source to be detectable by space-based
interferometers, it must have an orbital frequency higher

than about fLISA = 10−4Hz. Using the approximation of
Keplerian frequency when EMRI enters LISA band, we
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FIG. 9: The left figure shows the difference in Lz between the orbit evolved with and without tidal resonance effect. When the
orbit enters resonance, there is a jump in the quantity. The fast oscillations correspond to orbital timescales. The gap between
the horizontal dotted lines estimates the size of the jump. Similarly, the right figure shows a jump in the Carter constant.

arrive at a rough condition on the semi-major axis asemi,

asemi

M
< 20×

(
M

4× 106M�

)−2/3(
fLISA

10−4Hz

)−2/3
. (4.4)

Using this rough estimate, an EMRI with asemi less than
20M will lie in the observable band. Low-order reso-
nances encountered by both prograde and retrograde or-
bits lie well within LISA frequency band for the central
black hole less massive than 4× 106M�.

As discussed in previous sections, an orbit passing
through a resonance can lead to a sudden change in con-
stants of motion. This change means that the evolution
post-resonance can become out of phase with that of the
pre-resonance evolution. Therefore, we cannot match
both parts with the same template. This can hamper
the detection of EMRIs using standard matched filtering
techniques. Thus, it is important to study their impact
on EMRI waveforms. To estimate the effect, we study the
deviation in the orbital phase, which can be evaluated as

∆Ψφ =

∫ Tplunge

0

2∆ωφdt . (4.5)

The accumulation in phase is integrated from the reso-
nance time up to the plunge time Tplunge. We evolve two
orbits one with and without ∆Ji included. At each time
ωφ for both the orbits is compared and the difference in
frequencies for these two evolutions is given by ∆ωφ. The
factor of 2 in Eq. (4.5) is because the strongest harmonic
in GWs is the quadrupolar mode (l = 2,m = 2). The
phase evolution of waveform depends on the combination
of three orbital phases: radial, polar, azimuthal. There-
fore, in a similar manner, we also evaluate radial and po-
lar accumulated phase shift, i.e., ∆Ψr and ∆Ψθ, respec-
tively. LISA has a remarkable sensitivity to the phase
resolution of EMRI measurements, which is roughly es-
timated as ∆Ψφ ∼ 0.1, assuming SNR to be 20 [20, 22].

The resonance causes a shift in fundamental frequencies
that is not replicated by adiabatic evolution, thus result-
ing in gradual dephasing of waveforms.

In our analysis, we show that in a significant frac-
tion of the parameter space EMRIs are likely to expe-
rience a tidal resonance (or multiple) that induces phase
shift greater than 0.1 rad making the effect detectable.
Therefore, including the signature of resonances in wave-
form modeling is necessary to test GR with precision
and allows a study of the environment around an EMRI.
To compute the phase shift we set M = 4 × 106M�,
µ = M? = 30M� and R = 10AU. This distance as twice
as far as in [22] to give a more conservative estimate. In
Fig 10, the accumulation in phase is shown for prograde
orbits crossing the 3 : 0 : −2 resonance in the x - e plane
for different spin parameters of the SMBH. In the top
panel, ∆Ψφ is shown. The whole parameter space except
for low eccentricity orbits (< 0.2) is affected by this res-
onance as the phase shift lies in the detectable range of
LISA. Middle and bottom panel shows the affected pa-
rameter space for ∆Ψθ and ∆Ψr, respectively. The de-
phasing increases with increasing eccentricity and mildly
depends on the spin parameter. Since this resonance is
encountered early in the inspiral phase (see upper panel
of Fig 2), the phase is accumulated over hundreds of thou-
sands of cycles before plunge and therefore affects most
of the parameter range.

In Fig. 11, a similar plot is shown for a prograde orbit
crossing the 3 : −4 : 2 resonance. In this case, dephasing
is sensitive to changes in inclination and spin parameter.
For the case ∆Ψφ (top panel), orbits with low eccentricity
(<∼ 0.3) and small inclination (<∼ 45◦) have phase shift
smaller than 0.1, implying that the tidal resonance does
not cause an observable effect in this range. As the spin
is increased, a larger region of the parameter space is
in the non-observable range. For a = 0.9, only orbits
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FIG. 10: Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a prograde orbit crossing the 3 : 0 : −2 resonance in
the x - e plane. Top, middle and bottom panels correspond to ∆Ψφ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed
for an EMRI with M = 4 × 106M�, µ = 30M� under the influence of a tidal perturber with mass M? = 30M� at a distance
of 10 AU from the central SMBH. Results for different sets of parameters can be estimated from the scaling relation given in
Eq. (4.6).

with high inclination (>∼ 50◦) and high eccentricity have
a detectable tidal effect. The middle panel shows ∆Ψθ

which is of the same order as ∆Ψφ, and the bottom panel
shows ∆Ψr.

In Fig. 12 and Fig. 13, we show the accumulated phase
shift for retrograde orbits crossing the 3 : 0 : 2 and
3 : −4 : −2 resonances, respectively, for different spin
parameters. As is clear from the figures, dephasing is
larger compared to prograde orbits. This is expected be-
cause the value of p is larger for retrograde orbits (see
lower panel of Fig. 2), causing the effect of tidal force to
be larger compared to prograde orbits. In contrast to the
trend observed for prograde orbits, dephasing increases
as the spin parameter increases.

The accumulated phase shown for different resonances
in Figs. 10-13 is calculated for fixed masses of the SMBH,
EMRI and the tidal perturber. The results can be trans-
lated for other masses using simple scaling. The change
in phase is caused by the induced jump (see Eq. (3.1))
at resonance which scales as ε/η1/2. To compute accu-
mulation in phase, we need to integrate over 1/η inspiral
cycles. Therefore, the accumulated phase for a different
set of parameters {M ′, µ′,M ′?, R′} is

∆Ψ′nkm = ∆Ψnkm

(
M ′

M

)7/2(
µ′

µ

)−3/2(
M ′?
M?

)(
R′

R

)−3
.

(4.6)
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FIG. 11: Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a prograde orbit crossing the 3 : −4 : 2 resonance in
the x− e plane. Top, middle and bottom panels correspond to ∆Ψφ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed
for an EMRI with M = 4 × 106M�, µ = 30M� under the influence of a tidal perturber with mass M? = 30M� at a distance
of 10AU from the central SMBH. Results for different sets of parameters can be estimated from the scaling relation given in
Eq. (4.6).

Our results suggest that dephasing due to low-order tidal
resonances should be easily detectable assuming that
such tidal perturbers exist. The traditional adiabatic
template will lose track of the phase evolution thereby
lowering the signal-to-noise ratio after an EMRI encoun-
ters a resonance. We have shown the accumulation in
phase shift for only one encounter of a tidal resonance,
but, a realistic inspiral can undergo multiple resonances
before plunge, further dephasing the signal. Thus, careful
modeling of waveforms is needed to test GR with EMRI
signals. In addition, such resonances can shed light on
the stellar-mass distribution around galactic centers.

V. DISCUSSION

In the presence of a tidal perturber, an EMRI can en-
counter multiple resonances before plunge. Each reso-
nance lasts for hundreds or thousands of orbital cycles
depending on the EMRI’s mass ratio. The effect of res-
onances (self-force and tidal) on phase evolution con-
tributes more than post-adiabatic corrections. In this
paper, we assessed the impact of tidal resonances on
gravitational waves with the aim of surveying the or-
bital parameter space and investigating how often tidal
resonances occur in realistic inspirals. We showed the
dependence of resonances on the orbital phase and also
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FIG. 12: Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a retrograde orbit crossing the 3 : 0 : 2 resonance in
the x - e plane. Top, middle and bottom panels correspond to ∆Ψφ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed
for an EMRI with M = 4× 106M�, µ = 30M� under the influence of a tidal perturber with mass M? = 30M� at a distance of
10AU from the central SMBH. Results for different set of parameters can be estimated from scaling relation given in Eq. (4.6).

found some trends such as the effect of spin of the cen-
tral massive black hole, and the orbital parameters of the
EMRI on the number of resonances encountered and the
strength of each resonance. These trends are:

• The resonance jump increases as the orbital eccen-
tricity increases.

• As the orbital inclination angle increases the change
in Q and Lz increases for both prograde and retro-
grade orbits.

• For prograde orbits, as the spin parameter of the
SMBH increases, the change in Lz and Q decreases.
The opposite is true for retrograde orbits.

• Resonances with odd k integers are suppressed and
hence do not modulate the EMRI evolution.

Using these results, we computed the accumulation in
phase after a tidal resonance has been encountered by an
EMRI to understand their impact on waveforms. The
study of dephasing revealed that less eccentric systems
do not leave a detectable imprint in the phase evolu-
tion. We also provide fitting formulae for the change in
the constants of motion caused by two low-order tidal
resonances (see Eqs. (4.3)-(4.2) and [63]), which can be
efficiently used to take into account the resonance jump
in waveform modeling without much computational cost.
In addition to the semi-analytic calculations of the reso-
nance jump, we have implemented the effect of the tidal
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FIG. 13: Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a retrograde orbit crossing the 3 : −4 : −2 resonance in
the x− e plane. Top, middle and bottom panels correspond to ∆Ψφ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed
for an EMRI with M = 4× 106M�, µ = 30M� under the influence of a tidal perturber with mass M? = 30M� at a distance of
10AU from the central SMBH. Results for different set of parameters can be estimated from scaling relation given in Eq. (4.6).

perturber numerically using the forced osculating orbital
elements method. This confirms that the tidal perturber
only affects the EMRI significantly during resonances and
agrees with the semi-analytic calculations of the jump
size across a resonance.

This work is a first step towards understanding the ob-
servational importance of tidal resonances. We plan to
extend this work by relaxing the assumption of a tidal
perturber restricted to the equatorial plane, and by con-
sidering multiple resonant interactions with the same per-
turber at different points in time. While the forced oscu-
lating orbital elements method described in Sec. IV D is
primarily used here to validate our analytical calculations
(due to its higher computational cost), it is being used

in ongoing work to explore various strategies and impli-
cations for waveform modeling and data analysis in the
presence of a tidal perturber [64]. In that work, we will
characterize more fully the impact of tidal resonances on
the search and inference for the EMRI itself (instead of
merely focusing on the accumulated dephasing). We will
also investigate the measurability of the tidal perturber’s
parameters, and devise optimal strategies for including
tidal resonances in practical waveform models (the latter
of which will be relevant for self-force resonance modeling
as well). Based on the results in [36], generic resonance
jumps can be at least weakly constrained from EMRI ob-
servations, and so we are optimistic that suitable wave-
form models may allow M?/R

3 and the sky location of



17

FIG. 14: Section of orbit in qr - qθ plane for different resonance conditions. The red lines and blue dashed lines are obtained
for qφ = 0 and qφ = π/2, respectively.

the tidal perturber to be measured in the case of stronger
signals.

The Mathematica notebooks used for calculations and
fitting formulae are available upon request.
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Appendix A: Suppression of odd k integer
resonances

We found that tidal resonances with odd k integers
do not give rise to a jump in the constants of motion.

Hence, they do not contribute to a secular accumulation
of a phase shift and are therefore not relevant for wave-
form modeling. In Fig. 14, for illustrative purpose, we
show section of orbit in qr - qθ plane for different reso-
nances. In the leftmost panel we consider a 2 : 1 : −2
resonance (odd k) and compare section for fixed values
of qφ = 0 (red lines) and qφ = π/2 (blue-dashed lines).
On rotation of the orbit by π/2, the plot shows the same
value for qr and qθ. Thus, the net tidal force of m = ±2
modes acting on the orbit cancels out completely result-
ing in no change in Lz. While this discussion is helpful
in understanding the vanishing dLz/dt on crossing odd
k resonances, empirically we found that dQ/dt also van-
ishes for such resonances. The middle plot shows a k = 2
resonance. In this case, two lines are not identical: there-
fore, the tidal force couples with the quadrupole moment
of the orbit causing a finite jump in Lz. The rightmost
plot shows the −2 : 3 : −2 resonance exhibiting the same
behavior as the k = 1 case.

[1] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham,
F. Acernese, K. Ackley, C. Adams, V. B. Adya, C. Af-
feldt, and et al., Living Reviews in Relativity 23 (2020),

ISSN 1433-8351.
[2] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham,

F. Acernese, K. Ackley, C. Adams, V. B. Adya, C. Af-



18

feldt, and et al., SoftwareX 13, 100658 (2021), ISSN
2352-7110.

[3] T. L. S. Collaboration and the Virgo Collaboration
(2021), 2010.14533.

[4] T. L. S. Collaboration and the Virgo Collaboration
(2020), 2010.14529.

[5] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Ba-
rausse, P. Bender, E. Berti, P. Binetruy, M. Born, D. Bor-
toluzzi, et al. (2017), 1702.00786.

[6] J. Mei, Y.-Z. Bai, J. Bao, E. Barausse, L. Cai, E. Canuto,
B. Cao, W.-M. Chen, Y. Chen, Y.-W. Ding, et al.,
Progress of Theoretical and Experimental Physics (2020),
ISSN 2050-3911.

[7] Y. Mino, M. Sasaki, and T. Tanaka, Physical Review D
55, 3457–3476 (1997), ISSN 1089-4918.

[8] T. C. Quinn and R. M. Wald, Physical Review D 56,
3381–3394 (1997), ISSN 1089-4918.

[9] E. Poisson, A. Pound, and I. Vega, Living Reviews in
Relativity 14 (2011), ISSN 1433-8351.

[10] L. Barack and A. Pound, Reports on Progress in Physics
82, 016904 (2018), ISSN 1361-6633.

[11] P. Amaro-Seoane, Physical Review D 99 (2019), ISSN
2470-0029.

[12] P. Amaro-Seoane (2020), 2011.03059.
[13] R. Emami and A. Loeb, Journal of Cosmology and As-

troparticle Physics 2020, 021–021 (2020), ISSN 1475-
7516.

[14] R. Emami and A. Loeb (2020), 1903.02579.
[15] Z. Pan and H. Yang (2021), arXiv: 2101.09146.
[16] Z. Pan, Z. Lyu, and H. Yang (2021), 2104.01208.
[17] B. Kocsis, N. Yunes, and A. Loeb, Physical Review D 84

(2011), ISSN 1550-2368.
[18] A. Galametz, D. Stern, P. R. M. Eisenhardt, M. Brodwin,

M. J. I. Brown, A. Dey, A. H. Gonzalez, B. T. Jannuzi,
L. A. Moustakas, and S. A. Stanford, The Astrophysical
Journal 694, 1309–1316 (2009), ISSN 1538-4357.

[19] M. Macuga, P. Martini, E. D. Miller, M. Brodwin,
M. Hayashi, T. Kodama, Y. Koyama, R. A. Overzier,
R. Shimakawa, K.-i. Tadaki, et al., The Astrophysical
Journal 874, 54 (2019), ISSN 1538-4357.

[20] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sop-
uerta, C. P. Berry, E. Berti, P. Amaro-Seoane, A. Pe-
titeau, and A. Klein, Physical Review D 95 (2017), ISSN
2470-0029.

[21] P. Amaro-Seoane, P. Brem, J. Cuadra, and P. J. Ar-
mitage, The Astrophysical Journal 744, L20 (2011).

[22] B. Bonga, H. Yang, and S. A. Hughes, Phys. Rev. Lett.
123, 101103 (2019), 1905.00030.

[23] E. Gourgoulhon, A. Le Tiec, F. H. Vincent, and N. War-
burton, Astronomy & Astrophysics 627, A92 (2019),
ISSN 1432-0746.

[24] H. Yang and M. Casals, Phys. Rev. D 96, 083015 (2017).
[25] L. Zwick, P. R. Capelo, E. Bortolas, V. Vazquez-Aceves,

L. Mayer, and P. Amaro-Seoane (2021), 2102.00015.
[26] K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, Physical

Review Letters 110 (2013), ISSN 1079-7114.
[27] K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, Physical

Review D 91 (2015), ISSN 1550-2368.
[28] B. J. Kavanagh, D. A. Nichols, G. Bertone, and D. Gag-

gero, Physical Review D 102 (2020), ISSN 2470-0029.
[29] H. Yang, B. Bonga, Z. Peng, and G. Li, Phys. Rev. D

100, 124056 (2019), 1910.07337.
[30] T. Hinderer and E. E. Flanagan, Phys. Rev. D 78, 064028

(2008).

[31] R. Fujita and M. Shibata, Physical Review D 102 (2020),
ISSN 2470-0029.

[32] S. A. Hughes, N. Warburton, G. Khanna, A. J. K. Chua,
and M. L. Katz (2021), 2102.02713.

[33] A. J. K. Chua, M. L. Katz, N. Warburton, and S. A.
Hughes, Physical Review Letters 126 (2021), ISSN 1079-
7114.

[34] U. Ruangsri and S. A. Hughes, Phys. Rev. D 89, 084036
(2014).

[35] C. P. L. Berry, R. H. Cole, P. Cañizares, and J. R. Gair,
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