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Many effective field theories describing gravity cannot arise from an underlying theory based on
Riemann geometry or its extensions to include torsion and nonmetricity but may instead emerge
from another geometry or may have a nongeometric basis. The Lagrange density for a broad class
of such theories is investigated. The action for fermions coupled to gravity is linearized about
a Minkowski background and is found to include terms describing small deviations from Lorentz
invariance and gravitational gauge invariance. The corresponding nonrelativistic hamiltonian is
derived at second order in the fermion momentum. The implications for laboratory experiments
and astrophysical observations with fermions are studied, with primary focus on anomalous spin-
gravity couplings. First constraints on some coefficients are extracted from existing data obtained
via measurements at different potentials, comparisons of gravitational accelerations, interferometric
methods, and investigations of gravitational bound states. Some prospects for future experimental
studies are discussed.

I. INTRODUCTION

The construction of a compelling and realistic under-
lying theory that unifies gravity with quantum physics
remains an open challenge. The description of spacetime
in the underlying theory might involve the usual Rie-
mann geometry of General Relativity (GR), or it might
be a non-Riemann geometry or have no geometrical ba-
sis. An interesting and potentially vital issue is then the
extent to which current or feasible experiments can help
to distinguish between these possibilities.
Coupling GR to the Standard Model (SM) of parti-

cle physics produces a theory that is quantum incom-
plete but that yields an excellent match to experiments
in suitable regimes. Any deviations from known physics
emerging from the underlying unified theory are therefore
expected to be small, perhaps suppressed by a large scale
such as the Planck mass. A model-independent approach
to studying small deviations from a known theory is pro-
vided by effective field theory (EFT) [1]. Investigations of
the geometric properties of the underlying unified theory
can therefore be based on the general EFT constructed
from the action of GR coupled to the SM.
To allow for deviations from Riemann geometry, the

general EFT must contain both terms preserving and vi-
olating the spacetime symmetries of GR, which include
the invariances under local Lorentz transformations and
diffeomorphisms. The general EFT based on GR coupled
to the SM is presented in Ref. [2]. Each additional term in
the action involves a coupling coefficient combined with
an operator constructed from dynamical fields. A given
coupling coefficient k can be viewed as a background that
can carry spacetime or local indices and can depend on
spacetime position. Except for the special case of a con-
stant scalar coupling, any coefficient controls violations
of one ore more of the invariances of GR. The coefficients
can also be flavor dependent, so violations of the weak
equivalence principle (WEP) are incorporated. A given
term in the EFT action can be classified according to the
mass dimension d of the dynamical operator it contains,
with minimal terms defined to have d ≤ 4 and nonmin-

imal ones d ≥ 5. A systematic construction of all terms
has recently been presented in Ref. [3].

The background coefficients can be dynamical or pre-
scribed quantities. In the former case they are called
spontaneous, and in the latter explicit. At the EFT level,
a spontaneous background k = 〈k〉+ δk consists of a vac-
uum value 〈k〉 solving the equations of motion, together
with dynamical fluctuations δk about 〈k〉 that include
Nambu-Goldstone and massive modes. In contrast, an
explicit background k = k is a predetermined quantity.
The presence of the fluctuations δk generates correspond-
ing physical effects, which can distinguish a spontaneous
background 〈k〉 from an explicit background k. In the
present work, we focus primarily on EFT based on GR
coupled to the SM and containing one or more explicit
backgrounds k.

The structure of an EFT with an explicit background
k can be constrained by the requirement of compatibility
between the variational procedure and the Bianchi iden-
tities of Riemann geometry [2–4]. It turns out that most
EFT terms with explicit backgrounds are perturbatively
incompatible with Riemann geometry or its extensions
with torsion and nonmetricity, and hence typical models
containing terms of this type must be based on a differ-
ent geometry or have a nongeometric origin. These no-go
constraints provide a powerful tool to specify terms that
cannot arise in Riemann geometry and thereby to iden-
tify physical effects serving as experimental signals for an
underlying unified theory based on nonstandard geome-
try or on a nongeometrical structure.

In the present work, we explore this line of reasoning by
investigating physical effects in a large class of EFT based
on GR coupled to the SM and incorporating terms that
involve beyond-Riemann effects. For this initial study, we
focus on gravitational couplings of fermions and in partic-
ular spin-gravity couplings, which have implications for
many existing laboratory and astrophysical observations.
We consider in turn experiments involving measurements
at different potentials, comparisons of gravitational ac-
celerations, interferometric methods, and gravitational
bound states. We use existing experimental data to ob-
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tain first constraints on the EFT coefficients governing
beyond-Riemann physics. We also discuss prospects for
some future experimental studies.

The organization of this paper is as follows. The setup
for the EFT containing beyond-Riemann effects is pre-
sented in Sec. II. We provide tables detailing the terms
in the action and their linearizations. The correspond-
ing nonrelativistic hamiltonian is obtained, and its co-
efficients are related to those in the linearized Lagrange
density. The flavor dependence of the coefficients corre-
sponding to WEP violations is discussed, including im-
plications for antiparticles. This material makes feasible
the analysis of various experiments. In Sec. III we adopt
results from existing experiments performed at different
potentials to extract first constraints on some coefficients
in the EFT. Another class of experiments, analyzed in
Sec. IV, involves comparing the gravitational accelera-
tions of different atoms. We consider tests with Sr atoms
of different spins and with Rb atoms in different hyper-
fine states, and we discuss the prospects for comparing
the gravitational accelerations of matter and antimatter.
In Sec. V, we turn attention to interferometric experi-
ments with neutrons to obtain sensitivity to additional
coefficients. Studies of neutrons bound in the Earth’s
gravitational field can also provide interesting measure-
ments and are treated in Sec. VI. We summarize our
results in Sec. VII.

Throughout this work, we follow the conventions of
Ref. [3], using natural units with c = ~ = ǫ0 = 1. For
the experimental analyses, we adopt standard reference
frames widely used in the literature. No laboratory on
the Earth lies in an inertial frame, so experimental re-
sults for coefficients are reported in the canonical Sun-
centered frame [5]. This right-handed orthogonal system
has spatial coordinates J = X,Y, Z, with the Z axis
aligned along the Earth’s rotation axis and with the X
axis pointing from the Earth to the Sun at the vernal
equinox 2000, which serves as the zero of the time T . For
some calculations, it is convenient to adopt a canonical
laboratory frame having time coordinate t and spatial co-
ordinates j = x, y, z, with the z axis oriented towards the
local zenith [5]. Neglecting the Earth’s boost, the trans-
formation from the Sun-centered frame to the canonical
laboratory frame is given by the rotation matrix

RjJ =




cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ
− sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ


 ,

(1)
where χ is the laboratory colatitude, ω⊕ ≃ 2π/(23h 56m)
is the sidereal frequency of the Earth’s rotation, and T⊕
is a suitable local sidereal time. In what follows, some ex-
pressions involve coefficients with indices either summed
over tt, xx, yy, zz and denoted for brevity by the pair
ss, or summed over TT , XX , Y Y , ZZ and denoted by
the pair ΣΣ.

II. THEORY

One goal of this work is to construct an EFT based
on GR coupled to the SM that contains a general class
of terms excluded in Riemann geometry. This provides a
window on physics effects from beyond-Riemann theories
and permits the extraction of experimental constraints.
Here, we focus specifically on fermion-gravity couplings,
which are ubiquitous and comparatively straightforward
to analyze for most laboratory experiments and astro-
physical observations, while maintaining a broad and
model-independent perspective.
Our primary interest lies in spin-gravity couplings, in

part because they are particularly challenging to fit into
Riemann geometry [3], but in this section we include ef-
fects from spin-independent terms as well. The method-
ology presented here could therefore be applied to mea-
surements of spin-independent fermion-gravity couplings,
including precision experiments associated with WEP
tests [6]. Both spin-dependent and spin-independent
fermion-gravity couplings are known to arise in beyond-
Riemann contexts. In Finsler geometry [7, 8], for exam-
ple, the metric is supplemented with objects on the man-
ifold that have been conjectured to play the role of the
explicit backgrounds k in generic EFT based on GR cou-
pled to the SM [2]. Although a complete demonstration
of this link awaits the resolution of open issues in Lorentz-
Finsler geometry [9–21], the resulting trajectories aris-
ing from spin-gravity couplings in a fixed gravitational
background are known to correspond to Riemann-Finsler
geodesics [9, 22–25]. Possible gravitational couplings to
boson fields, including photons, are also of definite inter-
est but lie beyond our present scope.

A. Setup

In theories with a geometric foundation, the equations
of motion obtained from the variational principle are sup-
plemented by geometric conditions called the Bianchi
identities, which arise from the structure of the corre-
sponding fiber bundle [26]. For many geometric theories,
such as Maxwell electrodynamics or other gauge theories
in Minkowski spacetime, the Bianchi identities are homo-
geneous equations that are independent of the inhomoge-
neous equations generated via the variational procedure.
In constrast, in some geometric theories such as GR, the
equations of motion are entangled with the geometry.
The Bianchi identities then impose a self-consistency con-
dition, which for GR turns out to be the requirement of
covariant conservation of the energy-momentum tensor.
This is compatible with the matter equations of motion,
so GR is self consistent. However, for some theories the
geometric conditions can be incompatible with the results
of the variational principle and hence serve as no-go con-
straints [2].
This issue is of particular relevance for theories that

purport to be based on Riemann geometry but that vio-
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late spacetime symmetries. The geometric constraints
become particularly stringent for theories required to
produce only perturbative corrections to GR at low en-
ergies while also maintaining the structure of Riemann
geometry. Indeed, most theories of this type with explicit
breaking of spacetime symmetries are incompatible with
Riemann geometry [2]. Many examples illustrating the
no-go constraints are known [2–4]. The simplest may be
the extension of GR containing a cosmological term that
involves a prescribed nontrivial function Λ(x) of space-
time position [4], resulting in explicit diffeomorphism vi-
olation (EDV). Variation of the action yields Einstein
equations taking the usual form, but these are incompat-
ible with the Bianchi identities unless Λ(x) is a space-
time constant, which contradicts the initial assumption.
A recent general discussion of the no-go constraints along
with other examples is given in Sec. II F of Ref. [3].

The present work is based on the above results. We
take advantage of the potential incompatibility between
the Bianchi identities and the variation of the action to
investigate a large class of possible underlying theories
that have a non-Riemann geometry or a nongeometric
basis while nonetheless reducing at low energies to a per-
turbatively corrected version of GR coupled to the SM.
The perturbative nature implies that this class of theories
can naturally be studied in the EFT framework [1]. A
typical application of the framework would involve con-
structing a specific EFT based on integrating over high-
energy degrees of freedom in a theory and ensuring self-
consistency via loops. Here, however, we adopt a differ-
ent approach, designed instead to study simultaneously
a large class of theories with a given symmetry struc-
ture and to investigate their possible phenomenological
EFT signatures. The approach involves constructing all
EFT operators compatible with the specified symmetry
and comparing their effects to experimental data. This
yields bounds that restrict the viability of members of the
class, thereby providing guidance on the acceptability of
underlying models. The technique is appropriate and
powerful in situations where no experimental evidence
exists for the effects being sought, as is the case here.
For spacetime-symmetry violations, this EFT approach
was developed in Ref. [27] to study spontaneous Lorentz
violation in string theory [28]. It was subsequently ap-
plied to the SM to yield the Standard-Model Extension
(SME) in Ref. [29] and generalized to GR coupled to the
SM in Ref. [2].

Our focus here is on perturbations to GR coupled to
the SM involving EFT terms that have EDV while main-
taining local Lorentz invariance (LLI). The perturbative
nature and the EDV imply incompatibility between the
equations of motion and the Bianchi identities of Rie-
mann geometry [2, 3], so these terms can be attributed to
models within a class of beyond-Riemann theories. The
LLI-EDV symmetry structure is of particular interest be-
cause the corresponding EFT terms lack the severe phe-
nomenological complications from additional modes that
typically arise in theories with explicit breaking. As a

result, EFT operators can be constructed explicitly for
this class of theories and can be constrained using experi-
mental and observational data. The latter is the primary
goal of the present work.

Details of the framework for the EFT construction
have been presented in Refs. [2, 3] and involve sev-
eral complications, notably the appearance of additional
physical modes beyond those arising in GR coupled to
the SM. The role of these additional modes can be re-
duced by eliminating terms controlling their propagation,
which removes effects of extra long-range forces. One set
of such modes is the antisymmetric tensor χµν associ-
ated with local Lorentz violation. To avoid these modes,
we restrict the EFT to preserve LLI, which insures that
χµν contains only unphysical gauge degrees of freedom.
The other set of additional modes is the vector ξµ as-
sociated with diffeomorphism violation. To incorporate
beyond-Riemann effects when LLI holds, EDV must be
present. The resulting ξµ modes have physical effects,
but their free propagation can be avoided by taking the
pure-gravity sector to be conventional [4]. The ξµ modes
can then be viewed as nonpropagating auxiliary fields
with derivative couplings in the matter-gravity sector of
the EFT. To simplify the analysis here, we assume dy-
namical torsion and nonmetricity are absent. However,
the present EFT framework applies also to phenomeno-
logical and experimental studies of fermion couplings in-
volving explicit background torsion [30] and nonmetricity
[31].

The laboratory experiments and astrophysical observa-
tions considered here involve comparatively weak gravita-
tional fields, so the linearized limit is sufficient for a phe-
nomenological analysis of dominant effects from the EFT.
In the linearized EFT, the local Lorentz and diffeomor-
phism transformations combine to yield Lorentz, gauge,
and translation transformations acting in approximately
Minkowski spacetime [3]. For simplicity, we can limit
attention to linearized terms that maintain translation
invariance (TI). All such terms exhibit either Lorentz in-
variance (LI) or Lorentz violation (LV), and either gauge
invariance (GI) or gauge violation (GV).

We remark in passing that the above choices for the
EFT can be matched to the classification presented in
Table IV of Ref. [3]. In this language, the present work
limits attention to EFT terms lying both in the row la-
beled LLI, EDV and in the columns labeled LI-GI-TI,
LV-GV-TI, LI-GV-TI, and LV-GI-TI. These terms all
generically violate the no-go constraints because they are
perturbatively incompatible with the Bianchi identities of
Riemann geometry. In the context of Fig. 2 of Ref. [3],
the EFT we consider lies in the lower left triangle of the
hexagon, labeled LLI, EDV.

For our phenomenological analyses, we focus on
leading-order effects arising from the propagation of a
Dirac fermion ψ of mass m in the presence of a weak
gravitational field with metric gµν = ηµν + hµν . The
metric fluctuation hµν includes contributions from the
derivatives ∂λξµ of the ξµ modes. Note, however, that in
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TABLE I. Terms containing operators of mass dimension d ≤ 5 in the linearized fermion Lagrange density LL
ψ.

Component Expression

LL
ψ,0

1
2
(ψγµi∂µψ −mψψ) + h.c.

LL
ψ,h

1
4
hψγµi∂µψ − 1

4
hκµψγκi∂µψ − 1

4
mhψψ + 1

8
ǫκµνρ(∂µhνρ)ψγ5γκψ + h.c.

L
(3)L
ψ −(m′L)µνhµνψψ − i(mL

5 )
µνhµνψγ5ψ − (aL)κµνhµνψγκψ − (bL)κµνhµνψγ5γκψ − 1

2
(HL)κλµνhµνψσκλψ

L
(4)L
ψh − 1

2
(cLh)

κµνρhνρψγκi∂µψ − 1
2
(dLh)

κµνρhνρψγ5γκi∂µψ

− 1
2
(eLh)

µνρhνρψi∂µψ − 1
2
i(fL

h )
µνρhνρψγ5i∂µψ − 1

4
(gLh)

κλµνρhνρψσκλi∂µψ + h.c.

L
(4)L
ψ∂h −(cL∂h)

κµνρ(∂µhνρ)ψγκψ − (dL∂h)
κµνρ(∂µhνρ)ψγ5γκψ

−(eL∂h)
µνρ(∂µhνρ)ψψ − i(fL

∂h)
µνρ(∂µhνρ)ψγ5ψ − 1

2
(gL∂h)

κλµνρ(∂µhνρ)ψσκλψ

L
(5)L
ψh − 1

2
(m

(5)L
h )µνρσhρσψi∂µi∂νψ − 1

2
i(m

(5)L
5h )µνρσhρσψγ5i∂µi∂νψ

− 1
2
(a

(5)L
h )κµνρσhρσψγκi∂µi∂νψ − 1

2
(b

(5)L
h )κµνρσhρσψγ5γκi∂µi∂νψ

− 1
4
(H

(5)L
h )κλµνρσhρσψσκλi∂µi∂νψ + h.c.

L
(5)L
ψ∂h − 1

2
(m

(5)L
∂h )µνρσ(∂νhρσ)ψi∂µψ − 1

2
i(m

(5)L
5∂h )

µνρσ(∂νhρσ)ψγ5i∂µψ

− 1
2
(a

(5)L
∂h )κµνρσ(∂νhρσ)ψγκi∂µψ − 1

2
(b

(5)L
∂h )κµνρσ(∂νhρσ)ψγ5γκi∂µψ

− 1
4
(H

(5)L
∂h )κλµνρσ(∂νhρσ)ψσκλi∂µψ + h.c.

L
(5)L
ψ∂∂h −(m

(5)L
∂∂h )

µνρσ(∂µ∂νhρσ)ψψ − i(m
(5)L
5∂∂h)

µνρσ(∂µ∂νhρσ)ψγ5ψ

−(a
(5)L
∂∂h )

κµνρσ(∂µ∂νhρσ)ψγκψ − (b
(5)L
∂∂h )

κµνρσ(∂µ∂νhρσ)ψγ5γκψ

− 1
2
(H

(5)L
∂∂h )

κλµνρσ(∂µ∂νhρσ)ψσκλψ

the EFT context these contributions are determined by
the backgrounds k and represent small corrections to the
GR value of hµν . The weak-field assumption implies that
the latter is already small, so for many applications hµν
can be approximated at leading order by its GR value.
For simplicity, we neglect possible couplings to deriva-
tives Dk of the backgrounds k. It then suffices to con-
sider quadratic fermion terms and their gravitational cou-
plings, allowing for arbitrary LLI-EDV operators. All the
relevant fermion-gravity terms involving operators with
d ≤ 6 and without background derivatives are presented
in Table XI of Ref. [3]. As d increases, these terms acquire
more fermion derivatives and hence can be expected to
generate suppressed effects in laboratory experiments be-
cause the relevant fermion momenta are small compared
to the Planck scale. Nonetheless, to capture effects from
both minimal and nonminimal terms, the analysis that
follows includes terms containing operators with d ≤ 5.

Implementing the linearization to extract all fermion
terms with operators of mass dimension d ≤ 5 in the
Lagrange density LL

ψ of the linearized EFT, we find the

results displayed in Table I. In the table, LL
ψ is separated

into pieces containing terms with specified d and number
of derivatives of hµν . These pieces are listed in the first
column, while the second column shows the explicit form
of the corresponding terms. The first two rows in the
table represent the linearization of the usual Lagrange
density for a massive Dirac fermion coupled to gravity,
and they lie in the LI-GI-TI class. All other terms in the

table exhibit LV, GV or both. The only LI terms are
ones with coefficients constructed from the Minkowski
metric ηµν and the Levi-Civita tensor ǫκλµν . The only
GI terms involve combinations of two derivatives ∂∂h
of the metric fluctuation that arise from the curvature
tensor. The notation for each coefficient appearing in
the table is chosen in accordance with standard usage
in the literature, with a superscript L indicating that
the corresponding operator is linearized. The primary
letter on a coefficient distinguishes the spin and charge-
conjugation, parity-inversion, and time-reversal (CPT)
properties of the dynamical operator, while the subscript
indicates the number of derivatives of hµν it contains.
The terms listed in Table I are obtained by lineariza-

tion of the full fermion-gravity Lagrange density Lψ pro-
vided in Table XI of Ref. [3]. The coefficients appearing
in Table I are therefore combinations of relevant parts of
the breve coefficients appearing in Table XI of Ref. [3].
Each breve coefficient is a linear combination of back-
grounds contracted with vierbeins, metrics, and Levi-
Civita tensors. In the linearized scenario relevant to the
EFT of interest here, a generic breve coefficient k̆··· can
be written as a sum of two parts involving explicit back-
grounds,

k̆··· ≡ k··· + k···µνgµν + . . .

≈ k···asy + (kL)···µνhµν , (2)

where the background k···asy appearing in the approxi-
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TABLE II. Relationships between coefficients in LL
ψ and in Lψ.

LL
ψ Lψ

(m′L)µν (m′L)µν + 1
2
m′

asyη
µν

(mL
5 )
µν (mL

5 )
µν + 1

2
m5asyη

µν

(aL)κµν (aL)κµν + 1
2
aκasyη

µν + 1
4
(aµasyη

νκ + aνasyη
µκ)

(bL)κµν (b
L
)κµν + 1

2
b
κ

asyη
µν + 1

4
(b
µ

asyη
νκ + b

ν

asyη
µκ)

(HL)κλµν (H
L
)κλµν + 1

2
H
κλ

asyη
µν + 1

4
[(H

µλ

asyη
κν +H

νλ

asyη
κµ)− (κ↔ λ)]

(cLh)
κµνρ (cL)κµνρ + 1

2
cκµasyη

νρ + 1
4
(cνµasyη

ρκ + cρµasyη
νκ)

(dLh)
κµνρ (d

L
)κµνρ + 1

2
d
κµ

asyη
νρ + 1

4
(d
νµ

asyη
ρκ + d

ρµ

asyη
νκ)

(eLh)
µνρ (eL)µνρ + 1

2
eµasyη

νρ

(fL
h )
µνρ (f

L
)µνρ + 1

2
f
µ

asyη
νρ

(gLh)
κλµνρ (gL)κλµνρ + 1

2
gκλµasy η

νρ + 1
4
[(gνλµasy η

κρ + gρλµasy η
κν)− (κ↔ λ)]

(cL∂h)
κµνρ 1

8
(d
αν

asyηαβǫ
βµρκ + d

αρ

asyηαβǫ
βµνκ)

(dL∂h)
κµνρ 1

8
(cανasyηαβǫ

βµρκ + cαρasyηαβǫ
βµνκ)

(eL∂h)
µνρ 1

4
(gµνρasy + gµρνasy )

(fL
∂h)

µνρ − 1
8
(gαβνasy ηαγηβδǫ

γδµρ + gαβρasy ηαγηβδǫ
γδµν)

(gL∂h)
κλµνρ 1

8
[(eνasyη

κµηλρ + eρasyη
κµηλν)− (κ↔ λ)] + 1

8
(f
ν

asyǫ
κλµρ + f

ρ

asyǫ
κλµν)

(m
(5)L
h )µνρσ (m(5)L)µνρσ + 1

2
(m

(5)
asy)

µνηρσ

(m
(5)L
5h )µνρσ (m

(5)L
5 )µνρσ + 1

2
(m

(5)
5asy)

µνηρσ

(a
(5)L
h )κµνρσ −(a(5)L)κµνρσ − 1

2
(a

(5)
asy)

κµνηρσ − 1
4
[(a

(5)
asy)

ρµνηκσ + (a
(5)
asy)

σµνηκρ]

(b
(5)L
h )κµνρσ −(b

(5)L
)κµνρσ − 1

2
(b

(5)
asy)

κµνηρσ − 1
4
[(b

(5)
asy)

ρµνηκσ + (b
(5)
asy)

σµνηκρ]

(H
(5)L
h )κλµνρσ (H

(5)L
)κλµνρσ + 1

2
(H

(5)
asy)

κλµνηρσ + 1
4

[
[(H

(5)
asy)

ρλµνηκσ + (H
(5)
asy)

σλµνηκρ]− (κ↔ λ)
]

(m
(5)L
∂h )µνρσ 1

2
[(H

(5)
asy)

νσµρ + (H
(5)
asy)

νρµσ]

(m
(5)L
5∂h )

µνρσ − 1
4
[(H

(5)
asy)

αβµρηαγηβδǫ
γδνσ + (H

(5)
asy)

αβµσηαγηβδǫ
γδνρ]

(a
(5)L
∂h )κµνρσ 1

4
[(b

(5)
asy)

αµρηαβǫ
βνσκ + (b

(5)
asy)

αµσηαβǫ
βνρκ]

(b
(5)L
∂h )κµνρσ 1

4
[(a

(5)
asy)

αµρηαβǫ
βνσκ + (a

(5)
asy)

αµσηαβǫ
βνρκ]

(H
(5)L
∂h )κλµνρσ 1

4

[
[(m

(5)
asy)

µρηνκησλ+ (m
(5)
asy)

µσηνκηρλ]− (κ↔ λ)
]
+ 1

4
[(m5

(5)
asy)

µρǫκλνσ + (m5
(5))µσǫκλνρ]

(m
(5)L
∂∂h )

µνρσ 1
2
[(m

(5)
R,asy)

µρσν + (m
(5)
R,asy)

νρσµ] + 1
4
(m

(5)
asy)

ρσηµν − 1
8

[
[(m

(5)
asy)

µρηνσ + (m
(5)
asy)

µσηνρ] + (µ↔ ν)
]

(m
(5)L
5∂∂h)

µνρσ 1
2
[(m

(5)
5R,asy)

µρσν + (m
(5)
5R,asy)

νρσµ] + 1
4
(m

(5)
5asy)

ρσηµν − 1
8

[
[(m

(5)
5asy)

µρηνσ + (m
(5)
5asy)

µσηνρ] + (µ↔ ν)
]

(a
(5)L
∂∂h )

κµνρσ − 1
2
[(a

(5)
R,asy)

κµρσν + (a
(5)
R,asy)

κνρσµ]− 1
4
(a

(5)
asy)

κρσηµν + 1
8

[
[(a

(5)
asy)

κµρηνσ + (a
(5)
asy)

κµσηνρ] + (µ↔ ν)
]

(b
(5)L
∂∂h )

κµνρσ − 1
2
[(b

(5)
R,asy)

κµρσν + (b
(5)
R,asy)

κνρσµ]− 1
4
(b

(5)
asy)

κρσηµν + 1
8

[
[(b

(5)
asy)

κµρηνσ + (b
(5)
asy)

κµσηνρ] + (µ↔ ν)
]

(H
(5)L
∂∂h )

κλµνρσ 1
2
[(H

(5)
R,asy)

κλµρσν + (H
(5)
R,asy)

κλνρσµ] + 1
4
(H

(5)
asy)

κλρσηµν − 1
8

[
[(H

(5)
asy)

κλµρηνσ + (H
(5)
asy)

κλµσηνρ] + (µ↔ ν)
]

mately Minkowski spacetime is the breve coefficient k̆···

taken at zeroth order in vierbein and metric fluctuations,

k···asy ≡ k··· + k···µνηµν + . . . ,

(kL)···µν ≡ k···µν + . . . . (3)

For example, the breve coefficient ăκ appearing in the

piece L(3)
ψ of Lψ reduces in the present EFT context to

ăκ = aκasy + (aL)κµνhµν , with a
κ
asy ≡ aκ + aκµνηµν + . . .

and (aL)κµν ≡ aκµν + . . .. Note that our assumption of
TI for the linearized theory implies that all coefficients
considered here are spacetime constants.
The explicit relationships between the linearized coeffi-

cients appearing in Table I and the breve coefficients ap-
pearing in Lψ are provided in Table II. The first column
of this table displays the linearized coefficients appearing
in LL

ψ, while the second column establishes the link to the
explicit backgrounds contained in the breve coefficients
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appearing in Lψ and defined via Eq. (2). Note that the
asymptotic parts of certain breve coefficients are absent
in Table II because they contribute to the linearized EFT
only for d ≥ 6.

B. Nonrelativistic hamiltonian

The linearized Lagrange density LL
ψ given in Table I

can be used as the basis for phenomenological analy-
ses. However, many laboratory experiments sensitive
to fermion-gravity couplings involve slow-moving particle
species experiencing the gravitational field of the Earth.
For these types of experiments, the analysis of data for
signals of physics beyond Riemann gravity involves the
nonrelativistic particle hamiltonian H . This can be ex-
tracted from the linearized Lagrange density LL

ψ via a

generalized Foldy-Wouthuysen transformation [32], using
techniques established for backgrounds violating space-
time symmetries [33–41].
At leading order in the backgrounds, the perturba-

tive relativistic hamiltonian can be identified from the
Euler-Lagrange equations obtained by variation of the
linearized action [37]. In approximately flat spacetime,
this bypasses the complications of nonstandard time evo-
lution introduced by certain background components and
hence avoids the necessity for prior field redefinitions [36]
or modifications to the inner product in the Hilbert space
[42]. The relativistic hamiltonian can then be block diag-
onalized at the desired order in the particle 3-momentum
pj = −i∂j using an iterative method, and the nonrela-
tivistic hamiltonian can be extracted from the upper 2×2
block [33]. The results obtained via this procedure gen-
eralize those in Ref. [38] obtained for a Dirac fermion in
Minkowski spacetime in the presence of Lorentz-violating
operators of arbitrary mass dimension d.
With the above techniques, the derivation of the non-

relativistic hamiltonian H from the linearized Lagrange
density LL

ψ in Table I is lengthy but straightforward. It
is convenient to express the result as a sum of pieces,

H = H0 +Hφ +Hσφ +Hg +Hσg + . . . , (4)

where H0 is the hamiltonian in the absence of back-
grounds. In this sum, the spin-dependent terms con-
taining the Pauli spin matrices ~σ are identified with a
subscript σ. The perturbative corrections of this type
represent anomalous spin-gravity couplings and in this
context can be viewed as WEP violations. The pieces
with a subscript φ depend directly on the gravitational
potential φ ≈ −h00/2, while those with a subscript g

depend only on the gravitational acceleration ~g ≡ −~∇φ.
The ellipsis indicates terms that depend on higher deriva-
tives of φ.
For applications to laboratory experiments, it typically

suffices to take the gravitational acceleration in the labo-
ratory as uniform and directed along −ẑ in the canonical
laboratory frame, ~g = −gẑ, so the gravitational poten-
tial is φ = −~g · ~z = gz. We incorporate here relativistic

corrections to second order in pj . With these approxima-
tions, we can extract explicit forms for the various terms
in the hamiltonian (4).
For the piece H0, the procedure generates the expres-

sion

H0 =
~p 2

2m
−m~g·~z− 3

4m
(~p 2~g·~z+~g·~z ~p 2)+

3

4m
(~σ×~p)·~g. (5)

The first two terms on the right-hand side are the usual
strict nonrelativistic limit. The third term is the leading-
order relativistic correction, while the last term is the
spin-orbit coupling. Note that no Darwin-type term pro-
portional to the divergence of ~g appears because ~g is
uniform by assumption. The form of H0 has been the
subject of numerous investigations in the literature [43–
51]. Our result (5) matches Eq. (14) in Ref. [51], which
was derived for uniform acceleration and expressed in the
physical Foldy-Wouthuysen representation.
The spin-independent piece ofH coupling via the grav-

itational potential φ can be written in the form

Hφ = (kNR
φ )~g · ~z + (kNR

φp )j 12 (p
j~g · ~z + ~g · ~z pj)

+(kNR
φpp)

jk 1
2 (p

jpk~g · ~z + ~g · ~z pjpk), (6)

where the coefficient (kNR
φpp)

jk is defined to be symmetric,

(kNR
φpp)

jk = (kNR
φpp)

kj . (7)

Each term in Eq. (6) depends on position ~z through the
dependence on the gravitational potential. The coeffi-
cients (kNR

φ ), (kNR
φp )j , and (kNR

φpp)
jk are spacetime con-

stants that control the magnitude of the effects produced
by the operators in Hφ. The superscripts NR serve as a
reminder that the coefficients are defined in the nonrel-
ativistic limit, while the subscripts φ and p reflect the
dependence on the potential and on the fermion momen-
tum. The term with coefficient (kNR

φ ) and the compo-

nent of the third term governed by the trace (kNR
φpp)j

j of

(kNR
φpp)

jk are invariant under rotations, and they repre-
sent EFT contributions that shift the sizes of the second
and third terms in H0. The remaining terms in Hφ vio-
late rotation symmetry. The term in Hφ with coefficient
(kNR
φp )j violates parity P and time reversal T, while the

other two are P and T even.
The spin-dependent piece of H coupling via the grav-

itational potential φ is given by

Hσφ = (kNR
σφ )jσj~g · ~z + (kNR

σφp)
jk 1

2σ
j(pk~g · ~z + ~g · ~z pk)

+(kNR
σφpp)

jkl 1
2σ

j(pkpl~g · ~z + ~g · ~z pkpl). (8)

In this equation, the coefficient (kNR
σφpp)

jkl is defined to
be symmetric on the last two indices,

(kNR
σφpp)

jkl = (kNR
σφpp)

jlk , (9)

and all the coefficients are spacetime constants. Each
term in Hσφ inherits dependence on the position ~z from
the gravitational potential. The second term contains
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a rotation-invariant component controlled by the trace
(kNR
σφp)j

j . The corresponding operator (~σ · ~p)(~g · ~z) rep-
resents rotation-invariant effects that are distinct from
those appearing in the hamiltonian H0 with vanishing
backgrounds. The component of (kNR

σφpp)
jkl proportional

to ǫjkl is absent in Hσφ because the corresponding op-
erator vanishes identically. The first and third terms in
Hσφ are P even and T odd, while the second term is P
odd and T even.

Turning next to the pieces of H coupling via the gravi-
tational acceleration ~g, we find that the spin-independent
piece Hg can be written in the form

Hg = (kNR
g )jgj + (kNR

gp )jkpjgk + (kNR
gpp)

jklpjpkgl. (10)

where we define

(kNR
gpp)

jkl = (kNR
gpp)

kjl. (11)

All three terms in the expression (10) are position inde-
pendent. All are rotation violating, except for the oper-
ator ~p · ~g in the second term associated with the trace
(kNR
gp )j

j . Note that in principle a totally antisymmet-

ric component of (kNR
gpp)

jkl ∝ ǫjkl would govern rotation-
invariant effects, but the corresponding operator (~p×~p)·~g
vanishes identically. The second term in Hg is P even and
T odd, while the other two are P odd and T even.

Finally, the spin-dependent terms coupling with the
gravitational acceleration ~g are found to be

Hσg = (kNR
σg )jkσjgk + (kNR

σgp)
jklσjpkgl

+(kNR
σgpp)

jklmσjpkplgm, (12)

where we define

(kNR
σgpp)

jklm = (kNR
σgpp)

jlkm. (13)

The three terms in Eq. (12) are all position indepen-
dent. Each term contains a rotation-invariant compo-
nent. The first involves the dipole spin-gravity operator
~σ · ~g, governed by the trace (kNR

σφp)j
j. In the absence of

backgrounds, the possible appearance of this operator in
the hamiltonian H0 has been the subject of discussion
in the literature [50], but it is known to be absent when
the physical Foldy-Wouthuysen representation is adopted
[51]. Here, despite the use of this representation, the
dipole spin-gravity operator nonetheless appears because
the general EFT provides additional contributions to H ,
so its detection would represent a signal of new physics.
Note that the third term in Hσg incorporates a rotation-
invariant component ∝ ~p 2~σ ·~g, which corrects the dipole
spin-gravity coupling at O(p2), along with another rota-
tion scalar (~σ · ~p)(~g · ~p). The second term also contains a
rotation scalar associated with the component (kNR

σgp)
jkl

proportional to ǫjkl, which acts to correct the size of the
last term in H0. The first and third terms in Hσg are P
and T odd, while the second is P and T even.

It is useful to collect all the rotation-invariant contri-
butions H̊ to H , which gives

H̊ =
~p 2

2m
− (m− (kNR

φ ))~g · ~z + (kNR
σg )′~σ · ~g

+(kNR
gp )′~p · ~g +

(
3
4m + (kNR

σgp)
′)(~σ × ~p) · ~g

+ 1
2 (k

NR
σφp)

′(~σ · ~p ~g · ~z + ~g · ~z ~σ · ~p)
−
(

3
4m − 1

2 (k
NR
φpp)

′)(~p 2~g · ~z + ~g · ~z ~p 2)

+(kNR
σgpp)

′~p 2~σ · ~g + (kNR
σgpp)

′′(~σ · ~p) (~g · ~p), (14)

where the correction terms are ordered by increasing
powers of the 3-momentum. The coefficients with primes
denote suitably normalized irreducible representations of
the rotation group obtained from the nonrelativistic co-
efficients in Eqs. (6)–(12). The expression (14) for H̊ is of
interest for certain experimental applications, in part be-
cause the rotation invariance ensures that all terms take
the same form at leading order when expressed either
in the laboratory frame or the Sun-centered frame. This
implies, for example, no leading-order dependence on the
local sidereal time or laboratory colatitude in experimen-
tal signals for these terms. Note, however, that H̊ can be
modified by boosts, including the boost associated with
the revolution of the Earth about the Sun. Note also that
some of the rotation-invariant terms (14) have been pro-
posed in other contexts as phenomenological modifica-
tions to conventional fermion-gravity couplings [52, 53].
The present work reveals how these and other effects can
arise in the EFT context.
The expressions (5), (6), (8), (10), and (12) are de-

rived for the special gravitational potential φ = −~g · ~z
associated with a uniform gravitational field ~g. The non-
relativistic coefficients appearing in these expressions are
therefore strictly defined only in this restricted scenario,
which makes challenging direct comparisons of their mea-
surements with results from other types of laboratory ex-
periments and astrophysical observations. It is therefore
crucial to report the results of any given data analysis
also as measurements of coefficients in the linearized La-
grange density LL

ψ in Table I.
The explicit relationships between coefficients in the

nonrelativistic hamiltonian H and coefficients in the lin-
earized Lagrange density LL

ψ are provided in Table III.
The first column of the table lists the nonrelativistic co-
efficients appearing in the hamiltonian (4), and the sec-
ond column provides their expressions in terms of the
linearized coefficients appearing in Tables I and Table
II. These results reduce correctly to those of Ref. [38] in
the SME limit in Minkowski spacetime with appropriate
metric signature. Note that all types of nonrelativistic
coefficients are generated from the linearized EFT. How-
ever, to guarantee that all components of all nonrelativis-
tic coefficients are nonzero requires extending our present
treatment of the EFT to include derivative background

couplings Dk. For example, the piece L(5)L
ψ∂∂h in Table I

acquires distinct and complementary contributions from
the EFT arising either from the commutator [Dµ, Dν ] or
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TABLE III. Correspondence between nonrelativistic and linearized coefficients.

NR coefficient Linearized coefficient

(kNR
φ ) 2(m′L)ss − 2(aL)tss + 2m(eLh)

tss − 2m(cLh)
ttss + 2m2(m

(5)L
h )ttss − 2m2(a

(5)L
h )tttss

(kNR
φp )j 2

m
(aL)jss − 2(eLh)

jss + 2(cLh)
jtss + 2(cLh)

tjss − 4m(m
(5)L
h )jtss + 2m(a

(5)L
h )jttss + 4m(a

(5)L
h )tjtss

(kNR
φpp)

jk − 1
m
[(cLh)

jkss + (cLh)
kjss] + 2(m

(5)L
h )jkss − 2(a

(5)L
h )tjkss − 2[(a

(5)L
h )jktss + (a

(5)L
h )kjtss]

−δjk
[

1
m2 (m

′L)ss + 1
m
(cLh)

ttss − (m
(5)L
h )ttss + 2(a

(5)L
h )tttss

]

(kNR
σφ )j −2(bL)jss + ǫjkl(HL)klss − 2m(dLh)

jtss +mǫjkl(gLh)
kltss − 2m2(b

(5)L
h )jttss +m2ǫjkl(H

(5)L
h )klttss

(kNR
σφp)

jk 2(dLh)
jkss − ǫjmn(gLh)

mnkss + 4m(b
(5)L
h )jktss − 2mǫjmn(H

(5)L
h )mnktss

+δjk
[

2
m
(bL)tss + 2(dLh)

ttss + 2m(b
(5)L
h )tttss

]
− ǫjkl

[
2
m
(HL)tlss + 2(gLh)

tltss + 2m(H
(5)L
h )tlttss

]

(kNR
σφpp)

jkl −2(b
(5)L
h )jklss + ǫjmn(H

(5)L
h )mnklss + δkl

[
1
m2 (b

L)jss + 1
2m
ǫjmn(gLh)

mntss − (b
(5)L
h )jttss + ǫjkl(H

(5)L
h )mnttss

]

+ 1
2

[(
− δjk

[
1
m2 (b

L)lss + 1
2m2 ǫ

lmn(HL)mnss + 2
m
(dLh )

tlss + 1
m
(dLh)

ltss + 1
2m
ǫlmn(gLh)

mntss

+4(b
(5)L
h )ttlss + (b

(5)L
h )lttss + 1

2
ǫlmn(H

(5)L
h )mnttss

]
+ ǫjkm

[
2
m
(gLh)

tmlss + 4(H
(5)L
h )tmltss

])
+ (k ↔ l)

]

(kNR
g )j 1

m
(HL)tjss + 2(eL∂h)

jss − 2(cL∂h)
tjss + (gLh)

tjtss + 2m(m
(5)L
∂h )tjss − 2m(a

(5)L
∂h )ttjss +m(H

(5)L
h )tjttss

(kNR
gp )jk 2

m
(cL∂h)

jkss − 1
m
(gLh)

tkjss − 2(m
(5)L
∂h )jkss + 2(a

(5)L
∂h )tjkss + 2(a

(5)L
∂h )jtkss − 2(H

(5)L
h )tkjtss

−ǫjkl[ 1
2m2 (b

L)lss + 1
2m

(dLh)
ltss + 1

2
(b

(5)L
h )lttss]− ǫjklǫlmn[ 1

4m2 (H
L)mnss + 1

4m
(gLh)

mntss + 1
4
(H

(5)L
h )mnttss]

(kNR
gpp)

jkl − 1
m
(a

(5)L
∂h )jklss − 1

m
(a

(5)L
∂h )kjlss + 1

m
(H

(5)L
h )tljkss

−δjk
[

1
m2 (e

L
∂h)

lss − 1
2m2 (g

L
h)
tltss + 1

m
(a

(5)L
∂h )ttlss − 1

m
(H

(5)L
h )tlttss

]

+ǫjlm[ 1
2m2 (d

L
h)
mkss + 1

m
(b

(5)L
h )mtkss] + ǫjlmǫmnr [ 1

4m2 (g
L
h)
nrkss + 1

2m
(H

(5)L
h )nrtkss]

(kNR
σg )jk −2(dL∂h)

jkss + ǫjmn(gL∂h)
mnkss − 2m(b

(5)L
∂h )jtkss +mǫjmn(H

(5)L
∂h )mntkss

−δjk
[

1
m
(mL

5 )
ss + (fL

h )
tss +m(m

(5)L
5h )ttss

]
+ ǫjkl

[
1
m
(aL)lss + (cLh)

ltss +m(a
(5)L
h )lttss

]

(kNR
σgp)

jkl 2(b
(5)L
∂h )jklss − ǫjmn(H

(5)L
∂h )mnklss + ǫjkl

[
1

2m2 (m
′L)ss + 1

2m2 (a
L)tss + 1

2m
(eLh)

tss + 1
2m

(cLh)
ttss

+ 1
2
(m

(5)L
h )ttss + 1

2
(a

(5)L
h )tttss

]
+ δjk

[
2
m
(dL∂h)

tlss + 2(b
(5)L
∂h )ttlss

]
+ δjl

[
1
m
(fL
h )
kss + 2(m

(5)L
5h )ktss

]

−ǫjkm
[

2
m
(gL∂h)

tmlss + 2(H
(5)L
∂h )tmtlss

]
− ǫjlm

[
1
m
(cLh)

mkss + 2(a
(5)L
h )mktss

]

(kNR
σgpp)

jklm −δjmδkl
[

2
m2 (f

L
h )
tss 1

m
(m

(5)L
5h )ttss

]
− δjm 1

m
(m

(5)L
h )klss + δkl

[
1
m2 (d

L
∂h)

jmss + 1
2m
ǫjnr(H

(5)L
∂h )nrtmss

]

+δklǫjmn
[

1
2m2 (c

L
h)
ntss + 1

m
(a

(5)L
h )nttss

]
+ ǫjmn 1

m
(a

(5)L
h )nklss

− 1
2

[(
δjk

[
1
m2 (d

L
∂h)

lmss + 1
2m2 ǫ

lnr(gL∂h)
nrmss + 2

m
(b

(5)L
∂h )tlmss + 1

m
(b

(5)L
∂h )ltmss + 1

2m
ǫlnr(H

(5)L
∂h )nrtmss

]

+ǫjkm
[

1
2m2 (e

L
h)
lss + 1

2m2 (c
L
h)
tlss + 1

m
(m

(5)L
h )ltss + 1

m
(a

(5)L
h )tltss

]
− ǫjkn 2

m
(H

(5)L
∂h )tnlmss

)
+ (k ↔ l)

]

from the anticommutator {Dµ, Dν} of covariant deriva-
tives. The symmetries of the construction imply that the
former occur for any background, while that the latter
are associated only with nonzero derivative background
couplings DDk.

C. Flavor dependence

Different experiments may use distinct particle species
w, and many individual experiments use more than one
species. It is therefore necessary to incorporate multiple
fermion flavors in the analysis. The Lagrange density for
the EFT based on GR coupled to the SM with all known
flavors of fermions is presented in Ref. [3]. The coef-
ficients can depend on flavor, which introduces further

types of WEP violations in addition to the anomalous
spin-gravity effects discussed above. For the experiments
studied in the present work, it suffices to consider elec-
trons, protons, neutrons, and muons, which we denote
by w = e, p, n, and µ. For simplicity, we disregard
here possible flavor-mixing effects, which require accom-
panying violations of the conservation of electric charge,
baryon number, or lepton number. For instance, we ex-
clude positron-proton-curvature couplings in the EFT.
The linearized Lagrange density LL

ψ in Table I and the

nonrelativistic hamiltonian H in Eq. (4) can be used to
describe the gravitational couplings of any given fermion
w. For practical applications and to report experimental
results, the various coefficients can be labeled accord-
ingly. For example, the nonrelativistic coefficients of
interest are then denoted as (kNR

φ )w, (k
NR
φp )jw, (k

NR
φpp)

jk
w ,
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(kNR
σφ )jw , (k

NR
σφp)

jk
w , (kNR

σφpp)
jkl
w , (kNR

g )jw, (k
NR
gp )jkw , (kNR

gpp)
jkl
w ,

(kNR
σg )jkw , (kNR

σgp)
jkl
w , (kNR

σgpp)
jklm
w , and the hamiltonian H

is written as Hw. The WEP violations in the EFT are
thus encoded in expressions as the w dependence of back-
ground coefficients.
Many experiments involve atoms or ions, which can

be viewed as aggregates of fermions. In what follows, we
treat these following standard techniques in the literature
[54, 55]. First, the Schmidt model [56, 57] is adopted as
the basis for determining sensitivities of individual nuclei
to the various nonrelativistic coefficients for the nucleons
p and n. The sensitivity of the full atom or ion to all
coefficients with w = e, p, n and for exotic atoms also
w = µ can then be obtained using standard electron-shell
methods and general symmetry properties of the system.
Some investigations are performed with antiparticles.

For nonrelativistic laboratory experiments, this implies
that the data analysis requires instead using the nonrela-
tivistic antiparticle hamiltonian Hw corresponding to the
particle hamiltonian Hw. In the EFT, the particle and
antiparticle for each species are both encoded in a single
quantum field. As a result, Hw and Hw are simulta-
neously generated from the block diagonalization of the
relativistic hamiltonian associated with the linearized La-
grange density LL

ψ in Table I. The nonrelativistic antipar-
ticle hamiltonian Hw is given by expressions of the same
forms as Eqs. (5)–(12), but the corresponding nonrel-

ativistic coefficients (kNR
φ )w, (k

NR
φp )jw, (k

NR
φpp)

jk
w , (kNR

g )jw,

(kNR
gp )jkw , (kNR

gpp)
jkl
w , (kNR

σφ )jw, (k
NR
σφp)

jk
w , (kNR

σφpp)
jkl
w , (kNR

σg )jkw ,

(kNR
σgp)

jkl
w , (kNR

σgpp)
jklm
w that appear in these equations in-

volve different combinations of the linearized coefficients
than those given in Table III.
The explicit conversion between Hw and Hw can be

implemented using the charge-conjugation operator C,
which interchanges particles and antiparticles. Incorpo-
rating the opposite 4-momenta of particles and antipar-
ticles, this conversion can conveniently be described in-
stead in terms of the CPT properties of the operators
in Hw. The results can then be interpreted to obtain
the equivalent of Table III for antiparticles. We find
that the expressions for the antiparticle nonrelativistic
coefficients take the same form as those in Table III up
to sign changes in front of certain linearized coefficients.
For linearized coefficients that have either no subscript
or a subscript h, these sign changes occur for coefficients
with an odd number of spacetime indices. In contrast,
for linearized coefficients having a subscript ∂h, the sign
changes appear for coefficients with an even number of
spacetime indices. For example, we find that the particle
expression

(kNR
φ )w = 2(m′L)ssw − 2(aL)tssw + 2m(eLh)

tss
w + . . . (15)

converts to

(kNR
φ )w = 2(m′L)ssw + 2(aL)tssw − 2m(eLh)

tss
w + . . . (16)

for the corresponding antiparticle. We emphasize that
the particle and antiparticle nonrelativistic coefficients

can differ for each species, but only one independent set
of linearized coefficients exists per species because terms
in the linearized EFT simultaneously include both parti-
cles and antiparticles.
Comparative experiments on particles and antiparti-

cles are typically sensitive to differences between nonrel-
ativistic coefficients. The sign changes in converting from
particles to antiparticles imply that taking the difference
of nonrelativistic coefficients either cancels or doubles the
contributions from the linearized coefficients. One ex-
ample of relevance in what follows is the difference of
nonrelativistic coefficients

∆(kNR
φ )ww ≡ (kNR

φ )w − (kNR
φ )w

= 4(aL)tssw − 4m(eLh)
tss
w + 4m2(a

(5)L
h )tttssw (17)

that involves the spin-independent φ-coupled pieces of
the particle and antiparticle hamiltonians. Another is
the difference of nonrelativistic coefficients

∆(kNR
σφ )jww ≡ (kNR

σφ )jw − (kNR
σφ )jw

= 4(bL)jssw − 2mǫjkl(gLh)
kltss
w + 4m2(b

(5)L
h )jttssw (18)

that involves the spin-dependent φ-coupled pieces of the
particle and antiparticle hamiltonians.

III. POTENTIAL DIFFERENCES

The unconventional contributions to the linearized La-
grange density LL

ψ in Table I and to the nonrelativistic

hamiltonian H in Eq. (4) produce physical effects on the
behavior of particles studied in laboratory experiments
and astrophysical observations. Among the effects are
dependences on the magnitudes and directions of the par-
ticle momentum and spin, on the particle flavor, and on
the gravitational potential and the magnitudes and di-
rections of its derivatives. These dependences can be
used in experiments designed to disentangle and mea-
sure the various coefficients for different species. In this
section, we focus on the position dependence arising from
the gravitational potential and deduce constraints on the
linearized coefficients appearing in Table I by comparing
published measurements obtained at different potentials.
The results selected for analysis here are chosen from
among the numerous existing ones [58] to yield sharp
constraints. The values adopted are taken from Refs.
[54, 59–89] for electrons, protons, and neutrons and Refs.
[90–96] for muons.
Many experiments have already been performed to

measure SME coefficients for Lorentz violation under the
assumption that spacetime is Minkowski [58]. However,
the locations of the laboratories performing these exper-
iments are typically at different elevations and hence at
different gravitational potentials φ. Since the lineariza-

tion (2) of a breve coefficient k̆··· contains hµν , which
depends on φ via

h00 ≈ −2φ, h0j ≈ 0, hjk ≈ −2φδjk, (19)
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it follows that experiments at distinct laboratories pur-
portedly measuring a given coefficient k···expt may in fact
be measuring quantities that differ slightly due to the
gravitational coupling,

k···expt = k···asy + (kL)···µνhµν

≈ k···asy − 2(kL)···ssφ. (20)

Comparing experiments measuring coefficients k···expt at
different elevations can therefore provide access to the
combination (kL)···ss of linearized coefficients.
We note in passing that the expression (20) depends

on the absolute value of the gravitational potential φ.
However, the comparison of coefficients k···expt at two dif-
ferent points ~x1 and ~x2 involves only the potential dif-
ference ∆φ = φ(~x2) − φ(~x1), and so the zero of the po-
tential is irrelevant. The dependence of observables on
∆φ rather than φ is conventionally associated with gauge
invariance, but here it is an artifact of the linearization
procedure and holds true despite the presence of gauge-
violating terms in the Lagrange density in Table I.
More generally, the absolute value of φ can become

an observable in the presence of gauge-violating terms
from beyond-Riemann gravity, so sufficiently precise ex-
periments could in principle measure it. This would re-
quire a treatment including higher orders in hµν , and
for some applications would also involve a reformulation
of the procedure to account for fluctuations around a
cosmological spacetime rather than the approximately
Minkowski spacetime considered here. The measured
coefficients k···expt would then have the schematic depen-

dence kexpt ∼ kasy + kLh + kQhh + . . ., so comparing
experimental results could permit measurements of the
combinations kQφ, ultimately leading to measurement of
the absolute value of φ provided at least one coefficient
kQ is nonzero. Developing this line of investigation is
of definite interest and would become vital in the event
of a compelling nonzero experimental signal, but it lies
beyond our present scope.
For laboratory experiments on the Earth, the assump-

tion of a uniform gravitational field implies that the
comparison of coefficients at two different elevations z1
and z2 involves the potential difference ∆φ = φ(z2) −
φ(z1) = g(z2 − z1). Using the expression (20) to ex-
tract constraints on (kL)···ss from results obtained at a
fixed latitude and longitude then requires only knowledge
of the relative elevations of the experimental measure-
ments. However, the measurements compared here are
performed in laboratories located at distinct points on
the Earth’s surface. Extracting constraints therefore re-
quires knowledge of the potential difference ∆φ at differ-
ent geographic locations, which can be challenging to es-
tablish. Indeed, the accurate determination of the gravi-
tational equipotentials at the Earth’s surface is a famous
and formidable problem in geodesy [97]. Observations
can be made from the ground or from satellites, and rel-
evant options for height measurements include elevations
taken relative to mean sea level or vertical data based on

TABLE IV. Laboratory elevations.

Laboratory location Elevation (m) Ref.

Amherst, MA, USA 70 [61], [75]

Bad Homburg, Germany 165 [86]

Berkeley, CA, USA 186 [73], [83]

Berlin, Germany 30 [67]

Berlin, Germany 75 [77], [78], [88]

Boston, MA, USA 5 [60], [63]

Boulder, CO, USA 1637 [59], [79], [80]

Darmstadt, Germany 139 [81]

Geneva, Switzerland 442 [85], [90]

Heidelberg, Germany 309 [64]

Los Alamos, NM, USA 2226 [92]

New York, NY, USA 24 [94]

Paris, France 66 [65], [87]

Perth, Australia 14 [67]

Princeton, NJ, USA 37 [72], [74], [84]

Seattle, WA, USA 26 [71], [76]

Hsinchu, Taiwan 71 [62]

a reference geoid. Issues such as ocean topography and
local density fluctuations must also be incorporated for
an exact treatment. Here, our goal is to obtain initial es-
timates of the sensitivities to linearized coefficients that
are implied by published experimental limits on Lorentz
violation. For this purpose, it suffices to adopt the values
of the laboratory elevations above mean sea level listed
in Table IV, from which ∆φ and hence approximate con-
straints on linearized coefficients can be deduced. Future
experimental analyses that incorporate detailed precision
techniques to determine relative elevations and hence ∆φ
can be expected to sharpen substantially the results re-
ported in this work.
Published results from the various experiments con-

sidered here are typically expressed in the Sun-centered
frame [5] and reported using a standard set of tilde co-
efficients, which are linear combinations of coefficients
naturally appearing in the nonrelativistic limit and are
defined in Minkowski spacetime with gravitational effects
disregarded. For minimal terms involving operators of
mass dimension d ≤ 4, these standard tilde combina-
tions are summarized in Table P48 of Ref. [58]. Gener-
alizations of some of these have been found that include
also coefficients controlling nonminimal operators with
d ≥ 5 [55, 98–101]. However, in the present context with
gravitational couplings, the published results expressed
in terms of standard tilde coefficients must be converted
using Eq. (20) into expressions involving the linearized



11

TABLE V. Definitions for tilde combinations of linearized coefficients.

Coefficient Combination

(̃bL)JΣΣ (bL)JΣΣ − 1
2
ǫJKL(HL)KLΣΣ +m

(
(dLh )

JTΣΣ − 1
2
ǫJKL(gLh )

KLTΣΣ
)

(̃bL)TΣΣ (bL)TΣΣ −m(gLh )
XY ZΣΣ

(̃bL)∗JΣΣ (bL)JΣΣ + 1
2
ǫJKL(HL)KLΣΣ −m

(
(dLh )

JTΣΣ + 1
2
ǫJKL(gLh )

KLTΣΣ
)

(c̃L)−ΣΣ m
(
(cLh )

XXΣΣ − (cLh )
Y YΣΣ

)

(c̃L)QΣΣ m
(
(cLh )

XXΣΣ + (cLh )
Y YΣΣ − 2(cLh )

ZZΣΣ
)

(c̃L)JΣΣ m|ǫJKL|(cLh )
KLΣΣ

(c̃L)TJΣΣ m
(
cLh )

TJΣΣ + (cLh )
JTΣΣ

)

(c̃L)TTΣΣ m(cLh )
TTΣΣ

(d̃ L)±ΣΣ m
(
(dLh )

XXΣΣ ± (dLh )
Y YΣΣ

)

(d̃ L)QΣΣ m
(
(dLh )

XXΣΣ + (dLh )
Y YΣΣ − 2(dLh )

ZZΣΣ − (gLh )
Y ZXΣΣ − (gLh )

ZXYΣΣ + 2(gLh )
XYZΣΣ

)

(d̃ L)XYΣΣ m
(
(dLh )

XYΣΣ + (dLh )
YXΣΣ − (gLh )

ZXXΣΣ + (gLh )
ZY YΣΣ

)

(d̃ L)YZΣΣ m
(
(dLh )

Y ZΣΣ + (dLh)
ZY ΣΣ − (gLh )

XY YΣΣ + (gLh )
XZZΣΣ

)

(d̃ L)ZXΣΣ m
(
(dLh )

ZXΣΣ + (dLh )
XZΣΣ − (gLh )

Y ZZΣΣ + (gLh )
YXXΣΣ

)

(d̃ L)JΣΣ m
(
(dLh )

TJΣΣ + 1
2
(dLh )

JTΣΣ
)
+ 1

4
ǫJKL(HL)KLΣΣ

(H̃L)XTΣΣ (HL)XTΣΣ −m
(
(dLh )

ZYΣΣ − (gLh )
XTTΣΣ − (gLh )

XY YΣΣ
)

(H̃L)Y TΣΣ (HL)Y TΣΣ −m
(
(dLh )

XZΣΣ − (gLh )
Y TTΣΣ − (gLh )

Y ZZΣΣ
)

(H̃L)ZTΣΣ (HL)ZTΣΣ −m
(
(dLh )

YXΣΣ − (gLh )
ZTTΣΣ − (gLh )

ZXXΣΣ
)

(g̃L)TΣΣ (bL)TΣΣ +m
(
(gLh )

XY ZΣΣ − (gLh )
Y ZXΣΣ − (gLh )

ZXYΣΣ
)

(g̃L)cΣΣ m
(
(gLh )

XY ZΣΣ − (gLh )
ZXYΣΣ

)

(g̃L)QΣΣ m
(
(gLh )

XTXΣΣ + (gLh )
Y TY ΣΣ − 2(gLh )

ZTZΣΣ
)

(g̃L)−ΣΣ m
(
(gLh )

XTXΣΣ − (gLh )
Y TY ΣΣ

)

(g̃L)TJΣΣ m|ǫJKL|(gLh )
KTLΣΣ

(g̃L)JKΣΣ m
(
(gLh )

JTTΣΣ + (gLh )
JKKΣΣ

)
, (no K sum, J 6= K)

(g̃L)DJΣΣ (bL)JΣΣ +mǫJKL
(
(gLh )

KTLΣΣ + 1
2
(gLh )

KLTΣΣ
)

coefficients in Table II instead. The relevant combina-
tions of the latter that appear in the analysis to follow
are defined in Table V. Note that in this table J , K,
L range over the values X , Y , Z. Each row of the ta-
ble contains the generalized tilde coefficient followed by
its expression in terms of the linearized coefficients ap-
pearing in Table II. The notation and definitions for the
generalized tilde coefficients parallel those for the stan-
dard tilde coefficients. Differences include the addition of
the indices ΣΣ representing the sum over TT , XX , Y Y ,
and ZZ that emerges from the expansion (20), and sign
changes arising from index positions and the convention
for the metric signature.

We remark in passing that the tilde coefficient (̃bL)JΣΣ

is proportional to the spin-dependent nonrelativistic co-
efficient (kNR

σφ )J ,

(̃bL)JΣΣ = − 1
2 (k

NR
σφ )J . (21)

No other coefficient in Table V enjoys a simple relation-
ship like this. The expression (21) emerges as follows. In
a uniform gravitational field, restricting the nonrelativis-
tic hamiltonian H given by Eq. (4) to terms without de-
pendence on the 3-momentum ~p and without derivatives

of the potential φ retains only the perturbative correc-
tions involving the product (kNR

φ )φ in Hφ and (kNR
σφ )Jφ

in Hσφ. The latter combination couples to the spin σJ .
However, in the nonrelativistic limit in Minkowski space-
time, the coupling to σJ is governed by the standard tilde

coefficient b̃J . In approximately flat spacetime, this co-
efficient acquires a dependence on φ given by Eq. (20).
Comparing this dependence to the product (kNR

σφ )Jφ then

reveals the relationship (21). Note that a similar line of
reasoning suggests that kNR

φ is related to a combination

(ãL)TΣΣ of coefficients, which we can define as

(ãL)TΣΣ ≡ − 1
2k

NR
φ . (22)

The corresponding combination of coefficients does
indeed appear in the nonrelativistic hamiltonian in
Minkowski spacetime [54], but it produces no measurable
effects in that context because it amounts to an unob-
servable redefinition of the zero of energy or, equivalently,
because it can be removed from the theory via field redef-
initions [29]. The observability of kNR

φ is thus confirmed
to be a consequence of the coupling to the gravitational
potential, the presence of which restricts the applicability
of field redefinitions [2].
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TABLE VI. Constraints on tilde combinations of linearized coefficients for electrons, protons, and neutrons.

Coefficient Electron Ref. Proton Ref. Neutron Ref.

|(̃bL)XΣΣ| < 3× 10−15 GeV [62],[71] < 8× 10−16 GeV [72],[77],[82]* < 6× 10−19 GeV [72],[78]

|(̃bL)YΣΣ| < 3× 10−15 GeV [62],[71] < 8× 10−16 GeV [72],[77],[82]* < 6× 10−19 GeV [72],[78]

|(̃bL)ZΣΣ| < 7× 10−14 GeV [62],[71] < 2× 10−11 GeV [75],[85] < 5× 10−5 GeV [102]

|(̃bL)TΣΣ| < 6× 10−2 GeV [71],[79]*,[80]* – < 6× 105 GeV [63],[80]*

|(̃bL)∗XΣΣ| – – –

|(̃bL)∗YΣΣ| – – –

|(̃bL)∗ZΣΣ| – – –

|(c̃L)−ΣΣ| < 1× 10−10 GeV [66]*,[88] < 4× 10−9 GeV [65],[74],[84]*,[87]* < 1× 10−13 GeV [54]*,[60],[74]

|(c̃L)QΣΣ| < 5× 10−11 GeV [67],[89]* < 1× 103 GeV [65],[81],[87]* < 1× 10−5 GeV [70]*,[83]

|(c̃L)XΣΣ| < 6× 10−11 GeV [66]*,[88] < 3× 10−9 GeV [65],[74],[84]*,[87]* < 3× 10−13 GeV [54]*,[59],[74]

|(c̃L)YΣΣ| < 7× 10−11 GeV [66]*,[88] < 9× 10−10 GeV [65],[74],[84]*,[87]* < 3× 10−13 GeV [54]*,[59],[74]

|(c̃L)ZΣΣ| < 7× 10−11 GeV [66]*,[88] < 2× 10−9 GeV [65],[74],[84]*,[87]* < 1× 10−13 GeV [54]*,[60],[74]

|(c̃L)TXΣΣ| < 3× 10−11 GeV [88],[89]* < 2× 105 GeV [64]*,[65],[87]* < 1× 103 GeV [70]*,[86]*

|(c̃L)TY ΣΣ| < 1× 10−11 GeV [88],[89]* < 2× 105 GeV [64]*,[65],[87]* < 3× 103 GeV [70]*,[86]*

|(c̃L)TZΣΣ| < 3× 10−11 GeV [66]*,[88] < 2× 105 GeV [64]*,[65],[87]* < 3× 103 GeV [70]*,[86]*

|(c̃L)TTΣΣ| < 1× 10−10 GeV [68]*,[89]* < 4× 108 GeV [65],[73],[87]* < 7× 10−3 GeV [104]

|(d̃ L)+ΣΣ| < 6× 10−10 GeV [69]*,[71] < 2× 105 GeV [80]*,[82]* –

|(d̃ L)−ΣΣ| – – –

|(d̃ L)QΣΣ| < 7× 10−10 GeV [69]*,[71] < 6× 105 GeV [80]*,[82]* –

|(d̃ L)XYΣΣ| < 5× 10−11 GeV [69]*,[71] – –

|(d̃ L)YZΣΣ| – – –

|(d̃ L)ZXΣΣ| < 5× 10−10 GeV [69]*,[71] – –

|(d̃ L)XΣΣ| < 1× 10−9 GeV [54]*,[61],[69]* – –

|(d̃ L)YΣΣ| < 1× 10−10 GeV [54]*,[61],[69]* – –

|(d̃ L)ZΣΣ| – < 2× 10−3 GeV [103] < 4× 10−2 GeV [102]

|(H̃L)XTΣΣ| – – –

|(H̃L)Y TΣΣ| – – –

|(H̃L)ZTΣΣ| – – –

|(g̃L)TΣΣ| – – –

|(g̃L)cΣΣ| – – –

|(g̃L)QΣΣ| – – –

|(g̃L)−ΣΣ| – – –

|(g̃L)TXΣΣ| – – –

|(g̃L)TY ΣΣ| – – –

|(g̃L)TZΣΣ| – – –

|(g̃L)XYΣΣ| – – –

|(g̃L)YXΣΣ| – – –

|(g̃L)ZXΣΣ| – – –

|(g̃L)XZΣΣ| – – –

|(g̃L)Y ZΣΣ| – – –

|(g̃L)ZYΣΣ| – – –

|(g̃L)DXΣΣ| < 2× 10−8 GeV [54]*,[61],[76]* – –

|(g̃L)DYΣΣ| < 2× 10−8 GeV [54]*,[61],[76]* – –

|(g̃L)DZΣΣ| – < 4× 10−3 GeV [103] < 2× 10−2 GeV [102]
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In addition to using published laboratory experiments
to deduce constraints from Eq. (20), we can also con-
sider astrophysical observations. These have been used
by Altschul to deduce a variety of constraints in the
absence of gravity [66, 68–70, 89]. To compare these
with laboratory results via Eq. (20) requires knowledge
of the difference ∆φ between the gravitational potential
on astrophysical scales and the potential in the labora-
tory. The astrophysical sources of interest here include
pulsars and supernova remnants within the Milky Way,
along with active galaxies, quasars, and blazars within
and outside the Virgo supercluster. These sources span
a substantial range of distance scales, so the relevant
gravitational potentials are disparate. Moreover, some
of the coefficient constraints are derived from multiple
sources, while some involve propagation across significant
distances. Establishing definitive values for the relevant
gravitational potentials is therefore challenging. Here,
we note that contributions to the gravitational poten-
tial φ⋆ on these astrophysical scales typically are of order
φ⋆ ≃ −5 × 10−6, substantially exceeding the contribu-
tions φ⊕ from the Earth and φ⊙ from the Sun at the lab-
oratory location, φ⊕ ≃ −7× 10−10 and φ⊙ ≃ −1× 10−8.
To place conservative bounds on coefficients via compar-
isons using Eq. (20), we can therefore adopt the value
∆φ ≃ 1 × 10−8. This corresponds to assuming cancella-
tion of the contributions φ⋆ at the astrophysical source
and at the laboratory. The cancellation is unlikely to be
exact in reality, so a detailed investigation of the potential
difference between any given astrophysical source and an
Earth-based laboratory could well lead to improvements
of one or two orders of magnitude on the conservative
constraints derived here.

With the above framework in place, using Eq. (20) to
perform comparisons among the various laboratory and
astrophysical results yields bounds on many of the tilde
coefficients defined in Table V. Table VI displays con-
straints on these combinations of linearized coefficients
in the electron, proton, and neutron sectors. The first
column of the table lists the tilde coefficients. The second
column contains the constraints deduced for the tilde co-
efficients in the electron sector, and the third column lists
the references from which the constraints are deduced.
The fourth and fifth columns contain analogous informa-
tion for the proton sector, while the last two columns
concern the neutron sector.

In Table VI, all constraints accompanied by two or
more references are obtained by comparison of two pub-
lished limits as described above. Where three or more
references are cited, a combination of experimental re-
sults and theoretical analysis has been used to establish
the two published limits adopted in deducing our con-
straints. References in the table with an asterisk denote
works containing results deduced on theoretical grounds,
as opposed to direct experimental measurements. A few
constraints listed in the table are accompanied by a single
experimental reference [102–104], and these are derived
using techniques described in later sections of the present

TABLE VII. Constraints on linearized coefficients for muons.

Coefficient Constraint Ref.

|(bL)XΣΣ| < 2× 10−10 GeV [92],[94]

|(bL)YΣΣ| < 2× 10−10 GeV [92],[94]

|(bL)ZΣΣ| < 6× 10−9 GeV [90],[91]*,[93],[94]

|(cL)TTΣΣ| < 9× 105 GeV [90],[95]*,[96]*

paper. Note that many coefficients are unconstrained to
date by potential-difference comparisons. Relevant re-
sults from a single elevation are available for many of
them [58], but interpretation in the present context must
await second measurements at other laboratories.

In addition to independent results at different eleva-
tions, future prospects for improving the constraints in
Table VI could include the use of a network of time-
synchronized clocks to provide simultaneous monitor-
ing for the corresponding potential-dependent effects
[105, 106]. For example, the Global Network of Optical
Magnetometers to search for Exotic physics (GNOME)
is geographically spread and encompasses multiple eleva-
tions [105]. Another option is to use space-based clocks,
which offer several advantages in searches for Lorentz vi-
olation [36, 107]. Comparisons of clocks on a space plat-
form to ones on the surface of the Earth involve larger
potential differences than attainable in ground-based lab-
oratories and can therefore be expected to yield substan-
tially improved sensitivities to the linearized coefficients.

The muon sector offers another interesting source of
constraints on beyond-Riemann physics. An analysis
along the lines performed above for electrons, protons,
and neutrons can be performed to obtain constraints on
linearized coefficients for muons. Table VII displays the
results. Each row of this table provides the relevant lin-
earized coefficient and the constraint obtained, followed
by the references used in deducing it. The table has com-
paratively few entries, reflecting in part the paucity of
measurements at different elevations. The experiments
cited in the table involve both boosted and nonrelativis-
tic muons, so a nonrelativistic treatment in terms of the
tilde coefficients is impractical. Instead, constraints can
be deduced on individual linearized coefficients, as dis-
played in the table. With the successful operation of the
Fermilab g−2 experiment [108], future improvements on
these results can be envisaged.

The techniques adopted here to obtain constraints on
linearized coefficients for electrons, protons, neutrons,
and muons could in principle be extended to other
species. In many cases, sufficient data are lacking to ob-
tain results, but substantial datasets are available for cer-
tain species such as quarks and neutrinos [58]. However,
treating these species systematically requires considera-
tion of flavor-changing effects and hence a extension of
the theoretical framework presented here. This line of in-
vestigation would be of definite interest but lies beyond
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our present scope.

IV. GRAVITATIONAL ACCELERATIONS

The unconventional contributions to the linearized La-
grange density LL

ψ in Table I can modify the accelera-
tion experienced by a system in a uniform gravitational
field. Experiments comparing the gravitational accelera-
tions of different systems therefore offer the opportunity
to measure the coefficients appearing in the nonrelativis-
tic hamiltonian (4).
Consider first the comparatively simple modification

of the gravitational acceleration provided by the spin-
dipole term with operator ~σ · ~g in the rotation-invariant
hamiltonian (14). This term is governed by the coeffi-
cient (kNR

σg )′w and can be studied in experiments com-
paring the spin-precession frequencies of different atomic
species [109–111] or via a spin-torsion pendulum [112].
Constraints on (kNR

σg )′w ≡ (kNR
σg )wj

j/3 for electrons, pro-
tons, and neutrons are tabulated in Ref. [111] as

(kNR
σg )′e < 10, (kNR

σg )′p < 2× 105, (kNR
σg )′n < 103. (23)

The implications of these constraints for the linearized
coefficients appearing in the Lagrange density LL

ψ given
in Table I can be seen from the correspondence provided
in Table III. Note that only the trace contributions from
(kNR
σg )jkw are relevant for (kNR

σg )′w, so the terms propor-

tional to ǫjkl in Table III play no role. Note also that the
remaining linearized coefficients contained in (kNR

σg )′w are
otherwise unconstrained by the experiments considered
in this work.
In the remainder of this section, we consider compar-

isons of the free-fall properties of Sr atoms [102], Rb
atoms [103], and antimatter [113–116]. We generalize the
techniques of Refs. [54, 55] to analyze these types of ex-
periments and use existing results to extract constraints
on nonrelativistic coefficients.
Consider a generic atom of mass matom formed from

Ne electrons, Np protons, and Nn neutrons. The hamil-
tonian Hatom governing the gravitational acceleration of
the atom contains a conventional piece and a correction
δH arising from the unconventional terms in Table I that
can be expressed as a sum of the perturbations for each
particle,

δH =

Ne∑

N=1

δHe,N +

Np∑

N=1

δHp,N +

Nn∑

N=1

δHn,N . (24)

In the nonrelativistic limit and a uniform gravitational
field, each component hamiltonian δHw,N involves the
explicit forms (6)-(12) for the corresponding particle,
containing coefficients labeled with the appropriate flavor
w = e, p, n.
In free fall, the motion of each component particle w

can be separated into two parts, the motion with the
atom and the motion relative to the atom. The positions

~zw and the momenta ~pw of the particles can therefore be
written as

~zw = ~z atom
w + ~z rel

w , ~pw = ~p atom
w + ~p rel

w . (25)

In terms of the position ~zatom and momentum ~patom of
the atom,

~z atom
w = ~zatom,

~p atom
w

mw
=

~patom
matom

, (26)

where mw is the mass of particle w. In the experi-
ments considered here, the motion of the atom can be
taken along the laboratory z axis, so ~zatom = zatomẑ and
~patom = patomẑ. The size of the atom is much smaller
than the distance travelled, so ~zw ≈ ~z atom

w = ~zatom. Also,
the speed of the atom is of order 10−9, so ~p atom

w is neg-
ligible and ~pw ≈ ~p rel

w . At leading order, the hamiltonian
Hatom therefore takes the form

Hatom ≈ p2atom
2matom

+matomgzatom+δH(~z atom
w , ~p rel

w ), (27)

To derive the effective gravitational acceleration of the
atom, we apply the Ehrenfest theorem on the atomic mo-
tion to obtain

matom
d2

dt2
〈zatom〉 =

d

dt
〈patom〉 = −i〈[patom, Hatom]〉,

= −matomg − i〈[patom, δH ]〉, (28)

where the expectation values are taken in the atomic
state and we use the identity [~zatom, ~p

rel
w ] ≡ 0. Since the

component hamiltonians Hg and Hσg in Eqs. (10) and
(12) are independent of the position and [~patom, ~p

rel
w ] ≡ 0,

the only corrections to the gravitational acceleration arise
from Hφ and Hσφ in Eqs. (6) and (8). Moreover, the
parity symmetry of the relative motion guarantees the
vanishing of the expectation of odd powers of ~p rel

w . The
operator correcting the free-fall gravitational acceleration
of the atom can therefore be taken as

−i[patom, δH ] =
∑

w,Nw

[
(kNR
φ )w + (kNR

φpp)
jk
w p

j
wp

k
w

+(kNR
σφ )jwσ

j
w + (kNR

σφpp)
jkl
w σjwp

k
wp

l
w

]
g, (29)

which sums over contributions from the Nw particles of
species w. The first two terms on the right-hand side
of this expression are independent of spin, so they can
be neglected in experiments comparing the gravitational
acceleration of an atom in different spin states. The last
two terms are spin dependent and hence can be neglected
in experiments involving unpolarized atoms. Note that
in typical atoms the expectation values of the momen-
tum squared are of order [54] 〈~p 2〉e ≃ 10−11 GeV2 and
〈~p 2〉p ≈ 〈~p 2〉n ≃ 10−2 GeV2, so the contributions from
electrons to the terms quadratic in momenta can be ne-
glected in what follows.
To determine the expectation value of the operator

(29), suppose the atom is in the state |α, F,mF 〉, where
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F is the quantum number for the total angular momen-
tum and mF is the azimuthal quantum number. We
can then decompose the right-hand side of the operator
(29) into combinations of irreducible tensor operators and
evaluate the expectation values using the Wigner-Eckart

theorem [117]. For a rank-r tensor operator T
(r)
q with

q = −r, . . . r, the expectation value can be written in the
form

〈α, F,mF |T (r)
q |α, F,mF 〉

=
〈F,mF |r, q, F,mF 〉
〈F, F |r, q, F, F 〉 〈α, F, F |T (r)

q |α, F, F 〉, (30)

where 〈F,mF |r, q, F,mF 〉 and 〈F, F |r, q, F, F 〉 are

Clebsch-Gordan coefficients. It follows that 〈T (r)
q 〉

vanishes for q 6= 0 or r > 2F .
Inspection of Eq. (29) reveals that it contains spin-

dependent tensor operators with rank 1 ≤ r ≤ 3. The
q = 0 components of these operators are

T
(1)
0 ⊃ σz , σzpjpj , σjpjpz,

T
(2)
0 ⊃ (σxpy − σypx)pz,

T
(3)
0 ⊃ σzpxpx + σzpypy

+2σxpxpz + 2σypypz − 2σzpzpz. (31)

Except for the rank-three case, these operators already
appear in the Minkowski-spacetime treatment of clock-
comparison experiments [54]. In any given experiment
involving a specific atom, one or more of these opera-
tors may have vanishing expectation value. Any nonzero
expectation values can be expected to produce modifica-
tions of the gravitational acceleration.
The above analysis is performed in the standard labo-

ratory frame, which is noninertial. As described in Sec.
II, our focus here is on unconventional effects that pre-
serve translation invariance in the Sun-centered frame [5],
which over a time scale large compared to experimental
data acquisition can be taken as an approximately in-
ertial frame. The nonrelativistic coefficients appearing
in the operator (29) are therefore constant in the Sun-
centered frame, and hence in the noninertial laboratory
frame they appear to vary with the local sidereal time
T⊕ and the laboratory colatitude χ. The explicit form
of the coefficient dependence on time can be obtained by
performing the rotation (1) from the laboratory frame to
the Sun-centered frame. The structure of the operators

(31) then reveals that the measured gravitational acceler-
ations in experiments with atoms can display oscillations
with sidereal time at harmonics up to third order in the
sidereal frequency ω⊕.

A. Sr atoms

We consider first an experiment [102] performed to
compare the gravitational accelerations of two isotopes
of strontium atoms having different spins, the spin-9/2
fermion 87Sr and the spin-zero boson 88Sr. The experi-
ment measured the gravitational accelerations via the de-
localization of atomic matter waves in a vertical optical
lattice. The laboratory is located at colatitude χ ≃ 46.2◦.
For present purposes, the atoms can be modeled us-

ing standard techniques [54, 55]. The electrons in both
87Sr and 88Sr form a closed shell. In the Schmidt model
[56, 57], the spin I = 9/2 of the 87Sr nucleus is associ-
ated with an unpaired valence neutron, while all nucleons
in the 88Sr nucleus are paired. Any spin-dependent ef-
fects on the gravitational response of the two isotopes can
therefore be assigned to the spin I of the 87Sr nucleus.
The total angular momentum F of 87Sr is F = I =

9/2, so the atomic states of 87Sr can be denoted as
|α, I = 9/2,mI〉, where α represents the radial part of
the wavefunction and mI = −I,−I + 1, . . . , I is the spin
projection along ẑ. The orbital angular momentum L of
the 87Sr nucleus is found to be L = 4 [118], so we can
identify I = L + 1/2. The expectation values of the ir-
reducible tensor operators (31) in the state |α, I, I〉 can
then be evaluated as

〈σz〉 = 1, 〈σzpjpj〉 = 〈~p 2〉, 〈σjpjpz〉 = 1

2L+ 3
〈~p 2〉,

〈T (2)
0 〉 = 0, 〈T (3)

0 〉 = 2L

2L+ 3
〈~p 2〉. (32)

Note that the rank-two tensor operator provides no con-
tribution to the gravitational acceleration.
Combining the results (32) with the Clebsch-Gordan

coefficients (30) enables calculation of the expectation
values of the operator (29) correcting the gravitational
acceleration. Working in the laboratory frame, we find
that the spin-dependent correction gSr,σ to the effective
gravitational acceleration gSr of an 87Sr atom polarized
in the state |α, I,mI〉 is given by

gSr,σ
g

= − mI

mSr

{
2
9 (k

NR
σφ )zn +

[
2
27 (k

NR
σφpp)

zjj
n + 1

99 (k
NR
σφpp)

jjz
n

]
〈~p 2〉n

+
20m2

I − 293

6930

[
(kNR
σφpp)

zxx
n + (kNR

σφpp)
zyy
n + 2(kNR

σφpp)
xxz
n + 2(kNR

σφpp)
yyz
n − 2(kNR

σφpp)
zzz
n

]
〈~p 2〉n

}
,

(33)

where mSr = 80.9 GeV is the mass of the 87Sr atom, and repeated j indices indicate summation over the spa-
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tial coordinates j = x, y, z in the laboratory frame. Note
that the identity (9) is used in deriving this result. Note
also that the appearance of nonrelativistic coefficients
only in the neutron sector is a consequence of adopt-
ing the Schmidt model. A more detailed nuclear model
for 87Sr might reveal also dependence on nonrelativistic
coefficients in the proton sector, but attempting this lies
beyond our present scope.
The nonrelativistic coefficients appearing in Eq. (33)

are expressed in the laboratory frame and therefore os-
cillate with the local sidereal time T⊕. The explicit de-
pendence on T⊕ can be displayed by transforming to the
Sun-centered frame using the rotation (1). Binning mea-
surements of the effective gravitational acceleration gSr in
sidereal time could therefore provide a signal of effects be-
yond Riemann geometry. The oscillations can contain up
to third harmonics of the Earth’s sidereal frequency ω⊕,
and each harmonic contains information about different
combinations of coefficients. Here, for purposes of com-
parison with the reported results [102], we treat the ex-
perimental data as averaged over sidereal time. A reanal-
ysis of the experimental data incorporating time-stamp
information would yield additional information and be of
definite interest.
The experimental analysis in Ref. [102] reported the

measurement of a parameter k = (0.5 ± 1.1) × 10−7,
defined via a phenomenological correction to the grav-
itational potential of the form φ(z) = (1 + β + kmI)gz,
where β is a species-dependent constant. This expression
contains only a term linear in mI , whereas the result (33)
contains also a cubic term in mI . Since the experimen-
tal measurement used unpolarized 87Sr atoms, the cubic
term can be weighted equally over mI and replaced with
its linear approximation. Performing the match yields a
bound on a combination of nonrelativistic coefficients in
the neutron sector. Given the comparatively small size of
the expectation value 〈~p 2〉n, it is convenient and standard
practice [58] to separate the bound into two pieces, one
assuming only (kNR

σφ )Jn is nonzero and the other assum-

ing only (kNR
σφpp)

JKL
n is nonzero. In the canonical Sun-

centered frame, we thereby find the constraints

∣∣∣(kNR
σφ )Zn

∣∣∣ < 1× 10−4 GeV (34)

and
∣∣∣(kNR

σφpp)
ZJJ
n − 0.4(kNR

σφpp)
ZZZ
n

∣∣∣ < 5× 10−2 GeV−1 (35)

at the 95% confidence level. Here, repeated J indices de-
note summation over the spatial coordinates J = X,Y, Z
in the Sun-centered frame.
Using the expressions in Table III, the above con-

straints on nonrelativistic coefficients can be converted
into bounds on the linearized coefficients appearing in
Table II. These in turn imply constraints on the terms
in the Lagrange density given in Table I. We can also ex-
press the results in terms of the tilde coefficients defined
in Table V. This yields the constraints displayed in Table

VI associated with Ref. [102]. The sensitivities achieved
are seen to be complementary to those derived in Sec. III
from comparisons of data at different potentials.

B. Rb atoms

Next, we turn to an experiment [103] comparing the
gravitational accelerations of 87Rb atoms with different
projections mF of the total angular momentum F . The
experiment used an atom interferometer oriented verti-
cally to compare the gravitational accelerations of the hy-
perfine states |F = 1,mF = +1〉 and |F = 1,mF = −1〉.
The laboratory is at colatitude χ ≃ 59.4◦.
The 87Rb atom has a single valence electron in the

52S1/2 level, so the total electronic angular momentum
is J = 1/2 with orbital angular momentum L = 0, so
J = L+ 1/2. The nucleus has spin I = 3/2 with orbital
angular momenta L = 1 [119], so I = L + 1/2. In the
Schmidt model, the nuclear properties are assigned to a
single valence proton. This is expected to be a compara-
tively accurate description for 87Rb because the nucleus
contains 50 neutrons, which is a magic number.
Since the angular momenta for the electrons and nu-

cleus are good quantum numbers, we can express the
atomic state as the tensor product of two parts, one
for the valence electron and one for the Schmidt proton
[54, 55]:

|α, F,mF 〉 = 〈F,mF |J,mJ , I,mI〉|α′, J,mJ〉|α′′, I,mI〉,
(36)

where 〈F,mF |J,mJ , I,mI〉 is a Clebsch-Gordan coeffi-
cient and α, α′, α′′ denote the radial dependences. Both
the valence electron and the Schmidt proton have total
angular momentum L+1/2, so evaluation of the expecta-
tion values of the irreducible tensor operators (31) in the
component wavefunctions again yields results of the form
(32). We see that the rank-two tensor operators in the
electron and proton sectors have no effect on the grav-
itational acceleration due to the vanishing (32) of their
expectation values, while the rank-three tensor operators
have r > 2F and so according to the Wigner-Eckart the-
orem cannot contribute either.
Collecting the results and working in the laboratory

frame, we obtain the spin-dependent correction gRb,σ

to the effective gravitational acceleration gRb of a 87Rb
atom in the state with azimuthal quantum number mF ,

gRb,σ

g
= − mF

mRb

{
5
6 (k

NR
σφ )zp − 1

2 (k
NR
σφ )ze

+
[

5
18 (k

NR
σφpp)

zjj
p + 1

12 (k
NR
σφpp)

jjz
p

]
〈~p 2〉p

}
, (37)

where mRb = 80.9 GeV is the mass of the 87Rb atom.
Repeated j indices denote summation over the spatial
coordinates j = x, y, z in the laboratory frame, and the
identity (9) has again been used.
By virtue of the Earth’s rotation, the nonrelativistic

coefficients in the result (37) vary harmonically with the
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local sidereal time T⊕. Conversion to the Sun-centered
frame can be implemented using the rotation (1). Ex-
tracting the maximum information about the nonrela-
tivistic coefficients in the Sun-centered frame therefore
requires measuring both the time-independent gravita-
tional acceleration and its variations with the Earth’s
sidereal frequency ω⊕. For present purposes, we view
the published result as averaged over sidereal time. A
search for sidereal dependence in the experimental data
would permit measurements of additional nonrelativisitc
coefficients and be well worthwhile.
The analysis in Ref. [103] yielded a measurement of

the Eötvös ratio [120] η = (0.2± 1.2)× 10−7. Using the
result (37), we find

η ≡ 2
gRb(mF = −1)− gRb(mF = +1)

gRb(mF = −1) + gRb(mF = +1)

≈ 2
gRb,σ(mF = −1)

g
(38)

at leading order in nonrelativistic coefficients. Matching
to the experimental result provides a constraint. Follow-
ing standard procedure [58], we express the constraint
first under the assumption that only the coefficients
(kNR
σφ )Jw are nonzero, and then assuming only (kNR

σφpp)
JKL
w

are nonzero. Evaluated in the Sun-centered frame, this
gives

∣∣∣(kNR
σφ )Zp − 0.6(kNR

σφ )Ze

∣∣∣ < 2× 10−5 GeV (39)

and
∣∣∣(kNR

σφpp)
ZJJ
p + 0.3(kNR

σφpp)
JJZ
p

∣∣∣ < 7× 10−3 GeV−1 (40)

at the 95% confidence level. Repeated J indices denote
summation over spatial indices J = X,Y, Z in the Sun-
centered frame.
Note that these results from 87Rb involve nonrelativis-

tic coefficients in the electron and proton sectors, whereas
those from 87Sr discussed in the previous subsection in-
volve coefficients in the neutron sector. The two exper-
iments are thus complementary in their coverage of the
coefficient space. Also, in parallel with the treatment of
results from 87Sr, the above constraints can be converted
into bounds on linearized coefficients using Table III and
thereby on the terms in the Lagrange density given by Ta-
bles I and II. Constraints on the tilde coefficients defined
in Table V can also be obtained, and these are assigned to
the entries for Ref. [103] listed in Table VI. The prospects
are excellent for future improved measurements of these
spin-gravity couplings using recent developments in Rb
interferometry [121, 122].

C. Antimatter

Another interesting option is to compare the gravita-
tional accelerations of matter and antimatter. Several

experimental collaborations are developing tests to com-
pare the free fall of hydrogen H and antihydrogen H [113–
116]. On the theory side, the CPT transformation is for-
mally defined in Minkowski spacetime [123] but can be
extended operationally to the gravitational context [2],
and possible manifestations of CPT violation include dif-
ferent gravitational responses of matter and antimatter.
The dominant spin-independent effects on the gravita-
tional couplings of H and H have been determined for
spontaneous violations of local Lorentz and diffeomor-
phism symmetries [36, 99]. In some scenarios, the effects
cancel for H but add for H, leading to measurable and
potentially striking differences between the gravitational
accelerations of H and H. In this subsection, we use the
techniques developed in the present work to provide a
treatment of explicit violations for H and H, including
spin-gravity couplings.

Consider first H. Since the nucleus is a single proton,
no relative motion occurs and so 〈~p 2〉p = 0. The operator
(29) correcting the gravitational acceleration can there-
fore be restricted to pj-independent terms, and in the
laboratory frame the only relevant irreducible operators
are the identity and σz. The ground state has J = 1/2
and L = 0 for the electron and I = 1/2, L = 0 for
the proton. Working in the Zeeman limit where the total
angular momentum F is a good quantum number, we de-
note the atomic state as |α, F,mF 〉 with F = 0 or F = 1.
In this state, the effective gravitational accleration of H
in the laboratory frame is found to be

gH

g
= 1− 1

mH

∑

w=e,p

(
(kNR
φ )w +mF (k

NR
σφ )zw

)
, (41)

where mH ≃ 0.939 GeV is the mass of the H atom.
This expression contains both spin-independent and spin-
dependent terms.

A similar derivation holds for H. The coefficients in
the operator (29) must now be replaced with those ap-
propriate for antiparticles, as described in Sec. II C. In
particular, the coefficients of interest become (kNR

φ )w and

(kNR
σφ )jw, where w denotes the antiparticles e ≡ e+ and p.

The calculation otherwise proceeds as before, yielding the
effective gravitational acceleration of H in the laboratory
frame as

gH

g
= 1− 1

mH

∑

w=e,p

(
(kNR
φ )w +mF (k

NR
σφ )zw

)
, (42)

where the mass mH of the H atom is taken as mH at
leading order.

To parametrize the difference between the gravita-
tional accelerations of H and H, we adopt the Eötvös
ratio [120] defined as

η ≡ 2
gH − gH
gH + gH

. (43)
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Applying the results (41) and (42), we find

η = − 1

mH

∑

w=e,p

(
(kNR
φ )w − (kNR

φ )w

+(mF,H(k
NR
σφ )zw −mF,H(k

NR
σφ )zw

)
(44)

in the laboratory frame. We see that comparisons of
the free fall of H and H in different hyperfine states can
produce different results for the relative gravitational ac-
celerations. In principle, measurements of distinct com-
binations of coefficients could thereby be obtained.
If the H and H atoms are unpolarized, the Eötvös ratio

contains only spin-independent terms, reducing to

η = − 1

mH

(
∆(kNR

φ )ee +∆(kNR
φ )pp

)

= − 4

mH

(
(aL)TΣΣ

e −m(eLh)
TΣΣ
e +m2(a

(5)L
h )TTTΣΣ

e

+(aL)TΣΣ
p −m(eLh)

TΣΣ
p +m2(a

(5)L
h )TTTΣΣ

p

)
. (45)

In this derivation, the result (17) has been used. Also,
the linearized coefficients appearing here are expressed
directly in the Sun-centered frame, as they are all invari-
ant under the rotation (1).
More generally, if both the H and the H atoms are

in the same state |α, F,mF 〉, then spin-gravity couplings
contribute to the Eötvös ratio as well. The rotation (1)
to the Sun-centered frame then generates dependence on
the local sidereal time T⊕ and the colatitude χ of the
laboratory. We find

η = − 1

mH

∑

w=e,p

(
∆(kNR

φ )ww +mF∆(kNR
σφ )zww

)

= − 1

mH

[
∆(kNR

φ )ee +∆(kNR
φ )pp

+mF

(
∆(kNR

σφ )Zee +∆(kNR
σφ )Zpp

)
cosχ

+mF

(
∆(kNR

σφ )Xee +∆(kNR
σφ )Xpp

)
sinχ cosω⊕T⊕

+mF

(
∆(kNR

σφ )Xee +∆(kNR
σφ )Xpp

)
sinχ sinω⊕T⊕

]
, (46)

which involves zeroth and first harmonics in the Earth’s
sidereal frequency ω⊕. Substitution of the results (17)
and (18) provides an expression in terms of linearized
coefficients appearing in Table II, which could be used to
place constraints on the terms in the Lagrange density
given in Table I.
In the future, techniques for manipulating antihydro-

gen may be extended to heavier antiatoms. Antideu-
terium, which has an antideuteron nucleus, is expected
to be stable and so could provide another option for com-
paring the gravitational accelerations of matter and an-
timatter. Since the nucleons in deuterium undergo rela-
tive motion, contributions to the gravitational accelera-
tion can be expected from all the operators in Eq. (29).
Comparing the gravitational accelerations of deuterium
and antideuterium would therefore provide unique sensi-
tivities to electron, proton, and neutron coefficients con-
trolling matter-gravity and antimatter-gravity couplings.

V. GRAVITATIONAL PHASE SHIFTS

At the quantum level, the propagation of a nonrela-
tivistic particle in a uniform gravitational field can be
described by a Schrödinger equation containing a term
for the gravitational potential energy. As a result, co-
herently split de Broglie waves propagating at different
heights are predicted to acquire a relative quantum phase
shift. In the present context, the unconventional con-
tributions to the linearized Lagrange density LL

ψ in Ta-
ble I generate extra terms in the nonrelativistic hamilto-
nian (4), and these imply that a neutron propagating in
a gravitational potential undergoes an additional phase
shift. In this section, we use results from interferometric
experiments measuring the gravitationally induced phase
shift for neutrons [124–129] to derive some constraints on
nonrelativistic coefficients in the neutron sector.
The original experiment by Colella, Overhauser, and

Werner (COW) [124] used Bragg diffraction in silicon
crystals to measure the relative phases between two
branches of a coherent neutron beam traversing paths
at different heights. The experiment involved unpolar-
ized neutrons, so the spin-dependent operators appear-
ing in the componentsHσφ andHσg of the nonrelativistic
hamiltonian (4) produce no effects. The neutron veloc-
ities in the experiment were nonrelativistic, so contri-
butions from momentum-dependent operators are sup-
pressed and can be neglected. Also, the momentum-
independent operators in the component Hg represent
a position-independent pure potential and so cannot be
measured in the COW experiment. The only relevant
nonrelativistic coefficient in this case is therefore (kNR

φ )n.

Inspection of Eq. (6) shows that it acts to rescale the con-
ventional gravitational potential.
These considerations imply that the effective gravita-

tional acceleration gn of the neutron in the COW exper-
iment can be written as

gn
g

= 1−
(kNR
φ )n

mn
, (47)

where mn = 0.940 GeV is the neutron mass. This ex-
pression is derived in the laboratory frame, but it is a
rotation scalar and so is valid also in the Sun-centered
frame. Note that no sidereal effects appear. The original
experiment measured the gravitational acceleration to an
accuracy of 10%, which implies the estimated constraint
(kNR
φ )n < 1 × 10−1 GeV. However, more recent versions

of the experiment have reached an accuracy of about 1%
[128], corresponding to the constraint

(kNR
φ )n < 1× 10−2 GeV. (48)

The first row of Table III reveals the implications of this
result for linearized coefficients in the Lagrange density
LL
ψ given in Table I. Note that this set of linearized coef-

ficients are unobservable in nongravitational experiments
because they can be removed from the Lagrange density
via field redefinitions [2].
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The above analysis applies to experiments with unpo-
larized neutrons. An interferometric experiment apply-
ing magnetic fields to split a beam of neutrons into two
beams having opposite polarizations and moving along
different paths has been performed with a neutron spin-
echo reflectometer (OffSpec) using the ISIS Neutron and
Muon Source at the Rutherford Appleton Laboratory
[129]. This setup is sensitive to spin-dependent gravi-
tational couplings as well. The beam neutrons are non-
relativistic with comparatively small momenta, so we can
analyze the experiment using momentum-independent
terms in the nonrelativistic hamiltonian (4). The com-
ponents Hg and Hσg are position independent and hence
for fixed initial polarization cannot affect the measured
experimental observables. It follows that we can proceed
using the 2× 2 matrix operator

gspin = g
(
I −

(kNR
φ )n

mn
I −

(kNR
φσ )jn

mn
σj
)

(49)

to describe the gravitational acceleration in spin space.
To gain insight, consider first a scenario with the mag-

netic field along a direction ẑ′ in the standard labora-
tory frame and the initial neutron polarization along an
orthogonal direction x̂′. The initial state can then be
written as |+〉x′ = (|+〉z′ + |−〉z′)/

√
2. After passing

through the interferometer, the neutron is in the final
state (eiφ+ |+〉z′ + eiφ− |−〉z′)/

√
2, where φ+ and φ− are

2 × 2 matrices governing the phase changes in the in-
terferometer. These phase matrices can be obtained by
replacing g in the original calculation with gspin. The
experiment measured the final state in the ±x̂′ direction.
The amplitude A+ for finding this state in the +x̂′ direc-
tion is

A+ = 1√
2

(
〈+|z′+〈−|z′

)
· 1√

2

(
eiφ+ |+〉z′+eiφ− |−〉z′

)
. (50)

In the OffSpec analysis, the corresponding probability P+

was assumed to have the form P+ = (1 + cos∆φeff)/2.
Calculation shows the effective gravitational acceleration
in this scenario is gn,x′ = g

(
1− ((kNR

φ )n+(kNR
σφ )x

′

n )/mn

)
.

Generalizing the above derivation, we find that the effec-
tive gravitational acceleration gn,ŝj for a neutron beam
initially polarized along direction ŝj is

gn,ŝj = g
[
1−

(kNR
φ )n

mn
−

(kNR
σφ )jnŝ

j

mn

]
(51)

in the laboratory frame.
In the OffSpec experiment, the maximum deviation of

gn,ŝj from g was found to be 2.5%. We can therefore
place the constraint

∣∣∣(kNR
φ )n + (kNR

σφ )jnŝ
j
∣∣∣ < 2.5× 10−2 GeV (52)

on nonrelativistic coefficients in the laboratory frame.
This result includes both spin-dependent and spin-
independent effects. The implications for the linearized
coefficients in the Lagrange density LL

ψ given in Table I

can be found using the relationships in Table III. Note
that the coefficient (kNR

φ )n is a scalar under the rotation

(1) and so remains unchanged when transformed to the
Sun-centered frame. However, (kNR

σφ )jn is found to contain
oscillations in the local sidereal time T⊕ at the Earth’s
sidereal frequency. In the Sun-centered frame, where the
coefficient (kNR

σφ )Jn is constant, the oscillations are instead

attributed to the rotation of the initial polarization ŝJ

with the Earth.
Future experiments with the neutron spin-echo spec-

trometer have considerable potential for exploring the
variety of other unconventional contributions to spin-
dependent gravitational effects described by the nonrel-
ativistic hamiltonian (4). For example, one option might
be to use horizontally split beams and compare phase
changes for different initial spin orientations. These
changes are sensitive at leading order to the coefficients
(kNR
σg )jk appearing in Eq. (12).

VI. GRAVITATIONAL BOUND STATES

The nonrelativistic vertical motion of a neutron placed
above a mirror in a uniform gravitational field is governed
by a one-dimensional Schrödinger equation with an infi-
nite potential well. The bound states ψi of the system
are Airy functions, and the lowest eigenenergies Ei are
of order 10−21 GeV [130]. The presence of the unconven-
tional contributions to the linearized Lagrange density
LL
ψ in Table I shifts the energy levels and the transition

frequencies of this system. In this section, we consider
experiments performed to measure the quantum prop-
erties of bouncing neutrons [104, 131] and derive some
constraints from existing experimental results on nonrel-
ativistic coefficients in the neutron sector. Our analysis
complements existing studies of Lorentz violation in this
system [132–134].

A. Critical heights

Each neutron eigenenergy Ei can be associated with a
critical height zi > 0 above the mirror,

Ei = mngzi, (53)

where g is the effective gravitational acceleration of the
neutron and the mirror is taken to be located at z = 0.
The experimental values of the first two critical heights
have been measured [131] as zexp1 = 12.2 ± 1.9 µm and
zexp2 = 21.6 ± 2.3 µm. With conventional gravitational
couplings, the theoretical values for these critical heights
are zth1 = 13.7 µm and zth2 = 24.0 µm. In this subsec-
tion, we determine the corrections to these theoretical
values for the nonrelavistic hamiltonian (4) and use the
experimental measurements to constrain nonrelativistic
coefficients.
Since the components Hg and Hσg of the hamiltonian

(4) are independent of position, they cannot affect the
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critical heights zi. Also, the neutron momenta are small,
so momentum-dependent terms in the hamiltonian can
be omitted. The corrections to the critical heights are
therefore governed by the perturbation

δH = (kNR
φ )n~g · ~z + (kNR

σφ )jnσ
j~g · ~z. (54)

The first term is spin independent, while the second term
depends on the neutron polarization. This perturbation
affects zi through changes both to the eigenenergies Ei
and to the effective gravitational acceleration g of the
neutron.
For the spin-independent term in Eq. (54), we can use

nondegenerate perturbation theory. Including the cor-
rections to both Ei and g, Eq. (53) is modified into

(
mng − (kNR

φ )ng
)
zspin-indepi = Ei − (kNR

φ )ng〈z〉, (55)

where Ei is the unperturbed energy, g is the unper-
turbed gravitational acceleration, and 〈z〉 ≡ 〈ψi|z|ψi〉 =
2Ei/(3mng).
The neutron spin introduces a degeneracy in the unper-

turbed energy levels, which is split by the perturbation
δH . Treating the spin-dependent term in Eq. (54) there-
fore requires degenerate perturbation theory. Diagonal-
ization of the degenerate perturbation can be performed
directly by writing

(kNR
σφ )jnσ

j =

√[
(kNR
σφ )jn

]2
σk̂, (56)

where
[
(kNR
σφ )jn

]2
=
∑
j(k

NR
σφ )jn(k

NR
σφ )jn and σk̂ is the spin

operator in the (kNR
σφ )jn direction. This modifies Eq. (53)

to the form

(
mng∓

√[
(kNR
σφ )jn

]2
g
)
zspin-depi = Ei∓

√[
(kNR
σφ )jn

]2
g〈z〉,
(57)

where the upper and lower signs are for neutrons with
spins aligned along and opposite to the direction (kNR

σφ )jn,
respectively.
Combining the results (55) and (57) reveals that the

modified critical heights are given by

z′i = zi

(
1 +

(kNR
φ )n

3mn
±

√
[(kNR

σφ )jn]2

3mn

)
. (58)

This expression is derived in the laboratory frame, but
the form of the result is observer-rotation independent
and hence is also valid for coefficients (kNR

φ )n and (kNR
σφ )Jn

in the Sun-centered frame. Comparing with the experi-
mental results [131] and taking as usual only one coeffi-
cient nonzero at a time, we can deduce the constraints

∣∣(kNR
φ )n

∣∣ < 8.2× 10−1 GeV,
√[

(kNR
σφ )Jn

]2
< 5.4× 10−1 GeV (59)

at the 95% confidence level. The second of these results
is obtained from the standard deviation of zi.

The expression (58) for the modified critical heights is
frame independent in form and so at first glance might
seem to contain no sidereal variations, despite the depen-
dence of the coefficients (kNR

σφ )jn on T⊕ arising from the

rotation (1) to the Sun-centered frame. However, the ±
signs in Eq. (58) refer to spins aligned along or against
the direction of (kNR

σφ )jn, which rotates at the Earth’s side-
real frequency ω⊕. As a result, if the experiment involves
neutrons of definite polarization in the laboratory frame,
the polarization along (kNR

σφ )Jn rotates in the Sun-centered
frame. The measured value of zi therefore can vary with
sidereal time with the first harmonic of ω⊕. An exper-
imental search for this sidereal dependence would be of
definite interest.

B. Transition frequencies

The transition frequencies between different energy
levels Ei have also been measured experimentally via
resonance with acoustic oscillations [104]. Denoting the
transition frequency between Ei′ and Ei by νii′ , the ex-
periment obtained the results νexp13 = 464.8± 1.3 Hz and
νexp14 = 649.8± 1.8 Hz. Under the assumption of conven-
tional gravitational couplings, the theoretical values for
these frequencies are νth13 = 463.0 Hz and νth14 = 647.2 Hz.
Next, we find the corrections to these frequencies aris-
ing from the nonrelativistic hamiltonian (4) and use the
experimental results to place bounds on nonrelativistic
coefficients for the neutron.

The neutron momenta in the experiment are small,
so momentum-dependent terms in the hamiltonian (4)
can be neglected. Moreover, the term (kNR

g )jgj in Hg

represents a constant potential in this context and hence
leaves unaffected the energy differences. The relevant
terms in the perturbation hamiltonian are therefore

δH = (kNR
φ )n~g · ~z + (kNR

σφ )jnσ
j~g · ~z + (kNR

σg )jkn σ
jgk. (60)

The first term is spin independent and shifts all energy
levels, while the others are spin dependent and split the
energy levels. The acoustic oscillations used in the exper-
iment preserved the neutron spin, so the experiment mea-
sured transitions between energy levels with same spin
orientation, as shown in Fig. 1.

FIG. 1. Splitting of the neutron energy levels.
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We use nondegenerate perturbation theory for spin-
independent interactions and degenerate perturbation
theory for spin-dependent interactions. After some cal-
culation, we find the energy shifts δEi are given by

δEi = − 2
3

(kNR
φ )n

mn
Ei ∓

√√√√
(

2
3

(kNR
σφ )jn

mn
Ei + (kNR

σg )jzn g

)2

(61)
in the laboratory frame, where the square inside the
square root denotes summation over j,

√
(kj)2 ≡

(∑
j k

jkj
)1/2

. The upper and lower signs indicate neu-
trons with spins aligned along and opposite the direction
2(kNR

σφ )jnEi/(3mn) + (kNR
σg )jzn g, respectively. This direc-

tion typically differs for different energy levels because it
depends on the unperturbed eigenenergies Ei. As a re-
sult, the spin-up state of the i-th energy level is oriented
differently from the spin-up state of the i′-th energy level
when i 6= i′. The generic analysis of transitions between
different energy levels can therefore be involved.
For present purposes, it suffices to adopt the standard

practice [58] of taking only one of the coefficients (kNR
σφ )jn

and (kNR
σg )jkn to be nonzero at a time. In this scenario, the

spins of either spin-up or spin-down states with different
energy levels are aligned, simplifying the discussion of
transitions. Also, when only (kNR

σg )jkn is nonzero, different
energy levels are split by the same amount. This has
no effect on the frequencies measured in the experiment,
so we can disregard (kNR

σg )jkn in this context. Therefore,

assuming only one of (kNR
σφ )jn and (kNR

σg )jkn is nonzero, we
find the energy differences in the laboratory frame are
shifted according to

δEi − δE1 = − 2
3

(kNR
φ )n ±

√[
(kNR
σφ )jn

]2

mn
(Ei − E1). (62)

The form of the expression (62) is independent of rota-
tions of the observer frame and thus can be applied with
the coefficients (kNR

φ )n and (kNR
σφ )Jn in the Sun-centered

frame instead. By comparing it to the experimental re-
sults [104], we deduce the constraints

∣∣(kNR
φ )n

∣∣ < 1.3× 10−2 GeV,
√[

(kNR
σφ )Jn

]2
< 7.8× 10−3 GeV (63)

at the 95% confidence level. The latter bound is derived
using the standard deviation of the transition frequen-
cies. Note that the constraints (63) are sharper than
those in Eq. (59) because transition frequencies can be
measured more precisely than critical heights. Using the
appropriate rows in Table III, the above constraints can
be converted into conditions on linearized coefficients and
hence on the terms in the Lagrange density given by Ta-
bles I and II. We can also extract constraints on the
tilde coefficients introduced in Table V. These are incor-
porated in Table VI as the entries associated with Ref.
[104].

In parallel with the result (58) for critical heights, the
expression (62) for the transition frequencies contains
hidden dependence on the local sidereal time T⊕ emerg-
ing from the rotation (1) to the Sun-centered frame. The
± signs represent spin projections along a direction de-
termined by coefficients in the laboratory frame, which
rotates at the sidereal frequency when expressed in the
Sun-centered frame. The measured values of the tran-
sition frequencies can therefore fluctuate harmonically
with T⊕ when polarized neutrons are used. This sig-
nal would be worthwhile seeking in future experimental
analyses.

VII. SUMMARY

In this work, we investigate observable effects arising in
underlying theories based on non-Riemann geometry or
having a nongeometric basis, and we constrain them by
analyzing existing results from laboratory experiments
and astrophysical observations. The theoretical frame-
work adopted for this purpose is effective field theory
based on GR coupled to the SM, allowing for arbitrary
backgrounds. We focus on the LLI-EDV class of un-
derlying theories, which permit comparatively straight-
forward treatment of observable signals, and consider
primarily the effects of spin-gravity couplings linearized
around Minkowski spacetime. Numerous first constraints
are deduced on background coefficients in these beyond-
Riemann scenarios.
The methodology adopted for this work is described

in Sec. II. The motivation and setup are presented for
the class of underlying theories considered here, with all
fermion-gravity terms of mass dimension d ≤ 5 in the lin-
earized Lagrange density LL

ψ displayed in Table I. The re-
lationships between the linearized coefficients appearing
in this table and the underlying coefficients in the full La-
grange density are listed in Table II. We use a generalized
Foldy-Wouthuysen technique to extract the correspond-
ing nonrelativistic hamiltonian H , with the explicit form
for a uniform gravitational acceleration given in Eqs. (4),
(5), (6), (8), (10), and (12). The match between the non-
relativistic coefficients appearing in H and the linearized
coefficients appearing in LL

ψ is provided in Table III. We
also discuss the dependence of the coefficients on particle
and antiparticle flavor.
Using this methodology, we explore the implications

for the underlying theories that arise from a variety of
laboratory experiments and astrophysical observations.
We begin in Sec. III by considering constraints on lin-
earized coefficients that can be inferred from existing
measurements performed at different gravitational po-
tentials. The generic dependence of a coefficient on the
potential is given in Eq. (20). Many of the experimen-
tal results in the literature turn out to be conveniently
discussed in terms of a set of tilde coefficients, defined
in Table V. The constraints obtained here apply to the
electron, proton, neutron, and muon sectors, and they
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are summarized in Tables VI and VII.
In Sec. IV, we turn attention to experiments comparing

the gravitational accelerations of different atoms. The
modifications to the gravitational acceleration relevant
to these studies are given by the operator (29). Con-
straints from tests with 87Sr atoms of different spins are
derived and reported in Eqs. (34) and (35), while those
from tests with 87Rb atoms in different hyperfine states
are obtained in Eqs. (39) and (40). Future prospects are
discussed for measurements of the gravitational accelera-
tion of antimatter, in particular for comparisons using H
atoms and H antiatoms. Among the results is the deriva-
tion of the Eötvös ratio (44) describing the difference in
free fall between H and H in various hyperfine states.
Studies of the quantum properties of nonrelativistic

neutrons also offer interesting sensitivity to fermion-
gravity couplings. In Sec. V, we examine interferometric
experiments with split coherent neutron beams that tra-
verse different paths in a gravitational potential. Con-
straints from the classic COW experiment with unpolar-
ized neutrons are derived in Eq. (48), while ones from
the spin-dependent OffSpec experiment are obtained in
Eq. (52). We also discuss measurements of the quantum
bound states of nonrelativistic neutrons above a neutron

mirror. Published results on the critical heights for low-
lying bound states lead to the constraints (59), while
measurements of transition frequencies yield the bounds
(63). Where appropriate, all our constraints on nonrela-
tivistic coefficients are translated into ones on tilde coef-
ficients and reported in Table VI.

The methodology and results outlined in this work es-
tablish techniques for investigating gravitational effective
field theories arising from a class of underlying theories
with beyond-Riemann structures. The various calcula-
tions presented here illustrate the derivation of experi-
mental and observational constraints for these theories.
The work establishes a path for further phenomenological
and experimental studies seeking unconventional signals
in realistic gravitational effective field theories, with con-
siderable prospects for discovery.
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Kostelecký, N. Russell, and R. Tso, Phys. Lett. B 716,
470 (2012); B.R. Edwards and V.A. Kostelecký, Phys.
Lett. B 786, 319 (2018).

[10] M.A. Javaloyes and B.L. Soares, Class. Quantum Grav.
38, 025002 (2020); A. Bernal, M.A. Javaloyes and M.
Sánchez, Universe 6, 55 (2020); M.A. Javaloyes and M.
Sánchez, Rev. Real Acad. Ciencias Exactas, F́ısicas, y

Naturales A 114, 30 (2020).
[11] A. Triantafyllopoulos, E. Kapsabelis, and P.C. Stavri-

nos, Eur. Phys. J. Plus 135, 557 (2020); A. Triantafyl-
lopoulos and P.C. Stavrinos, Class. Quant. Grav. 35,
085011 (2018); G. Papagiannopoulos, S. Basilakos, A.
Paliathanasis, S. Savvidou, and P.C. Stavrinos, Class.
Quant. Grav. 34, 225008 (2017).

[12] E. Minguzzi, Phys. Rev. D 95, 024019 (2017).
[13] M.D.C. Torri, S. Bertini, M. Giammarchi, and L. Mira-

monti, JHEAp 18, 5 (2018); V. Antonelli, L. Miramonti,
and M.D.C. Torri, Eur. Phys. J. C 78, 667 (2018).

[14] C. Lämmerzahl and V. Perlick, Int. J. Geom. Meth.
Mod. Phys. 15, 1850166 (2018).

[15] E. Caponio and A. Masiello, Universe 6, 59 (2020); E.
Caponio and G. Stancarone, Class. Quant. Grav. 35,
085007 (2018).

[16] R.T. Thompson, Phys. Rev. D 97, 065001 (2018).
[17] X. Li, Phys. Rev. D 98, 084030 (2018).
[18] J.E.G. Silva, R.V. Maluf and C.A.S. Almeida, Phys.

Lett. B 798, 135009 (2019).
[19] L. Bubuianu and S.I. Vacaru, Eur. Phys. J. 135, 148

(2020).
[20] J.J. Relancio and S. Liberati, Phys. Rev. D 101, 064062

(2020).
[21] A. Fuster, S. Heefer, C. Pfeifer and N. Voicu, Universe

6, 64 (2020).
[22] M. Schreck, Phys. Lett. B 793, 70 (2019); J.A.A.S. Reis

and M. Schreck, Phys. Rev. D 97, 065019 (2018); Phys.
Rev. D 103, 095029 (2021).

[23] D. Colladay, Phys. Lett. B 772, 694 (2017).
[24] J. Foster and R. Lehnert, Phys. Lett. B 746, 164 (2015).
[25] N. Russell, Phys. Rev. D 91, 045008 (2015).



23

[26] See, for example, C.W. Misner, K.S. Thorne, and J.A.
Wheeler, Gravitation, W.H. Freeman, San Francisco,
1973; R.M. Wald, General Relativity, University of
Chicago Press, Chicago, 1984. For the differential ge-
ometry of fiber bundles see, for example, S. Kobayashi
and K. Nomizu, Foundations of Differential Geometry,
Wiley, New York, 1963.
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