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The precision anticipated from next-generation cosmic microwave background (CMB) surveys will
create opportunities for characteristically new insights into cosmology. Secondary anisotropies of
the CMB will have an increased importance in forthcoming surveys, due both to the cosmological
information they encode and the role they play in obscuring our view of the primary fluctuations.
Quadratic estimators have become the standard tools for reconstructing the fields that distort the
primary CMB and produce secondary anisotropies. While successful for lensing reconstruction with
current data, quadratic estimators will be sub-optimal for the reconstruction of lensing and other
effects at the expected sensitivity of the upcoming CMB surveys. In this paper we describe a
convolutional neural network, ResUNet-CMB, that is capable of the simultaneous reconstruction
of two sources of secondary CMB anisotropies, gravitational lensing and patchy reionization. We
show that the ResUNet-CMB network significantly outperforms the quadratic estimator at low noise
levels and is not subject to the lensing-induced bias on the patchy reionization reconstruction that
would be present with a straightforward application of the quadratic estimator.

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) have provided a wealth of cosmological informa-
tion. The coming generation of CMB surveys, includ-
ing those from Simons Observatory [1], CCAT-prime [2],
CMB-S4 [3], PICO [4], and CMB-HD [5], will map the
CMB with unprecedented precision. In addition to pro-
viding greater sensitivity to primary CMB intensity and
polarization fluctuations, next generation observations
will allow for much more precise measurements of sec-
ondary CMB anisotropies [6].

Secondary anisotropies of the CMB are generated by
interaction of CMB photons with structure which in-
tervenes between our telescopes and the surface of last
scattering. Prominent sources of secondary anisotropies
include weak gravitational lensing by large-scale struc-
ture (see [7] for a review); the various manifestations
of the Sunyaev-Zel’dovich effect [8–12], which describe
Compton scattering of CMB photons with free electrons
in galaxy clusters and the intergalactic medium; the in-
tegrated Sachs-Wolfe [13] and Rees-Sciama effects [14],
characterizing how time-dependent gravitational poten-
tials alter the energy of CMB photons; and the moving
lens effect [15], where the transverse motion of massive
objects imprints temperature fluctuations on the CMB.
The sensitivity of upcoming experiments should allow
some of these effects to be detected for the first time in
the coming years [16–24]. These secondary anisotropies
act both as a source of cosmological information and as
a source of confusion for the primary anisotropies.

Sources of secondary anisotropies can be reconstructed
due to the changes they imprint on the statistics of
the primary CMB fluctuations. In particular, the pri-
mary CMB anisotropies are expected to be well described
by nearly Gaussian fluctuations that can be fully char-
acterized by their power spectra C`. Sources of sec-
ondary anisotropies break rotational invariance, induce
off-diagonal correlations between the spherical harmonic
coefficients, and cause the observed statistics to be non-

stationary. This change to the statistics can be observed
in the data, and thereby can be used to reconstruct the
field causing the distortion [25, 26].

The standard technique for reconstructing distortions
of the CMB fluctuations utilizes a quadratic estimator,
constructed from a weighted product of two factors of
CMB fluctuations [25]. The quadratic estimator has been
used to great success to detect the effects of gravita-
tional lensing at high significance with existing CMB sur-
veys [27–29]. While the quadratic estimator works well
with current data, it will be sub-optimal at the sensitivity
anticipated in the next generation of CMB surveys. One
reason for this is that higher order effects of the sources of
secondary anisotropies become too important to ignore in
very high fidelity CMB maps, and use of the quadratic
estimator results in an estimate of the distortion field
whose variance is limited by secondary anistropies rather
than by instrumental noise. This challenge can be over-
come by using maximum likelihood estimators [30, 31] or
by iteratively removing the effects of the secondaries [32].
Another limiting factor in the use of the quadratic esti-
mator is that the presence of more than one distortion
field can lead to biases in the reconstructed fields. This
bias can be avoided at the cost of increased variance with
the use of ‘bias-hardened’ estimators [33].

One of the main motivations for an accurate recon-
struction of the CMB lensing field is related to the search
for primordial gravitational waves. CMB polarization
can be split into curl-free E modes and divergence-free
B modes, the latter of which are generated by primor-
dial gravitational waves, but not by density fluctuations
at linear order [34, 35]. Gravitational lensing of the
CMB can convert E-mode polarization into B-mode po-
larization, and these lensing-induced B modes act as a
source of confusion in searches for primordial gravita-
tional waves [36, 37]. With an estimate of the lensing
field, it is possible to delens the CMB, thereby removing
some of the lensing B modes enabling greater sensitivity
to primordial gravitational waves [38–40].

Delensing the CMB is useful beyond the benefits it
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provides for primordial gravitational wave searches [41].
For example, delensing the temperature and E-mode po-
larization leads to sharper peaks in the power spectra,
allowing for a better determination of parameters which
impact peak positions [41, 42]. Delensing can also re-
duce the off-diagonal covariance induced by lensing [41]
and thereby improve the sensitivity of the CMB to other
effects, such as primordial non-Gaussianity [43].

In order to achieve the goals of next generation CMB
surveys, delensing will be necessary (see e.g. [3, 44, 45]).
However, achieving the required delensing performance
is not without challenges. Delensing algorithms that
go beyond the quadratic estimator are under develop-
ment, but the implementations can be computationally
intensive [31, 46–48]. In the near-term, delensing the
CMB using external tracers of the lensing field holds
promise [49], though at improved sensitivity, internal de-
lensing, whereby the CMB is delensed using a map of
the lensing field reconstructed from the observed CMB
map, will be necessary to achieve the best delensing per-
formance [32]. Internal delensing can lead to biases in
the delensed CMB map, though these biases can be mit-
igated without much loss in sensitivity by splitting the
data appropriately [50].

Reionization, the process by which the neutral gas
filling the Universe became ionized by the first stars
and galaxies between redshifts of about 20 and 6, was
a complex and non-uniform process [51–59]. The spa-
tial variations or patchiness in the process of reioniza-
tion leads to effects on the observed CMB temperature
and polarization [60–71]. Patchy reionization can pro-
duce B-mode polarization, either by the modulation of
E-mode polarization or by scattering of remote temper-
ature quadrupoles, and these secondary B modes can
potentially act as a source of confusion in searches for
primordial gravitational waves [72].

Quadratic estimators have been designed to recon-
struct the spatial variations in optical depth that result
from patchy reionization [65, 66]. However, when ap-
plied to maps of the lensed CMB, the patchy reioniza-
tion quadratic estimator will be biased by the effects of
lensing, since both effects lead to mode-coupling and the
estimators are not independent [73]. In principle, the
lensing estimator is also biased by the presence of patchy
reionization, though the bias to the lensing estimate is
expected to be small because the effects of patchy reion-
ization are much smaller than those of lensing. These
biases can be mitigated with delensing, and they can be
essentially avoided with bias-hardening at the cost of a
small increase to the variance of the estimator [73]. So
far, only upper limits on the effects of patchy reioniza-
tion exist [74, 75], though the effects may be detectable
in future data [76].

In this paper, we apply the techniques of machine
learning to reconstruct the effects of patchy reionization
in simulated CMB data. It has been shown recently that
machine learning is capable of producing promising re-
sults for lensing reconstruction and delensing at noise

levels where the quadratic estimator is sub-optimal [77].
The focus of this work is to extend the techniques of
Ref. [77] to the simultaneous reconstruction of CMB lens-
ing and patchy reionization. As described above, recon-
structing patchy reionization in the presence of lensing
is challenging due to the extra variance coming from
lensing-induced B-mode polarization and by the bias
that can result from the sensitivity of the patchy reion-
ization estimator to the effects of lensing. A main goal
of this work is to determine the extent to which machine
learning is capable of surmounting these challenges.

II. QUADRATIC ESTIMATOR

In this section we will review the construction of the
quadratic estimator for CMB lensing [25] and for patchy
reionization [65]. The quadratic estimator has become
the standard technique for lensing reconstruction with
current data, though it will be sub-optimal with the high
precision data expected from future CMB surveys [31].
We will also discuss how the estimator for the spatial
variation of the optical depth is biased in the presence of
lensing [73].

A. Weak Gravitational Lensing

Cosmological structure which intervenes between our
telescopes and the CMB surface of last scattering gen-
erates gravitational potentials which deflect CMB pho-
tons [7]. In real space this effect can be understood
as a re-mapping of the unlensed CMB by a direction-
dependent deflection angle,

T len(n̂) = T prim(n̂ +∇φ(n̂)) ,

(Qlen ± iU len)(n̂) = (Qprim ± iUprim)(n̂ +∇φ(n̂)) , (1)

where (T prim, Qprim, Uprim) are the primordial CMB
fields, φ is the lensing potential, n̂ is the line-of-sight
direction, and the superscript ‘len’ refers to the lensed
field [25]. In harmonic space, lensing of the CMB induces
mode-coupling, or correlation, between fluctuations of
different wavenumbers `1 6= `2 that is proportional to the
lensing potential φ. In the flat-sky approximation [25],〈

X len(`1)Y len(`2)
〉
CMB

∝ fφXY (`1, `2)φ(`) , (2)

where ` = `1 + `2 and (X,Y ) = (T,E,B). In this pa-
per we focus on the EB mode-coupling since the corre-
sponding estimator has the lowest variance for the noise

levels we consider. For this case, the factor fφXY (`1, `2)
in Eq. (2) is defined as

fφEB(`1, `2) =
[
(` · `1)CEE`1 − (` · `2)CBB`2

]
× sin 2(ϕ(`1)− ϕ(`2)) . (3)

The quadratic estimator provides a way of estimating
any field leading to mode coupling by using a weighted
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product of pairs of observed CMB maps. The unbiased
minimum-variance EB quadratic estimator for the CMB
gravitational lensing potential is given by [25]

φ̂EB(`) = Nφ
EB(`)

∫
d2`1
(2π)2

Eobs(`1)Bobs(`2)FφEB(`1 , `2) ,

(4)
with

FφEB(`1, `2) =
fφEB(`1, `2)

CEE,obs`1
CBB,obs`2

. (5)

The factor in front of Eq. (4) is an overall normalization
factor defined as

Nφ
EB(`) =

[∫
d2`1
(2π)2

fφEB(`1, `2)FφEB(`1, `2)

]−1
, (6)

which also gives the variance of the estimator. We define
each observed field as the lensed field plus noise,

Xobs(`) = X len(`) +NX(`) , (7)

where X = (T,E,B) and NX(`) is the noise correspond-
ing to field X, which we take to be a Gaussian random
field whose power spectrum is given by

CTT,noise` = ∆2
T e

`2θ2FWHM/(8 ln 2) ,

CEE,noise` = CBB,noise` = ∆2
P e

`2θ2FWHM/(8 ln 2) . (8)

At the noise levels of future experiments, the lensing
quadratic estimator is sub-optimal, and maximum likeli-
hood techniques or an iterative delensing procedure is
necessary to produce the best estimate of the lensing
field [31, 32]. The basic idea of the iterative technique
is to first apply the quadratic estimator on the observed
maps, then use the resulting estimate of the lensing field
to delens, next apply the quadratic estimator on the de-
lensed maps, delens again with the resulting estimate of
the residual lensing field, and iterate this procedure un-
til convergence is achieved [32]. Simulations have shown
that the iterative technique closely matches the perfor-
mance of the maximum likelihood estimator [31, 32].

B. Patchy Reionization

The inhomogeneous nature of the reionization epoch
causes several observable impacts on the CMB [60–69].
The patchiness of reionization leads to an anisotropic op-
tical depth whose effects on the CMB can be separated
into three categories: screening, scattering, and the ki-
netic Sunyaev-Zel’dovich effect.

First, the variation of the optical depth on the sky,
τ(n̂), leads to a spatially dependent screening of CMB
fluctuations due to the scattering of CMB photons into
and out of our line of sight. Next, Thomson scatter-
ing of remote temperature quadrupoles on the free elec-
trons in ionized bubbles generates new polarization fluc-
tuations. Finally, the radial velocity of ionized bubbles

generates CMB temperature fluctuations through the ki-
netic Sunyaev-Zel’dovich effect.

For the purpose of this paper, we focus solely on the
screening effect of patchy reionization, since we are inter-
ested in the effect that can be reconstructed from obser-
vations of CMB polarization alone. The scattering effect
results in new polarization that is not correlated with the
polarization generated at the surface of last scattering,
and the kinetic Sunyaev-Zel’dovich effect only produces
temperature fluctuations.

The screening effect modulates the amplitude of the
temperature and polarization anisotropies, scaling them
by a factor e−τ(n̂). For the purpose of the simulations
described below, we first apply modulation followed by
lensing giving maps in real space according to

Tmod(n̂) = (T prim(n̂)e−τ(n̂))len

(Qmod ± iUmod)(n̂) = ((Qprim ± iUprim)(n̂)e−τ(n̂))len ,
(9)

such that the superscript ’mod’ refers to maps that have
been first modulated by patchy reionization then lensed.
This is an idealized treatment of the two effects, which in
reality cannot be so cleanly separated in time. We further
assume for our simulations that the lensing and patchy
reionization fields are uncorrelated, though in reality they
should exhibit some correlation, since they develop from
the same underlying density fluctuations.

Following the formalism for the lensing quadratic esti-
mator, an unbiased minimum variance EB estimator can
be derived for τ(n̂) (see [65, 73] for the full derivation)
which takes the form

τ̂EB(`) = Nτ
EB(`)

∫
d2`1
(2π)2

Eobs(`1)Bobs(`2)F τEB(`1 , `2) ,

(10)
where like Eq. (6), the factor

Nτ
EB(`) =

[∫
d2`1
(2π)2

fτEB(`1, `2)F τEB(`1, `2)

]−1
, (11)

is a normalization that is equal to the variance of the esti-
mator, with the mode coupling caused by patchy screen-
ing given by

fτEB(`1, `2) =
[
CEE`1 − CBB`2

]
sin 2(ϕ(`1)− ϕ(`2)) , (12)

and the filter is

F τEB(`1, `2) =
fτEB(`1, `2)

CEE,obs`1
CBB,obs`2

. (13)

In Eq. (10) and throughout the rest of the paper, the
Eobs, Bobs are defined according to

Xobs(`) = Xmod(`) +NX(`) , (14)

with X and NX(`) as described below Eq. (7).
In the presence of lensing, the τ estimator is biased

by a spurious signal that results from the mode-coupling
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induced by lensing. The amplitude of the bias is more
than an order of magnitude greater than the true patchy
reionization signal, and the bias remains significant even
after 98% of the lensing signal has been removed [73].
The bias for the EB estimator can be calculated by how
much of the lensing mode-coupling is picked up by the
patchy reionization estimator [73]

βEB(`) = Nτ
EB(`)

∫
d2`1
(2π)2

fφEB(`1, `2)F τEB(`1, `2)φ(`) .

(15)
It is possible to construct a bias-hardened estimator that
is insensitive to the effects of lensing and which does not
have significantly higher variance than the estimator de-
scribed above [73].

In addition to the bias, lensing also adds variance to
the patchy reionization estimator by increasing the ob-
served B-mode polarization power. A strategy to recon-
struct the screening effect of patchy reionization using
the tools above is therefore to first reconstruct the lens-
ing field, use that estimated lensing field to delens the
CMB, and finally to reconstruct the patchy reionization
using a bias-hardened estimator. This procedure is dif-
ficult to implement in practice and would lead to com-
plicated noise properties in the resulting estimates. One
of the main goals of this paper is to compare the perfor-
mance of an idealized version of the above procedure to
the results that can be obtained through machine learn-
ing. We will show how our network is capable of making
simultaneous estimates of a delensed polarization map, a
lensing map, and a patchy reionization map in a single
step.

III. DEEP LEARNING NETWORK AND
METHODS

In this section, we provide a brief introduction to ma-
chine learning and its applications to image processing.
We then discuss the design of the ResUNet-CMB archi-
tecture that we apply to the task of patchy reionization
reconstruction with simulated CMB maps.

A. Deep Neural Networks

Machine learning is a process whereby computers learn
the rules to complete tasks when provided a set of ex-
amples. In the past decade, artificial neural networks
(ANNs) have become ubiquitous in machine learning, be-
ing applied to a wide range of problems. The method is
inspired by biological systems in that ANNs use neurons
as the building blocks. These neurons are grouped into
layers and carry out tensor operations.

Deep learning makes use of these neural networks by
using multiple successive layers of neurons, offering the
ability to learn complex nonlinear relationships hidden
in sets of data. There is a significant computational cost

in training deep learning networks, but once trained, the
networks are capable of very quickly making predictions
with very low resource requirements. When dealing with
image data in computer vision tasks, the convolutional
neural network (CNN) has become the dominant deep
learning network design.

It is natural to ask whether deep learning can be
usefully applied to cosmology. Maps of the content of
the Universe (such as the CMB) are 2D or 3D images,
from which we can extract cosmological information us-
ing CNNs. As a result, deep learning applications have a
growing presence in cosmology. Some recent applications
of deep learning to the CMB involving CNNs are full-sky
foreground removal [78], fast Wiener filtering [79], mass
estimation of galaxy clusters [80, 81], and cosmic string
detection [82].

Cosmological structure along our line of sight leaves
characteristic distortions imprinted in the observed CMB
polarization maps resulting in secondary anisotropies
which can be identified and extracted by a CNN. These
distortions are correlated over a range of scales, and so
the hierarchical feature extraction of the CNN is well-
suited to detect the impact of these distortions. In this
paper, we employ a particular type of CNN called a Res-
UNet to analyze secondary anisotropies of the CMB. This
choice is motivated by the success of a ResUNet for flat-
sky CMB lensing reconstruction [77]. In the sections
that follow we discuss the ingredients that define a Res-
UNet, we describe the specific ResUNet architecture we
designed for simultaneous lensing and patchy reioniza-
tion reconstruction, and we specify how our network is
implemented and trained.

B. Residual U-Network (ResUNet)

Convolutional layers are the core of a CNN. Each neu-
ron in a convolutional layer operates on a region of pixels
of its input called the receptive field. In the first convolu-
tional layer of a network, the receptive field is completely
determined by the kernel size. The kernel size specifies
the dimensions of the k × k filters which are slid across
the input to extract features. Each filter is sensitive to a
unique feature. Common choices for the kernel size use
k = 3, 5, 7, ..., with odd numbers selected so symmetry
about the central pixel can be maintained to reduce edge
effects. For more details about convolutional layers see
Ref. [83].

By chaining together convolutional layers, neurons in
each successive layer become connected to a larger re-
gion of the initial input layer thereby increasing the
size of each consecutive receptive field. The progres-
sive increase in receptive field size of each convolutional
layer makes the network sensitive to high-level features of
larger scales. For tasks involving images, using a CNN is
beneficial since mapping a neuron directly to every pixel
would be computationally intractable.

Convolutional autoencoders are a type of CNN that
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FIG. 1. ResUNet-CMB architecture with residual connections excluded for clarity1. The input images, (Qobs,Uobs) are
concatenated along the channel dimension. Convolutional layers are labeled with the number of filters they contain. The final
images, (κbiased,τbiased,Ebiased), are the output of the final batch normalization layer of each branch. The network has 5,292,367
total parameters and 5,287,113 trainable parameters. The receptive field size when ignoring residual and skip connections is
101 × 101 pixels for each output. Widths of layers are chosen for visual clarity and are not to scale.

take a tensor for input and produce an identically sized
one for output. When used with image data, the tensor
takes a shape of (image height, image width, number of
channels). For example, if we have a 128 × 128 pixel
RGB image, then the input tensor shape would be (128,
128, 3) where the red, green, and blue pixel values each
represent a different channel. Employed with supervised
learning, convolutional autoencoders are able to learn a
nonlinear mapping between the input and output space.

There are two primary components in a convolutional
autoencoder, the encoder and decoder. In the encoding
phase, relevant features for the reconstruction of the out-
put are learned by each convolutional layer and increase
in complexity, becoming more abstract in deeper layers
of the network. The output of each convolution is called

a feature map since it is a tensor made of encoded fea-
tures. The feature maps are continuously down-sampled
at regular intervals lowering their dimensionality until a
set minimum size is reached. This down-sampling helps
increase the receptive field with respect to the input im-
age while also reducing the propagation of unnecessary
information.

The decoder takes the features learned in the last
layer of the encoder, the minimum representation, and
learns how to combine them to achieve the desired out-
put. Starting from the minimum representation which is

1 Graphic made with publicly available code from https://

github.com/HarisIqbal88/PlotNeuralNet.

https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet
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an abstract base, it is up-sampled while detail is added
through consecutive convolutional layers. The final re-
sult is an output image with the same height and width
as the initial input to the network.

Some localization information is lost through down-
sampling. To combat this, the outputs of some layers
in the encoder phase can be concatenated with those of
the same size in the decoder. The concatenations are
with respect to the channel dimension and are called
skip connections. As the output is reconstructed from
the minimum representation, the skip connections pro-
vide high resolution information just after up-sampling.
These skip connections in combination with a convolu-
tional autoencoder were introduced for the purpose of
biomedical segmentation, and the resulting architecture
is called a U-Net [84]. The encoding phase and decoding
phase in the U-Net often mirror each other in both depth
and the locations at which up- or down-sampling occur.
As a result, this type of network is often presented in a
U-shape, hence its name.

As the network grows deeper by stacking convolutional
layers, it has been shown that performance and accuracy
of the network decreases [85–87]. Residual connections,
which take the input of a convolutional layer and add
it element-wise to the output of a subsequent convolu-
tional layer, allow more layers to be added to the network
without degrading performance by helping to propagate
parameter corrections to earlier layers and information
to latter ones, through direct identity paths [86, 88, 89].
Their use can help improve network training and results.
Adding residual and skip connections to a convolutional
autoencoder yields an architecture called a ResUNet [90–
92].

C. Network Architecture (ResUNet-CMB)

We focus here on the application of a ResUNet de-
signed to reconstruct the effects of patchy reionization
on the CMB polarization in the presence of lensing. Af-
ter training, the ResUNet takes as input maps of the
observed Q and U polarization (Qobs, Uobs) and pro-
duces map-level estimates of the lensing convergence, the
patchy reionization, and the primordial E-mode polariza-
tion (κ, τ, Eprim).

We use a modified version of the architecture defined in
Ref. [77] which was shown to work in reconstructing the
lensing convergence map and therefore provided an ideal
starting point from which to build upon. Implementation
of our network, which we call ResUNet-CMB, was done
with the Keras package of TensorFlow 2.02.

A schematic representation of the ResUNet-CMB ar-
chitecture is shown in Fig. 1 where the residual connec-
tions were left out for clarity. The network is made up of

2 The code for ResUNet-CMB and the data pipeline used can be
found at https://github.com/EEmGuzman/resunet-cmb.

a series of convolution blocks. We define a convolution
block as consisting of four components in the following or-
der: dropout layer, convolutional layer, activation layer,
and batch normalization layer. The convolutional layer
is set with a kernel size of 5× 5 and ’same’ padding. For
the activation we use the Scaled Exponential Linear Unit
(SELU) function [93]. The dropout layer, with a dropout
rate of 0.3 which we found to be the optimal value, is
necessary to prevent the network from over-fitting. The
dropout layer is omitted from the first convolution block
in the network in order to prevent the irretrievable loss
of initial information.

The final block of each branch in the decoder phase
differs from the others in that the activation function is
switched to a linear one. Down-sampling in the encoder
phase is achieved by setting the stride to 2 in the convo-
lutional layer. The stride refers to the number of pixels
between applications of the filter to the input image. A
dedicated up-sampling layer with nearest-neighbor inter-
polation was used for the decoding phase and was placed
before the dropout layer to reduce the production of vi-
sual artifacts [94].

Skip connections occur every three convolution blocks
in the encoder and concatenate along the channel di-
mension. Residual connections connect every two con-
volution blocks. The first residual connection takes the
(Qobs, Uobs) input layer and adds it element-wise to the
batch normalization output of the second block. The
next connection is from the output of the second block
to that of the fourth block. The connections continue this
pattern until the final two blocks of the decoder where
no residual connections are used.

In both the encoding and decoding phases, some resid-
ual connections occur between convolution blocks with
different input and output tensor dimensions. For such
residual connections, a convolutional layer with linear ac-
tivation and appropriate stride and number of filters is
inserted into the connection in order to reconcile the ten-
sor dimensions. If there is a difference in the image size
between blocks in the decoder phase, a dedicated upsam-
pling layer is used in addition to the convolutional layer.
We found adding a batch normalization layer in every
residual connection improved our results by lowering val-
idation loss for all three outputs. In residual connections
containing a convolutional layer, the batch normalization
is placed after the convolutional layer.

D. Data Pipeline

The publicly available CAMB3 software is used to pro-
duce the primordial CMB and lensing power spec-
tra [95]. A cosmology with parameters of H0 =
67.9 km s−1 Mpc−1, Ωbh

2 = 0.0222, Ωch
2 = 0.118,

3 https://camb.info

https://github.com/EEmGuzman/resunet-cmb
https://camb.info
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ns = 0.962, τ = 0.0943, and As = 2.21×10−9 was chosen
since it allows a comparison with results from Ref. [77].
We take the patchy reionization spectrum Cττ` to match
the τ̄ = 0.058 model of Ref. [76].

Using the theory power spectra from CAMB and a mod-
ified version of Orphics4, seven different maps are pro-
duced as Gaussian random fields: lensing convergence
κ ≡ 1

2∇2φ, patchy reionization τ , primordial E-mode po-

larization Eprim, primordial Q and U polarization Qprim

and Uprim, and observed Q and U polarization Qobs and
Uobs. To obtain the observed polarization maps we use
Eq. (14), where the primordial maps (Qprim, Uprim) are
first modulated by τ , then lensed with κ, and finally
summed with a noise map as in Eq. (9).

Each map is 128×128 pixels and covers a 5◦×5◦ patch
of sky. A cosine taper of 1.5◦ was applied to all maps to
reduce edge effects. Instrument noise was implemented
at the levels of ∆T = 0.0 µK-arcmin, 0.2 µK-arcmin,
1 µK-arcmin, and 2 µK-arcmin assuming ∆P =

√
2∆T .

We used θFWHM = 1.4′ for the cases of 1 µK-arcmin
and 2 µK-arcmin, but θFWHM = 1.0′ for the 0.2 µK-
arcmin case, the latter of which was chosen to make direct
comparison with the results of Ref. [73].

For each noise level, 70000 sets of seven maps were pro-
duced with the random seed set to 1225 with the python
NumPy package. In approximately 20% of the maps se-
lected at random, we set both κ and τ to zero. We found
that including these ‘null maps’ (meaning no lensing or
modulation applied to (Qprim, Uprim)) in training helps
the network generalize and prevents it from predicting
the presence of a signal when none is present in test data.
In addition to the set of 70000, we also produce a sep-
arate collection of 7000 sets of maps, which we call the
prediction set, on which most analysis of ResUNet-CMB
predictions was conducted. No null maps were included
in the prediction set.

The 70000 maps were split in a 80:10:10 ratio for train-
ing, validation, and test sets. Similar to what was done in
Ref. [96], all maps in the training, validation and test sets
are standardized with respect to values from the training
set according to

XProcessed =

(
X −XTraining

)
σTraining

. (16)

Here X represents a single unprocessed map from any
data set. The mean and standard deviation are calcu-
lated for each map type over the full training set.

ResUNet-CMB predictions are made by feeding in
(Qobs, Uobs) from the prediction set as input to the fully
trained network. The input maps are also standardized
according to Eq. (16) with the mean and standard devi-
ation from the prediction set. Making a single prediction
of (κ, τ, Eprim) regardless of noise level, takes approxi-
mately 0.021 seconds on average.

4 https://github.com/msyriac/orphics

The ResUNet-CMB predictions are post-processed to
rescale the outputs to physically meaningful values. This
must be done because the network is trained on standard-
ized maps, so the predictions made on the fully trained
network will also be standardized. To perform the rescal-
ing, we rearrange Eq. (16) to solve for X using the mean
and standard deviation from the training set (since with
real data we would not have a priori knowledge of the
true (κ, τ, Eprim) maps).

E. Training

For each instrument noise level a separate network was
trained. We chose to use a batch size of 32 to train the
networks. The initial learning rate was set to 0.25 and
decayed by a factor of 0.5 if after three epochs there was
no improvement in validation loss. Individual learning
rate decay of each trainable parameter was achieved by
using the Adam optimizer with the TensorFlow default
parameters [97]. If there was no improvement in the vali-
dation loss after 10 consecutive epochs then training was
stopped and the best network saved. Training the noise-
less network using a training split of 56000 sets of maps
took an average of 10 hours on a single Nvidia Tesla V100
32GB.

IV. RESULTS

In this section we examine the performance of the
ResUNet-CMB network. We analyze maps, power
spectra, and reconstruction noise curves as evaluation
metrics. As described in Section III D, we feed in
the inputs (Qobs, Uobs) from the prediction data set
to the fully trained network which produces output
maps (κ, τ, Eprim). The output maps are biased, and
so we refer to the direct outputs of the network as
(κbiased, τbiased, Ebiased); we address how to treat the bias
later in this section.

A. Maps

Figure 2 shows a single prediction for each of
(κbiased, τbiased, Ebiased) from the fully trained ResUNet-
CMB network for the noiseless and 1 µK-arcmin case. We
highlight these results since they allow for partial com-
parison to results from Ref. [77]. Our ResUNet-CMB
network was able to reconstruct some of the largest scale
features of τ(n̂) despite the fact that the impact of patchy
reionization on the CMB polarization is orders of mag-
nitude smaller than lensing for the chosen cosmological
parameters. The noiseless κbiased and Ebiased are lack-
ing features on only the smallest scales as can be seen in
the residual maps which show the difference between the
predicted and truth maps.

https://github.com/msyriac/orphics
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FIG. 2. Sample ResUNet-CMB predictions from fully trained networks for two noise levels compared to the true maps. The
predicted maps shown here have not been rescaled as in Eq. (18) and thus have a multiplicative bias. Residual maps are
calculated as the true map minus the predicted map.

With an increase in noise, all predictions degrade with
κbiased and τbiased seeing the largest change. The pri-
mary E-mode polarization is still faithfully reconstructed
on most scales despite increasing instrument noise. The
1 µK-arcmin reconstruction of τbiased has residual power
that is about 18% higher for ` < 840 than that of the
noiseless reconstruction of τbiased, where the residual
power is defined as the power spectrum of the true map
minus the predicted map. There is a larger fractional
increase in the residual power for κbiased with the addi-
tion of noise, especially in the range 56 < ` < 1500. The
predictions of Ebiased are most affected by noise on small
scales, and the increase in the residual power peaks at
about ` = 2900 when comparing the noiseless and 1 µK-
arcmin predictions.

B. Power Spectra

Next, we compare the recovered pseudo-power spectra
from the ResUNet-CMB prediction at each noise level
to the truth power spectrum for each map. In Fig. 3

we show a naively corrected 〈Cτbiasedτbiased

` 〉 pseudo-power
spectrum for each noise level. To get the spectra we
calculate the auto-power spectrum of each τbiased map
from the prediction set and average the results to find

〈Cτbiasedτbiased

` 〉. We then make a simple correction for
power loss due to the window applied to each map by
dividing the spectra by the mean of the squared cosine
taper. The true input spectrum is the window-corrected
average pseudo-power spectra of the noiseless truth maps
τ(n̂) in the prediction set.

As expected, reconstruction of τ by the ResUNet-CMB
network is best at low ` (large angular scales) and de-
grades on small scales. As we increase instrumental noise,
the fidelity of the reconstruction worsens on all scales.
There is a larger decrease in the reconstructed power
when going from the noiseless case to 1 µK-arcmin than
there is between 1 µK-arcmin and 2 µK-arcmin.

Figure 4 and Fig. 5 show the power spectra for the
ResUNet-CMB reconstructions, κbiased and Ebiased, re-
spectively. For the κbiased spectra, the reconstruction
quickly worsens with increasing instrument noise, espe-
cially on small angular scales. Of the three ResUNet-
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FIG. 4. Power spectra of the lensing convergence maps κbiased

predicted by ResUNet-CMB for each of four noise levels aver-
aged over the 7000 realizations included in the prediction set,
compared to the averaged power spectrum of the true lensing
convergence maps (black dashed-dot).

CMB outputs, κ sees the strongest scale dependence in
its deviation from the input spectrum.

The reconstructed primordial E-mode map gives re-
sults closer to the input than both the τ and κ ResUNet-
CMB estimates across the entire range of scales we con-
sider. This is not surprising, given that on the scales we
consider the primordial E-mode polarization does not dif-
fer a great deal from the modulated and lensed E-mode
polarization, the latter of which is just a linear combi-
nation of the input Q and U maps in the absence of
noise. We find the noiseless E-mode power spectrum
recovery to be greater than about 98% for the ` range
of 170 < ` < 1400. At about ` = 3000 we find E-
mode recovery of around 86%. At higher noise levels,
the predicted primordial E-mode spectrum falls signifi-
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FIG. 5. Power spectra of the primordial E-mode polarization
maps Ebiased predicted by ResUNet-CMB for each of four
noise levels averaged over the 7000 realizations included in
the prediction set, compared to the averaged power spectrum
of the true primordial E modes (black dashed-dot).

cantly below the input spectrum on small angular scales.
The impact of noise on the reconstruction of E modes is
smaller than that for κ and τ on all scales.

We note that the results for our ResUNet-CMB lensing
reconstruction match well with what is found in Ref. [77].
However, we find that our reconstructed E-mode power
is closer to the input spectrum on all scales than what
was found in Ref. [77], though we have not been able to
identify the cause of this difference.

C. Noise

We can also compare the results of the ResUNet-CMB
network to the standard quadratic estimator. In order
to do so, we need to define the reconstruction noise of
the deep learning results. The ResUNet-CMB prediction
of the modulation field, after post-processing, is a biased
result τbiased. Before calculating the reconstruction noise
we first need to address this bias. Following treatment of
the bias to the reconstructed lensing field from Ref. [77],
we define a quantity

A` =

[
〈Cττbiased

` 〉
〈Cττ` 〉

]−1
, (17)

where 〈· · · 〉 represents the average over the entire predic-
tion set. The quantity A` is used to rescale the biased
output to recover an unbiased estimate of the optical
depth fluctuations

τ̂(`) = A`τ
biased(`) . (18)

Estimates on real data using ResUNet-CMB would also
require rescaling by the same quantity A`. The unbi-
ased estimate τ̂ can be directly compared to the unbiased
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FIG. 6. Reconstruction noise power spectra of ResUNet-CMB normalized prediction τ̂ as defined in Eq. (19) (blue), standard
quadratic estimator using lensed CMB spectra (QE; dashed red), and a quadratic estimator using iteratively delensed and
descreened CMB spectra (QE; dotted red). The expected lensing bias to the EB quadratic estimator for τ (Eq. (15)) is plotted
in cyan where it is positive and coral where negative.

estimate from the quadratic estimator discussed in Sec-
tion II. The reconstruction noise spectrum can then be
defined in a way analogous to the definition in Ref. [77],

Nττ
` = 〈C τ̂ τ̂` 〉 − 〈Cττ` 〉 , (19)

where we have used

〈C τ̂ τ̂` 〉 = A2
`〈Cτ

biasedτbiased

` 〉 . (20)

It is this definition of the reconstruction noise that we
will compare to the quadratic estimator.

We calculate the reconstruction noise of the EB
quadratic estimator using Eq. (11) (with `max = 6100).
As discussed in Section II, the variance of the EB es-
timator is increased in the presence of lensing, due to
the B-mode polarization induced by lensing. We there-
fore consider two versions of the quadratic estimator: one
for which we used lensed CMB spectra, and another for
which we employ an iterative delensing and descreening
procedure to the CMB spectra.

The iteratively delensed and descreened estimate of
the patchy reionization reconstruction noise was calcu-
lated as follows. First, we calculate the effects of patchy

reionization on the CMB polarization spectra. We use
these screened spectra to calculate an estimate of the
lensing reconstruction noise using the iterative EB es-
timator [32]. The B-mode polarization from the patchy
reionization acts as an effective source of noise for lensing
reconstruction, thereby increasing the lensing reconstruc-
tion noise as compared to a case without patchy reion-
ization. We use the resulting lensing reconstruction noise
to compute delensed CMB spectra according to Ref. [41].
The resulting delensed CMB spectra were used in the es-
timate of the patchy reionization reconstruction noise us-
ing the EB estimator, with the residual lensing B-mode
polarization acting as a source of noise for the patchy
reionization reconstruction. If we had stopped the pro-
cedure at this point, we would find that ResUNet-CMB
outperformed this delensed quadratic estimator in the
low noise cases we considered. However, a lower patchy
reionization reconstruction noise can be achieved by it-
eratively ‘descreening’ the CMB to remove the best es-
timate of the effects of patchy reionization on the polar-
ization, in a procedure analogous to delensing [98]. We
performed this iterative EB descreening estimate, then



11

500 1000 1500 2000 2500 3000

`

10−8

10−6

10−4

10−2

100

`(
`

+
1)
C
τ
τ

`
/(

2π
)

NoiselessTrue Spectrum: Input τ

QE: C τ̂ τ̂`

ResUNet-CMB: C τ̂ τ̂`

Lensing bias to QE

500 1000 1500 2000 2500 3000

`

10−8

10−6

10−4

10−2

100

`(
`

+
1)
C
τ
τ

`
/(

2π
)

0.2 µK-arcmin

500 1000 1500 2000 2500 3000

`

10−8

10−6

10−4

10−2

100

`(
`

+
1)
C
τ
τ

`
/(

2π
)

1 µK-arcmin

500 1000 1500 2000 2500 3000

`

10−9

10−7

10−5

10−3

10−1

101

`(
`

+
1)
C
τ
τ

`
/(

2π
)

2 µK-arcmin

FIG. 7. Power spectra of the patchy τ field reconstructed by ResUNet-CMB (blue) and the quadratic estimator (QE; red)
computed from reconstructed maps that are averaged over a set of 7000 simulations with a fixed lensing convergence and patchy
reionization field, compared with the true input τ signal power spectrum (black dash-dot) and the expected lensing bias to the
quadratic estimator (cyan dashed where the bias is positive, coral dashed where the bias is negative). The sharp features in the
power spectra are dependent on the random seeds chosen for the simulations. The quadratic estimator spectra were calculated
from maps with no cosine taper applied, and we perform a mean-field subtraction on the estimate, τ̂ .

used the residual effects of patchy reionization on the
polarization spectra to compute an improved estimate of
the lensing reconstruction noise using the iterative EB
estimator. This resulted in a lower lensing reconstruc-
tion noise which was then used to calculate an improved
estimate of delensed spectra. We iterated this procedure
of iterative EB lensing reconstruction and delensing fol-
lowed by iterative EB patchy reionization reconstruction
and descreening followed by iterative EB lensing recon-
struction and delensing, etc., to convergence. The output
after convergence of this procedure was used as our es-
timate of ‘Iteratively Delensed and Descreened’ patchy
reionization reconstruction noise. Since the results of it-
erative delensing closely match the performance of the
maximum likelihood lensing estimator [31, 32], it should
be expected that the iterative delensing and descreening
procedure provides a good approximation of the noise re-
sulting from the maximum likelihood estimate of simul-
taneous lensing and patchy reionization reconstruction,
though the latter has not been demonstrated explicitly.

In addition to the extra variance due to lensing, the
quadratic estimator also exhibits a bias to the reconstruc-
tion of the patchy reionization in the presence of lensing.
We calculate this bias according to Eq. (15). The bias-
hardened estimator from Ref. [73] has only a percent-level
increase in variance compared to the standard estima-
tor, and so we present the reconstruction noise computed
from the standard estimator.

Figure 6 shows the patchy reionization reconstruc-
tion noise power spectra for the quadratic estimator and
the normalized ResUNet-CMB predictions for each noise
level. We also include in each panel the theoretical patchy
reionization power spectrum and the bias on the standard
quadratic estimator due to lensing. For all four noise lev-
els shown, the ResUNet-CMB predictions have a lower
reconstruction noise than the quadratic estimator using
lensed spectra in the range 200 < ` < 1000. The range
of angular scales where ResUNet-CMB outperforms the
standard quadratic estimator grows as the noise level
decreases. The ResUNet-CMB Nττ

` matches well with
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FIG. 8. Correlation coefficients of estimates of the patchy reionization field τ̂ from the standard quadratic estimator (QE)
with the true patchy reionization field τ (blue) and the lensing convergence field κ (coral), and those from the ResUNet-CMB
network with τ (cyan) and κ (red), all averaged over 7000 simulations. The simulations for the quadratic estimator did not use
a cosine taper nor mean-field subtraction.

the reconstruction noise of the quadratic estimator using
iteratively delensed and descreened CMB spectra for a
large ` range for all four noise levels. The top two panels
demonstrate that the patchy reconstruction noise from
ResUNet-CMB is also smaller than the bias due to lens-
ing that is expected in the standard quadratic estimator
over a wide range of scales, and this range is wider at
lower noise. This behavior indicates that the ResUNet-
CMB network learns to reconstruct the patchy τ field in
a way that mitigates both the extra variance and the bias
due to lensing. The ResUNet-CMB network is therefore
able to successfully reconstruct both the lensing conver-
gence and patchy reionization fields simultaneously in a
way that is nearly optimal.

D. Bias

In Fig. 7 we show the reconstructed patchy reioniza-
tion power spectrum from ResUNet-CMB and from the
standard quadratic estimator for each noise level. We im-
plement the EB quadratic estimator for τ as in Eq. (10),

by using Symlens5. The results are computed by aver-
aging over a set of 7000 simulated CMB maps with fixed
κ and τ maps; the random seed for κ was set to 133
and for τ to 180. As expected, the quadratic estimator
C τ̂ τ̂` matches well with the lensing bias computed from
Eq. (15). The ResUNet-CMB estimator on the other
hand follows more closely the input signal power spec-
trum, which is most easily seen for the low noise cases. At
low noise the ResUNet-CMB predictions deviate from the
input spectrum at small angular scales (` & 1500), and
for higher noise deviations appear even at larger scales.

To confirm that the ResUNet-CMB architecture is
truly sensitive to the input τ and is not producing a
spurious signal due to lensing or an artifact of the pro-
cedure, we calculate the correlation coefficients of each
reconstruction according to

rZτ̂ (`) =
〈CZτ̂` 〉√
〈CZZ` 〉〈C τ̂ τ̂` 〉

, (21)

5 https://github.com/simonsobs/symlens

https://github.com/simonsobs/symlens
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where Z = κ, τ . In Fig. 8 we compare the correlation co-
efficients of the ResUNet-CMB predictions to those of the
standard quadratic estimator. Note that our definition of
the correlation coefficient in Eq. (21) includes in the de-
nominator the reconstruction noise on the patchy reion-
ization field, and therefore these coefficients are always
less than unity. It can clearly be seen that for all noise
levels and on almost all scales, the standard quadratic es-
timator produces an estimate for the optical depth per-
turbation τ̂ which is more strongly correlated with the
lensing convergence κ than it is with the true patchy
reionization signal τ . The ResUNet-CMB estimate τ̂ has
a larger correlation with the true patchy τ signal and
smaller correlation with κ than does the quadratic esti-
mator for nearly all scales at each noise level.

Furthermore, the ResUNet-CMB patchy reionization
estimate is more strongly correlated with the true signal
than with the lensing convergence on large scales, con-
siderably so at low noise levels. While the quadratic esti-
mator is dominated by the κ signal on almost all scales,
the ResUNet-CMB estimator appears to exhibit a lensing
bias only on small scales for the two lowest noise levels,
and a reduced bias for the largest noise cases shown.

For ` > 2000 in the 1 µK-arcmin and 2 µK-arcmin
cases, the near zero positive correlation between τ̂ and
the true patchy τ signal indicate ResUNet-CMB is unable
to provide an accurate patchy reionization reconstruction
on small scales at these noise levels. This might also ex-
plain similarity of the reconstructed patchy reionization
spectra on small scales for these noise levels seen in Fig. 3.

E. Null Test

As a final check on the results of the ResUNet-CMB
network, we perform a null test to ensure that no patchy
reionization signal is reconstructed when none is present
in the maps. We implement this test by making pre-
dictions of (κ, τ, Eprim) with the fully trained networks
when the unlensed and unmodulated polarization maps
(Qprim, Uprim) (plus noise) are passed as the input. In

Fig. 9, we plot the power spectra 〈Cτbiasedτbiased

` 〉 for each
noise level that results from this null test. The spectra
in Fig. 9 should be compared to the analogous spectra
shown in Fig. 3 where the patchy reionization signal was
present. We find that ResUNet-CMB reconstructs spec-

tra 〈Cτbiasedτbiased

` 〉 that are much smaller for the null test
than when a signal is present, especially on large angular
scales where the reconstruction is most successful. In the
noiseless case, the reconstructed spectrum 〈Cτbiasedτbiased

` 〉
in the null test is five to seven orders of magnitude smaller
than the spectrum with patchy reionization included.

We found that the ResUNet-CMB network was much
less successful on this null test when trained without in-
cluding unlensed and unmodulated maps in the training
set. In that case, the model tended to predict the pres-
ence of a patchy reionization signal with power spectra
not much smaller than those shown in Fig. 3, even when
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FIG. 9. Null test showing the average power spectra of the
patchy reionization field τbiased predicted from fully trained
ResUNet-CMB networks on a data set of 7000 simulations
with κ and τ set to zero. The results of this figure should be
compared to those in Fig. 3. The theoretical patchy reioniza-
tion spectrum that is used elsewhere in this work has been
included in this plot (black dash-dot) to ease comparison, but
for the null test shown in this figure, the true Cττ` vanishes.

no modulation was present in the maps. The inclusion
of some unlensed and unmodulated polarization maps in
the data set during training prevents a spurious signal
from being reconstructed when lensing and patchy reion-
ization are absent.

V. CONCLUSION

In this paper we described the construction of a deep
learning network designed to reconstruct effects which
alter the statistics of CMB fluctuations, the ResUNet-
CMB. We showed that this network is capable of the
simultaneous reconstruction of a lensing map, a patchy
reionization map, and a delensed and descreened po-
larization map. The reconstruction of patchy reioniza-
tion provided by ResUNet-CMB drastically reduced the
lensing-induced bias present in the standard quadratic
estimator, and it nearly matched the variance of an op-
timal iteratively delensed and descreened reconstruction
scheme over a wide range of angular scales.

While the results from ResUNet-CMB are quite
promising, we confirm the conclusion of other studies
that with CMB polarization data alone, we are likely to
be able to achieve only a statistical detection of the ef-
fects of patchy reionization [73]. The success of ResUNet-
CMB on the simultaneous reconstruction of two sources
of secondary CMB fluctuations serves as a demonstration
that machine learning tools can be usefully applied to the
data expected from the next generation of CMB surveys.

The ResUNet-CMB network shows promising results,
though improvements can still be made. The results of
the network slightly under-performed idealized predic-
tions for (κ, τ, E) at very low noise levels, especially on
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small scales. In Ref. [77] it is suggested that the recon-
struction of high-` modes is limited by the signal-to-noise
ratio at those small scales. For the case of patchy reion-
ization this issue is of particular importance since its ef-
fects are much smaller than lensing. This problem can
potentially be partially mitigated by using higher resolu-
tion maps to include smaller physical scales, which should
improve the reconstruction on all scales. Accommodat-
ing maps of a different resolution requires extensive re-
structuring of the network to ensure that features on all
scales are being properly analyzed by the network while
ensuring VRAM constraints are not exceeded. Another
avenue to consider would be to first train the network on
patchy reionization maps with a magnified signal, then
slowly decrease the signal magnitude until the fiducial
amplitude is reached. This method, used in Ref. [99]
for a different purpose, could help with the reconstruc-
tion on scales dominated by noise. On the other hand,
the noise levels where significant gains seem possible are
much lower than those of currently planned CMB sur-
veys, meaning that optimization in that very low noise
regime may not lead to much practical improvement with
forthcoming data.

One extension to our work that could improve patchy
reionization reconstruction is to consider a broader set of
input maps. One simple addition is to include CMB tem-
perature maps in addition to polarization. More realistic
simulations would also include correlations between the
patchy reionization field and the matter density, leading
to correlations with the lensing field, galaxy counts, or
other tracers of structure. If such correlations were in-
cluded, one could also consider adding maps of the cos-
mic infrared background, surveys of galaxies, or 21-cm
intensity maps, the addition of which has been shown
to improve patchy reionization reconstruction by other
means [100–102].

Another extension of our work would be treat more re-
alistic simulations, for example by adding astrophysical
foregrounds or anisotropic noise. Applications of ma-
chine learning to simulated foregrounds on the full sky
are already showing promising results [78]. Addressing
the complications presented by more realistic simulations
is a necessary step if machine learning is to be usefully
applied to the data collected by upcoming CMB surveys.

We found a few modifications of standard machine
learning techniques to be beneficial for our purposes. We
included a batch normalization layer in all of our residual
connections, contrary to the standard implementation of
residual connections [86, 88]. We found that the inclusion
of the batch normalization layer lowered validation loss
across all outputs, thereby improving all reconstructions.
The success of this change in our network prompts fur-
ther questions about whether similar changes would be
beneficial to other machine learning applications. When
training the network, we included in the training set some
maps which had both lensing and patchy reionization set
to zero. We found this to be necessary for the trained net-
work to successfully pass the null test for patchy reioniza-

tion reconstruction. Without the null maps in the train-
ing set, we found that the network returned non-zero es-
timates for the patchy reionization signal, even when no
patchy reionization was present in the maps of the test
set. This procedure of including a subset of maps with
varying conditions into the training set can be explored
for further possible improvements to the network. The
potential benefits of this modified subset training method
should not be understated. Not only were the impacts
to the quality of the reconstructions minimal, the change
to the training also fixed a problem in the predictions of
the trained network without requiring any modification
to the architecture.

We did not explore the generalization of our predic-
tions to maps generated with different cosmological pa-
rameters. Further tests are required to determine how
well the network is able to reconstruct patchy reioniza-
tion and lensing in CMB maps generated assuming dif-
ferent cosmologies. The success of the modified subset
training provides a positive indication that a similar tech-
nique could be applied to improve the generalization ca-
pability of the network without much negative impact to
the results.

In order to be useful for constraining cosmological pa-
rameters, the predictions made by any estimator need to
be incorporated into a framework that is capable of rig-
orously quantifying uncertainties. Once trained, making
predictions with ResUNet-CMB is very computationally
efficient, and so the network provides good candidate to
be included in a Monte Carlo exploration of posteriors.
Another possibility would be to incorporate ResUNet-
CMB into a Bayesian framework like that described in
Ref. [47].

Our results act as a proof of concept that machine
learning is capable of the simultaneous reconstruction of
two fields that lead to the distortion of the statistics of
CMB fluctuations. It is natural to ask whether machine
learning can also be usefully applied to the reconstruction
of other sources of secondary CMB fluctuations, perhaps
by including additional maps as input. The ResUNet-
CMB network described here is a useful model for such
exploration, since new architecture aimed at similar tasks
can easily be constructed by simply modifying the inputs
and outputs of the publicly available network.

The work presented here adds to the list of examples
that show machine learning is likely to play a positive
role in the future of cosmology, especially when applied
to the wealth of new data expected from forthcoming
cosmological surveys.
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