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Redshift-space distortions (RSD) offers an exciting opportunity to test the gravity on cosmological
scales. In the presence of galaxy bias, however, the RSD measurement at large scales, where the
linear theory prediction is safely applied, is known to exhibit a degeneracy between the parameters
of structure growth f and fluctuation amplitude σ8, and one can only constrain the parameters in
the form of fσ8. In order to disentangle this degeneracy, in this paper, we go beyond the linear
theory, and consider the model of RSD applicable to a weakly nonlinear regime. Based on the Fisher
matrix analysis, we show explicitly that the degeneracy of the parameter fσ8 can be broken, and σ8

is separately estimated in the presence of galaxy bias. Performing further the Markov chain Monte
Carlo analysis, we verify that our model correctly reproduces the fiducial values of fσ8 and σ8, with
the statistical errors consistent with those estimated from the Fisher matrix analysis. We show
that upcoming galaxy survey of the stage-IV class can unambiguously determine σ8 at the precision
down to . 10% at higher redshifts even if we restrict the accessible scales to k . 0.16hMpc−1.

PACS numbers: 98.80.-k;04.50.Kd;98.65.Dx

I. INTRODUCTION

Since its discovery two decades ago [1, 2], the origin
of late-time cosmic acceleration has remained puzzled.
While the flat Lambda cold dark matter (ΛCDM) model
is currently the best as concordant cosmological model to
describe both the cosmic expansion and structure forma-
tion, consistent with observations of cosmic microwave
background and large-scale structure, the tension with
the cosmological parameters determined at the local uni-
verse has been recently highlighted, suggesting a need of
new physics beyond ΛCDM model [3–5].

Theoretically, the origin of cosmic acceleration can be
explained by either the presence of a mysterious energy
component called dark energy or a long-distance mod-
ification of gravity, referred to as modified gravity [6–
16]. In order to realize the accelerated cosmic expansion,
the former introduces a negative pressure support, and
the latter changes a law of gravitational physics on large
scales. Observationally discriminating between two sce-
narios therefore requires a simultaneous measurements of
the cosmic expansion and growth of structure.

Among various cosmological probes, the redshift-space
galaxy clustering offers a sensible probe of both the cos-
mic expansion and growth of structure. At large scales,
the baryon acoustic oscillations (BAO) imprinted on the
clustering pattern of galaxies appears statistically mani-
fest, and it can be used for a standard ruler to determine
the angular diameter distance (DA) and Hubble param-

∗Electronic address: ysong@kasi.re.kr

eters H at high redshifts through the Alcock-Paczynski
test [17]. Further, the observed galaxy distribution via
spectroscopic surveys is statistically anisotropic due to
the peculiar velocity of galaxies by Doppler effect, re-
ferred to as the redshift-space distortions (RSD). In linear
theory, the strength of anisotropies is solely characterized
by the growth rate f , defined by f = d lnD+/d ln a, with
D+ and a being linear growth factor and scale factor
of the Universe, respectively. Thus, through a precision
measurement of redshift-space galaxy power spectrum or
correlation function, one can in principle obtain simul-
taneously the information on the three parameters (i.e.,
DA, H, and f).

However, in the presence of the galaxy bias, the situ-
ation becomes bit complicated. To be precise, consider
the large scales where the linear theory is safely applied.
Then, the galaxy power spectrum is generally modeled
as

P (S)
g (k, µ) =

[
b1σ8(z) + fσ8(z)µ2

]2
Pm(k) , (1)

where the variable µ is the directional cosine between
wavevector and line-of-sight direction. The function Pm

is the matter power spectrum normalized at the present
day. The quantity σ8(z) is the root-mean-square mass
fluctuation in spheres with radius 8h−1 Mpc at redshift
z, and is recast in linear theory as σ8(z) = σ8(0)D+(z)
with D+ being normalized to unity at z = 0. The b1
is the linear bias parameter. Note that taking further
the Alcock-Paczynski effect into account, the projected
wavenumbers perpendicular and parallel to the line-of-
sight direction, k⊥ and k‖ = µk, are respectively re-

placed with DA/DA,fidk⊥ and (H/Hfid)−1k‖, and the
power spectrum given above is further multiplied by
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(H/Hfid)(DA/DA,fid)−2, where the quantities with sub-
script indicate those estimated in a fiducial cosmological
model.

The structure of Eq. (1) indicates that the parameter
σ8 is degenerated with growth rate f and bias b1, and one
can only determine the combinations of the parameters,
i.e., b1σ8 and fσ8, through the observed power spectrum.
In other words, unless the bias parameter b1 is known a
priori, one cannot break the degeneracy between growth
rate f and σ8. Note that the Alcock-Paczynski effect
induces distinctive anisotropies in the measured power
spectrum, and making use of BAO features, one can sep-
arately determine DA/DA,fid and H/Hfid without any
degeneracy with σ8.

Toward a solid test of gravity and cosmic acceleration,
the degeneracy between f and σ8 has to be broken. To
do this, one simple approach is to combine the power
spectrum with other cosmological probe. In this respect,
the use of galaxy bispectrum would be obviously impor-
tant, and this can also provide an additional cosmologi-
cal information, further tightening the cosmological con-
straints [18, 19]. Another approach is to stick to the
power spectrum, and to use the small-scale information
beyond the linear regime. Recalling that Eq. (1) is valid
only at large scales, if we go to nonlinear regime, there
appear corrections involving the parameters σ8 and f but
with a different combination. In fact, using the perturba-
tion theory calculation, we can identify the directional-
dependent terms proportional to f2σ4

8 or f3σ4
8 in the

matter power spectrum [20, 21]. Thus, provided an ac-
curate theoretical model, accessing (weakly) nonlinear
scales would give a way to break the degeneracy between
f and σ8. A price to pay is, however, the new degrees
of freedom to characterize the galaxy bias at nonlinear
scales. That is, beyond linear scales, we need to introduce
several bias parameters describing the nonlinear modifi-
cation to power spectrum, and one has to marginalize
them to determine parameters sensitive to the cosmol-
ogy. It is thus not trivial at all that the growth rate f is
uniquely determined without any degeneracy.

In this paper, based on a nonlinear theoretical model
of the redshift-space galaxy power spectrum, we explic-
itly demonstrate that the degeneracy between f and σ8 is
broken at weakly nonlinear scales. The model specifically
considered here is called the hybrid RSD model that has
been developed by Ref. [22–24]. This is a perturbation
theory based model [20, 21], but partly including the cor-
rection terms calibrated by N -body simulations, the ac-
curacy is improved and the applicable range is extended
[23]. In this paper, incorporating further the nonlinear
bias prescription into the hybrid RSD model, we will in-
vestigate how the degeneracy between f and σ8 is broken,
and quantify the expected constraints on parameters σ8,
fσ8 as well as DA and H for a representative galaxy
survey (Dark Energy Spectroscopy Instrument, DESI).

Related to the present study, one may comment on the
full-shape analysis that recently performed using SDSS
BOSS galaxies [25, 26]. In this study, based on the ef-

fective field theory of large-scale structure, the input lin-
ear power spectrum is allowed to vary, enabling us to
directly constrain each cosmological parameters. Going
beyond linear regime, not only tightening constraints but
also breaking parameter degeneracy is shown to be man-
ifest [27], assuming the underlying theory of gravity. The
spirit of this approach is close to the present paper, but
we here stick to the consistent test of gravity, and take
f or fσ8 to be a free parameter, independent of other
cosmological parameters.

This paper is organized as follows. Sec. II presents
a model of the redshift-space galaxy power spectrum
applicable to the weakly nonlinear regime. Based on
this model as a theoretical template, in Sec. III, we use
the Fisher matrix formalism to quantitatively investigate
how well one can break the degeneracy of the parameters
fσ8. Sec. IV examines the Markov chain Monte Carlo
analysis to estimate the cosmological parameters in the
hal catalog. We verify that our model of RSD faithfully
reproduces the fiducial parameters in the N -body simula-
tions, consistent with the Fisher forecast results. Finally,
Sec. V is devoted to conclusion and discussion.

II. HYBRID RSD MODEL FOR GALAXY
CLUSTERING

In this section, we present the model of redshift-space
galaxy power spectrum beyond the linear regime. Af-
ter briefly reviewing the hybrid RSD model for matter
fluctuations in Sec. II A, we extend it to incorporate the
nonlinear galaxy bias in Sec. II B.

A. Hybrid RSD model for matter power spectrum

In order to model the observed galaxy power spec-
trum, one critical ingredient is the redshift-space distor-
tions (RSD). In principle, all the effects of RSD is ac-
counted for by the simple relation between real-space (r)
and redshift-space (s) positions:

s = r +
v · ẑ
aH

ẑ, (2)

where the quantities v, a and H respectively denote the
physical peculiar velocity, the scale factor of the Universe,
and the Hubble parameter. In this paper, we will take
the distant-observer limit, and choose the z-direction as
the line-of-sight direction. With the mapping relation
given above, the power spectrum in redshift space is gen-
erally expressed in terms of the real-space quantities (e.g.,
Ref. [20]):

P (S)(k, µ) =

∫
d3x eik·x

〈
ej1A1A2A3

〉
, (3)
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where the variable j1 and functions Ai are defined as
follows:

j1 = −i kµ,
A1 = uz(r)− uz(r′),
A2 = δ(r) + ∇zuz(r),

A3 = δ(r′) + ∇zuz(r′).

The quantities x and u are given respectively by x =
r− r′ and u ≡ −v/(aH). The function uz is the line-of-
sight component of u.

Based on Eq. (3), a rigorous calculation of the
redshift-space power spectrum generally requires a non-
perturbative treatment. This is true even if the den-
sity and velocity follow the Gaussian statistics. We thus
employ the perturbative treatment and derive the ex-
pression relevant to the weakly nonlinear regime. To do
this, one proposition made in Refs. [20, 28] is that a part
of the zero-lag correlation in the exponent is kept as a
non-perturbative contribution, while rest of the terms is
Taylor-expanded. The resultant expression for the power
spectrum, relevant at the next-to-next-to-leading order
becomes [20, 21, 28]

P (S)(k, µ) = DFoG(kµσz)
[
Pδδ(k) + 2µ2PδΘ(k) + µ4PΘΘ(k)

+A(k, µ) +B(k, µ) + T (k, µ) + F (k, µ)
]
,

where the quantity Θ is the velocity-divergence field,
Θ ≡ −∇ · v/(aH) = ∇ · u. The spectra, Pδδ, PδΘ,
and PΘΘ are respectively the auto-power spectrum of
density, velocity-divergence fields, and their cross-power
spectrum. The first line in the bracket is originated from
the term 〈A2A3〉c, and is obtained assuming the irro-
tational flow. At the linear order, it is reduced to the
squashing Kaiser term, i.e., Eq. (1). The rest of the terms
in the bracket are the higher-order corrections character-
izing the nonlinear correlations between the density and
velocity fields, defined by

A(k, µ) = j1

∫
d3x eik·x 〈A1A2A3〉c,

B(k, µ) = j2
1

∫
d3x eik·x 〈A1A2〉c 〈A1A3〉c,

T (k, µ) =
1

2
j2
1

∫
d3x eik·x 〈A2

1A2A3〉c,

F (k, µ) = −j2
1

∫
d3x eik·x 〈uzu′z〉c〈A2A3〉c.

Note that the factorized term DFoG in Eq. (5) represents
a non-perturbative contribution coming from the zero-lag
correlation of velocity fields, and it plays a role to sup-
press the overall amplitude at small scales. The explicit
functional form will be later specified (see Sec. III).

To explicitly compute Eq. (5) in the case of the matter
fluctuations, in Ref. [23], we have used the re-summed
perturbation theory treatment by the multi-point prop-
agator expansion [21, 29, 30]. To account further for

a small but non-negligible flaw in the perturbative cal-
culations, we have added the corrections calibrated by
the N -body simulations, which enables us to predict the
redshift-space matter power spectrum at the precision of
. 1% down to k ' 0.18hMpc−1. In Appendix A, the
description of our hybrid model is presented for the mat-
ter power spectrum, and the explicit dependence on the
quantities σ8(z) and f(z) are shown.

Although the expressions of the higher-order contribu-
tions are rather intricate, these terms involve the contri-
butions expressed in the polynomial form of fmσn, with
the power-law indices m and n running respectively from
1 to 4 and 4 to 6 for the perturbative calculations at
next-to-next-to-leading order. Besides, beyond the lin-
ear order, even the auto-power spectra Pδδ and PΘΘ do
not simply scale as σ2

8 and (f σ8)2, respectively. Thus,
if one gets access to the weakly nonlinear regime where
the higher-order terms play a role, we expect that the
degeneracy of the parameter fσ8 at Eq. (1) is broken,
and f and σ8 can be separately determined.

B. Modeling galaxy bias

On top of the hybrid RSD model in previous subsec-
tion, there is one more step toward a practical application
to the observed galaxy power spectrum. Since the galaxy
distribution is a biased tracer of matter distribution, ac-
counting for the galaxy bias is another crucial task. In
order to do this, one may recall that the expression given
at Eq. (5) is fairly general. Replacing the matter density
field δ with the galaxy/halo density field δh, Eq. (5) can
be applied to the observed power spectrum, and hence
our hybrid model of matter power spectrum is used as a
building block to compute accurately the redshift-space
galaxy power spectrum.

For our interest at the weakly nonlinear regime, a per-
turbative description of the tracer field is valid, and δh
is expanded in powers of the matter density field δ, in-
cluding the non-local contributions. Here, we adopt the
prescription proposed by Ref. [31, 32], which has been ap-
plied to the SDSS BOSS (e.g., [19]) and eBOSS galaxies
[33]. Apart from the stochastic terms, this is a general
perturbative expansion valid at the next-to-leading or-
der. While the hybrid model for the matter power spec-
trum in Sec. II A and Appendix A includes the correc-
tions valid at next-to-next-to-leading order, we shall be-
low consider the scales where the next-to-leading order is
important, but the next-to-next-to-leading order is still
subdominant. A fully consistent treatment including the
bias at next-to-next-to-leading order will be discussed in
our future work.

Based on Refs. [31, 32], the auto-power spectrum of
the tracer density field, Pδ̃hδ̃h , is expressed as follows:

Pδ̃hδ̃h(k) = Pδhδh(k) + Pεε , (4)

where the term Pεε is the stochastic contribution mainly
characterizing the shot noise, which is usually constant,
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FIG. 1: Left: Logarithmic derivative of the real-space halo power spectrum with respect to the linear growth factor Gδ (black)
and linear bias parameter b1 (blue), plotted as function of the wavenumber k. In each panel, the solid lines represent the results

for hybrid model, P hybrid
δδ , while dashed and dotted lines are for the linear theory prediction, P lin

δδ . Right: logarithmic derivative
of the redshift-space halo power spectra with respect to Gδ, b1 and GΘ, respectively shown from top to bottom panels. Both
of the Kaiser (linear theory) and hybrid models are shown as blue and red curves, specifically fixing the directional cosine to
µ = 0.0 (dotted), 0.3 (short-dashed), 0.6 (long-dashed) and 0.9 (solid).

and is estimated, assuming the Poisson noise, from the
number density of tracer field. The first term, Pδhδh , is
the deterministic part, and is given in the following form:

Pδhδh(k) = b21Pδδ(k) + 2b1b2Pb2,δ(k) + 2b2bs2Pbs2,δ(k)

+ 2b1b3nlσ
2
3(k)PL

m(k) + b22Pb22(k)

+ 2b2bs2Pb2s2(k) + b2s2Pb22(k). (5)

On the other hand, the cross-power spectrum, Pδhθh , con-
tains only the deterministic contribution, whose expres-
sion is given by

PδhΘh
(k) = b1PδΘ(k) + b2Pb2,Θ(k) + bs2Pbs2,Θ(k)

+ b3nlσ
2
3(k)PL

m(k) . (6)

Note that in the absence of velocity bias, the auto-power
spectrum of galaxy/halo velocity field, PΘhΘh

, is identi-
cal to PΘΘ. In Eqs. (4) and (6), while the first terms,
b21Pδδ and b1PδΘ, as well as PΘhΘh

, are the leading-order
bias contribution, and can be computed with the hybrid
RSD model for the matter power spectrum, the terms
involving parameters b2, bs2, and b3nl are the higher-
order bias terms. The explicit expressions for their scale-
dependent functions, Pb2,δ, Pbs2,δ, σ

2
3 , Pb22, ..., can be

found in Ref. [31, 32].

Regarding the A, B, T and F terms in Eq. (5), they
are all regarded as the higher-order corrections. We only

apply the linear bias b1 to these terms [24],

Ah(k, µ) = b31A(k, µ, f/b1) , (7)

Bh(k, µ) = b41B(k, µ, f/b1) , (8)

Fh(k, µ) = b41F (k, µ, f/b1) , (9)

Th(k, µ) = b41T (k, µ, f/b1) , (10)

where all the subscripts h at left-hand-side represent the
higher-order terms of the tracer fields. The accuracy of
this treatment and its impacts on the RSD model was
discussed in Ref. [24].

Incorporating the bias prescription given above into
Eq. (5), our hybrid RSD model in Sec. II A and Appendix
A enables us to predict the redshift-space galaxy/halo
power spectrum beyond the linear regime. To see the be-
havior of the model beyond the linear bias prescription,
left panel of Fig. 1 shows the logarithmic response of the
real-space power spectrum to the quantities b1 and Gδ,
depicted as respectively blue and black lines. In linear
theory, there is no difference between these responses,
which exactly give 2 (dashed and dotted). On the other
hand, the hybrid model involving the galaxy bias expan-
sion exhibits a wiggle feature for the response to Gδ,
showing a small but visible deviation from 2. This is
caused by non–linear smoothing around BAO peaks. On
the other hand, the response to b1 still lies at 2 even in
the hybrid model, indicating that the dependence of Gδ
or σ8 and b1 becomes distinguishable beyond the linear
regime. The selected fiducial values of galaxy biases are
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FIG. 2: Left: the expected errors on fσ8 for DESI, with σ8 marginalized over. The result derived from the Fisher matrix,
depicted as the error bar around the fiducial value, are plotted against redshift. The upper and lower panels respectively show
the estimated constraints on fσ8 derived from the LRG and ELG type galaxies. Right: Same as in the left panel, but the
parameter σ8 is fixed, and is not treated as a free parameter.

presented in Table I. The fiducial values for coherent bias
b1 are taken from DESI prediction [34], and the redshift
dependence of b2 biases are fitting results from halo cat-
alogue.

To feel some flavors on how the degeneracy is broken,
left panel of Fig. 1 presents the response of the redshift-
space power spectrum to the variation of Gδ and GΘ.
The quantity Gδ is the linear growth factor normalized at
primordial epoch as Gδ(zi)(1 + zi) = 1, and is related to
σ8(z) through σ8(z) = [Gδ(z)/Gδ(0)]σ8(0). In left panel
of Fig. 1, the response of the redshift-space galaxy/halo
power spectrum to the variation of Gδ is shown for both
linear theory prediction and hybrid model, depicted as
black dotted and solid curves respectively. The func-
tion GΘ is related to the linear growth rate f through
GΘ = f Gδ. On the other hand, right panel of Fig. 1
plots the response of the 2D redshift-space power spec-
trum to the variations of Gδ and GΘ at top and bottom
panels respectively, specifically fixing the directional co-
sine µ to 0.0, 0.3, 0.6 and 0.9. The distinct behavior of
the power spectrum is observed by varying µ, and the
results of hybrid model start to deviate from linear the-
ory predictions, indicating that the parameter degener-
acy between Gδ and GΘ is broken, and so is the case for
σ8 and fσ8.

III. FORECAST CONSTRAINTS ON σ8 AND fσ8

In this section, based on the model described in Sec. II
as a theoretical template, we demonstrate explicitly how
well the degeneracy of the parameter fσ8 can be broken,
adopting specifically the Dark Energy Spectroscopy In-
strument (DESI) [34], which is a representative galaxy
redshift survey of the so-called stage-IV class [36], dedi-
cated for a precision measurement of BAO and RSD uti-

z nLRG
g nELG

g V bLRG
1 bELG

1 bLRG
2 bELG

2

0.4–0.6 4.9× 10−4 1.6× 10−4 3.5 2.22 1.10 0.10 0.10
0.6–0.8 9.9× 10−4 1.4× 10−3 5.4 2.45 1.21 0.67 0.67
0.8–1.0 3.9× 10−4 1.7× 10−3 7.0 2.69 1.33 1.40 1.40
1.0–1.2 2.4× 10−5 9.8× 10−4 8.4 2.94 1.45 2.48 2.48
1.2–1.4 — 5.8× 10−4 9.4 — 1.57 — 3.91
1.4–1.6 — 2.3× 10−4 10. — 1.70 — 5.68

TABLE I: The expected number density of LRG and ELG
galaxies nLRG

g [h3Mpc−3] and nELG
g [h3Mpc−3], and survey vol-

ume V [h−3 Gpc3] at each redshift bin used in the Fisher ma-
trix analysis. These specific values are taken from those as-
sumed in the DESI experiment [34]. The fiducial values of
bias for LRG and ELG are presented as well, calculated by
the formulas bLRG

1 (z)D(z) = 1.7 and bELG
1 (z)D(z) = 0.84 [34],

with D being the linear growth factor normalized to unity at
present time, i.e., D(z) = Gδ(z)/Gδ(0). Concerned with bLRG

2

and bELG
2 , we exploits the halo fit results. To compute these

parameters, Planck ΛCDM model [35] is adopted as the fidu-
cial cosmology.
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FIG. 3: Left: The fractional errors on DA from DESI LRG (upper) and ELG (lower) samples. The results in units of percentage
are plotted as function of redshift. Solid and dashed curves represent the cases with σ8 marginalized over and fixed, respectively.
Right: Same as in left panel, but the fractional errors on H−1 is shown.

lizing the emission-line galaxy (ELG) and luminous red
galaxy (LRG) samples (see Table I for parameter speci-
fication, which is discussed below).

A. Fisher matrix formalism

To estimate quantitatively the size of the expected er-
rors, we use the Fisher matrix formalism. Regarding
the model in Sec. II as an observed power spectrum, the
Fisher matrix is evaluated with

Fαβ =
∑
k,µ

∂P obs(k, µ)

∂xα
C−1
PP

∂P obs(k, µ)

∂xβ
(11)

where the derivative of the power spectrum is taken with
respect to the parameter to estimate, xα. The observed
power spectrum P obs is related to P (S) given at Sec. II
through the Alcock-Paczynski effect (Ref. [17], see also
Sec. I):

P obs(k, µ) =
( H

Hfid

)( DA

DA,fid

)−2

P (S)(q, ν) ; (12)

q =
{( DA

DA,fid

)2

(1− µ2) +
( H

Hfid

)−2

µ2
}1/2

k,

ν =
k

q

( H

Hfid

)−1

µ.

In Eq. (11), the quantity CPP describes the error co-
variance of the measured power spectra, whose domi-
nant contributions are the shot noise arising from the

discreteness of galaxy distribution, and the cosmic vari-
ance due to the limited number of Fourier modes for a
finite-volume survey. While the non-Gaussian contribu-
tion, leading to the non-zero off-diagonal components,
is known to play an important role beyond the linear
regime, we will work with the linear Gaussian covariance
given below,

CPP =
1

NP

[
P (S)(k, µ) +

1

nXg

]2

, (13)

where the quantity nXg denotes the number density of
galaxies for a specific galaxy type X, i.e., X =LRG or
ELG for DESI, whose values are summarized in Table
I. The quantity NP represents the number of available
Fourier modes, which is estimated to be

NP =
Vsurvey

2(2π)2
k2∆k∆µ (14)

with ∆k and ∆µ being the bin width of the power
spectrum data given in the (k, µ) plane, with ∆k =
0.01hMpc−1 and ∆µ = 0.1. Here, the quantity Vsurvey is
the survey volume, whose values is also listed in Table I.

Adapting the Gaussian covariance at Eq. (13), the fore-
cast results of our Fisher matrix analysis would be op-
timistic. Nevertheless, at the scales where the pertur-
bative corrections of the next-to-next-to-leading order is
still sub-dominant, the impact of non-Gaussian covari-
ance would be small. The forecast results presented be-
low can thus give an important guideline toward a more
quantitative analysis. Indeed, to compute the Fisher ma-
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FIG. 4: The expected error on σ8 for the DESI LRG (upper)
and ELG (lower) type samples.

trix at Eq. (11) below, we will conservatively fix the max-
imum wavenumber to kmax = 0.16hMpc−1, at which
the non-linearity is still mild at the range of redshifts,
0.4 ≤ z ≤ 1.6.

To evaluate Eq. (11), we will use the power spec-
trum of P (S)(k, µ) in Eq. 5. As the free parameters
to estimate, we consider, at each redshift slice, xα =
{Gδ, GΘ, DA, H, b1, b2, σz}, where the former two are
simply proportional to σ8(z) and f σ8(z). The parame-
ter σz quantifies the non-perturbative suppression of the
power spectrum by the so-called Fingers-of-God damping
that appears in the function DFoG at Eq. (5). We shall
below adopt the Gaussian form of the damping function:

DFoG(x) = exp(−x2). (15)

where the fiducial σp = 3.3hMpc−1 computed using lin-
ear theory only. Then, the derivative of the power spec-
trum P obs, given at Eq. (12), is taken with respect to the
parameters, xα. Here, the higher-order bias parameters,
bs2 and b3nl, are fixed, adopting the following relations:

bs2 = −4

7
(b1 − 1) , b3nl =

32

315
(b1 − 1) ,

which are derived assuming the Lagrangian local bias,
and are shown to be a good approximation for halos and
galaxies residing at the halo center (e.g., [32, 37, 38]).
The fiducial values of the linear bias parameters for ELG
and LRG are presented in Table I.

B. Results

With the setup described in Sec. III A, the one-
dimensional marginalized errors on the parameters fσ8

and σ8, as well as the geometric distances, are obtained

from the inverse of Fisher matrix, ∆xα =
√
F−1
αα .

Let us first see how the expected error on the parame-
ter fσ8 is altered when the parameter σ8 or Gδ is taken
to be free, and is marginalized. Fig. 2 plots the results
with σ8 marginalized (left) and fixed (right), the latter
of which is obtained from the inverse of the sub-matrix
Fαβ subtracting the component of Gδ. In each panel,
the one-dimensional error on fσ8 is shown at each red-
shift slice for the LRG (top) and ELG (bottom) samples.
Remarkably, we found that the size of the error on fσ8

almost remains unchanged irrespective of the treatment
of the parameter σ8, leading to the constraint at the level
of a few percent in both ELG and LRG samples, which
is expected from the stage-IV class surveys.

To elucidate further the impact of marginalizing the
σ8 parameter, we also plot in Fig. 3 the constraints on
the geometric distances. Here, the fractional errors on
the angular diameter distances and Hubble parameters ,
(DA−DA,fid)/DA,fid and (H−Hfid)/Hfid, are respectively
shown in left and right panels as function of the redshift.
In each panel, the results with σ8 marginalized and fixed
are depicted as solid and dashed lines. Again, no notable
difference is found between the two cases, and even the
results marginalizing σ8 reach at 1 % precision for the
constraints on both DA and H. In particular, with the
ELG samples, the constraint is improved as increasing
the redshift out to z ∼ 1.5, with the statistical error
down to a sub-percent level.

In Fig. 4, we plot the statistical errors on σ8 that is
separately determined as a free parameter together with
f σ8. As opposed to the tight constraint on fσ8, the σ8

appears poorly constrained. Considering the fact that
the nonlinear corrections in the power spectrum template
that can break the parameter degeneracy are small, this
result is reasonable. Rather, accessing the scales to the
weakly nonlinear regime, the number of available Fourier
modes gets increasing, and the constraints on fσ8, as
well as geometric distances are improved, as we have seen
in Figs. 2 and 3. Nevertheless, using the ELG, the ex-
pected error on σ8 becomes also improved with redshifts,
achieving 10% precision at z = 1.5. Since constraining
the growth history of structure at higher redshifts partic-
ularly helps testing and constraining the gravity as well
as the cosmic acceleration, the simultaneous determina-
tion of fσ8 and σ8 is beneficial. Combining the power
spectrum with bispectrum, the constraining power will
be further improved.
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FIG. 5: Results of the cosmological parameter estimation obtained from the MCMC analysis (blue shaded regions). The panels
show the two-dimensional error constraints of the parameters among (DA, H

−1, σ8, fσ8, b1). The fainter and brighter areas
respectively represent the 68% and 95% credible regions. Correspondingly, the forecasted errors from the Fisher matrix analysis
are also shown around the fiducial values (filled circles), depicted as black dotted contours. Note that the resultant constraints
shown here are obtained after marginalizing over other nuisance parameters such as (σz, b2).

IV. BREAKING THE f σ8 DEGENERACY IN
N-BODY SIMULATIONS

Given the survey setup and the theoretical template
of power spectrum, the Fisher matrix analysis in previ-

ous section predicts the statistical errors on each free pa-
rameter and their parameter degeneracy, but cannot tell
how the best-fit parameters are accurately determined.
In this section, to check the validity of the forecast re-
sults in Sec. III as well as to test the hybrid RSD model
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of power spectrum in Sec. II, we here examine the pa-
rameter estimation analysis, based on the Markov chain
Monte Carlo (MCMC) technique.

For this purpose, the cosmological N -body simulation
is carried out by the publicly available code, GADGET-
2 [39], and we ran in total 100 simulations, with 10243

particles in comoving periodic cubes of the side length
1, 890h−1 Mpc. Using the output results at z = 0.9, the
halo catalog was created using the halo finder, ROCK-
STAR [40], with a halo mass range of 1013 h−1M� <
Mh < 1013.5 h−1M�, and the halo number density
nh = 1.9 × 10−4 h3Mpc−3. The resultant volume of
the halo catalog is 6.8h−3 Gpc3, roughly corresponding
to the survey volume of DESI at the redshift slice of
z = 0.8 − −1.0. The number density of our halo sam-
ple is smaller than those expected from DESI LRG and
ELG samples (see Table I), but this does not affect the
estimation of statistical errors, as we consider the scales
where the shot noise is subdominant.

The created halo catalog at z = 0.9 is then used to
measure the power spectrum in redshift space, which is
compared with the hybrid RSD model to estimate the pa-
rameters (σ8, fσ8, DA, H, b1, b2, σz), similarly to what
has been done in Sec. III, assuming the Lagrangian lo-
cal bias. Adopting the same maximum wavenumber as
used in Sec. III, i.e., kmax = 0.16hMpc−1, the MCMC
results marginalized over nuisance parameters of (b2, σz)
are shown in Fig. 5, where we plot the two-dimensional
error contours of the cosmological parameter pairs in
(DA, H

−1, σ8, fσ8, b1). The blue shaded regions repre-
sent the 68% (dark) and 95% (light) credible regions
obtained from the MCMC results are shown as two-
dimensional error contours in each panel, taking a pair of
parameters among (DA, H

−1, σ8, fσ8, b1), marginalizing
over other parameters including (b2, σz).

In Fig. 5, we also plot the forecast results for the Fisher
matrix analysis. The solid and dashed contours centered
at the fiducial parameters, indicated by the black filled
circles, are respectively the the 68% and 95% credible re-
gions for the forecast errors. The MCMC results repro-
duce well the forecast results of the Fisher matrix anal-
ysis, and the 68% credible regions consistently include
the fiducial parameters, in which the nuisance parame-

The parameters The estimated The measured

DA(Mpc) 3152.5± 43.8 3162.0+29.9
−41.3

H−1(Mpc) 2645.1± 63.1 2613.4+42.3
−55.6

b1 2.34± 0.37 2.34+1.17
−0.41

σ8 0.53± 0.09 90.51+0.03
−0.10

fσ8 0.45± 0.03 0.46+0.02
−0.03

TABLE II: One-dimensional marginalized constraint on each
parameter, obtained from the analysis shown in Fig. 5. The
second column represents the Fisher forecast results of the
statistical errors around the fiducial values. The third col-
umn lists the best-fit and statistical uncertainty (68%) derived
from the MCMC analysis.

ters of b2 and σz are fully marginalized in the analysis.
Thus, with the hybrid RSD model presented in Sec. II,
unbiased parameter estimation is shown to be possible,
with the broken degeneracy among the parameters of
(DA, H

−1, σ8, fσ8, b1), while it is minimally broken for
b1 with all other cosmological parameters. Although the
statistical error of σ8 is large, this is the first demon-
stration that the simultaneous determination of f and
σ8 is possible only with the power spectrum at weakly
nonlinear scales.

V. CONCLUSION

Redshift-space distortions (RSD) that appear in the
observed galaxy distributions via spectroscopic surveys
offer an important clue to test the gravity on cosmological
scales. Combining the measurement of baryon acoustic
osculations (BAO), RSD can be also used to clarify the
nature of cosmic acceleration. Toward an unambiguous
estimation of cosmological parameters, a crucial issue is
not only to improve the precision of RSD measurement,
but also to exploit the method to disentangle the param-
eter degeneracy inherent in the observables.

In this paper, on the basis of an accurate template for
the galaxy/halo redshift-space power spectrum, we get
access to the weakly nonlinear regime, and showed that
the parameter degeneracy inherent in the linear-theory
power spectrum can be broken. To be precise, in linear
theory, the linear growth rate f and the fluctuation am-
plitude σ8 appear in the form of fσ8 [Eq. (1)], and this
degeneracy cannot be broken unless the galaxy bias pa-
rameter is a priori known or is accurately determined. In
order to break the degeneracy, one way is to go beyond
the linear theory. Here, we use the hybrid RSD model of
power spectrum that has been developed in our previous
papers. Based on the perturbation theory calculations,
the model incorporates the higher-order corrections cali-
brated with N -body simulations into the power spectrum
expressions, and the accuracy of predictions is improved.
Taking further the galaxy bias into account, the hybrid
model enables us to get access to the observed galaxy
power spectrum at the weakly nonlinear regime.

Employing the Fisher matrix analysis, we show explic-
itly that the degeneracy of the parameter fσ8 can be
broken, and σ8 is separately estimated in the presence
of galaxy bias. The statistical errors on fσ8 as well as
the geometric distances DA and H, determined from the
BAO via the Alcock-Paczynski effect, are found to re-
main unchanged, irrespective of whether we treat σ8 or
the growth factor Dδ as a free parameter to marginal-
ize or not. As a result, we have shown that the Dark
Energy Survey Instrument, as a representative stage-IV
class galaxy survey, can unambiguously determine σ8 at
the precision of ∼ 10% at higher redshifts even if we re-
strict the accessible scales to k . 0.16hMpc−1. Further,
performing the Markov chain Monte Carlo analysis, we
explicitly demonstrate that with the hybrid RSD model,
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the parameters fσ8 and σ8 are simultaneously estimated,
and their fiducial values can be properly recovered, with
the statistical errors fully consistent with the forecast re-
sults of the Fisher matrix analysis.

While the analysis in the present paper gives a first ex-
plicit demonstration on how well the parameter degener-
acy in the measurement of RSD can be broken, the ability
to achieve this heavily relies on the theoretical template
of the observed power spectrum. Toward a further im-
provement of the cosmological constraints in an unbiased
way, one needs to develop a model that can get access to
smaller scales. Though the present paper considered the
perturbation theory based model aided by the N -body
simulations, a simulation based model such as the so-
called emulator would be certainly powerful (e.g. [41]).
With such a model, the accessible range of wavenumber
becomes broader, and the simultaneous constraints on
fσ8 and σ8, as well as the geometric distances, will be
improved in a greater precision. The discussion along the
direction of this should be done in the near future.
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Appendix A: Description of hybrid RSD model for
matter power spectrum

The evolution of the density and peculiar velocity fields
is traditionally parameterized by σ8 and fσ8. Both are
related to the growth functions of Gδ and GΘ written as
below,

σ2
8(z) =

G2
δ(z)

2π2

∫
W 2

8 (k)k2P iδδ(k)dk , (A1)

(fσ8)2(z) =
G2

Θ(z)

2π2

∫
W 2

8 (k)k2P iδδ(k)dk . (A2)

The window function W8 is given by,

W8 =
3j1(kR8)

kR8
, (A3)

where j1 is the first-order spherical Bessel function, and
R8 = 8h−1Mpc. We intend to simultaneously probe σ8

and fσ8 by exploiting the Gδ and GΘ parameters.
In the hybrid approach of modelling the RSD effect,

the theoretical spectra P̄ th
XY (k, z) (X,Y = δ or Θ) are

computed by the RegPT treatment [29], in which all the
statistical quantities including power spectrum are ex-
panded in terms of the multi-point propagators up to
the two–loop order as,

P̄XY (k, z) = Γ̄
(1)
X (k, z)Γ̄

(1)
Y (k, z)P̄ i(k)

+2

∫
d3~q

(2π)3
Γ̄

(2)
X (~q,~k − ~q, z)Γ̄(2)

Y (~q,~k − ~q, z)

×P̄ i(q)P̄ i(|~k − ~q|)

+6

∫
d3~pd3~q

(2π)6

×Γ̄
(3)
X (~p, ~q,~k − ~p− ~q, z)Γ̄(3)

Y (~p, ~q,~k − ~p− ~q, z)
×P̄ i(p)P̄ i(q)P̄ i(|~k − ~p− ~q|). (A4)

Here P̄ i is the initial power spectrum, and Γ
(n)
X is the

(n+1)-point propagator. In RegPT treatment, the prop-
agators are constructed with the standard PT calcula-
tions. While the standard PT is usually applied to a
limited range of wavenumbers, incorporating the result
of a partial resummation in the high-k limit, a regular-
ized prediction of the propagators could be applicable to
a larger k.

Let us first see the two-point propagator Γ̄
(1)
X . The

expression relevant at the two-loop order is summarized
as

Γ̄
(1)
X (k, z) = exp

(
−Ḡ2

δ γ̄
)∑

n

ḠXḠ
n−1
δ C̄(1)

n (γ̄). (A5)

Here, γ̄ is defined by γ̄ = k2σ̄2
d/2 with σ̄2

d being the
dispersion of displacement field. The σd is computed
with the initial power spectrum through [43] σ̄2

d =∫ k/2
0

(dq/6π2)P̄ i(q). The coefficients C̄(n) in Eq. (A5) are
expressed in terms of the standard PT results, and in-
cluding the theoretical uncertainties, they are given by

C̄(1)
1 (γ̄) = 1,

C̄(1)
3 (γ̄) = γ̄ + Γ̄

(1)
X,1−loop(k),

C̄(1)
5 (γ̄) = γ̄2/2 + γ̄Γ̄

(1)
X,1−loop(k) + Γ̄

(1)
X,2−loop(k) + Ō(1)

X,5,

C̄(1)
n (γ̄) = Ō(1)

X,n , (A6)

and C̄(1)
n = 0 for even numbers of n. The ḠX denotes

the density (X = δ) and velocity (X = Θ) growth func-
tions for the fiducial cosmology at the redshift z. These
growth functions are the key quantities to be estimated
from observations, and are related to the linear growth
factor D+ and linear growth rate f through Gδ = D+

and Gθ = f D+. The function Γ
(p)
X,n−loop represents the

standard PT (p + 1)-point propagator at the n-loop or-
der, whose explicit expression is given in [29, 42]. The
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quantity Ō(1)
X,n characterizes the uncertainties or system-

atics in PT, which will be later calibrated with N -body
simulations. We assume that the uncertainties arise not
only from the higher-order (three-loop) but also from the
two-loop order, partly due to the UV sensitive behavior
of the single-stream PT calculation.

Similarly, the expression of the three-point propagator,

Γ̄
(2)
X (k, z) is given by

Γ̄
(2)
X (k, z) = exp

(
−Ḡ2

δ γ̄
)∑

n

ḠX Ḡ
n−1
δ C̄(2)

n ;

C̄(2)
2 (γ̄) = F̄

(2)
X (~q,~k − ~q),

C̄(2)
4 (γ̄) =

γ̄

2
F̄

(2)
X (~q,~k − ~q) + Γ̄

(2)
X,1−loop(~q,~k − ~q) + Ō(2)

X,4 ,

C̄(2)
n (γ̄) = Ō(2)

X,n , (A7)

and C̄(2)
n = 0 for odd number of n. Also, the expression

of the four-point propagator, Γ̄
(3)
X (k, z), relevant at the

two-loop order, is

Γ̄
(3)
X (k, z) = exp

(
−Ḡ2

δ γ
)∑

n

ḠX Ḡ
n−1
δ C̄(3)

n ; (A8)

C̄(3)
3 (γ̄) = F̄

(3)
X (~p, ~q,~k − ~p− ~q) + Ō(3)

X,3, (A9)

C̄(3)
n (γ̄) = Ō(3)

X,n. (A10)

Note that Ō(2) and Ō(3) represent the possible uncertain-
ties.

While the prescription given above is supposed to give
an accurate theoretical prediction at higher redshifts and
larger scales, Ref. [23] reported that the RegPT predic-
tion of P̄XY at a low redshift (to be precise z = 0.5)
exhibits a small deviation from N -body simulations at
k > 0.1hMpc−1 . Although this might be partly as-
cribed to the systematics in the N -body simulations, a
lack of higher-order terms as well as a small systemat-
ics in the PT calculations is known to sensitively affect
the high-k prediction. Here, we characterize the differ-
ence between the measured and predicted power spectra
by P̄ res

XY . We then divide the power spectrum into two
pieces:

P̄XY (k, z) = P̄ th
XY (k, z) + P̄ res

XY (k, z), (A11)

where P̄ th
XY represents the PT prediction with Ō(m)

X,n → 0.
Collecting all the uncertainties introduced in the multi-
point propagators, the residual power spectrum P̄ res

XY is

schematically expressed as

P̄ res
XY = ḠXḠY Ḡ

4
δ

{[
O(1)
Y,5 + higher

]
P̄ i

+
[
Ō(1)
X,5 + higher

]
P̄ i +

∫ [
Ō(2)
Y,4F̄

(2)
Y + higher

]
P̄ iP̄ i

+

∫ [
Ō(2)
X,4F̄

(2)
X + higher

]
P̄ iP̄ i

+

∫ ∫ [
Ō(3)
Y,3F̄

(3)
Y + higher

]
P̄ iP̄ iP̄ i

+

∫̄ ∫ [
Ō(3)
X,3F̄

(3)
X + higher

]
P̄ iP̄ iP̄ i

}
. (A12)

Here, the uncertainty Ō(m)
X,n is assumed to be small, and

to be perturbatively treated. The expression implies that
apart from a detailed scale-dependent behavior, time de-
pendence is characterized by GXGYG

4
δ . Thus, once we

calibrate the P̄ res
XY at a given redshift, we may use it for

the prediction at another redshift by simply rescaling the
calibrated residuals. Furthermore, for the cosmological
models close to the fiducial model, the scale dependence
of the higher-order PT corrections is generally insensitive
to the cosmology, and we may also apply the calibrated
P̄ res
XY to other cosmological models.
Next we introduce the way to calculate the dark mat-

ter higher order terms. They are incorporated with Eq.
(7-10) to calculate the halo higher order terms. To begin
with, let us consider the A term. From the explicit form,
the A term is divided into six pieces. Here, we specifi-
cally write down the expressions in fiducial cosmological
model:

Ā(k, µ) = j1

∫
d3x eik·x 〈A1A2A3〉c

=

6∑
n=1

Ān (A13)

Note again that the barred quantities indicate those com-
puted/measured in fiducial cosmological model. The ex-
plicit form of Ān is given below:

Ā1 = 2j1

∫
d3x eik·x 〈uz(r)δ(r)δ(r′)〉c, (A14)

Ā2 = j1

∫
d3x eik·x 〈uz(r)δ(r)∇zuz(r′)〉c, (A15)

Ā3 = j1

∫
d3x eik·x 〈uz(r)∇zuz(r)δ(r′)〉c, (A16)

Ā4 = 2j1

∫
d3x eik·x 〈uz(r)∇zuz(r)∇zuz(r′)〉c,(A17)

Ā5 = j1

∫
d3x eik·x 〈−δ(r)uz(r

′)∇zuz(r′)〉c,(A18)

Ā6 = j1

∫
d3x eik·x 〈−∇zuz(r)uz(r

′)δ(r′)〉c.(A19)

These terms are measured from N -body simulations ac-
cording to Ref. [22]. To apply the measured results to the
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prediction in other cosmological models, we assume the
scaling ansatz, as similarly adopted in the prediction of
power spectrum PXY. That is, assuming that the scale-
dependence of each term is insensitive to the cosmology,
the prediction of each term is made by simply rescaling
the measured results. The proposition made here is that
the time-dependence of each term is approximately de-
termined by the leading-order growth factor dependence
of uz and δ. Then, A term in general cosmological model
is expressed as

A(k, µ) =

6∑
n=1

An (A20)

=
(
Gδ/Ḡδ

)2 (
GΘ/ḠΘ

)
Ā1 +

(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)2 Ā2

+
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)2 Ā3 +
(
GΘ/ḠΘ

)3 Ā4

+
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)2 Ā5 +
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)2 Ā6

We then apply the same strategy to other higher-order
corrections, B, F and T . Dividing these corrections into
several pieces, the scaling ansatz leads to the following
predictions:

B(k, µ) =

4∑
n=1

Bn (A21)

=
(
Gδ/Ḡδ

)2 (
GΘ/ḠΘ

)2 B̄1 +
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)3 B̄2

+
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)3 B̄3 +
(
GΘ/ḠΘ

)4 B̄4

F (k, µ) =

3∑
n=1

Fn (A22)

=
(
Gδ/Ḡδ

)2 (
GΘ/ḠΘ

)2 F̄1 +
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)3 F̄2

+
(
GΘ/ḠΘ

)4 F̄3

T (k, µ) =

7∑
n=1

Tn (A23)

=
(
Gδ/Ḡδ

)2 (
GΘ/ḠΘ

)2 T̄1 +
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)3 T̄2

+
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)3 T̄3 +
(
GΘ/ḠΘ

)4 T̄4

+
(
Gδ/Ḡδ

)2 (
GΘ/ḠΘ

)2 T̄5 +
(
Gδ/Ḡδ

) (
GΘ/ḠΘ

)3 T̄6

+
(
GΘ/ḠΘ

)4 T̄7

Here, the quantities B̄n, F̄n, and T̄n are measured in
the fiducial cosmological model. Both σ8 and fσ8 are
estimated from the measured growth functions of Gδ and
GΘ.
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[19] H. Gil-Maŕın, J. Noreña, L. Verde, W. J. Percival,
C. Wagner, M. Manera, and D. P. Schneider, MNRAS
451, 539 (2015), 1407.5668.

[20] A. Taruya, T. Nishimichi, and S. Saito, Phys. Rev. D
82, 063522 (2010), 1006.0699.

[21] A. Taruya, T. Nishimichi, and F. Bernardeau, Phys. Rev.
D 87, 083509 (2013), 1301.3624.

[22] Y. Zheng and Y.-S. Song, JCAP 8, 050 (2016),
1603.00101.

[23] Y.-S. Song, Y. Zheng, A. Taruya, and M. Oh, ArXiv e-
prints (2018), 1801.04950.

[24] Y. Zheng, Y.-S. Song, and M. Oh, JCAP 2019, 013
(2019), 1807.08115.

[25] M. M. Ivanov, M. Simonović, and M. Zaldarriaga, JCAP
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