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The Laser Interferometer Space Antenna (LISA) mission, scheduled for launch in the early 2030s,
is a gravitational wave observatory in space designed to detect sources emitting in the milli-Hertz
band. In contrast to the present ground based detectors, the LISA data are expected to be a signal-
dominated, with strong and weak gravitational wave signals overlapping in time and in frequency.
Astrophysical population models predict a sufficient number of signals in the LISA band to blend
together and form an irresolvable foreground noise. In this work, we present a generic method for
characterizing the foreground signals originating from a given astrophysical population of coalescing
compact binaries. Assuming idealized detector conditions and perfect data analysis technique ca-
pable of identifying and removing the bright sources, we apply an iterative procedure which allows
us to predict the different levels of foreground noise.

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a space-based Gravitational Wave (GW) observatory mission
scheduled for launch in the early 2030s [1]. Unlike currently observed GW signals, LISA sources are expected to
be long-lived, with thousands of strong GW signals present in the data overlapping in time and/or in frequency.
This implies that all GW signals from various sources will be have to be fit for and characterized simultaneously.
The sources generating overlapping signals include Super-Massive Black Hole Binaries (SMBHBs) [2, 3], Stellar-mass
Black Hole Binaries (SBBHs) [4–9], ultra-Compact Binaries originating in our Galaxy (CGBs) [10–13], Extreme Mass
Ratio Inspirals (EMRIs) [14–17], and a Stochastic GW Background (SGWB) that may originate from cosmological
sources [18, 19]. The number and density of GW sources in the LISA band presents a data analysis challenge of
producing a global fit [20], simultaneously detecting and classifying overlapping signals, which is often referred to as
the “source confusion problem.”

Astrophysical population models predict a sufficiently large number of sources to form a resolution-limited GW
foreground signal that could be measured by LISA even after all resolvable sources have been fit and removed from
the data. The unresolved component is usually referred to as “confusion noise”, following initial studies that employed
a resolvability criterion based on source density, demanding that the number of data points equal or exceed the number
of parameters required to fit each source [21, 22]. Later studies showed that a reduction in signal-to-noise due to the
“self-noise” from other sources in the population generally has a greater impact on detectability [23], but the terms
“confusion noise” and “foreground confusion” had already taken root, and we will continue to use them here.

Given the expected LISA sensitivity [24], we expect the GW confusion signal from millions of CGBs to dominate
over instrumental noise between ∼0.4 and ∼3 mHz. These CGBs mostly comprise detached and interacting white
dwarfs [13, 25]. A small number of them (∼30) have been already observed electromagnetically, and parameters of
those binaries suggest that they should emit GWs in the LISA band. A subset of them should be easily detectable,
and those binaries are referred to as verification binaries : guaranteed LISA sources which can be used to monitor
performance of the instruments [26]. Models for the full population of CGBs suggests upwards of ∼60 million binaries
[27–29] in the LISA band, with only a small fraction (∼10 thousand) of them being individually resolvable. Thus,
most of those binaries will contribute to the confusion foreground signal.

Another guaranteed population of binaries in the local Universe consists of SBBHs. Merging SBBH are observed by
the LIGO and Virgo detectors, with over 40 such systems having been reported after partial analysis of data from the
3rd observational run [30]. Those binaries at the early stage of their inspiral emit a GW signal at the high frequency
end of LISA measurement band. While it was suggested that it might be challenging to recover such sources with
LISA [31], the ensemble of these sources could potentially be another source of a confusion foreground for LISA. So
far, upper bounds on the stochastic signals have been estimated by a direct extrapolation from the LIGO-Virgo event
rate [5–7, 32, 33].
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At very low frequencies we expect a stochastic GW signal from a population of SMBHBs in sufficiently wide orbits
to be emitting almost monochromatic GW signals. The SMBHB background is the one of the primary sources targeted
Pulsar Timing Arrays, which use radio emission from the utra-stable millisecond pulsars to detect GWs in the nano-
Hz band. The upper limits on the GW amplitude are reported in Refs. [34–37], and recent results [38] suggest the
presence of a common red-noise process among the observed pulsars which might be confirmed as a GW signal in the
near future. The merger of SMBHBs will be observed by LISA, and detection of stochastic GW signal by PTA might
constrain the expected event rate of those sources in the LISA band.

The presence of astrophysical foregrounds poses a data analysis challenge for the LISA mission. Naturally, the
combination of the different foreground and background signals will complicate the source separation procedures
for LISA. In addition, the exact level of the confusion noise will affect the achievable precision of source parameter
estimation for resolvable signals. Thus, it is of great importance to study, understand, and predict the overall shape
and amplitudes of the potential foreground components of the LISA data. This will allow us to make more realistic
predictions for the resolvable sources with LISA, as well as to gain a better understanding on the data analysis
requirements for the mission. On the other hand, the separation and characterization of the different contributions
to the foreground signal may provide additional insight into the channels of formation and evolution of astrophysical
populations that generate those signals. For example, current astrophysical uncertainties for some sources translate
to several orders of magnitude uncertainty in the event rate, to wit, predicted event rates for EMRIs are between a
few to a few thousands per year [39], making the presence or absence of an EMRI-induced foreground an informative
constraint on the underlying theory.

In this work we present a generic method for predicting and characterization the foreground signals as measured
by LISA. We begin with a combination of ideas from previous works [23, 40–42], upon which we expand in two
directions. First, we use updated estimates of the instrument capabilities, based on the state-of-the-art studies of the
LISA design [24], and we simulate and analyze the data directly on the LISA TDI [43, 44] data streams. We have
used both simple analytic models for the instrument noise power spectral density (PSD), and time-series simulated
using LISA Code [45]. Secondly, as described in section II, we have developed a framework to perform our analysis
for different types of foregrounds, generated by different types of binary sources. Then, in sections III and IV, we
apply this methodology, as an illustrative example, to the foreground confusion signal generated by the CGBs and
SBBHs respectively. As a further demonstration, given a model to characterize the residual foreground signal, we
perform a Markov Chain Monte Carlo (MCMC) analysis to infer parameters of the foreground signal which encodes
information about the underlying population. We also demonstrate that resolving the bright CGB and SBBH sources
leads to the separability of their respective foreground signals despite the GWs being emitted by the underlying
populations overlapping in frequency between ∼2 to ∼5 mHz. Finally, in section V we study how the presence of two
astrophysical foreground components affect the parameter estimation of resolvable signals using a Fisher Information
Matrix approach.

II. METHODOLOGY

The methodology we followed is based on the rather strong assumption that bright sources with a Signal-to-Noise
Ratio (SNR) larger than a given threshold are detected and characterized without systematic bias or source confusion
(see Ref. [20] for more refined estimates that take into account imperfect signal removal). The detection threshold is
adjusted for the different source types, taking into account search and parameter estimation studies, as for example
in [46] for CGBs and [31] for SBBHs. Assuming ideal noise conditions, where the spectral properties of the readout
and test-mass are identical in each link, we define the total SNR estimate for a given source as

ρ2
tot =

∑
K

(hK |hK) , (1)

with K ∈ {A,E} the noise-orthogonal TDI variables [43, 44], and (·|·) denotes the noise weighted inner product
expressed for two time series a, and b as

(a|b) = 2

∞∫
0

df
[
ã∗(f)b̃(f) + ã(f)b̃∗(f)

]
/S̃n(f), (2)

where the tilde represents the data in Fourier frequency domain, and the asterisk stands for the complex conjugate.
The S̃n(f) is one-sided PSD of the noise for the different TDI variables SK(f).

One can estimate the residual confusion noise from a population of GW sources by subtracting the sources whose
SNR exceeds a given detection threshold. The problem arises when one has to compute eq. (1), where S̃n(f) ≡
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Figure 1 – (a) : Illustration of the progress of the procedure for estimating the confusion noise. For the population
of the CGBs described in section III, it takes 6 to 10 iterations for the algorithm to converge, depending on the
convergence tolerance criterion. The starting data are represented with the gray curve (300 segment averaged

spectrum), while the final combined instrument and confusion noise is represented here in bright magenta. The dark
blue dashed line represents the analytic model fit of the confusion noise component, together with the associated
error-bars. In this example the observation time is Tobs = 2 years. (b) : Using the analytical model of eq. (7), and

the parameter values from table II, we can make a prediction of the level of the confusion noise due to CGBs,
depending on a given observation time. Here, we depict the power spectrum of the residual data with grey, while the

colored dashed lines represent the model prediction for the given Tobs .

S̃instr(f) + S̃conf(f) includes the confusion residual GW signal S̃conf(f), and the instrumental noise S̃instr(f). A

solution is to follow a methodology similar to [23], and set-up an iterative process to estimate S̃n(f). The basic steps
of the analysis are summarized as

a. First, the data generation takes place either in frequency or in time domain, based on a predefined observation
time and a given sampling frequency. We simulate the GW signals from the population of N sources drawn
from a given astrophysical population model. During this process we also SNR of each source with respect to
the adopted instrumental noise model, we refer to it as the optimal SNR of the source in isolation, ρiso

i . We will
use ρiso

i as a measure of GW strength in the next step.
b. We estimate the confusion noise Sn, k using either a running mean or median on the power spectrum of the

data. The index k refers to the iteration number. On top of the smoothed PSD, one can also fit a polynomial
model, or perform spline interpolation smoothing (which we usually do). Then, assuming the SNR threshold

ρ0, we calculate the SNR, ρi, for each source i ∈ N using the smoothed Sn, k = S̃instr(f) + S̃conf, k(f) as the
total noise PSD in eq. (2). If ρi > ρ0, the source is subtracted from the data. In this step we make use of the

previously calculated ρiso
i to accelerate the procedure : if ρopt

i < κρ0, we skip computation of the SNR for this
(i-th) source, instead automatically adding it to the confusion. Here κ ≤ 1 is some safety factor. Note, that we
assume perfect source identification and subtraction, which will not be achievable in practice [20].

c. After subtracting the brightest sources in the previous step, we return back to the step (a) where we evaluate
the smoothed PSD of the residuals Sn, k+1 and iterate steps (a)-(b). The algorithm stops when either no sources
exceed the threshold ρ0, or Sn, k+1 ' Sn, k based on a fractional tolerance limit which we choose to be around
∼5% for all frequencies and all channels. In principle, both criteria can be met at the same time. We usually
choose to work with the fractional tolerance because it accelerates convergence, since the number of sources
subtracted at the final iterations of the algorithm is small.

d. The process converges within 5-10 iterations resulting in the smooth estimation of the PSD for the confusion
noise, Sfinal. We use it to evaluate the final SNR for all subtracted source during the iterative procedure.
In addition, we evaluate a projected accuracy in measuring parameters of those sources based on the Fisher
Information matrix (FIM). This iterative scheme is illustrated in figure 1a for the population of CGBs (see next
section for details).

e. Finally we perform an MCMC analysis to fit a parameterized model for the confusion noise Sfinal to the residual.
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We find that the choice of the window length for the noise estimation, or the method for the final step of smoothing
the residual (using either polynomial or spline fits) does not have significant impact on the result. On the other hand,
we find noticeable differences between using a running mean or median for the case of the PSD smoothing method.
The PSD quantity is χ2-distributed (i.e. has a fatter tail towards higher values), so in principle we should expect that
even in the absence of signals the smoothing method following a running mean to be larger than the running median
case. We nevertheless perform analysis using both methods and report below our findings.

To conclude this section, we comment on the working assumption employed in the definition of the procedure. We
have assumed idealized conditions for the instrumental noise : the noise is stationarity, and there are no gaps, glitches,
or instrumental “lines” (monochromatic or almost monochromatic signal of instrumental or environmental origin).
All these artifacts either could be identified and removed [47–50] and/or will affect the SNR threshold for a reliable
detection. Note that we do not need to assume that the instrumental noise is known as we estimate it at each step
of iteration, and the confusion GW signal is just yet another noise component (from the SNR computation point of
view). We also could deal directly with Michelson X,Y, Z TDI data streams, evaluate the cross-spectra and either
diagonalize the noise matrix (producing new A,E, T TDI) or work directly with non-diagonal noise matrix.

Of greater consequence is our assumption of idealized data analysis that can exactly identify the GW signals above
a certain threshold. There is an on-going effort within the LISA Data Challenge project to demonstrate and evaluate
the performance of various data analysis techniques. Current results look very encouraging ([46, 51–53]) and we are
confident that we will be able to reliably detect GW sources in the LISA data, but nevertheless the procedure here
represents an unattainable ideal. Our analysis neglects the effect of the instrument and confusion noise on the source
identification itself : the best recovered parameters from the model will be different from the true values due to presence
of the noise [20]. Furthermore, the observed catalog will unavoidably have some contamination due to several sources
being fit with a single model waveform, especially early on during the LISA observing campaign [46]. As a result
removing the estimated GW sources will inevitably remove a small portion of the noise with it and/or leave behind
some residual signal [20]. An idea to make our simulation more realistic while still computationally tractable would be
to build a small Markov chain forming posteriors for the source (or collection of overlapped sources). Another solution
would be to estimate the covariance matrix of the parameters based on a FIM calculation, and then draw the given
“solution” for each source from a multivariate Gaussian distribution. We relegate these more elaborate approaches to
future work and consider the results presented here as a zero-order approximation which is fast to run and gives a
good starting point for a more detailed analysis.

Last but not least, we want to comment on the simulated data. We have to choose the GW model to simulate
the LISA data. Naturally one would be tempted to use a simplified and fast wave-form model to compute the GW
signal, however the final result might strongly depend on the simulated LISA data. For example, use of higher order
modes in the simulated signal could significantly affect the conclusion, even if those modes are not strong for each
individual source. The same concerns the simulation of numerous sub-threshold events : in simulating the data we
need to include also very weak sources, in other words the catalogue should be complete and extend to include sources
which merge beyond the simulated span of the data.

III. APPLICATION TO THE CASE OF COMPACT GALACTIC BINARIES

In this section we apply our methodology to the population of the CGBs. We study the properties of the confusion
signal, after subtracting the “loud” counterparts, as a function of observation time Tobs . We assume that the orbital
period evolves slowly and thus can use a very simple model for the GW signal where the phase is decomposed in a
Taylor series. The signal in the source frame can be presented as

hs
+ = A

(
1 + cos2 ι

)
cos (Φ(t)) (3)

hs
× = 2A cos ι sin (Φ(t)) , (4)

with

Φ(t) = φ0 + 2πf0t+ πḟ0t. (5)

Here φ0 is the initial GW phase, and we neglect all but the first frequency derivative ḟ0 as it is sufficient for evaluation
of the foreground signal. Higher-order derivatives are seldom detectable for the assumed CGB population [54]. A is the
GW strain amplitude and ι the inclination. The signal describes early inspiral evolution, however, due to mass transfer
in the interacting binaries, the system could also “outspiral” (negative frequency derivative). We have assumed that
the binaries are in the circular orbits, which is expected for vast majority of systems. We have also neglected the
presence of exo-planets or (in general) a third perturbing body [55, 56]. In principle, provided that a model that would
include the effects of the third-body on the waveform is available [57], it would be straightforward to include those
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systems in our study. An addition like this does not affect our main objective : evaluating the number of resolvable
systems and characterizing the residual confusion foreground.

Next, we need to transform the waveform to the Solar System Barycenter (SSB), by assuming the latitude β
and longitude λ ecliptic coordinates of the source, and introducing the polarization angle ψ. We follow exactly the
polarization and angle conventions of [58], and an implementation based on [59].

We chose to work with the catalogues of the Radler LISA Data Challenge data-set [58, 60]. This catalogue contains
the signal of 29857650 CGBs, generated by the population models of [61, 62].

For a given set of Tobs and SNR threshold ρ0, we generate idealized data-sets directly in the frequency domain.
The data are simplified in the sense that they do not contain any other type of GW signals. In addition to the
signals we simulated instrumental noise using the LISA Code simulator [45]. The PSD of the noise could either be
empirically determined from the simulated data or we assume the analytic fit [58]. We have ran the iterations described
in section II for ρ0 = {5, 7}, and Tobs = {0.5, 1, 2, 4, 6, 10} years. At the end of each run we the have set of the
subtracted sources and smoothed CGB foreground signal.

a. Recovered compact galactic binaries sources As expected, the number of recovered sources greatly depends
on the chosen SNR threshold ρ0, and the LISA observation time Tobs . For the given LISA configuration [24], and
setting ρ0 = {5, 7}, we recover the number of sources displayed in table I. The numbers are reported for two methods
of evaluating the smoothed PSD running median and running mean.

Table I – The recovered number of sources as a function of the LISA observation time Tobs for two methods of
smoothening PSD.

Tobs [years]
# of sources recovered

Running mean Running median
ρ0 = 5 ρ0 = 7 ρ0 = 5 ρ0 = 7

0.5 8031 4491 8850 5111
1 14170 8487 14918 9305
2 22681 14206 23849 15441
4 35891 22951 37684 25025
6 45925 30097 48179 32702

Table II – The parameters of the empirical model describing the confusion noise due to the unresolved CGBs
signal. We report on both methods of performing the data smoothing : running mean and median

Parameter
Estimated

Running mean Running median
ρ0 = 5 ρ0 = 7 ρ0 = 5 ρ0 = 7

a1 -0.16 -0.25 -0.15 -0.15
ak -0.34 -0.27 -0.34 -0.37
b1 -2.78 -2.70 -2.78 -2.72
bk -2.53 -2.47 -2.55 -2.49

A× 10−44 1.15 1.14 1.14 1.15
f2 0.00059 0.00031 0.00059 0.00067
α 1.66 1.80 1.66 1.56

b. Confusion noise due to compact galactic binaries We use an empirical analytical model for the estimated
confusion foreground given as

Sgal =
A

2
f−7/3e−(f/f1)α (1 + tanh ((fknee − f) /f2)) . (6)

The first two terms ∝ Af−7/3 are the expected spectral shape generated from a population binaries evolving due to
GW emission [41], the second factor accounts for the loss of stochasticity as we move to higher frequencies and the
factor in the brackets (with hyperbolic tangent) reflects that after (roughly) f ≥ fknee we should be able to resolve
and subtract all GBs. The fit for each observation time Tobs is shown in figure 1b.

The six fitting parameters for the confusion noise model are : two scaling frequencies f1, f2, the knee frequency
fknee, the amplitude A and a “smoothness” parameter α. The overall amplitude A is a property of the population of
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GBs. The frequency f2 and α are expected to be a property of a population and the SNR threshold we use. The two
remaining parameters f1, fknee are expected to also have a strong dependence on the observation time : indeed the
longer we observe, the more CGBs become resolvable and, therefore, could be subtracted.

We have simulated LISA TDI time series data for a total observation duration of Tobs,max = 10 years, and then
estimated the confusion noise for different fractions of Tobs,max. We have found that the f1 and fknee parameters
of eq. (6) can be well approximated as the following functions of observation duration Tobs :

log10 (f1)= a1log10(Tobs) + b1, and,
log10 (fknee)= aklog10(Tobs) + bk,

(7)

with a1, ak, b1, and bk being amplitude calibration parameters. For this part of the analysis, since our aim is to
report on the point estimates for such a model, we have used simple optimization algorithms [63, 64] to find the
maximum of a joint χ2 function that combines the data-sets of different durations. Their values are reported on
table II. This empirical analytic fit works rather well for observation durations above 1 year and improves with the
observational duration. The minimum observation time we have checked was 3 months. Note that the GW signals from
the population of CGBs are cyclo-statationary, meaning that the signal is modulated during the annual orbital motion
of LISA : with its antenna pattern function pointing toward or away from the Galactic centre where the majority of
the sources are found. This non-stationarity is reflected in deviations from the analytic fit which depends on where
we terminate the observations during the first year. Nonetheless, as seen in fig. 1b, the fit is still quite satisfactory.

c. Fit of the Galactic model to the confusion noise As a proof of principle we have also looked at the inverse
problem. We have assumed that the numerically evaluated CGB foreground is the result of LISA observations (reduced
by removing the bright sources). Next, we evaluate the residual signal and infer parameters of the simple Galactic
model given by Eq. (6) using Bayesian sampling techniques. For this purpose, we perform a pre-processing procedure
similar to the one employed in [65–67].

Given the full data stream, we first convert the data to ΩGW units using :

h2 ΩGW ≡
4π2f3

3(H0/h)2
S(f) , (8)

H0 being the Hubble parameter as observed today and h its dimensionless normalization. We then cut it into Nc

data segments having the same duration of around 11.5 days corresponding to 10−6Hz and average over segments 1.
At this point, in order to further lower the computational complexity of the problem, we coarse-grain (i.e. bin) the
data to a less dense set (in the following denoted fkij , D

k
ij) by performing an inverse variance weighting of the data

using the noise as an estimate for the variance (Sec.3.1 of [67] for details). In particular for each decade in frequency
above 10−4Hz we pass from the initial 10−6Hz linear spacing to 250 evenly logarithmically spaced frequency points.
Similarly to [67], we then define our likelihood as a combination of a Gaussian and of a log-normal distribution which
accounts for skewness contributions, giving a more accurate result for the model parameters [67–71]. The data are
modeled as :

Dth
ij (fkij) = h2 ΩGW (fkij ,

~θs) + h2 Ωn(fkij ,
~θn) , (9)

where ΩGW is the model of the spectral shape of the signal component (here Eq. (6) in ΩGW units 2), ~θs is the

vector of parameters for the signal, Ωn is the instrument noise (i.e. S̃instr(f)) in ΩGW units, and ~θn is the vector of

parameters for the noise. In the following analysis we fix ~θn at their nominal values.
Finally, we sample the parameter space using Polychord [72, 73] via its interface with Cobaya [74]. The Polychord

sampler belongs to the family of Nested Sampling algorithms, where it uses slice sampling techniques in order to
efficiently sample parameter spaces of high dimensionality. Our particular problem here is not very demanding in
terms of posterior multimodality. We therefore executed the algorithm using 5 × dim = 40 live points, and with a
tolerance criterion for convergence set to 10−3 (based on the evidence calculation). The results of this investigation,
which are analyzed and visualized using GetDist [75], are shown in Fig. 2.

To conclude this section we discuss the performance of the phenomenological model in eq. (6) to fit the data. As
it’s possible to see from figure 3, the best fit for this model (shown in blue) is quite accurately matching the data

1. For a the data set in frequency domain with frequency resolution ∼1/Tobs, for a given frequency say fi this correspond to averaging
over data points with fi − 5 × 10−7Hz ≤ f ≤ fi + 5 × 10−7Hz.

2. Notice that for this analysis, in order to work with order one numbers, rather than the parameter A appearing in Eq. (6) we constrain
the log10(h2 Ω∗) = log10

[
4π2A/3/(H0/h)2

]
.
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Figure 2 – The 2-d projections of the posterior distributions of the parameters of model of eq. (6), as sampled
with MCMC methods (see text for details). The fit was performed on a data set with duration of 10 years, after

subtracting the bright sources with SNR threshold ρ0 = 5.

(gray shade) for all frequencies where the confusion residual signal from the CGBs dominates over the instrumental
noise (i.e. for frequencies larger than ∼5×10−4). On the other hand, we notice that at lower frequencies the template
overestimates the level of confusion noise with respect to the result obtained from the simulated catalogue. In order
to look for a possible source for this deviation, we performed further parameter estimation assuming the spectral tilt
(the −7/3 in eq. (6)) to be another free parameter of the model. In this case we obtained a slightly larger value for
the tilt (see pink curve in figure 3) which leads to a better fit to the data in the low frequency band. We have found
the value of the spectral tilt to be ns = 1.12 ± 0.01 in ΩGW units. While a detailed analysis of this deviation could
motivate further investigations, it lies beyond the scopes of the present work and thus it is left for future studies on
the topic.

IV. STOCHASTIC SIGNAL DUE TO STELLAR MASS BINARY BLACK HOLES

Since the initial successes of the ground-based GW detectors, there have been studies focusing on the possibility of
measuring GW from SBBHs [76–79]. Based on the current understanding of the SBBH population, the expected the
number of detectable sources in the LISA band ranges from O(1) to O(10). These sources will be in the LISA band
for several years before entering and merging in the band covered by ground based interferometers [8, 76, 78, 80].
LISA is sensitive to the early inspiral stage of orbital evolution of SBBHs, where the orbit shrinks very slowly and
therefore most of the binaries stay in the observing band throughout the LISA observation time.

Depending on the population model, the SBBH signals may fill the LISA observing band down to ∼3mHz, thus
partially overlapping with the high frequency tail of the CGB population. At these frequencies the CGB population
transitions from being a confusion-dominated population to the regime where all sources are individually identi-
fiable [81]. The region of potential overlap between the CGB residual and the SBBH population reduces with the
LISA mission duration, as more individual CGBs sources are being resolved and subtracted.

The population of SBBHs observed by LISA depends on the merger rate of SBBHs in the local Universe, R,
expressed as the number of mergers per co-moving volume (Gpc3) per year. R is currently best estimated from the
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Figure 3 – Fit of the two models we considered to the confusion residuals signal from CGBs. The first model,
following faithfully eq. (6), assumes a fixed spectral index of −7/3 in strain units, or ns = 2/3 in ΩGW units (shown

in blue). The pink data refer to a model where the spectral index ns is a free parameter of the fit (see text for
details).

mergers detected during LIGO-Virgo observing runs, which also provide inferences on the mass, mass ratio and spin
distribution [9]. These observations are translated into an event rate in the LISA band [8] as

d2n

dMdtdz
= RdVc(z)

dz

1

1 + z
p(M), (10)

where p(M) is the probability distribution function for the chirp mass M . We could include other parameter like
mass ratio, spins, etc., but for this simple example we restrict attention only to the chirp mass. We have used the
original prescription [8] to generate a catalogue of SBBH sources emitting in the LISA band.

Note that we did not use the most up-to-date population estimates [30] and the mock populations used here serve
the illustration purposes, more elaborated analysis is underway and will be publish later [82]. Instead, we have used
the catalogues of SBBHs available with the first LDC data-set [58, 60]. We simulate a dataset with duration of Tobs

∼2.7 years, using PhenomD waveform model [83]. We have used the same idealized assumptions about the instrument
noise and subtraction fidelity as for the population of CGBs, and apply the same iterative procedure to the population
of SBBHs.

Using a SNR threshold ρ0 = 15 we do not find any detectable binaries, confirming the results of [31]. The results
for different values of ρ0, are summarized in figure 4. It is likely that the threshold ρ0 = 15 is an overestimate for
the detection threshold, which relies on the grid-based (template bank) search which takes into account only local
correlations. On the other hand, the threshold ρ0 = 5 is an underestimate assuming that the volume of parameter
space with high likelihood is small [53, 76]. The results of the iterative subtraction are presented in figure 4.

V. COMBINING THE POPULATIONS FROM DIFFERENT GRAVITATIONAL WAVE SOURCES

The same methodology and analysis principles that we used in the previous sections (III and IV), can be followed
for characterizing a foreground signal that originates from a combination of different types of sources. In that case,
at step [c] of the algorithm described in section II, we iterate over all types of sources and compare the individual
SNR ρi, t with ρ0, t, where the t index refers to the given source type. Thus, the measured confusion signal would
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Figure 4 – Left : The residual confusion noise created by a population of SBBHs for the SNR thresholds
ρ0 = {5, 15}. Both curves have been estimated using a running median on the data. Right : The number of
resolvable sources that are detected and subtracted from the data for different values of SNR threshold ρ0.

be the direct result of the superposition of the foreground signals from all given types of sources. This translates to
S̃n(f) ≡ S̃instr(f) +

∑
t S̃conf, t(f), which would yield higher levels of the unresolved foreground GW signal. Naturally,

we expect that this would affect the source recovery and parameter estimation for the recovered sources. Note that
this procedure does not account for the possibility of misidentifying one source type for another where the populations
overlap. For demonstration purposes, we choose to work with the two populations that we have been using so far ;
the CGBs, and the SBBHs.

The two types of populations, while in both cases the majority of their individual sources are almost monochromatic,
have inherently different characteristics. For the detached Galactic binaries we took a population based on the model
described in [29], while a population of interacting binaries (with mass transfer) are based on [27]. This model does
not include extra-Galactic sources, but those should be a minority. Population of SBBH is fully phenomenological and
described in [8]. It assumes a simple log-uniform mass function 5− 100 M� with a merger rate ≈ 35 year−1 Gpc−3,
and uniform in co-moving volume with the range of 0 < z < 2. In [8], it is argued that this population is vague
enough to include several possible channels of formation. We should emphasize that we use this model for illustrative
purposes, the method works exactly the same way for any populations of binaries as an input (including population
of binary massive black holes and/or extreme mass ration inspirals). Independently on the details of populations,
the confusion noise due to CGBs is expected to dominate at low frequencies . 3 × 10−3Hz and to drop at larger
frequencies (because of subtraction of loud sources), while the confusion noise due to SOBBHs is subdominant at low
frequencies and becomes relevant at f & 3× 10−3Hz (see figures 1 and 4).

Using the two catalogues, we generated a LISA time series data-set with duration of Tobs = 2.67 years, and we
applied the algorithm as described in section II. As already mentioned, the difference here is that at each iteration we
compute the SNR of both types of sources w.r.t the overall background noise. We choose an SNR threshold for each
type of source, in particular ρ0,cgb = 7, and ρ0,sbbh = {5, 8, 10, 12, 15}. The number of sources that were subtracted
(i.e ρi, t > ρ0, t) for each case are presented in figure 5. From our previous investigation on the same population of the
SBBHs, we expected a similar residual confusion signal, i.e. few to no sources subtracted for high values of ρ0. This
is still valid in this investigation as well.

Concerning the CGBs, we notice that almost the same number of sources are recovered as in section III. This was
also expected, due to the very low residual confusion signal of the SBBH component of the data, which does not
impact significantly the overall measured confusion signal S̃n(f). But even in this case, we would expect to measure
the impact of multiple components of stochastic signals to the recovered errors of the parameters. As described in
section II, at the end of each run, we make use of a Fisher Matrix formalism in order to get an estimate of the CGB
parameters errors of the recovered sources. The comparison of the relative errors of the parameters compared to the
ideal case of a single type of population is shown in figure 6. It is fairly evident, that indeed the precision of the CGBs
that are recovered is minimally affected by the presence of a foreground signal generated by SBBHs, as described
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Figure 5 – Left : The total signal of the unresolved sources from both populations of CGBs and SBBHs (shown in
blue), after subtracting the brightest sources. The signal plus instrumental noise is shown with gray color. Right :

The number of subtracted sources for different assumptions about the SNR threshold for the SBBHs, ρ0,sbbh

(represented with the pink bars). For the given population and observation duration, it is fairly evident, that for
ρ0,sbbh > 15 there are not SBBHs recovered from the data. The number of CGB sources that were subtracted (blue)
is the same for all cases, indicating that the total SBBH residual confusion signal is not strong enough to affect their

recovery. Here we assumed ρ0,cgb = 7.

in [8]. The reason lies in the characteristics of the two underlying populations. First, as we have already seen, the
confusion signal due to the SBBHs population is small relative to the instrument noise, and thus does not significantly
impact the precision with which we estimate the parameters of the CGBs. In addition the two populations used in
this study, after subtraction of the “loudest” sources, only minimally overlap to 2-3 mHz frequency regime.

VI. DISCUSSION

We have developed a methodology to perform estimates of the residual confusion signals, originating from different
types of binaries sources, as measured by LISA. We have expanded on the methodology presented in [23], which is based
on the assumption that sources with SNR above the detection threshold will be characterized and subtracted from the
data. We have applied this methodology, as a demonstration, to data sets containing either CGBs or SBBHs. For the
CGBs, we have updated the existing models that describe the confusion signal using up-to-date LISA characteristics
and noise models. For the case of the SBBH signal, we have confirmed the findings or [31], which indicated that the
population model of [8] would yield events with quite low SNR making the detection, characterization, and subtraction
of such sources challenging.

Furthermore, we have have demonstrated that one can use the same methodology to characterize the confusion
signal that is generated from different types of source populations. To do that, we have combined the components
of the GW signatures of both the CGBs, and the SBBHs that were used in the previous investigations. The results
showed that for the given observation duration, the resulting confusion signal had an impact on the recovered sources
of the weaker component, i.e. the one originating from the SBBHs. The number of recovered CGBs was not affected.
Furthermore, for this particular case we tested, the accuracy of the parameters of the recovered CGBs was also not
significantly affected. This was verified by computing the errors of the parameters of each binary with respect to
the resulting confusion noise, using a Fisher Matrix approach. The methodology is efficient and computationally
inexpensive, since the computational bottleneck was found to be just the template calculation.

However, one should mention that this approach begins with idealized assumptions about the instrument noise.
Indeed, the noise is assumed to be Gaussian and stationary for the duration of the measurement, while the data quality
is assumed optimal, i.e. uninterrupted and without any noise transients. At the same time, we have adopted a SNR
criterion for defining the detection thresholds of the given sources. While this is proven to be a very useful tool for
our purposes, it ignores realistic data analysis challenges, such as complications due to the overlap of multiple signals.
Moreover, the source subtraction is assumed to be optimal as well, which means that the residuals are considered to
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Figure 6 – Histograms of the recovered errors for the parameters of the subtracted CGBs. The optimal case,
where there is only CGBs in the data is depicted with blue, while the relative errors of the same population with the
presence of SBBHs is shown in pink color. The same type of histograms are plotted for the brighter (ρ > 20) sources

in green and light blue respectively.

be ideal. Even so, we expect the resulting characterization of confusion signal to be an optimistic case of analyses
such as [46]. Search methods, such as the ones developed in [46], are capable of searching and subtracting candidate
sources by utilizing the Bayesian evidence ratio (encapsulated in the algorithm formalism), which is a statistically
more appropriate method of analysis.

Finally, this work was developed with the aim of creating a tool to characterize the foreground signal, in terms
of spectral shape and its evolution with the LISA mission duration, for any given potential binary population that
could contribute to it. In that sense, it presents as a useful, fast, and practical tool for zeroeth order approximation
of unresolvable astrophysical foreground signals measured by LISA.
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