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A hidden Markov model (HMM) solved recursively by the Viterbi algorithm can be configured to
search for persistent, quasimonochromatic gravitational radiation from an isolated or accreting neu-
tron star, whose rotational frequency is unknown and wanders stochastically. Here an existing HMM
analysis pipeline is generalized to track rotational phase and frequency simultaneously, by modeling
the intra-step rotational evolution according to a phase-wrapped Ornstein-Uhlenbeck process, and
by calculating the emission probability using a phase-sensitive version of the Bayesian matched filter
known as the B-statistic, which is more sensitive than its predecessors. The generalized algorithm
tracks signals from isolated and binary sources with characteristic wave strain h0 ≥ 1.3 × 10−26

in Gaussian noise with amplitude spectral density 4 × 10−24 Hz−1/2, for a simulated observation
composed of NT = 37 data segments, each Tdrift = 10 days long, the typical duration of a search
for the low-mass X-ray binary (LMXB) Sco X−1 with the Laser Interferometer Gravitational Wave
Observatory (LIGO). It is equally sensitive to isolated and binary sources and ≈ 1.5 times more
sensitive than the previous pipeline, which achieves h0 ≥ 2.0 × 10−26 for a comparable search.
Receiver operating characteristic curves (to demonstrate a recipe for setting detection thresholds)
and errors in the recovered parameters are presented for a range of practical h0 and NT values.
The generalized algorithm successfully detects every available synthetic signal in Stage I of the Sco
X−1 Mock Data Challenge convened by the LIGO Scientific Collaboration, recovering the frequency
and orbital semimajor axis with accuracies of better than 9.5 × 10−7 Hz (one part in ∼ 108) and
1.6× 10−3 lt s (one part in ∼ 103) respectively. The Viterbi solver runs in ≈ 2× 103 CPU-hr for an
isolated source and ∼ 105 CPU-hr for a LMXB source in a typical, broadband (0.5-kHz) search, i.e.
. 10 times slower than the previous pipeline.

I. INTRODUCTION

Rapidly rotating neutron stars with time-varying mass
and current quadrupole moments are promising targets
of searches for continuous-wave gravitational radiation
by long-baseline interferometers such as the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) and
Virgo [1]. Several classes of isolated and accreting neu-
tron stars are predicted to be approaching detection, if
they emit at or near indirect amplitude limits derived
from energy or angular momentum conservation argu-
ments based on electromagnetic observations. [2–4]

Among the challenges faced by such experiments is the
fact that the signal frequency is often unknown or highly
uncertain and wanders stochastically due to irregularities
in the star’s rotation, known as spin wandering or tim-
ing noise. [5–7] For some isolated targets, such as non-
pulsating neutron stars in supernova remnants, the spin
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frequency f∗ of the crust and corotating magnetosphere
cannot be observed, e.g. central compact objects like Cas-
siopeia A or the putative neutron star in SNR 1987A. [8–
10] In radio pulsars like the Crab, on the other hand, f∗(t)
is measured accurately as a function of time t by tim-
ing the radio pulsations, but there is no guarantee that
the crust corotates exactly with the gravitational-wave-
emitting quadrupole. [11] For accreting targets, such as
low-mass X-ray binaries (LMXBs), 1 the accretion can
drive electromagnetic signatures — thermal X-ray pul-
sations or type I X-ray burst oscillations — which allow
f∗(t) to be measured. However, f∗(t) is unknown in some
of the brightest sources, like Scorpius X−1 (Sco X−1),
which exhibit neither signature. [12] Indirect upper lim-
its on the characteristic gravitational wave strain h0, [13]
based on energy conservation in isolated sources (i.e. the

1 In this paper, we follow the usual shorthand of using the term
LMXB interchangeably to refer to either the binary system or
the neutron star therein.
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star spins down entirely due to gravitational radiation)
and angular momentum conservation in binary sources
(i.e. accretion torque balance), imply h0 ∝ τ−1/2 and

h0 ∝ F
1/2
X respectively, where τ = f∗(2|ḟ∗|)−1 denotes

the spin-down age, and FX denotes the X-ray flux. [1]
Hence the most promising targets — young, isolated ob-
jects and X-ray-luminous accretors — can be those for
which the least is known about f∗(t).

One powerful strategy for overcoming the challenge of
spin wandering — especially in LMXB searches — is to
track f∗(t) with a hidden Markov model (HMM). [14]
Given a time-ordered sequence of observations, a HMM
relates each observation to the system’s underlying, hid-
den state [e.g. f∗(t)] by an emission probability (e.g. a de-
tection statistic of some type). The hidden state evolves
through a concurrent sequence, whose step-wise transi-
tions are modelled probabilistically as well (e.g. as a ran-
dom walk).

In the gravitational wave context, a HMM solved by
the fast, recursive, Viterbi algorithm [15] has been imple-
mented as a general-purpose search pipeline and applied
to look for the LMXB Sco X−1 in Advanced LIGO data.
[16, 17] The pipeline exists in two versions.

• Version I calculates the emission probability by
summing the maximum likelihood F-statistic [13]
at orbital sidebands incoherently without refer-
ence to the orbital phase. [18, 19] Given Gaus-
sian noise with one-sided amplitude spectral den-
sity Sh(2f∗)

1/2 = 4 × 10−24 Hz−1/2, representa-
tive of Advanced LIGO’s design sensitivity, Ver-
sion I detects isolated sources with h0 ≥ 2× 10−26

and binary sources with h0 ≥ 8 × 10−26 and finds
41 out of 50 injected signals in Stage I of the
Sco X−1 Mock Data Challenge (MDC). [18, 20]
It was applied to data from Advanced LIGO’s first
observing run (O1) and returned the upper limit

h0 ≤ h95%
0 = 5× 10−25 (95% confidence) at 106 Hz

for Sco X−1, noting that O1 did not reach full de-
sign sensitivity. [16]

• Version II tracks orbital phase as well as f∗(t) and
sums the sideband power coherently using a Jacobi-
Anger decomposition of the F-statistic. [19] Given
Sh(2f∗) = 4×10−24 Hz−1/2, it detects isolated and
binary sources with h0 ≥ 2× 10−26 and finds all 50
injections in Stage I of the Sco X−1 MDC. It is be-
ing applied to data from Advanced LIGO’s second
[17] and third observing runs.

In this paper, we extend Version II of the HMM to
track the rotational phase (i.e. the phase of the carrier
wave) as well as the orbital phase. The result is an
algorithm (Version III) which performs nearly as well
as a fully coherent matched filter like the F-statistic,
when the phase evolution is known electromagnetically.
It maintains the same level of performance, when the
phase evolution is unknown, as long as the HMM time-
step is chosen to be shorter than the spin wandering time-
scale. [7] Ensuring that the latter condition is satisfied

involves trial and error but is not taxing computation-
ally for most realistic searches. Version III of the HMM
is built on a phase-dependent version of the Bayesian
matched filter called the B-statistic used in loosely co-
herent and related continuous-wave searches [21–26]. It
outperforms Versions I and II because (i) the B-statistic
is more sensitive than the F-statistic, and (ii) the in-built
requirement of phase continuity reduces false alarms, as
discussed in Section II. It leverages the existing, easy-
to-use, thoroughly tested software infrastructure housed
in the LIGO Scientific Collaboration Algorithm Library
(LAL). Several of its subroutines and intermediate data
products are shared by the F-statistic and Versions I and
II of the HMM. 2

The paper is structured as follows. In Sections II–IV
we describe how to modify the emission and transition
probabilities of the HMM to track the rotational phase.
The performance of the extended HMM is then tested by
performing Monte-Carlo simulations with Gaussian noise
for isolated and binary sources in Sections V and VI re-
spectively. Specifically, the sensitivity is calculated as
a function of the user-selected false alarm and false dis-
missal probabilities and compared for Versions I, II, and
III of the HMM. The accuracy of frequency and phase re-
covery as part of a successful detection is also quantified.
Finally we run the extended HMM on data from Stage
I of the Sco X−1 MDC in Section VII and confirm that
it detects every injection easily. Implications for future
gravitational wave searches and their astrophysical im-
pact are discussed briefly in Section VIII. Among them
is the tantalizing possibility that a gravitational wave de-
tection of spin wandering (possibly in conjunction with
radio/X-ray timing data) may clarify its physical origin,
which remains a subject of debate in both isolated [5, 28–
32] and accreting [6, 33–37] systems.

II. HMM TRACKING

HMM frequency tracking is exploited widely in engi-
neering applications ranging from radar and sonar anal-
ysis [38] to mobile telephony [39, 40] and has been ex-
tended to handle amplitude and phase information and
multiple targets. [41–43] It delivers accurate estimation,
when the signal-to-noise ratio (SNR) is low, but the sam-
ple size is large, [14] as in continuous-wave gravitational
wave data analysis. In this section we describe how to
generalize a HMM that tracks f∗(t) to one that tracks the
rotational phase Φ∗(t) (and hence the carrier phase of the
signal) as well as f∗(t). Section II A sets out the tracking
framework in its general form. [14, 44] Section II B ex-
plains the central role played by step-wise phase continu-
ity in reducing the HMM’s false alarm rate. Section II C

2 A Viterbi-based algorithm has also been developed to perform
nonparametric, all-sky searches. [27] Generalizing it to track
phase as well as frequency lies outside the scope of this paper.
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discusses how to discretize the HMM’s state space and
the related challenges involved in enforcing phase conti-
nuity, when the emission probability is calculated from
the output of a frequency-domain matched filter like the
F-statistic. Modified transition and emission probabili-
ties are presented in Sections III and IV.

A. General formulation and drift time-scale

A HMM is a probabilistic finite state automaton de-
fined by a hidden (unobservable) state variable, q(t),
and an observable state variable, o(t). The automaton
jumps through a time-ordered sequence of observations,
O = {o(t0), . . . , o(tNT

)}, at discrete times t0 ≤ · · · ≤ tNT
.

In general there exist NNT +1
Q possible hidden-state paths,

Q = {q(t0), . . . , q(tNT
)}, which are consistent with O.

Here NQ counts the finite number of discrete values, that
q(t) can take at time t.

Given O, some paths are more likely than others. If
we assume that the automaton is Markovian, such that
the transition probability from q(tn) to q(tn+1) depends
only on q(tn), then the probability that Q gives rise to O
equals

Pr(Q|O) = Lo(tNT
)q(tNT

)Aq(tNT
)q(tNT−1) × . . .

×Lo(t1)q(t1)Aq(t1)q(t0)Πq(t0) . (1)

In (1),

Aqjqi = Pr[q(tn+1) = qj |q(tn) = qi] (2)

is the transition probability matrix;

Lojqi = Pr[o(tn) = oj |q(tn) = qi] (3)

is the emission probability matrix, namely the proba-
bility that the system is observed in state o(tn) while
occupying the hidden state q(tn); and

Πqi = Pr[q(t0) = qi] (4)

is the prior vector, namely the probability that the sys-
tem occupies the hidden state q(t0) initially.

To solve the HMM, one seeks the most probable path
Q∗(O), which maximizes Pr(Q|O) given O, viz.

Q∗(O) = arg max Pr(Q|O) . (5)

The maximization can be done in many ways. In previous
gravitational wave applications as well as in this paper,
we employ the Viterbi algorithm, [14, 15] whose logic and
pseudocode are summarized briefly in Appendix A. The
Viterbi algorithm is a dynamic programming algorithm.
It is computationally efficient, executing of order (NT +
1)NQ lnNQ floating point operations.

Table I summarizes how the general framework above
maps onto Versions I, II, and III of the HMM. For each
version, it specifies the intended astrophysical target, the

hidden astrophysical variables being tracked, the inter-
mediate data inputs distilled from the raw observations
(which go into calculating Lojqi), as well as the forms
of Aqjqi , Lojqi , and Πqi , which define the probabilistic
structure of the HMM. The entries in each column are
discussed in detail when introduced in Sections II–IV, to-
gether with full mathematical definitions of the various
terms and symbols, e.g. F , J , and B. In this paper,
we take q(t) = [f∗(t),Φ∗(t)]. We adopt a flat prior, as
in previous work, [18, 19] and track the phase difference
Φ∗(tn+1) − Φ∗(tn) across each HMM step; Φ∗(0) is the
result of a historical accident, which obviates the need to
track the absolute phase.

In gravitational wave applications, the underlying,
stochastic evolution of q(t) is continuous. Nonetheless
the discrete-time HMM defined by (1)–(5) provides an
appropriate analysis framework, as long as the duration
Tdrift = tn+1 − tn of each HMM step is chosen wisely.
A recipe for choosing Tdrift in Versions I and II of the
HMM is given in previous papers. [18, 19] The general-
ized recipe for Version III is set out in Appendix B, where
the key condition on Tdrift is given by equation (B1). One
always has TSFT ≤ Tdrift ≤ Tobs, where TSFT denotes the
duration of the short-time Fourier transforms (SFTs) [45]
used to compute Lojqi (see Section II C and Appendix
B), and Tobs = NTTdrift ∼ 1 yr is the total observation
time. The SFTs are a data management device to assist
with storage and input-output. They divide the observ-
ing run into short stretches, typically TSFT = 1800 s in
length, during which one assumes that the antenna beam
pattern is approximately constant (neglecting rotation of
the Earth), and the detector noise is approximately sta-
tionary. They are knitted together to compute a detec-
tion statistic such as the F-statistic coherently over an
interval Tdrift. By contrast, Tdrift is a user-selected time
interval which contains an integer number of SFTs, dur-
ing which one assumes that the system stays within a
single HMM state, if condition (B1) is satisfied. Detailed
implementation instructions, explaining how the SFTs
are converted into ‘data atoms’ and hence values of the
emission probability Lojqi , are provided in Ref. [46].

B. Phase continuity

In previous implementations of HMM-based gravi-
tational wave searches, [16, 18, 19] Lo(tn)qi is com-
puted from the maximum-likelihood, frequency-domain
matched filter called the F-statistic [13] or a close vari-
ant, evaluated over the time interval tn−1 ≤ t ≤ tn. For
an isolated source, the F-statistic concentrates all the sig-
nal power into a single frequency bin, of width ∆fdrift =
(2Tdrift)

−1, provided that the Tdrift condition (B1) holds.
For a binary source, the F-statistic disperses the signal
power into approximately 2M ′ + 1 = 2ceil(2πf∗a0) + 1
orbital sidebands, separated by P−1 in frequency, where
a0 is the projected semimajor axis of the binary orbit,
P is the orbital period, and ceil(. . . ) returns the lowest
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Version Target q(t) o(t) Aqjqi Lojqi Πqi Ref.
I isolated f∗(t) Fourier random walk F (max. likelihood) uniform [16, 18]
II binary f∗(t) Bessel random walk J (max. likelihood) uniform [17, 19]
III isolated Φ∗(t), f∗(t) Fourier Ornstein-Uhlenbeck B (Bayesian) uniform this paper

binary Φ∗(t), f∗(t) Bessel Ornstein-Uhlenbeck B (Bayesian) uniform this paper

TABLE I. Comparison of HMM Versions I, II, and III: intended targets (column 2), hidden variables (column 3), intermediate
data inputs (column 4), and probabilistic structure (columns 5–7). The entries in each column are discussed in detail in
Sections II–IV. In column 4, the terms Fourier and Bessel refer to ordinary and Bessel-weighted Fourier transforms of the raw
interferometer data respectively, the latter to account for binary orbital phase, which go into calculating Lojqi as described
in Section IV. In column 5, which defines Aqjqi , random walk refers to a discrete-time, simple random walk, and Ornstein-
Uhlenbeck refers to continuous-time, damped Brownian motion, as described in Section III. The detection statistics F , J , and
B in column 6 are defined mathematically when first introduced in Sections II–IV.

integer greater than or equal to its argument. However,
it is possible to redirect most of the signal power into
a small subset (� 2M ′ + 1) of frequency bins by sum-
ming the F-statistic values at the orbital sidebands with
an appropriate weighting, namely Bessel coefficients aris-
ing from the Jacobi-Anger expansion of the waveform. If
the coefficients are squared Bessel functions, the sum is
incoherent, and Lo(tn)qi exhibits a narrow, cuspy peak
as a function of frequency, as in Version I of the HMM
(Bessel-weighted F-statistic). [19] If the coefficients in-
clude powers of eiφa , where φa is a reference phase (usu-
ally defined by the orbit’s ascending node), and the F-
statistic is factorized into a product of complex numbers
before summation, the sum is coherent with respect to or-
bital phase, and Lo(tn)qi contains all the signal power in a

single frequency bin, of width ∆fdrift = (2Tdrift)
−1, as in

Version II of the HMM (J -statistic). [19] In summary, it
is always possible to concentrate all the signal power into
a single frequency bin, by calculating Lo(tn)qi from the F-
statistic (isolated source) or J -statistic (binary source).
This result is confirmed by numerous Monte Carlo simu-
lations in Ref. [19].

There is only one “correct” frequency bin at each HMM
step, and Q∗(O) either finds it or not. It is therefore nat-
ural to ask what extra advantage rotational phase track-
ing confers, when the optimal path Q∗(O) in Versions I
and II of the HMM already captures the maximum sig-
nal power available to any HMM, for the reason set out
in the previous paragraph. The answer is that phase
tracking increases the detection probability by sharpen-
ing the HMM’s ability to discriminate against spurious
sequences. For example, if a strong noise event occurs
in the i-th frequency bin at the n-th step, then Q∗(O)
is likely to contain q(tn) = qi, if frequency is the only
hidden state variable. Yet if phase is tracked as well,
the HMM is more likely to reject the spurious path con-
taining q(tn) = qi in favor of another path with lower
Lo(tn)qj (j 6= i) but higher Aq(tn+1)qj and Aqjq(tn−1), i.e.
a path whose transition probabilities into and out of the
n-th step are more consistent with phase continuity. This
is equivalent to the distinction between a semi-coherent

and a coherent search. The latter is ≈ N
1/4
T times more

sensitive than the former because it effectively reduces
the denominator in the SNR by excluding false alarms

that violate phase continuity.
We implement rotational phase tracking by enlarg-

ing the state vector to two dimensions for an isolated
source, with q(t) = [f∗(t),Φ∗(t)], and four dimensions
for a binary source, with q(t) = [f∗(t), a0(t), φa(t),Φ∗(t)].
Under normal astrophysical circumstances, a0 and φa

are constant throughout a full search (Tobs . 1 yr), so
there is no need to track them. Hence, for both tar-
get classes, the HMM reduces to two dimensions, with
q(t) = [f∗(t),Φ∗(t)], except that it is computed on a grid
of (a0, φa) pairs for a binary source; see Section IIA in
Ref. [19]. This approach is readily parallelizable across
(a0, φa) pairs and sources.

C. Grid resolution

How do we select the number of hidden states, NQ =
Nf∗NΦ∗ , with Nf∗ = B/∆fdrift and NΦ∗ = 2π/∆Φdrift,
where B = max f∗−min f∗ is the bandwidth, and ∆Φdrift

is the width of a phase bin? There are many valid ways to
do this, as discussed in Appendix B, noting that ∆fdrift

and ∆Φdrift are related through Φ∗(t) = 2π
∫ t

0
dt′ f∗(t

′).
The choice comes down to how the HMM emission prob-
ability is calculated from the data, as foreshadowed in
Section II A. In this paper, we seek to leverage the
existing, easy-to-use, thoroughly tested software infras-
tructure for frequency-domain continuous-wave searches
maintained in the LAL suite, including the F-statistic
[13, 46], B-statistic [21, 23–25], and intermediate data
products generated by the F-statistic; see Section IV in
this paper and Section IIIA in Ref. [19]. These software
tools are built around Fourier transforms. We are there-
fore obliged to take ∆fdrift to be the half-Nyquist bin
width of the F-statistic evaluated over a time interval of
duration Tdrift, viz. ∆fdrift = (2Tdrift)

−1.
The half-Nyquist criterion creates a problem: small un-

certainties in f∗ of ±∆fdrift due to binning lead to large
uncertainties in Φ∗ of ±2πTdrift∆fdrift = ±π when prop-
agated forward over one HMM time-step, degrading the
HMM’s ability to track Φ∗(t). One can circumvent this
obstacle by abandoning the frequency domain, thereby
surrendering its practical advantages. Alternatively, one
can achieve sub-Nyquist frequency resolution (� ∆fdrift
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and hence NΦ∗ � 1) by modelling the underlying evo-
lution of q(t′) = [f∗(t

′),Φ∗(t
′)] within a HMM time-step

(tn ≤ t′ ≤ tn + Tdrift). We adopt the latter approach.
A simple, linear ramp does not improve the situation
much, e.g. f∗(t

′) = f∗(tn) ± (t′ − tn)∆fdrift/Tdrift im-
plies Φ∗(tn+1) − Φ∗(tn) = 2πTdriftf∗(tn) ± π/2, which
is still a large fractional uncertainty. We find instead
that evolving q(t′) stochastically according to a phase-
wrapped, Ornstein-Uhlenbeck process (i.e. Brownian mo-
tion that is 2π-periodic in phase) yields good practical
results. The approach is described in Section III and
Appendix C and tested against Monte Carlo simulations
in Sections V and VI. It is analogous to a vernier scale, in
which the frequency bins yield a coarse first approxima-
tion to the frequency, and the phase bins yield a refined
approximation. We find empirically that NΦ∗ = 32 is
adequate for the transition probabilities assumed in this
paper (see Appendix B and footnote 10). Sub-Nyquist
frequency resolution is routinely achieved in signal pro-
cessing problems, where phase tracking is involved, using
a variety of techniques. [41]

III. TRANSITION PROBABILITIES

In this section we introduce an Ornstein-Uhlenbeck
(Brownian) model of the stochastic, intra-step evolution
of the star’s rotation and hence the signal’s frequency and
phase. Transition probabilities Aqjqi for frequency-phase
tracking are presented in Section III A. The Ornstein-
Uhlenbeck model is controlled by two auxiliary parame-
ters. We explain how to set these parameters given Tdrift

in Section III B.

A. Stepping forward in frequency and phase

In Versions I and II of the HMM, it is assumed that
f∗(t) jumps by −1, 0, or +1 frequency bins at every step
with equal probability 1/3. 3 In Version III of the HMM,
we again assume that f∗(t

′) executes an unbiased random
walk for tn ≤ t′ ≤ tn + Tdrift and choose Tdrift according
to condition (B1), as discussed in Appendix B. However
we model the intra-step random walk explicitly as an
Ornstein-Uhlenbeck process that is 2π-periodic in phase.
The aim is to derive Aqjqi in a way that self-consistently
relates the jumps in f∗(t) and Φ∗(t) and allows adequate
phase resolution (NΦ∗ � 1), as discussed in Section II C.

The Ornstein-Uhlenbeck process is described by a pair

3 As in previous papers, we exclude the possibility of impulsive
rotational glitches with f∗(tn+1)− f∗(tn) > ∆fdrift; [47, 48] see
footnote 3 in Ref. [18] and compare Ref. [49].

of stochastic differential equations,

df∗
dt

= −γf∗ + σξ(t) , (6)

dΦ∗
dt

= f∗ . (7)

It is controlled by two parameters: γ, a damping rate,
and σ, a fluctuation amplitude. The fluctuating torque
ξ(t) has white noise statistics, viz.

〈ξ(t)〉 = 0 , (8)

〈ξ(t)ξ(t′)〉 = δ(t− t′) , (9)

where 〈. . . 〉 denotes an ensemble average. We assume
that there is no white noise forcing term in (7), i.e.
the principal axes of the gravitational-wave-emitting
quadrupole are fixed in the body frame rotating in-
stantaneously at the frequency f∗(t). In Brownian mo-
tion in thermal equilibrium, γ and σ are related by the
fluctuation-dissipation theorem, with σ2/γ proportional
to the system temperature. Here, in contrast, γ and σ are
independent. We explain how to choose them in practice
in Section III B.

The stochastic differential equations (6) and (7) are
equivalent to the forward Fokker-Planck equation [50]

∂p

∂t
=
∂(γf∗p)

∂f∗
− ∂(f∗p)

∂Φ∗
+
σ2

2

∂2p

∂f2
∗
, (10)

whose solution p(t, f∗,Φ∗) equals the probability density
that the hidden state lies in the infinitesimal domain
(f∗, f∗ + df∗) ∪ (Φ∗,Φ∗ + dΦ∗) at time t if it started
at q(0) = [f∗(0),Φ∗(0)] at t = 0, i.e. p(0, f∗,Φ∗) =
δ[f∗ − f∗(0)]δ[Φ∗ − Φ∗(0)]. Hence evolving p(t, f∗,Φ∗)
from t = tn to t = tn+1 is exactly what one needs to
calculate the transition probabilities Aqjqi , as defined by
(2). Specifically we write

A(f∗j ,Φ∗k)(f∗l,Φ∗m) = p(tn+1, f∗j ,Φ∗k)∆fdrift∆Φdrift

(11)
with f∗(tn) = f∗l and Φ∗(tn) = Φ∗m, where the integers
j, l and k, m index discrete frequency and phase bins re-
spectively. Analytic formulas are derived for p(t, f∗,Φ∗)
and its characteristic function in Appendix C. [51]

In the Viterbi algorithm, it is sometimes more conve-
nient to calculate the backward transition probabilities,
Aback
qjqi = Pr[q(tn) = qj |q(tn+1) = qi]. This can be done

by solving the backward Fokker-Planck equation, which
is adjoint to (10). Details and formulas are given in Ap-
pendix C. The resulting PDF is a 2π-wrapped Gaussian;
see equations (C10)–(C15).

B. Control parameters

How should the control parameters γ and σ be chosen?
Two conditions must be satisfied during every HMM
step: γ must be small enough, such that 〈f∗〉 does not
drift by more than one frequency bin, ∆fdrift; and σ must
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be large enough, so that we have 〈f2
∗ 〉−〈f∗〉2 ≈ (∆fdrift)

2,
i.e. probability leaks significantly into the frequency bins
on either side of the starting bin but not much further.
From the moment formulas in Appendix C, typical of a
diffusion process, the above conditions reduce to

f∗[1− exp(−γTdrift)] < ∆fdrift (12)

and

σ2

2γ
[1− exp(−2γTdrift)] ≈ (∆fdrift)

2 (13)

respectively for all f∗ in the observation band. For a
typical LMXB search with Tdrift = 10 d and f∗ & 50 Hz,
we have ∆fdrift/f∗ . 1 × 10−8, γTdrift � 1, and hence
γ < (2f∗T

2
drift)

−1 and σ ≈ (4T 3
drift)

−1/2.
Figure 1 presents an example of the transition proba-

bilities for an illustrative choice of γ and σ satisfying the
constraints in the previous paragraph and used subse-
quently in the validation experiments in Sections V and
VI. Contours of the PDF Aqjqi in the f∗-Φ∗ plane are
plotted in Figure 1(a). Three constant-f∗ cross-sections
are plotted versus Φ∗ in Figure 1(b). We find that
p(tn+1, f∗,Φ∗) leaks significantly into the frequency bins
on either side of the starting bin, with Af∗i±1,f∗i = 0.196
and Af∗i,f∗i = 0.608 (normalized). In this implementa-
tion, the PDF is truncated to give Af∗i±2,3,...,,f∗i = 0 to
achieve computational savings, but if one does not trun-
cate one finds Af∗i±2,f∗i = 3.82×10−4. The probabilities
of jumping up or down in frequency are equal, as in Ver-
sion I of the HMM, while the probability of staying in
the same bin is higher (0.608) than in Version I (0.333).

In contrast, the PDF extends over many bins in
phase, as is clear from Figure 1(b), with full-width half-
maximum ≈ 1.78 rad (nine bins). Phase wrapping en-
sures periodicity in Φ∗, but for the plotted parameters
the PDF is tiny at the edges of the plot, and it is hard to
verify the periodicity by eye. The initial state q(tn) deter-
mines whether the phase wraps or not. Figure 1(b) con-
firms that phase wrapping alternates between even and
odd frequency bins (and depends on whether f∗ jumps by
zero or ±∆fdrift), as discussed in Section II C; the phase
jumps by π, when the frequency bin at tn is odd, and by
zero when the frequency bin at tn is even. The contours
slope diagonally, because f∗ and Φ∗ are correlated, with
〈f∗Φ∗〉 − 〈f∗〉〈Φ∗〉 6= 0; see equation (C14) in Appendix
C. The shape of the contours is the same for the forward
and backward transition probabilities, but the centroid
shifts with q(tn) and q(tn+1) respectively.

The above recipe for setting γ and σ is sensible but
not unique. The optimal values of the control parameters
(and Tdrift) depend on the waveform of the true signal,
which is unknown in advance in an astronomical setting.
Altering γ and σ does not introduce a systematic bias, be-
cause the Ornstein-Uhlenbeck process is symmetric with
respect to positive and negative frequency jumps, but in
general it increases or decreases the sensitivity modestly.
It is found empirically that HMMs are robust to the ex-
act form of Aqjqi , which is why the naive choice of Aqjqi

in Version I of the HMM works well. [14] The extra sen-
sitivity in Version III comes from phase tracking, which
depends weakly on γ and σ, because the PDF in Figure
1 is broad in phase. When publishing searches with real
data, it is important to emphasize that any upper limits
are conditional on the signal model, which includes γ, σ,
and Tdrift.

IV. EMISSION PROBABILITIES

For the class of frequency-domain, continuous-wave
searches considered in this paper, Lojqi in (3) can be ex-
pressed in terms of a suitable frequency-phase detection
statistic G(f∗,Φ∗) as

Lo(tn)qi ∝ exp[G(f∗i′ ,Φ∗i′′)] . (14)

Here G(f∗i′ ,Φ∗i′′) is the log likelihood that f∗(tn−1)
lies in the i′-th frequency bin [f∗i′ , f∗i′ + ∆fdrift], and
Φ∗(tn−1) lies in the i′′-th frequency bin [Φ∗i′′ ,Φ∗i′′ +
∆Φdrift], with i = i′NΦ∗ + i′′, given the data o(tn).
4 Concretely o(tn) comprises a set of strain measure-
ments, numbering Tdrift multiplied by the interferometer
sampling rate, or their Fourier-transformed counterparts,
sampled during the interval tn−1 ≤ t′ ≤ tn. There ex-
ist many valid ways to construct G(f∗,Φ∗), depending
on computational constraints, the data format, and the
assumed model for the evolution of q(t) = [f∗(t),Φ∗(t)].

In this paper, we strive to exploit the easy-to-use, thor-
oughly tested software infrastructure in the LAL suite
associated with the F-statistic. [13] We are therefore
led to build G(f∗,Φ∗) as a frequency-domain matched
filter, using as many existing LAL components as pos-
sible. In Versions I and II of the HMM, G(f∗,Φ∗) is
constructed as a maximum likelihood estimator from the
F-statistic (isolated source) or a Bessel-weighted sum of
F-statistic values (binary source). [18, 19] In Version
III, we press into service the phase-dependent general-
ization of the Bayesian B-statistic used in loosely coher-
ent searches. [21–26] The latter choice is justified against
maximum likelhood alternatives in Appendix D. We re-
view briefly the signal model and its definitions in Sec-
tion IV A, define the frequency domain intermediate data
products that we need (e.g. complex Fourier amplitudes
generated by the LAL) in Section IV B, and present a for-
mula for G(f∗,Φ∗) in terms of the B-statistic in Section
IV C.

A. Signal model and likelihood

The gravitational wave signal measured at the Earth
from a biaxial rotor can be written as a linear combina-

4 Equally one can use some other reference time, e.g. tn.
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FIG. 1. Forward transition probabilities Aqjqi = Pr[q(tn+1) = qj |q(tn) = qi] (not normalized) for f∗(tn) = 111.0 Hz, Φ∗(tn) =

0 rad, γ = 1.0× 10−16 s−1, and σ = 3.7× 10−10 s−3/2. (a) Contour plot versus f∗(tn+1)− f∗(tn) and Φ∗(tn+1)− Φ∗(tn). The
color scale is arbitrary; hot colors are high, cool colors are low. The white grid delineates frequency-phase bins. The horizontal
and vertical axes are labeled by number of bins. A subset of the hidden state space is plotted for clarity. (b) Cross-sections
at fixed f∗(tn+1) − f∗(tn) = 0,±∆fdrift. The crosses, plus signs, and asterisks mark phase bins. The horizontal axes indicate
Φ∗(tn+1)− Φ∗(tn) in units of radians (top) and number of bins (bottom). The backward transition probabilities are identical
but centered on q(tn+1) instead of q(tn).

tion of eight independent components, [13]

h(t) =

4∑
i=1

A1ih1i(t) +A2ih2i(t) . (15)

In (15), A1i and A2i are arbitrary amplitudes set by the
source, and h1i(t) and h2i(t) are defined in Ref. [13] as
sinusoidal functions of Φ(t) and 2Φ(t) respectively, where
Φ(t) is the signal phase at the detector [note: Φ(t) 6=
Φ∗(t) in general]. The amplitudes of h1i(t) and h2i(t)
are modulated diurnally by the antenna beam-pattern
functions a(t) and b(t), defined by equations (12) and
(13) respectively in Ref. [13].

Following equations (18) and (96) in Ref. [13], we split
the signal phase into five terms,

Φ(t) = 2πf0[t+ Φm(t;α, δ)] + Φs[t; f
(k)
0 , α, δ]

−2πf0a0 sin(2πt/P − φa) + Φw(t) . (16)

In (16), f0 is the signal frequency at the detector, 5 Φm

is a time shift produced by the diurnal and annual mo-
tions of the detector and source relative to the Solar Sys-
tem barycentre, Φs is a phase shift combining the latter
two effects with the intrinsic, deterministic, secular evo-
lution of the source through the frequency derivatives

f
(k)
0 = dkf0/dt

k (k ≥ 1) (see equation (14) in Ref. [13]),
the fourth term (∝ a0) is the Doppler modulation pro-
duced by the source’s orbital motion in a binary system,

5 One has f0 6= f∗(t) in general. f∗(t) is the true, underlying spin
frequency of the star, which we cannot measure directly and
which forms one component of the hidden state. f0 is any arbi-
trary frequency, where the emission probability and associated
phase model (16) are evaluated, which may or may not coincide
with f∗(t), depending on where in the parameter space we look.

and Φw(t) is the phase accumulated from stochastic spin
wandering. The sky position of the source (right ascen-
sion α, declination δ) enters Φm and Φs. Naturally it is
possible to absorb the binary orbit and stochastic spin

wandering into f
(k)
0 , and hence absorb the fourth and

fifth terms in (16) into Φs, but it is clearer to keep the
contributions separate in what follows.

The output from a single interferometer is given by
x(t) = h(t) + n(t), where n(t) denotes additive noise.
The normalized log likelihood after measuring the time
series x(t) over the interval 0 ≤ t ≤ Tobs is proportional
to

ln Λ′ = (x‖h)− 1

2
(h‖h) , (17)

where we define the inner product

(x‖y) =
2

Tobs

∫ Tobs

0

dt x(t)y(t) . (18)

In Versions I and II of the HMM, the emission probability
is computed by maximizing ln Λ′ in (17) with respect to
the amplitudes A1i and A2i and evaluating the result on
a grid of f0 values to find the peak. (This procedure is
not exactly the same as maximizing over A1i, A2i, and f0

simultaneously.) The result is a sum of terms quadratic in
(x‖h1i) or (x‖h2i), which can be computed from Fourier-
transformed interferometer data as discussed in Section
IIID in Ref. [13] and Appendix D below; see also Ref. [46]
and Section IIA in Ref. [19]. In Version III of the HMM,
the emission probability is computed via the Bayesian B-
statistic, defined in Section IV C. The B-statistic can be
computed efficiently from the same, Fourier-transformed
interferometer data used by Versions I and II. We define
the relevant Fourier integrals in Section IV B.
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B. Fourier integrals

The waveforms h1i(t) and h2i(t) in (15) are ampli-
tude modulated by the antenna beam pattern functions
a(t) and b(t). The log likelihood ln Λ′ in (17) is a func-
tion of (x‖h), which reduces to calculating the Fourier
transforms of x(t)a(t) and x(t)b(t), because one has
(x‖h11) = (x‖a(t) cos Φ(t)) for example. For an isolated
source (a0 = 0), let us define the Fourier integrals [13]

F1a(f0) =

∫ Tobs

0

dtb x[t(tb)]a[t(tb)]e−iΦs[t(tb)]−2πif0tb ,(19)

F1b(f0) =

∫ Tobs

0

dtb x[t(tb)]b[t(tb)]e−iΦs[t(tb)]−2πif0tb ,(20)

where tb = t + Φm(t) defines a barycentered time co-
ordinate tb related implicitly to t through the time shift
arising from the Earth’s motion. In this paper, we neglect
the secular frequency evolution of the source, e.g. due to

electromagnetic braking, and set f
(k)
0 = 0 for k ≥ 1 and

hence Φs[t(tb)] = 0. It is easy to keep f
(k)
0 6= 0 in (19)

and (20) if desired. We also specialize without loss of gen-
erality to the case A1i = 0, corresponding to a search for
one signal frequency (as opposed to two simultaneously).

For a binary source (a0 6= 0), the integrands in (19) and
(20) feature an extra, Doppler-modulated phase factor
exp[2πif0a0 sin(2πt/P − φa)], derived from (16). Upon
expanding this factor using the Jacobi-Anger identity, we
find that F1a and F1b should be replaced in Lo(tn)qi by

J1a(f0) =

M ′∑
s=−M ′

Js(2πf0a0)e−isφaF1a(f0 + s/P ) ,(21)

J1b(f0) =

M ′∑
s=−M ′

Js(2πf0a0)e−isφaF1b(f0 + s/P ) ,(22)

where Js denotes a Bessel function of order s of the first
kind. Equations (21) and (22) add together the Fourier
amplitudes in orbital sidebands coherently, by taking into
account the relative orbital phases of the sidebands. [19]
The infinite sums are truncated, because one has Js(x)�
1 for s� x to a good approximation. [52, 53]

It turns out that the emission probability Lo(tn)qi in
(14) can be calculated easily from F1a and F1b (isolated
source) or J1a and J1b (binary source) in every HMM
implementation we consider. The maximum likelihood
formulas for Lo(tn)qi in Versions I and II of the HMM are
quoted in Appendix D, where it is shown that they (and
their phase-dependent generalizations) are poorly suited
to rotational phase tracking. The B-statistic adopted in
this paper for Version III of the HMM is presented next
in Section IV C.

The Fourier integrals (19) and (20) are taken formally
over 0 ≤ t ≤ Tobs. In practice, to facilitate data manage-
ment, the integral is subdivided into ‘atoms’. [46] Each
atom corresponds to one SFT, which is convolved with
a sliding-window sinc function to increase the frequency

resolution from (2TSFT)−1 to (2Tobs)
−1, as required by

(19) and (20). The reader is referred to Section 4.2 in
Ref. [46] for full details; see also Section IIIA in Ref. [19].
In this paper, following Ref. [46], we approximate a(t)
and b(t) as piecewise-constant during each SFT.

C. Phase-dependent B-statistic

The B-statistic [21] is a Bayesian alternative to the
maximum likelihood F-statistic [13]. It is derived from
the likelihood function Λ′ in (17) combined with an
isotropic prior on the source orientation (i.e. spin axis).
Its detection efficiency is ≈ 5 per cent greater than that
of the F-statistic, and it is arguably motivated better
astrophysically; the F-statistic implicitly assumes a uni-
form prior on the amplitude, whereas the B-statistic fa-
vors lower amplitudes, which is more realistic. [21] In
practice, however, the F-statistic has proved more popu-
lar than the B-statistic, having been preferred in various
published LIGO searches, e.g. [2, 54] (targeted), [8, 55]
(directed), and [56, 57] (all-sky), as well as forming the
basis of Versions I and II of the HMM. [10, 16, 18, 19]
This is because: (i) the advantage held by the B-statistic
in terms of detection efficiency is small; [21, 23, 24] (ii)
the F-statistic software in the LAL was developed first
and is now thoroughly tested; and (iii) the B-statistic in-
volves numerical integrals, which are relatively expensive
computationally, although fast approximations do exist.
[23, 24, 26]

In this section, we present a phase-dependent version of
the B-statistic formulated for loosely coherent searches.
[23]. The associated emission probability is calculated
from (19) and (20) (isolated source) or (21) and (22) (bi-
nary source), i.e. the same intermediate data products as
Versions I and II of the HMM. We settle on this choice
after testing several phase-dependent generalizations of
the maximum likelihood F-statistic, as discussed in Ap-
pendix D. Empirically we find that: (i) none perform as
well as the B-statistic nor offer any discernible improve-
ment over Versions I and II of the HMM; (ii) a HMM
based on the B-statistic approaches the theoretical sensi-
tivity of a fully coherent search; and (iii) the sensitivity
improvement exceeds the ≈ 5 per cent advantage of the
B-statistic over the F-statistic without any phase depen-
dence, [21] so phase tracking is clearly playing a role. Of
course these empirical findings do not constitute a for-
mal proof, that the phase-dependent B-statistic always
outperforms any phase-dependent maximum likelihood
estimator, cf. Ref. [21]. However such a formal proof lies
outside the scope of this paper and is unnecessary at this
stage given the excellent performance achieved in tests
with synthetic data in Sections V and VI. Other com-
peting estimators will be tested in future work, e.g. the
phase-relaxed F-statistic. [58]

Instead of maximizing Λ′ in (17) with respect to A1i

and A2i, we marginalize it (by Bayes’s theorem) over
uniform priors in three source-dependent variables: (i)
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the polarization angle, ψ; (ii) the cosine of the inclination
angle, cos ι; and (iii) the characteristic wave strain, h0.
[23–25] Let us define

A+ =
h0

2
(1 + cos2 ι) (23)

and

A× = h0 cos ι (24)

to be the real amplitudes of the plus and cross polar-
izations respectively, which can be related to A2i as ex-
plained in Ref. [59]. (For simplicity we consider the pop-
ular case A1i = 0 here.) Following Ref. [23], let us also
define the auxiliary complex variables

w′1 = (2h0)−1(A+ cos 2ψ + iA× sin 2ψ) (25)

and

w′2 = (2h0)−1(A+ sin 2ψ − iA× cos 2ψ) , (26)

which satisfy the identities

1 = |w′1 + iw′2|1/2 + |w′1 − iw′2|1/2 , (27)

2h0w
′
1 = A21−iA23, and 2h0w

′
2 = A22−iA24. In terms of

the above definitions, we obtain the following expression
for the marginalized likelihood: [23]

B =

∫ π

0

dψ

∫ 1

−1

d(cos ι)

∫ hmax
0

0

dh0

× exp

(
h0U −

h2
0V

2

)
, (28)

with

U = w′∗1 R1a(f0,Φ0) + w′∗2 R1b(f0,Φ0) , (29)

V = A|w′1|2 + 2CRe(w′1w
′∗
2 ) +B|w′2|2 , (30)

R1a(f0,Φ0) = Re[exp(−iΦ0)F1a(f0)] , (31)

and

R1b(f0,Φ0) = Re[exp(−iΦ0)F1b(f0)] . (32)

In (30), we have A = (a||a), B = (b||b), C = (a||b),
and C � min(A,B) for most sky positions. [26] The B-
statistic peaks, when the trial phase Φ0 in (29), (31) and
(32) matches the true signal phase at the detector, viz.
Φ(t) in (16).

The h0 integral in (28) is not normalized as it stands;
the HMM disregards multiplicative constants. Hence we
can take the limit hmax

0 → ∞ without loss of generality
and express the h0 integral in closed form as an error
function. In loosely coherent searches, B is maximized
with respect to Φ0. [23] We cannot do the same here,
because we track the rotational phase and therefore need

B to depend on Φ0. The final result, expressed again in
the notation of Ref. [23], is given by

B(f0,Φ0) =

∫ π

0

dψ

∫ 1

−1

d(cos ι)
( π

2V

)1/2

× exp

(
U2

2V

)[
1 + erf

(
U√
2V

)]
, (33)

with

erf(x) =
2√
π

∫ x

0

dy exp(−y2) . (34)

The double integral in (33) is evaluated numerically by
Simpson’s rule in what follows.

Figure 2 presents examples of the emission probability
for two signals from an isolated source injected into Gaus-
sian noise with Sh(f0) = 4× 10−24. The contour plots in
the figure are generated from Tobs = 10 days of synthetic
data. In Figure 2(a) the stronger injection is clearly de-
tectable, with h0 = 4.0 × 10−26, and the emission prob-
ability peaks near the correct (f0,Φ0) bin. Figure 2(b)
displays the weaker injection, with h0 = 1.7 × 10−26.
There is a hot spot near the correct bin, but it does not
stand out visually from the other, noise-generated hot
spots. The constant-f0 cross-section does not peak at
the correct value of Φ0, although it still has roughly the
same functional form as in Figure 2(a). Note that the
emission probability is not always unimodal in the vicin-
ity of the injection as it is in Figure 2(a). When the
complex arguments of F1a and F1b differ sufficiently, B
develops two peaks as a function of Φ0 (at fixed f0), only
one of which corresponds to the signal. The tests in Sec-
tion V show that the HMM is effective at resolving this
ambiguity and identifying the true peak for NT > 1.

V. ISOLATED NEUTRON STAR

We begin by testing Version III of the HMM on syn-
thetic data generated by injecting the signal from an iso-
lated neutron star into additive, Gaussian noise. Sec-
tion V A describes the injection procedure. Tracking re-
sults are presented in Section V B for a representative
sample of synthetic data. A systematic, threshold-based
strategy for identifying signal candidates during an astro-
physical search is described in Section V C and is applied
to characterize the performance of the HMM in Section
V D. The accuracy with which the HMM reconstructs the
true hidden state sequence given a successful detection is
quantified in Section V E. Versions I (isolated source)
and III of the HMM are compared at each stage. Ver-
sions II (binary source) and III are compared in Section
VI.

A. Synthetic data

The signal phase corresponding to an isolated neutron
star is given by (16) with a0 = 0. In the tests below, the
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(a) (b)

FIG. 2. Logarithm of the emission probability, G(f0,Φ0) = lnB(f0,Φ0) (not normalized), represented by its contours in the f0-
Φ0 plane (color scale arbitrary). (a) Stronger injection; h0 = 4.0×10−26. (b) Weaker injection; h0 = 1.7×10−26. The injections
are marked by crosses; their parameters are listed in Table II (isolated source). The observation o(tn) consists of Tobs = 10 days
of data (NT = 1). The white grid delineates frequency-phase bins with ∆fdrift = 5.8× 10−7 Hz and ∆Φdrift = π/16. A subset

of the hidden states is plotted for clarity. The noise is Gaussian, with Sh(f0)1/2 = 4× 10−24 Hz−1/2 as in Table II.

stochastic component of the injected phase evolves during
the interval tn ≤ t′ ≤ tn+1 according to Φw(t′) = 2π[(t′−
tn)3f̈∗(tn)/6+(t′−tn)2ḟ∗(tn)/2+(t′−tn)f∗(tn)]+Φw(tn),

where f̈∗(t
′) = f̈∗(tn) is drawn randomly from a uniform

PDF while ensuring that |f∗(tn+1) − f∗(tn)| ≤ ∆fdrift

is satisfied, and ḟ∗(t
′), f∗(t

′), and Φw(t′) are continuous
from one HMM step to the next. This prescription is
neither unique nor necessarily optimal; it is one of many,
equally valid approaches. We assume for simplicity that
there is no secular frequency drift, i.e. 〈ḟ∗(t)〉 = 0. Incor-

porating 〈ḟ∗(t)〉 6= 0 is straightforward; it is already part
of LAL implementations of the F-statistic, for example.
However it is unnecessary in many astrophysical settings,
because the HMM with the transition probabilities de-
fined in Section III and Figure 1 automatically handles
secular spin evolution with 〈|ḟ∗(t)|〉 . ∆fdrift/Tdrift as a
matter of course.

The step-wise evolution of f̈∗ differs deliberately from
the step-wise evolution of ḟ∗ modeled by the fluctuating
torque ξ(t) in (6), which underpins the transition proba-
bilities in Section III and Appendix C. In general we do
not know the functional form of the spin wandering in
astrophysical sources. [7] Hence it is prudent to assume
different forms of wandering in the test injections and
transition probabilities, to double-check the robustness
of the algorithm. The injection parameters are quoted
in Table II and are the same as those in Ref. [18] to fa-
cilitate comparison, except that in this paper f∗(t0) and
Φ∗(t0) are chosen randomly (from uniform PDFs cover-
ing the ranges in Table II) as a self-blinding precaution.
The synthetic data are generated using Makefakedata v4
in the LAL.

Parameter Value Units
Φ∗(t0) [0, 2π] rad
f∗(t0) [111.0, 111.1] Hz

ḟ∗(t0) 0 Hz s−1

ψ 4.08407 rad
cos ι 0.71934 −
α 4.27570 rad
δ −0.27297 rad

Sh(f0)1/2 4× 10−24 Hz−1/2

TABLE II. Injection parameters used to create the synthetic
data analysed in Sections V and VI. Different tests employ
different subsets of the ranges in the first two lines.

B. Representative example

Figure 3 illustrates the output of Versions I and III
of the HMM for three typical, injected signals with
h0/10−26 = 1.7, 1.3, and 1.1. The strongest signal is
detectable by both versions of the HMM, the interme-
diate signal is detectable by Version III only, and the
weakest signal is detectable by neither version. The
figure displays the frequency path that best matches
the injected f∗(t). When the signal is detected, the
best-matching frequency path is also the optimal HMM
path, i.e. the frequency component of Q∗(O). The fre-
quency is recovered accurately, with root mean square
errors of εf∗ = 6.5 × 10−7 Hz = 1.1∆fdrift and εf∗ =
5.9× 10−7 Hz = 1.0∆fdrift for Version III in Figures 3(a)
and 3(b) respectively. Note that the injected f∗(t) traces

a piecewise-parabolic path, because f̈∗(t) is piecewise-
constant (see Section V A). In contrast, the frequency
path recovered by Version III of the HMM, which obeys
the Ornstein-Uhlenbeck transition probabilities in Ap-
pendix C, is piecewise-constant in the figure, because the
HMM jumps between discrete frequency bins of width
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∆fdrift.
Figure 4 displays the absolute error between the in-

jected and recovered phase as a function of time for the
three isolated sources studied in Figure 3. Superficially
the phase reconstruction in Figure 4 looks worse than the
corresponding frequency reconstruction in Figure 3. The
B-statistic concentrates the signal power into at most two
adjacent frequency bins yet spreads it out over multiple
phase bins. As seen in Figure 2(a), B(f0,Φ0) is nearly a
delta function in frequency (like the F- and J -statistics
in Versions I and II of the HMM) but has full-width
half-maximum ≈ π in phase. Nevertheless, although the
phase tracking is imperfect, it delivers improved sensitiv-
ity on balance, if one compares Figure 3(a) with Figure
3(b) for example. This improvement does not occur sim-
ply because Version III of the HMM uses the B-statistic,
which in its phase-maximized form is ≈ 5 per cent more
sensitive than the F-statistic (see Section IV C). [21] To
verify this, we repeat the tests in Figures 3 and 4 while
artificially scrambling the phase, i.e. randomizing Φ∗(tn)
at every HMM step while keeping f∗(t) continuous as in
Section V A. Phase randomization converts the Version
III detection of the injection with h0 = 1.3 × 10−26 into
a nondetection while having no effect on the Version I
results.

When the signal is not detected, Q∗(O) is clearly
wrong, e.g. εf∗ = 1.2 × 10−2 Hz = 2.1 × 104∆fdrift for
Version III in Figure 3(c). The agreement looks better
in the figure but artificially so. The minimum-εf∗ paths
plotted in the figure turn out to be the sixth, 20-th, and
411-th Viterbi paths [i.e. not Q∗(O)] for the nondetec-
tions using Version I in Figure 3(b) and Versions I and
III in Figure 3(c) respectively. While these do lie within
a few frequency bins of f∗(t) by chance, they are of no
practical use in an astrophysical search, where the true
f∗(t) is unknown. The optimal path is plotted when-
ever possible in Figure 3 but it always lies far outside the
border of the plot, when the signal is not detected.

The PDFs of lnB in pure noise and for a relatively
strong injection are compared in Appendix E 1 for com-
pleteness. They do not follow a chi-squared distribu-
tion, unlike the F-statistic, because marginalizing over
ψ, cos ι, and h0 in (28) implicitly enforces constraints
between the amplitudes in (15), so that lnB is not a sum
of independent squares.

C. Detection strategy

We assess the performance of Version III of the HMM
within the Neyman-Pearson framework applied to other
continuous wave search pipelines developed by the LIGO
Scientific Collaboration. [1] Specifically, we generate re-
ceiver operating characteristic (ROC) curves for a range
of h0 and NT values, generalizing the tests in Ref. [51] to
include the time-dependent antenna beam-pattern func-
tions a(t) and b(t). The aims of the exercise are: (i) to
characterize the sensitivity given user-selected false alarm

and false dismissal probabilities, denoted by Pa and Pd

respectively; and (ii) to develop a practical recipe for
how to subdivide the full data set (duration Tobs) into
NT segments of duration Tdrift.

To generate a ROC curve, i.e. a graph of 1 − Pd ver-
sus Pa, we must first define precisely what a detection
means. This is not trivial for HMM-based algorithms.
In Versions I and II of the HMM, the probability that a
Viterbi path terminates in a particular frequency bin is
correlated with the termination probability for the 2NT
nearest bins, because HMM paths terminating in neigh-
boring bins share common subpaths in general. The
problem worsens in Version III of the HMM, where the
tails of p(tn+1, f∗j ,Φ∗k) in (11) extend outside the range
|f∗j − f∗(tn)| ≤ ∆fdrift and wrap through 2π in phase,
as calculated in Appendix C (see also Section II C). For
example, the chance of encountering a false alarm within
∼ NT bins of another false alarm is higher than encoun-
tering it elsewhere.

Several valid ways exist to handle the above correla-
tions. In this paper, we adopt the following approach.
First, we divide the full search space into disjoint parcels
of width 2NT∆fdrift in frequency and 2π in phase, which
we call ‘blocks’. Each block contains 2NTNΦ frequency-
phase bins. (We check that the results do not change
significantly, if the frequency width of the blocks is
kNT∆fdrift with k & 2, in Appendix E.) Starting with
multiple realizations of pure noise (i.e. h0 = 0), we cal-
culate

Si = max
|i′−i|≤NT

max
0≤Φ∗′′≤2π

ln Pr[Q∗(O)|O; q∗(tNT
) = (f∗i′ ,Φ∗′′)] (35)

in the block centered on the i-th frequency bin. In
(35), Si is the HMM log likelihood for the optimal
path q∗(t) terminating at a given frequency-phase bin,
q∗(tNT

) = (f∗i′ ,Φ∗′′), maximized over all the frequency-
phase bins in the block centered at frequency f∗i, with
|f∗i′ − f∗i| ≤ NT∆fdrift and 0 ≤ Φ∗′′ ≤ 2π. We call Si
the ‘block score’ and write it as S henceforth as short-
hand. 6 We then define a threshold Sth(f), where f is
the central frequency of the block, such that an analyst-
selected fraction Pa of the realizations are false alarms,
i.e. they return S > Sth(f). (The dependence on f is
weak.) We then repeat the exercise after injecting a
signal h0 > 0 into multiple noise realizations. A block
with S > Sth(f) is flagged as a candidate. If any sub-
set of the frequency component of the injected path,
{f∗(t1), . . . , f∗(tn)}, overlaps with the block, the candi-
date counts as a successful detection; otherwise the can-

6 The block score does not equal the Viterbi score used in previous
work, [16, 19] e.g. equations (29)–(31) in Ref. [19]. The latter
quantity is defined as the number of standard deviations that
ln Pr[Q∗(O)|O; q∗(tNT

) = qi] in the i-th bin stands away from
the mean, where the mean and standard deviation are computed
over the full search band (width B) for one realization.
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FIG. 3. Sample tracking output from Versions I (purple curves) and III (green curves) of the HMM for three injected signals
(black curves) from an isolated neutron star with source parameters drawn from Table II and h0/10−26 = 1.7 [panel (a)],
1.3 [panel (b)], and 1.1 [panel (c)]. The purple and green curves are the best-matching frequency paths (with minimum
path-integrated, root-mean-square error εf∗ ; see Section V E), centred on f∗(tNT ) and plotted in units of ∆fdrift; they are
not necessarily the optimal path Q∗(O). The optimal path matches well [i.e. within two frequency bins of f∗(t) for all t] for
Versions I and III in (a) and Version III in (b). The optimal path matches poorly for Version I in (b) and Versions I and III
in (c); indeed it lies outside the border of the plot. We plot instead the paths with minimum εf∗ , viz. the sixth, 20-th, and
411-th Viterbi paths respectively, which lie within a few frequency bins of f∗(t) purely by chance but are of no practical use in

an astrophysical search. Control parameters: γ = 1.0× 10−16 s−1, σ = 3.7× 10−10 s−3/2.

didate is a false alarm. 7 We check below that the results
do not change significantly, if we require a minimum of
(say) half the injected path to overlap with the block.
Conversely, a false dismissal occurs, when zero candi-
dates overlap even partially with the one or two blocks
containing the injected signal. 8

Sample histograms of the block score S in (35) are pre-
sented in Appendix E 1 as a validation test. Noise-only
and noise-plus-injection histograms are visibly separate,
when the detection threshold is exceeded, demonstrating

7 There is no advantage in also testing for phase overlap with
{Φ∗(t1), . . . ,Φ∗(tn)}, because B(f0,Φ0) is a broad function of
Φ0; see Figure 2.

8 It is always possible that the highest S value in a block is a false
alarm, while the second-highest (say) is a real signal, because
nearby HMM paths are correlated. In practice it is imprudent to
claim a detection in a genuine, astrophysical search under such
circumstances; the pragmatic response is to wait for more data.

the discriminating power of the HMM. The PDFs of S
and lnB have different functional forms, brought about
by the maximization steps in the Viterbi algorithm and
(35). [19]

Continuous wave searches are typically subdivided into
sub-bands of width ∆fsub ∼ 1 Hz (0.6 Hz in this pa-
per). Sub-bands are a housekeeping device to handle
the practicalities of data management (e.g. storage and
input-output overhead on a compute cluster). They
are not the same as blocks, which are logical units in
the detection strategy above. It is therefore necessary
to convert the block-based false alarm probability, Pa,
to a sub-band-based false alarm probability, P ′a, using

the binomial theorem, viz. P ′a = 1 − (1 − Pa)N
′

with
N ′ = ∆fsub/(2NT∆fdrift). [52] Note that Sth(f) is a slow
function of f over ∼ 1 Hz, so it is usually good enough
to use its midpoint value across the whole sub-band.
[52, 53] The above approach mimics the one adopted in
previous searches for Sco X−1 with the Sideband algo-
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FIG. 4. Accuracy of HMM phase reconstruction. Absolute pointwise phase error (in rad) between the injected phase and the
phase recovered by Version III of the HMM for the three isolated sources in Figure 3, plotted in the range [−π, π] versus time
(in units of 10 days). Panels (a), (b), and (c) correspond one-to-one to the panels in Figure 3.

rithm, where frequency bins are correlated over windows
of width (2M ′ + 1)∆fdrift, i.e. the width of the Bessel
comb of orbital sidebands [20, 52, 53, 60]. The threshold
Sth(f) is also a function of NT , as discussed in Appendix
E 2.

D. ROC curves

A key question for any detection algorithm is how
the trade-off between Pa and Pd adjusts, as the SNR
changes. To this end, we present ROC curves in Fig-
ure 5 for h0/10−26 = 1.7, 1.3, and 1.1, Sh(f0)1/2 =

4× 10−24 Hz−1/2, Tdrift = 10 d, NT = 37, and the source
parameters in Table II, adhering to the detection strat-
egy in Section V C. Results from Versions III and I of the
HMM are plotted as solid and dashed curves respectively.
The Version III curve for h0 = 1.7× 10−26 overlaps with
the top border of the figure and is invisible. The Ver-
sion III curve for h0 = 1.3 × 10−26 gives Pd ≈ 0.1 for
Pa = 10−2, a popular combination in published LIGO
searches, e.g. Ref. [16]. In comparison, Version I of
the HMM achieves the same (Pa, Pd) combination for
h0 ≈ 2 × 10−26, i.e. its sensitivity is ≈ 1.5 times lower.
[18] Version III of the HMM is a fairly reliable detec-

tion algorithm even at low false alarm probabilities, with
Pd < 0.4 for Pa ≥ 10−4. The detection probability for
Pa = 10−2 drops below 1−Pd = 0.5 for h0 ≤ 1.1×10−26.

A practical task when applying the HMM is to esti-
mate in advance, how its performance scales with the
volume of data available, and how the data and parame-
ter space should be subdivided to maximize performance.
Appendix E 2 quantifies how the detection probability
scales with NT under two practical scenarions: (i) Tdrift

is fixed, so that the volume of data increases, as NT in-
creases; and (ii) Tobs is fixed, so that a fixed volume
of data is subdivided into more coherent segments, as
NT increases. In scenario (i), 1− Pd rises monotonically
with NT , as expected. In scenario (ii), 1−Pd peaks, when
Tobs/NT matches the characteristic time-scale over which
f∗(t) fluctuates intrinsically, also as expected. The block
score threshold Sth is calculated versus NT for both sce-
narios. Appendix E 3 checks for completeness, that the
ROC curves are insensitive to how the blocks are par-
titioned. It is found that Pd changes by ≤ 3 per cent
at fixed Pa (with 10−4 ≤ Pa ≤ 1) for block bandwidths
2kNT∆fdrift in the range 0.243 ≤ k ≤ 2.00, independent
of the absolute position of the leftmost bin in the block.
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top border), 1.3 (green curve), and 1.1 (purple curve) and the source parameters in Table II. The false alarm probability
Pa and detection probability 1 − Pd are plotted on the horizontal and vertical axes respectively. Solid and dashed curves
correspond to HMM Versions III and I respectively with Tdrift = 10 d and NT = 37. Control parameters: γ = 1.0× 10−16 s−1,
σ = 3.7× 10−10 s−3/2. Realizations: 104 per curve.

E. Accuracy

Previous numerical experiments with Versions I and
II of the HMM demonstrate that the tracking accu-
racy is bounded by the Nyquist criterion. [18, 19, 51]
When an injected signal is detected successfully, the root
mean square error integrated along the path satisfies
εf∗ . ∆fdrift, whereas one typically finds εf∗ � ∆fdrift

for false alarms. The representative examples in Fig-
ure 3 suggest that this remains true for Version III of
the HMM, with εf∗/∆fdrift = 1.0 (detection), 1.1 (de-
tection), and 2× 104 (nondetection) for h0/10−26 = 1.7,
1.3, and 1.1 respectively. Versions I and III are equally
accurate in Figure 3(a), for example, with εf∗ . ∆fdrift.
The tendency for Version III to dwell somewhat longer
in certain frequency bins follows from Aqjqi in Figure 1.

We quantify the tracking accuracy systematically
through Figure 6, which displays εf∗ for the optimal path
in the highest-ranked block against the block score S.
Versions III and I of the HMM are displayed in Figures
6(a) and 6(b) respectively. The plotted symbols, each
corresponding to one realization, separate into two clus-
ters: detections at the bottom right, with S & Sth(f)
and εf∗ . ∆fdrift, and nondetections at the top left, with
S . Sth(f) and εf∗ � ∆fdrift. A handful of points form
a bridge between the clusters, because a few realizations
produce false alarms with S > Sth(f) but εf∗ � ∆fdrift,
e.g. the point with S ≈ −2.4 and εf∗ ≈ 2.5× 10−5 Hz in
Figure 6(a). These accidents are expected; phase consis-
tency sometimes happens by chance in the noise along a
path with fortuitously high B values. Occasionally the
tracker achieves a good match with εf∗ . ∆fdrift even
for S . Sth(f), corresponding to a false dismissal in a
real search. About 5 per cent of the latter events oc-
cur accidentally, when the signal block happens to rank
highest (out of 20 blocks in Figure 6) due to features in
the noise (even with h0 = 0). Note that no threshold
is applied explicitly in constructing Figure 6, although

implicitly Sth(f) falls near the value of S below which
εf∗ � ∆fdrift typically occurs.

The significant uncertainty in phase tracking, exem-
plified by Figure 4, does not impair the accuracy of fre-
quency tracking reported in Figure 6, as discussed in Sec-
tions II C and V B. However, it does circumscribe the as-
trophysical questions that can be answered. Knowing the
phase evolution more accurately can help distinguish be-
tween astrophysical emission mechanisms, in situations
where the frequency evolution is not informative enough.
A time-domain version of the HMM offers one possible
way to achieve better phase tracking, at the cost of step-
ping outside the well-tested frequency-domain software
infrastructure in the LAL suite. Designing a time-domain
HMM is a goal of future work.

VI. NEUTRON STAR IN A BINARY

We now repeat the tests in Section V for a neutron
star in a binary system. The HMM structure and search
procedure remain unchanged, except that F1a(f0) and
F1b(f0) are replaced by J1a(f0) and J1b(f0) respectively
in the B-statistic via (28)–(34). Appendix E 4 verifies
that this replacement leads to minimal loss of signal
power; the Doppler sidebands collapse into a single fre-
quency bin without discernible leakage into neighboring
bins, just like for the J -statistic. In Section VI A we
present tracking results for a representative sample of
synthetic data. ROC curves are discussed in Section
VI B. In Section VI C we plot the B-statistic as a func-
tion of the orbital parameters a0 and φa, in order to
inform the gridding strategy for future searches, e.g. for
LMXBs. Versions II and III of the HMM are compared
at each stage.
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FIG. 6. Tracking accuracy of the HMM. Root mean square frequency error εf∗ (left axis in units of Hz, right axis in units of
∆fdrift = 5.8 × 10−7 Hz) integrated along the optimal path in the highest-ranked block versus the block score S. (a) Version
III (red, open circles) with NT = 37 and Tdrift = 10 d. (b) Version I (blue, filled circles) with NT = 37 and Tdrift = 10 d.
Realizations: 3 × 102 per panel. Each realization comprises 20 contiguous, 37-bin blocks, one of which contains an injected
signal with h0 = 1.3 × 10−26 and the source parameters in Table II. The block scores in (a) and (b) should not be compared
as they arise from different statistics (B and F respectively).

A. Representative example

The signal phase corresponding to a binary neutron
star is given by (16) with a0 6= 0. Figure 7 illustrates
the output of Versions II and III of the HMM for three
injected signals of the above form with the same h0 values
as in Section V A, viz. h0/10−26 = 1.7, 1.3, and 1.1.
The parameters of the binary orbit are quoted in Table
III, with a0 and φa set at the midpoints of their ranges.
The stochastic component of the injected phase, Φw(t),
evolves according to the algorithm in Section V A.

The results in Figure 7 resemble those in Figure 3.
Both HMM versions detect the strongest signal, but only
Version III detects the intermediate signal. Neither de-
tects the weakest signal. Version III is ≈ 1.4 times more
sensitive than Version II, and its sensitivity is approxi-
mately the same for isolated and binary sources. 9 Once
the HMM fails to detect a signal, the optimal Viterbi
path stands many bins away from the injected path and
normally falls outside the plotted region. The agree-
ment in Figures 7(b) and 7(c) looks better than it ac-
tually is, because we plot the minimum-εf∗ paths, which
turn out to be the second, second, and 408-th Viterbi
paths for the nondetections using Version II in Figure
7(b) and Versions II and III in Figure 7(c) respectively.
Such coincidental successes are useless in an astrophys-
ical search, where the true f∗(t) is unknown. Similarly,
it may seem that Version II outperforms Version III on
the h0 = 1.1 × 10−26 injection, because the minimum-
εf∗ paths are the second (Version II) versus the 408-th
(Version III). Again this is misleading: paths other than

9 This is consistent with previous work: Version II of the HMM
is sensitive down to the same h0 value, h0 ≈ 2 × 10−26, for a
binary source as Version I is for an isolated source.

the first are not ranked consistently by the Viterbi algo-
rithm, and besides Version III has 32 times more paths
than Version II (and a different bin numbering system)
because it tracks both f∗ and Φ∗.

The phase component of Q∗(O) is discussed briefly for
completeness in Appendix F.

B. ROC curves

In order to characterize the sensitivity of the HMM sys-
tematically, we compute ROC curves for the same three
signal amplitudes in Figure 7, viz. h0/10−26 = 1.7, 1.3,
and 1.1. The results are plotted in Figure 8, where solid
and dashed curves correspond to Versions III and II of
the HMM respectively. In the regime of practical interest,
viz. 5 × 10−3 ≤ Pa ≤ 2 × 10−1, Version III of the HMM
delivers a detection probability ≈ 0.05 higher than Ver-
sion II at the same Pa, a significant advantage when op-
erating near the detection limit. Replacing F1a(f0) and
F1b(f0) with J1a(f0) and J1b(f0) in the B-statistic leads
to similar tracking performance for isolated and binary
sources, although there is some modest loss of sensitivity
in the latter case. For example, a detection probabil-
ity of ≈ 0.75 is achieved in Figure 8 for a binary source
with h0 = 1.3 × 10−26, given Pa = 10−2, compared to
≈ 0.90 for an isolated source with the same h0 in Figure
5. [16] This is because the Jacobi-Anger decomposition
(21) and (22) accounts for the binary motion imperfectly
when combined with the B-statistic, due to some covari-
ance between the orbital and carrier phases in the orbital
sidebands. For h0 ≥ 1.7 × 10−26, the performance is al-
most identical, as in Appendix E 4.

Monte Carlo simulations confirm that the performance
of the HMM as a function of NT for Tdrift or Tobs fixed
is the same as in the case of isolated sources (see Figures
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FIG. 7. Sample tracking output from Versions II (purple curves) and III (green curves) of the HMM for three injected signals
(black curves) from a source in a binary with parameters drawn from Tables II and III with h0/10−26 = 1.7 [panel (a)], 1.3
[panel (b)], and 1.1 [panel (c)], plotted on the same axes as in Figure 3. The purple and green curves are the best-matching
frequency paths (with minimum εf∗); they are not necessarily the optimal path Q∗(O). The optimal path matches well [i.e.
within a few frequency bins of f∗(t) for all t] for Versions II and III in (a) and Version III in (b). The optimal path matches
poorly for Version II in (b) and Versions II and III in (c); indeed it lies outside the border of the plot. We plot instead the
paths with minimum εf∗ , viz. the second, second, and 408-th Viterbi paths respectively, which lie within a few frequency bins
of f∗(t) purely by chance but are of no practical use in an astrophysical search. Control parameters: γ = 1.0 × 10−16 s−1,

σ = 3.7× 10−10 s−3/2.
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Parameter Value Units Description
P 68023.7 s Orbital period
a0 [1.26,1.62] lt-s Projected orbital semimajor axis
φa [0, 2π] — Reference orbital phase
e 0.0 — Orbital eccentricity

TABLE III. Orbital parameters used to create the synthetic data for the binary sources analysed in Section VI.
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12 and 13 respectively in Appendix E). The results are
not plotted to avoid repetition.

C. Sensitivity to orbital parameters

Electromagnetic observations normally supply prior
constraints on LMXB orbital parameters. [12, 61–63]
For many objects, including Sco X−1, the electromag-
netic measurement of P through high-resolution optical
spectroscopy is accurate enough, that a search over P
is unnecessary. In contrast, searches over a0 and φa are
usually required. [64]

Figure 9 displays ln Pr[Q∗(O)|O] for Version III of the
HMM as a function of a0 and Tasc = φaP/(2π)+constant,
where Tasc is the time of ascending node. The log prob-
ability is evaluated at the true, injected value of f∗ and
maximized with respect to Φ∗, for a strong signal with
h0 = 8×10−26 tracked over NT = 37 steps. Starting from
the panel at the bottom right of the figure, we observe
that ln Pr[Q∗(O)|O] peaks strongly around the true, in-
jected orbital elements atrue

0 and T true
asc . The top left panel

zooms into the peak (note the magnified scale) and shows
that it is encircled by “ripples” reminiscent of a diffrac-
tion pattern. The ripples are visible more clearly in the
cross-sections at Tasc = T true

asc and a0 = atrue
0 , graphed in

the top right and bottom left panels respectively. Both
cross-sections are sinc-like, except that the nodes do not
touch zero; Pr[Q∗(O)|O] is positive definite. Qualita-
tively the features in Figure 9 match those observed in
Figure 4 in Ref. [19] for the J -statistc HMM (Version
II), although the scales are not comparable of course.

In practice, in a search with real data, the grid spac-
ings in a0 and Tasc are set according to a parameter space
metric and depend on the search frequency f0. [64] For
example, the LIGO O2 search for Sco X−1 with HMM
Version II employs 768 a0 bins of width 2.3 × 10−3 lt s
[with 1.45 ≤ a0/(1 lt s) ≤ 3.25] at f0 = 60 Hz, compared
to 8227 a0 bins of width 2.2 × 10−4 lt s at f0 = 650 Hz.
[17, 63] The resolution is chosen to yield a mismatch
of ≤ 10% in the squared SNR, as defined by equation
(5) in Ref. [64], the worst case being when the signal
straddles the boundary between two bins. Without be-
ing comparable directly, the above approach is consistent
with Figure 9: the squared SNR is of the same order as
ln Pr[Q∗(O)|O], and ln Pr[Q∗(O)|O] drops off by ≤ 10%
from its peak for |a0 − atrue

0 | . 10−3 lt s in the top right
panel of Figure 9 and for |Tasc − T true

asc | . 5 s in the bot-
tom left panel of Figure 9. Convenient formulas for the
number of a0 and Tasc templates in terms of the desired
mismatch are given in Section V of Ref. [64].
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FIG. 9. HMM performance as a function of binary orbital
elements. Log probability ln Pr[Q∗(O)|O] versus a0 and Tasc

for a strong (SNR � 1) binary-star signal with constant f?
observed during NT = 37 10-day segments. (Top left.) Con-
tours of ln Pr[Q∗(O)|O] on the Tasc-a0 plane, centered on the
injected values T true

asc and atrue
0 . Hot colors stand for the high-

est log probabilities. (Top right.) Cross-section through the
peak of ln Pr[Q∗(O)|O] versus a0 for Tasc = T true

asc . (Bottom
left.) Cross-section through the peak of ln Pr[Q∗(O)|O] ver-
sus Tasc for a0 = atrue

0 . (Bottom right.) Zoomed out version
of the top left panel. Injection parameters: h0 = 8 × 10−26,
f? = 111.1 Hz, atrue

0 = 1.44 lt s, and T true
asc = 897753994 s (ar-

bitrary orbital phase), characteristic of Scorpius X−1; see also
Tables II and III.

VII. SCO X-1 MDC: A REALISTIC EXAMPLE

A. Synthetic data

The Sco X−1 MDC is a project to compare system-
atically the performance of published continuous-wave
search pipelines on a level playing field under simulated
Advanced LIGO conditions. [20] The MDC predates
HMM Versions I and II. It evaluates the relative pro-
ficiency of five pipelines against criteria including sen-
sitivity, computational cost, and accuracy in parameter
estimation. The pipelines are based on the CrossCorr,
[65–67] TwoSpect, [68, 69] Radiometer, [70–72] Sideband,
[52, 60] and Polynomial [73] algorithms. Method papers
describing each algorithm are cited in the previous sen-
tence. Since the MDC was published, two of the pipelines
have completed searches using Advanced LIGO data from
O1 and O2, [3, 74] as have HMM Versions I and II. [16, 17]
Two other pipelines have completed searches using Ini-
tial LIGO data from Science Run 6 (S6). [53, 75] It
should be noted that O1 and O2 do not achieve Advanced
LIGO’s design sensitivity, approximated in the MDC as
Sh(f0)1/2 ≈ 4× 10−24 Hz−1/2 (Gaussian recolored).

The MDC enables an important check on the results
in previous sections under realistic yet controlled condi-
tions on a data set generated by an independent party.
Of course, the MDC is no longer closed, as it was in its
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original incarnation; the TwoSpect, Radiometer, Side-
band, and Polynomial pipelines competed blindly in Ref.
[20], before the injection parameters were revealed, and
the CrossCorr pipeline analysed the data in self-blinded
mode, after the injection parameters were revealed. In
this paper we preserve the etiquette of a self-blinded anal-
ysis but note in fairness that some of the authors partic-
ipated in previous analyses of the same data with HMM
Versions I and II. [18, 19] We also note that f∗(t) does
not wander for any of the injected signals, even though
we allow for wandering in the HMM transition proba-
bilities. Extensive testing in previous published work
demonstrates, that the HMM delivers equal sensitivity,
whether f∗(t) wanders or not, as long as Tdrift satisfies
(B1), [18, 19] in line with theoretical expectations. [14]
Strictly speaking, however, the analysis in this section
checks the sensitivity and accuracy of Version III of the
HMM; it does not test its robustness to spin wander-
ing. (Indeed nor did the original MDC study with the
five pipelines in Ref. [20].) A future incarnation of the
MDC including spin wandering, drawing on the analy-
sis in Ref. [7], is currently being prepared and should be
encouraged.

The parameters of the 50 injected signals in Stage I
(version 6) of the MDC are listed in Table III in Ref. [20].
They are designed to resemble Sco X−1, with 0.050 ≤
2f∗/(1 kHz) ≤ 1.5 and orbital elements similar to those
measured electromagnetically. [61–63] Since the original
MDC release, the data for three injections, with indexes
65, 66, and 75 in Ref. [20], are no longer accessible due to
human error. They are omitted from the analysis below,
which is restricted to 47 injections.

B. Search procedure

The analysis is conducted as follows in order to copy
approximately some of the steps in a search with real
LIGO data.

1. Starting from f0 = 50 Hz and defining sub-bands in
increments of 0.1 Hz, we identify the sub-band con-
taining the injected signal. The partition is similar
to the O2 Sco X−1 search with Version II of the
HMM, which implemented 0.6-Hz sub-bands, with-
out f∗ being known of course. [17] In effect this step
is self-blinded to a good approximation, because
there are (0.1 Hz)/∆fdrift = 1.7 × 105 frequency
bins in the sub-band, any single one of which can
contain the injected signal in principle.

2. An orbital grid is laid out in a0 and Tasc as for the
HMM O2 Sco X−1 search. The grid spacings in a0

and Tasc are given by 1.2× 10−4(f0/0.3 kHz)−1 lt s
and 0.89(f0/0.3 kHz)−1(a0/1.44 lt s)−1 s within the
electromagnetic priors 1.45 ≤ a0/(1 lt s) ≤ 3.25
and 1164543014 ≤ Tasc/(1 s) ≤ 1164543614 respec-
tively. [17, 63] The grid spacings are one quarter of
what is predicted by the parameter space metric via

Eqs (70) and (71) in Ref. [64], assuming a squared-
SNR mismatch of ≤ 10%. The safety factor 1/4 is
discussed further below. Strictly speaking the grid
spacing varies from one f0 bin to the next, but in
practice it is kept uniform within each 0.1-Hz sub-
band, substituting the sub-band midpoint into the
above formulas as a good approximation.

3. A grid is also laid out in orbital period P , with grid
spacing 1.0(f0/0.3 kHz)−1(a0/1.44 lt s)−1 s involv-
ing the same safety factor 1/4 from step 2 above,
based on Eqs (70) and (71) in Ref. [64] in the regime
P � Tdrift. This is a new step. Some of the MDC
injections are not exactly at P = 68023.7 s, the
central value returned by electromagnetic observa-
tions, [61–63] although they are close to it. Pre-
vious MDC analyses ignore the slight mismatch,
motivated by the parameter space metric which
implies that one P template is sufficient, because
the experimental uncertainty (±0.04 s) is less than
the metric-based resolution ≈ 0.2 s. [19, 64] They
search P = 68023.7 s only and are still successful;
for example, Version II of the HMM finds all 50
injections thus. [19] However Version III of the
HMM, which is more sensitive to weaker signals,
also depends more sensitively on P .

4. Version III of the HMM is executed on 4 × 4 × 4
adjacent triples (a0, Tasc, P ) centered on the injec-
tion. (The MDC analysis is executed on a subset
of the grid for computational economy; in an as-
trophysical search, we scan the whole grid.) Each
triple (a0, Tasc, P ) is accompanied by an f0 scan
divided into (0.1 Hz)/∆fdrift/NT = 4671 blocks as
described in Section V C. The highest log probabil-
ity among these 64 × 4671 (f0, a0, Tasc, P ) combi-
nations becomes the block score according to (35).

5. The root mean square frequency error εf∗ is cal-
culated along the optimal, wandering Viterbi track
as in Section V E. Absolute, signed errors εa0 and
εTasc are also calculated for a0 and Tasc respectively
as the injected minus recovered values for the opti-
mal Viterbi track. This approach is adopted delib-
erately to stay consistent with previous MDC anal-
yses, which verify the accuracy of the top candidate
in a block instead of quantifying the false alarm
probability. [18, 20] In a search with real data,
one would instead compare the block score with a
threshold set by Pa and follow up any candidates
through a veto procedure. [16, 17]

C. Signal detectability

The results of analysing the MDC data with Version
III of the HMM are presented in Table IV. Each line
of the table corresponds to one injection, indexed as in
Ref. [20] (first column). The injection parameters f∗, a0,
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and Tasc are quoted along with the respective errors εf∗ ,
εa0 , and εTasc

in the parameter values recovered by the
HMM. Two simulated interferometers (H1 and L1) are
employed, chiefly to preserve consistency with the previ-
ous MDC analysis involving Version II of the HMM. [19]
The data start at GPS time 1230338490 and are divided
into NT = 37 segments with Tdrift = 10 d.

Version III detects 47 out of 47 available injections.
The outcome is reassuring but not surprising. Version II
also detects every signal, and Version III is ≈ 1.5 times
more sensitive than Version II according to the results
in Sections V and VI. The signal amplitudes are quoted
in the second and third columns of Table IV in terms
of h0 and heff

0 = h02−1/2{[(1 + cos2 ι)/2]2 + cos2 ι}1/2 re-
spectively. The source inclination influences detectability
through the relative weighting of the plus and cross po-
larizations, and heff

0 serves as an amplitude proxy which
normalizes for this effect, as verified in Ref. [19] (see the
tests in Section V A and Figure 5 of the latter refer-
ence). The quietest detected signals from the h0 and heff

0

perspectives are injections 90 (h0 = 6.8× 10−26) and 64
(href

0 = 5.7× 10−26) respectively. Both lie well above the
Version III sensitivity limit h0 ≥ 1.3× 10−26 established
in Sections V and VI. The conclusions are not affected by
the absence of injections 65, 66, and 75, which are all rel-
atively strong [7.7 ≤ h0/(10−25) ≤ 9.3] and are detected
easily by Versions I and II with two interferometers.

D. Accuracy

Although Versions II and III both detect all the in-
jections, Version III recovers the true signal parameters
more accurately. The fifth column of Table IV indi-
cates that Version III recovers f∗(t) with a root mean
square error across NT = 37 segments of εf∗ ≤ 9.5 ×
10−7 Hz ≤ 2∆fdrift. (Recall that the optimal Viterbi
track is free to wander, whereas the injections are sta-
tionary.) Indeed 33 out of 47 injections are recovered
with εf∗ ≤ ∆fdrift. Essentially parameter estimation
is limited by the spectral resolution. In contrast, Ver-
sion II of the HMM recovers 27 out of 50 injections with
εf∗ ≈ P−1 � ∆fdrift, much worse than the spectral res-
olution, viz. 1 ≤ εf∗/(10−5 Hz) ≤ 2; see Table IV in
Ref. [19]. The step up from εf∗ ∼ ∆fdrift to εf∗ ∼ P−1

occurs, because Version II sometimes converges on the
orbital sidebands f∗ ± P−1, whereas Version III always
converges on the central peak f∗ for the MDC injections.
Interestingly, no strong correlation is found between εf∗
and heff

0 with Version III. Once the HMM detects a sig-
nal, εf∗ . ∆fdrift is grid-limited and essentially random.
A similar lack of correlation is observed for Version II.
[19]

Version III is also more accurate than Version II when
recovering the orbital elements. The seventh column of
Table IV indicates that Version III recovers a0 with an
absolute error of |εa0 | ≤ 1.6× 10−3 lt s. This amounts to
. 5 times the grid resolution, which decreases ∝ f−1

0

from 6.6 × 10−4 lt s at f0 = 54.5 Hz (injection 1) to
2.6× 10−5 lt s at f0 = 1.37 kHz (injection 98). Although
the maximum value of |εa0 | is comparable for Versions
II and III, Version III recovers 26 out of 47 injections
with |εa0 | ≤ 1× 10−4 lt s, whereas Version II only recov-
ers eight out of 50 injections with |εa0 | ≤ 1 × 10−4 lt s.
Interestingly Version III underestimates a0 41 out of 47
times. It is currently unclear why this happens, and more
tests are needed to explore the behavior and check if it
is a statistical fluctuation.

The ninth column of Table IV indicates that Version
III recovers Tasc with an absolute error of |εTasc | ≤ 11 s,
i.e. . 5 times the grid resolution, which decreases ∝
f−1

0 a−1
0 from ≈ 5 s at f0 = 54.5 Hz (injection 1) to

≈ 0.2 s at f0 = 1.37 kHz (injection 98). The Tasc esti-
mates compare favorably with the orbital phase errors
|εφa
| = 2π|εTasc

|/P ≤ 1.0 × 10−3 yielded by Version II.
The maximum φa error is comparable in Versions II and
III, but Version III recovers 21 out of 47 injections with
|εTasc

| ≤ 0.5 s, whereas Version II recovers only five out of
50 injections with |εTasc

| ≤ 0.5 s. The Tasc results parallel
the behavior observed in εa0 .

Accuracy of parameter estimation is a better diagnos-
tic for illustrating the superiority of Version III in the
MDC context than (say) the minimum number of seg-
ments required to detect a signal. Version II detects 43
out of 50 injections with NT = 1 and the remaining seven
with NT ≤ 13 (Tdrift = 10 d). [19] There is not much
room for Version III to outperform against this measure
but for the record it does: it detects every injection ex-
cept the two weakest (indexes 64 and 90) with NT = 1.

VIII. CONCLUSIONS

A HMM coupled with a step-wise matched filter pro-
vides an efficient, semi-coherent way to detect and track
the unknown signal frequency of a quasimonochromatic,
continuous gravitational wave source with spin wander-
ing driven by internal processes (isolated source) or ac-
cretion (binary source). In previous work HMMs have
searched for the LMXB Sco X−1 in LIGO O1 and
O2 data using frequency domain, maximum likelihood
matched filters: the Bessel-weighted F-statistic (Version
I), which does not track orbital phase, and the Jacobi-
Anger J -statistic (Version II), which does. Here we
generalize existing HMM pipelines to track rotational
phase as well as orbital phase (Version III). In the emis-
sion probability, the J -statistic is replaced by a phase-
sensitive version of the Bayesian B-statistic introduced
for loosely coherent searches. The data are input as
SFTs, leveraging the well-tested software infrastructure
in the LAL. In the transition probability, the intra-step
spin wandering is modeled according to a phase-wrapped
Ornstein-Uhlenbeck process. A recipe for choosing the
Ornstein-Uhlenbeck control parameters, γ and σ, is given
in Section III B. A revised detection strategy based on
block scores is described in Section V C.
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Index h0 (10−25) heff
0 (10−25) f∗ (Hz) εf? (Hz) a0 (s) εa0 (s) Tasc (s) εTasc (s)

1 4.160 2.706 54.498391348174 4.342× 10−7 1.37952 −9.518× 10−4 1245967666.02 -11.12
2 4.044 2.511 64.411966012332 4.229× 10−7 1.76461 4.803× 10−4 1245967592.98 -5.27
3 3.565 3.463 73.795580913582 6.836× 10−7 1.53460 −1.585× 10−3 1245967461.35 -5.66
5 1.250 1.154 93.909518008164 5.104× 10−7 1.52018 −8.158× 10−5 1245966927.93 2.22
11 3.089 1.399 154.916883586097 3.464× 10−7 1.39229 4.297× 10−5 1245967559.97 2.67
14 2.044 1.286 183.974917468730 3.553× 10−7 1.50970 −7.066× 10−4 1245967551.05 -3.63
15 11.764 4.169 191.580343388804 3.612× 10−7 1.51814 −4.484× 10−4 1245967298.45 0.10
17 3.473 1.253 213.232194220000 2.244× 10−7 1.31021 −7.427× 10−5 1245967522.54 1.74
19 6.031 2.437 233.432565653291 3.189× 10−7 1.23123 −1.060× 10−4 1245967331.14 1.27
20 9.710 3.434 244.534697522529 3.941× 10−7 1.28442 −4.418× 10−4 1245967110.97 -1.10
21 1.815 0.792 254.415047846878 5.561× 10−7 1.07219 7.354× 10−5 1245967346.40 -1.24
23 2.968 1.677 271.739907539784 3.922× 10−7 1.44287 −2.731× 10−4 1245967302.29 -2.22
26 1.419 1.172 300.590450155009 3.342× 10−7 1.25869 −1.721× 10−4 1245967177.47 -1.87
29 4.275 3.131 330.590357652653 4.893× 10−7 1.33070 −6.673× 10−5 1245967520.83 -0.84
32 10.038 4.391 362.990820993568 1.870× 10−7 1.61109 −2.790× 10−4 1245967585.56 0.24
35 16.402 9.183 394.685589797695 3.466× 10−7 1.31376 −1.059× 10−4 1245967198.05 1.75
36 3.864 1.539 402.721233789014 5.075× 10−7 1.25484 −6.642× 10−5 1245967251.35 0.79
41 1.562 0.746 454.865249156175 2.651× 10−7 1.46578 −1.896× 10−4 1245967225.75 0.36
44 2.237 1.996 483.519617972096 8.346× 10−8 1.55221 −1.446× 10−4 1245967397.86 0.13
47 4.883 1.992 514.568399601819 2.824× 10−7 1.14020 −1.637× 10−4 1245967686.81 0.33
48 1.813 0.745 520.177348201609 6.614× 10−7 1.33669 −3.329× 10−5 1245967675.30 0.15
50 1.093 1.027 542.952477491471 5.178× 10−7 1.11915 −2.302× 10−4 1245967927.48 -1.47
51 9.146 3.372 552.120598886904 6.501× 10−7 1.32783 6.253× 10−5 1245967589.54 -0.94
52 2.786 1.550 560.755048768919 4.209× 10−7 1.79214 −6.193× 10−5 1245967377.20 0.61
54 1.518 1.256 593.663030872532 5.792× 10−7 1.61276 −3.115× 10−5 1245967624.53 0.30
57 1.577 0.788 622.605388362863 5.260× 10−7 1.51329 −5.596× 10−5 1245967203.21 -1.00
58 3.416 1.287 641.491604906276 6.158× 10−7 1.58443 −1.418× 10−4 1245967257.74 0.16
59 8.835 4.981 650.344230698489 7.830× 10−7 1.67711 −1.422× 10−4 1245967829.90 -0.69
60 2.961 2.467 664.611446618250 7.197× 10−7 1.58262 5.343× 10−5 1245967612.31 -0.41
61 6.064 2.158 674.711567789201 4.978× 10−7 1.49937 −1.037× 10−4 1245967003.32 -0.01
62 10.737 3.853 683.436210983289 8.223× 10−7 1.26951 −4.060× 10−5 1245967453.97 -0.00
63 1.119 0.745 690.534687981171 6.762× 10−7 1.51824 −3.958× 10−5 1245967419.39 -0.18
64 1.600 0.570 700.866836291234 5.143× 10−7 1.39993 −6.909× 10−5 1245967596.12 -0.96
67 4.580 1.623 744.255707971300 3.620× 10−7 1.67774 −1.551× 10−4 1245967084.30 0.27
68 3.696 1.844 754.435956775916 4.000× 10−7 1.41389 −8.960× 10−5 1245967538.70 0.38
69 2.889 1.053 761.538797037770 3.693× 10−7 1.62613 −1.239× 10−4 1245966821.55 0.03
71 2.923 1.232 804.231717847467 3.238× 10−7 1.65203 8.338× 10−6 1245967156.55 0.30
72 1.248 0.792 812.280741438401 4.597× 10−7 1.19649 −1.325× 10−4 1245967159.08 0.87
73 2.444 0.936 824.988633484129 9.533× 10−7 1.41715 −6.960× 10−5 1245967876.83 0.82
76 3.260 1.725 882.747979842807 4.813× 10−7 1.46249 −8.305× 10−5 1245966753.24 -0.17
79 4.681 1.656 931.006000308958 2.697× 10−7 1.49171 −7.243× 10−5 1245967290.06 0.14
83 5.925 2.186 1081.398956458276 7.176× 10−7 1.19854 −3.862× 10−5 1245967313.93 -1.02
84 11.609 7.184 1100.906018344283 7.529× 10−7 1.58972 −6.257× 10−6 1245967204.15 -0.35
85 4.553 1.633 1111.576831848269 8.018× 10−7 1.34479 −9.497× 10−5 1245967049.35 -0.90
90 0.684 0.618 1193.191890630547 4.053× 10−7 1.57513 −7.212× 10−5 1245966914.27 -0.21
95 4.293 3.059 1324.567365220908 5.198× 10−7 1.59169 −1.443× 10−5 1245967424.76 0.53
98 5.404 1.948 1372.042154535880 7.448× 10−7 1.31510 −7.340× 10−5 1245966869.92 -0.34

TABLE IV. Results of tracking the 47 available injections in the Sco X−1 MDC, sorted by index from Ref. [20], using Version
III of the HMM to track phase and frequency.

The sensitivity of Version III of the HMM is quantified.
The ROC curves in Sections V D and VI B give Pd ≥ 0.9
(isolated source) and Pd ≥ 0.75 (binary source), when
the characteristic wave strain satisfies h0 ≥ 1.3× 10−26,
with Pa = 10−2. Hence Version III is ≈ 1.5 times more
sensitive than Version II. The requirement of phase con-
tinuity from one HMM step to the next lowers Pa at fixed
h0 and increases 1−Pd at fixed Pa. Performance is opti-

mized, when Tdrift matches the source’s spin wandering
time-scale. The results depend weakly on γ, σ, the block
width when calculating the block score, and the location
of the block boundary.

The tracking accuracy is quantified in Sections V E and
VI C. It is found that the root mean square frequency er-
ror is bounded spectrally and is therefore near-optimal,
with εf∗ . ∆fdrift when an injected signal is detected
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successfully and εf∗ � ∆fdrift otherwise. The absolute
errors in the orbital elements are limited to . 5 times
the grid resolution in a0 and φa (or equivalently Tasc)
set by the parameter space metric. [64] The HMM log
probability peaks unimodally at the correct value in the
a0-Tasc plane, with a sinc-like cross-section (see Figure 9).
The accuracy is confirmed by the performance of Version
III of the HMM in the Sco X−1 MDC (in self-blinded
mode). It finds 47 out of 47 injections currently avail-
able (out of 50 originally) with NT = 37, Tdrift = 10 d,
and two simulated interferometers, achieving accuracies
of |εf∗ | ≤ 9.5 × 10−7 Hz, |εa0 | ≤ 1.6 × 10−3 lt s, and
|εTasc

| ≤ 11 s. Version III is less prone to converging
on the sidebands f∗ ± P−1 and is systematically more
accurate, e.g. it recovers 26 out of 47 injections with
|εa0 | ≤ 1×10−4 lt s, whereas Version II only achieves such
accuracy eight times out of 50. The gridding strategy
adopted here, which is to implement conservatively the
parameter space metric in Ref. [64] as described in Sec-
tion VII B, should be regarded as a first pass. Optimizing
the gridding strategy is postponed to future work, in the
context of a search with real data (which introduces other
relevant constraints). Stage II of the MDC will test the
robustness of the HMM and other algorithms like Cross-
Corr [67] and TwoSpect [69] to spin wandering. Previous
studies demonstrate that the HMM handles signals with
and without spin wandering with equal dexterity, as long
as Tdrift satisfies condition (B1). [18, 19]

The HMM in this paper is solved by the Viterbi algo-
rithm, which exploits dynamic programming. The addi-
tional phase tracking step inevitably slows down Version
III of the HMM compared to Version II, with the num-
ber of operations scaling approximately ∝ NQ lnNQ (see
Section II A), and NQ increasing by a factor ∼ 10. Over-
all, however, the implementation remains fast, process-
ing ≈ 0.3 Hz per CPU-hr for one choice of (a0, Tasc, P ),
approximately 10 times slower than Version II. Viterbi-
based continuous wave searches have proved amenable to
being implemented on graphical processing units, which
can shorten the run time ≈ 40-fold. [76] The compu-
tational savings from an optimized implementation on
graphical processing units can be re-invested to extend
the astrophysical ambition of an analysis, e.g. by target-
ing LMXBs other than Sco X−1 [12]. Savings can also
be re-invested to expand the scope of Viterbi-based, non-
parametric, all-sky searches and searches for wandering
instrumental lines. [27]

What conclusions can we expect to draw about the
astrophysical causes of spin wandering, when the HMM
ultimately detects a real signal? At present it is hard
to say. Neutron star models involve a great deal of un-
certain physics, which will blur the interpretation of any
HMM detection, whether it involves Versions I, II, or
III, unless the detection itself reveals some unexpected
and informative signature. Electromagnetic observations
may improve the situation. Consider, for example, an
LMXB where one observes simultaneously the X-ray flux
FX(t) and the wandering spin f∗(t). One might hope to

cross-correlate the fluctuations in FX and ḟ∗ and thereby
test the accretion physics. [7] However, the traditional

assumption FX ∝ Ṁ ∝ ḟ∗, where Ṁ denotes the mass
accretion rate, does not always hold for various reasons,
e.g. nonconservative mass transfer, hydromagnetic con-
tributions to ḟ∗, and unsteady dynamics due to mag-
netospheric instabilities. [37, 77] Some of the relevant
issues are canvassed in Ref. [78]. As a second illustra-
tive example, suppose the HMM detects a steady tone
with minimal spin wandering from a radio pulsar, that
displays strong timing noise at radio wavelengths. Such
an observation would arguably suggest, that the gravita-
tional wave signal is emitted by the weakly coupled super-
fluid interior of the star as opposed to the crust (which is
locked magnetically to the radio pulses). Furthermore,
if f∗ from the HMM approximately equals the time-
averaged radio pulse frequency, it arguably represents
partial evidence for pinning of the superfluid. [32, 79]
These and other possibilities will clarify themselves, once
detections are made routinely.
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Appendix A: Viterbi algorithm

The Viterbi algorithm prunes the tree of possible hid-
den state sequences Q by appealing to Bellman’s Prin-
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ciple of Optimality: if a subpath {q∗(ti), · · · , q∗(tj)} is
optimal, then all of its subpaths are optimal as well.
[80] Dynamic programming is exploited to implement the
Principle of Optimality in an efficient, recursive fashion.
[14, 15, 18] Pseudocode describing the implementation is
presented below in abridged form for ease of reference.

At time tk (1 ≤ k ≤ NT ), let the vector δ(tk) store the
NQ maximum probabilities

δqi(tk) = max
qj

Pr[q(tk) = qi|q(tk−1) = qj ;O
(k)] , (A1)

with 1 ≤ i ≤ NQ, and let the vector Φ(tk) store the hid-
den states at tk−1 leading to the corresponding maximum
probabilities in δ(tk), viz.

Φqi(tk) = arg max
qj

Pr[q(tk) = qi|q(tk−1) = qj ;O
(k)] ,

(A2)
with O(k) = {o(t0), . . . , o(tk)} and

Pr[q(tk) = qi|q(tk−1) = qj ;O
(k)] = Lo(tk)qiAqiqjδqj (tk−1) .

(A3)
The components of δ(tk) and Φ(tk) are filled by running
forward through the NT observations, then the optimal
path Q∗(O) is reconstructed by backtracking.

1. Initialization:

δqi(t0) = Lo(t0)qiΠqi , (A4)

for 1 ≤ i ≤ NQ.
2. Recursion:

δqi(tk) = Lo(tk)qi max
1≤j≤NQ

[Aqiqjδqj (tk−1)], (A5)

Φqi(tk) = arg max
1≤j≤NQ

[Aqiqjδqj (tk−1)], (A6)

for 1 ≤ i ≤ NQ and 1 ≤ k ≤ NT .
3. Termination:

max Pr(Q|O) = max
qj

δqj (tNT
) (A7)

q∗(tNT
) = arg max

qj

δqj (tNT
) (A8)

for 1 ≤ j ≤ NQ.
4. Optimal path backtracking:

q∗(tk) = Φq∗(tk+1)(tk+1) (A9)

for 0 ≤ k ≤ NT − 1.

Appendix B: Drift time-scale

A practical recipe for choosing the drift time-scale
Tdrift = tn+1−tn (see Section II A) when tracking f∗(t) is
described in Refs [18] and [19]. In this appendix we gen-
eralize the recipe for the purpose of tracking f∗(t) and
Φ∗(t) in Version III of the HMM.

The choice of Tdrift is governed by the packaging of in-
put data when computing the emission probability Lojqi ,

which comes with implicit assumptions about the sig-
nal properties in the interval tn−1 ≤ t ≤ tn. Im-
portantly we require Lojqi to peak as sharply as pos-
sible in the neighborhood of the truly occupied hidden
state q(tn), with Lojqi ≈ δ[qi − q(tn)] ideally, in order
to maximize Pr[Q∗(O)|O]. Typically Lojqi is computed
from frequency-domain data covering the whole interval
tn−1 ≤ t ≤ tn, and q(t) does not contain frequency-

drift variables like ḟ∗(t). Therefore the matched filter
that computes Lojqi (e.g. the F- or B-statistic) assumes
that f∗(t) stays within a single, discrete bin during every
HMM time-step. For this assumption to hold, one must
choose Tdrift to satisfy∣∣∣∣∣

∫ t+Tdrift

t

dt′ ḟ∗(t
′)

∣∣∣∣∣ < ∆fdrift (B1)

for all t, where ∆fdrift is the separation between adja-
cent frequency bins (which are assumed to be uniformly
spaced in this paper, i.e. ∆fdrift is independent of qi).
A different method of computing Lojqi , e.g. from time-
domain data, may impose a different constraint on Tdrift.

It is tempting to extend the above argument to Φ∗(t)
and insist that it should stay within a single bin too
(of width ∆Φdrift = π/16 in this paper), 10 but this is
unnecessary. Frequency-domain matched filters like the
F- and B-statistic do not assume that Φ∗(t) is constant
for tn−1 ≤ t ≤ tn; they are well-behaved functions of
Φ∗(tn−1) at the start of the HMM time-step. Confining
Φ∗(t) to a single phase bin would shorten Tdrift by a fac-
tor ≈ π/∆Φdrift, widen every frequency bin by the same
factor (Nyquist theorem), and reduce proportionally the
signal-to-noise ratio per frequency bin. [13, 22]

Naturally one does not know ḟ∗(t
′) in (B1) in advance,

so there is some trial and error involved in choosing Tdrift

through (B1). In this paper we focus on gravitational
wave searches for isolated and accreting neutron stars,
whose rotatational irregularities have been studied ex-
tensively in radio [5, 31] and X-ray [6, 35] timing exper-
iments, which yield autocorrelation time-scales of days
to months. These electromagnetic measurements there-
fore offer a starting point to estimate Tdrift for other ob-
jects in the same class, where ḟ∗(t

′) is not measured.
[7] For reasons of convenience described in Section II,
we elect to work with Fourier-transformed data in this
paper, [18, 19] which come packaged in calibrated, con-
ditioned (anti-alias filtering, data drop-out), short-time
Fourier transforms (SFTs) of duration TSFT = 30 min.
[45] Hence one has TSFT ≤ Tdrift as a practical matter, a
constraint which would be absent in a time-domain anal-
ysis. Given the wide range of measured auto-correlation

10 The analyst enjoys considerable freedom in setting ∆Φdrift, as
long as the peaks in the transition probability in Figure 1(b)
are resolved. In contrast, ∆fdrift = (2Tdrift)

−1 is determined by
Tdrift. See Section II C for details.
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time-scales, one can envisage a hierarchical search strat-
egy, in which a search is repeated for several Tdrift values
in the range TSFT ≤ Tdrift ≤ Tobs, where Tobs ∼ 1 yr is
the total observation time.

Appendix C: Phase-wrapped Ornstein-Uhlenbeck
process

In this appendix we solve the Fokker-Planck equa-
tion corresponding to the stochastic differential equa-
tions (6) and (7) to obtain the probability density func-
tion (PDF) p(t, f∗,Φ∗) and hence the HMM transition
probabilities over the interval tn ≤ t ≤ tn+1 given the
initial state q(tn) = [f∗(tn),Φ∗(tn)] or the final state
q(tn+1) = [f∗(tn+1),Φ∗(tn+1)]. The discussion follows
Appendix A in Ref. [51]. Equations (6) and (7) are equiv-
alent to traditional, spatial Brownian motion, with f∗
and Φ∗ playing the roles of velocity and displacement
respectively, except that Φ∗ is 2π-periodic.

If the hidden state q(tn) occupied at the start of the
HMM step tn ≤ t ≤ tn+1 is known with certainty, the
PDF of the final state at t = tn+1 is given by the solution
pF(t, f∗,Φ∗) of the forward Fokker-Planck equation [50]

∂pF

∂t
= γpF + γf∗

∂pF

∂f∗
− f∗

∂pF

∂Φ∗
+
σ2

2

∂2pF

∂f2
∗
, (C1)

evaluated at t = tn+1 given pF(tn, f∗,Φ∗) = δ[f∗ −
f∗(tn)]δ[Φ∗ −Φ∗(tn)]. If the final state q(tn+1) is known
with certainty, the PDF of the initial state is given by
the solution pB(t, f∗,Φ∗) of the backward Fokker-Planck
equation,

∂pB

∂t
= γf∗

∂pB

∂f∗
− f∗

∂pB

∂Φ∗
− σ2

2

∂2pB

∂f2
∗
, (C2)

evaluated at t = tn given pF(tn+1, f∗,Φ∗) = δ[f∗ −
f∗(tn+1)]δ[Φ∗ − Φ∗(tn+1)]. Equation (C2) is the adjoint
of (C1). Upon multiplying (C1) by the integrating factor
exp(−γt), we find

pB(t, f∗,Φ∗) ∝ exp(−γt)pF(t, f∗,Φ∗;σ
2 7→ −σ2) , (C3)

where σ2 7→ −σ2 denotes replacing σ2 by −σ2 in pF.
Upon Fourier analysing pF, as in Ref. [51], we find that

the characteristic function

p̃F(t, κ,m) =

∫ 2π

0

dΦ∗

∫ ∞
−∞

df∗ exp(−imΦ∗ − iκf∗)

×pF(t, f∗,Φ∗) (C4)

satisfies

∂p̃F

∂t
= (−γκ+m)

∂p̃F

∂κ
− σ2κ2p̃F

2
, (C5)

subject to the initial condition

p̃F(tn, κ,m) = exp[−imΦ∗(tn)− iκf∗(tn)] . (C6)

Equations (C5) and (C6) are solved by the method of
characteristics to give

p̃F(tn+1, κ,m) = exp[−imΦ∗(tn)− iρf∗(tn)]

× exp

[
σ2

4γ

(
ρ− m

γ

)(
ρ+

3m

γ

)]
× exp

{
−σ

2

2

[
m2τ

γ2
+

2m

γ2

(
κ− m

γ

)]}
× exp

[
−σ

2

4γ

(
ρ− m

γ

)2

exp(2γτ)

]
,(C7)

with τ = tn+1 − tn and

ρ =
m

γ
+

(
κ− m

γ

)
exp(−γτ) (C8)

and hence

p̃F(tn+1, f∗,Φ∗) = (2π)−2
∞∑

m=−∞
exp(imΦ∗)

×
∫ ∞
−∞

dκ exp(iκf∗)p̃
F(t, κ,m) .(C9)

By completing the square in the argument of the expo-
nential in (C7), one finds that (C9) can be written as a
wrapped Gaussian. [51]

The solution (C3) to the backward Fokker-Planck
equation (C2) provides an efficient route to calculating
the maximum probabilities at each HMM step, which are
stored in the vector δ(tk) in the Viterbi implementation
described in Appendix A. Equation (C3), just like (C9),
can be expressed as a wrapped Gaussian, viz.

pB(tn,q) = (2π)−1(detΣ)−1/2

×
∞∑

m=−∞
exp[−(q−Qm)Σ−1(q−Qm)T] ,(C10)

with q = (f∗,Φ∗) and matrix elements

(Qm)1 = f∗(tn+1) exp(−γτ) , (C11)

(Qm)2 = Φ∗(tn+1) +
f∗(tn+1)

γ
[1− exp(−γτ)]

−2πm , (C12)

Σ11 =
σ2

2γ
[1− exp(−2γτ)] , (C13)

Σ12 = Σ21 =
σ2

2γ2
[1− exp(−γτ)]2 , (C14)

Σ22 =
σ2

2γ3
{1 + 2γτ − [2− exp(−γτ)]2} .(C15)

We can then read off the moments 〈f∗〉, 〈Φ∗〉, 〈f2
∗ 〉−〈f∗〉2,

〈f∗Φ∗〉 − 〈f∗〉〈Φ∗〉, and 〈Φ2
∗〉 − 〈Φ∗〉2 of pB by inspection

from (C11)–(C15) respectively. [51]
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Appendix D: Maximum likelihood alternatives to
the B-statistic

In this appendix, we review briefly the maximum like-
lihood formulas for Lo(tn)qi used in Versions I and II of
the HMM, which do not depend on rotational phase.
[18, 19] We then present for completeness a natural,
phase-dependent generalization of these maximum like-
lihood formulas. Empirical testing indicates, that the
generalized formula yields no discernible improvement in
performance over Versions I and II of the HMM, unlike
the B-statistic presented in Section IV C.

In Version I of the HMM, [18] for an isolated source
(a0 = 0) with zero phase (cf. spin) wandering (Φw = 0),
the log likelihood is just the F-statistic, G(f0) = F(f0),
viz.

F(f0) =
4F(f0)H−1F(f0)†

TobsSh(f0)
, (D1)

where a dagger denotes the Hermitian transpose, with

F(f0) = [F1a(f0), F1b(f0)] , (D2)

H =

(
A C
C B

)
, (D3)

A = (a‖a), B = (b‖b), and C = (a‖b). In the general
case A2i 6= 0, equations (D1)–(D3) contain additional,
analogous terms involving F2a and F2b, obtained from
F1a and F1b by replacing f0 with 2f0.

For a binary source (a0 6= 0) with zero phase wandering
(Φw = 0), the log likelihood in Version I of the HMM is
approximated by the Bessel-weighted F-statistic,

G(f0) =

M ′∑
s=−M ′

[Js(2πf0a0)]2F(f0 − s/P ) , (D4)

with M ′ = ceil(2πf0a0). Equation (D4) adds together
the power in orbital sidebands incoherently; it takes no
account of the relative Fourier phases of the sidebands.
This omission is corrected in Version II of the HMM, [19]
where F1a and F1b are replaced by J1a and J1b, defined
by (21) and (22) respectively, in order to include orbital
phase information. The log likelihood is calculated simi-
larly to the binary-modulated F-statistic and yields the
J -statistic, G(f0) = J (f0), with

J (f0) =
4J(f0)H−1J(f0)†

TobsSh(f0)
(D5)

and

J(f0) = [J1a(f0), J1b(f0)] . (D6)

Equation (D5) concentrates all the signal power in the
orbital sidebands into one f0 bin, unlike (D4), as verified
in Figure 1 in Ref. [19]. It is therefore as sensitive for

h0 (10−26) Coefficient
80 0.978
8.0 0.464
1.7 0.156
1.3 0.059

TABLE V. Estimated versus injected phase: Pearson cor-
relation coefficient as a function of signal strength for the
maximum likelihood estimator XLALEstimatePulsarAmpli-
tudeParams with 103 realizations.

binary sources, as (D1) is for isolated sources, i.e. (D1)
and (D5) can detect the same h0 value. [19]

When the HMM tracks Φ∗(t) as well as f∗(t), it is
tempting to generalize G(f0) to G(f0,Φ0), where Φ0

is the trial phase, by analogy with (D5). Firstly, one
may try to incorporate the phase into the amplitudes
A1i, as in Ref. [59], e.g. A11 = A+ cos 2ψ cos Φw −
A× sin 2ψ sin Φw. Unfortunately, maximizing the likeli-

hood Λ′ with respect to A1i returns estimators Â1i, which
are rotated versions of the phase-independent estimators,
e.g. Â11 becomes Â11 cos Φw + Â13 sin Φw. The result-
ing F-statistic is independent of phase, as shown in Ap-
pendix A in Ref. [19] in the context of orbital phase.
Instead, one may try to factorize the F-statistic into
a quadratic form constructed from complex amplitudes,
multiply the complex amplitudes by the cosine of the
phase, and reassemble the quadratic form to obtain a
real likelihood. 11 In this spirit, we define

G(f0,Φ0) =
4R(f0,Φ0)H−1R(f0,Φ0)†

TobsSh(f0)
, (D7)

with

R(f0,Φ0) = [R1a(f0,Φ0), R1b(f0,Φ0)] . (D8)

Numerical experiments reveal that (D7) produces no im-
provement in sensitivity compared to Version I of the
HMM. Essentially this is because noise in the phase esti-
mate defeats the HMM’s ability to reject paths with in-
consistent phase. This can be seen by plotting the output
of the function XLALEstimatePulsarAmplitudeParams
in the LAL suite, which returns maximum likelihood es-
timates of the source parameters (including phase) given
F1a and F1b, against the injected phase. 12 Figure 10
demonstrates that the estimated and injected phases are
strongly correlated for h0 = 8.0 × 10−25. However, the
correlation weakens appreciably for h0 = 8.0×10−26 and

11 In non-gravitational-wave applications where the signal is an un-
modulated sinusoid with a single polarization mode, and the an-
tenna beam-pattern does not vary diurnally, this procedure yields
the exact, maximum likelihood estimator. [51]

12 At the time of writing, XLALEstimatePulsarAmplitudeParams
incorrectly adds π to the phase. The error is corrected here.
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FIG. 10. Maximum likelihood phase tracking. Estimated (vertical axis) versus injected (horizontal axis) phase for h0 =
8.0 × 10−25 (purple points; 63 trials) and h0 = 8.0 × 10−26 (green points; 63 trials), using the maximum likelhood estimate
returned by the LAL function XLALEstimatePulsarAmplitudeParams.

even more so near the detection limit for Version III of
the HMM (h0 = 1.3 × 10−26), where the points scatter
randomly (not plotted). The Pearson correlation coeffi-
cient, computed versus h0 in Table V, exhibits the same
behavior.

Note that the HMM tracks the phase difference be-
tween HMM steps; the absolute phase enters through
the prior and is not tracked explicitly. This differs sub-
tly from a fully coherent F-statistic search (without spin
wandering), where F is evaluated as a function of Φw(t0)

as well as f
(k)
0 , α, and δ. [13]

Appendix E: Validation tests

In this appendix, we present for completeness and re-
producibility the results of several validation tests ap-
plied to Version III of the HMM. The tests relate to the
PDF of the B-statistic after a single HMM step, the PDF
of the block score after multiple HMM steps, the detec-
tion probability as a function of NT for Tdrift or Tobs

fixed, the effect of the block definition on the detector’s
performance, and the conservation of signal power by the
detection statistic. The tests will help to guide future re-
finements of the HMM.

1. PDF of the detection statistic

Figure 11(a) displays the PDF of lnB computed for
a single HMM step in pure noise (h0 = 0; purple his-
togram) and for a relatively strong injection (h0 = 5 ×
10−26; green histogram). The injection shifts the mode of
the PDF to the right, as expected. Figure 11(b) investi-
gates in more detail the functional form of the noise-only
PDF. All the histograms and curves in Figure 11(b) are
normalized, and the results are independent of f0 and

Φ0. 13 It is clear by inspection that the noise-only B-
statistic does not obey a central chi-squared distribution
with four degrees of freedom (unlike the F-statistic) nor
with two to six degrees of freedom. The two statistics
correspond to slightly different choices of amplitude pri-
ors within a Bayesian framework but are otherwise the
same, with | lnB−F| . 0.05F for a wide range of signal
and noise parameters. [21, 23–25] However, by marginal-
izing over ψ, cos ι, and h0 in (28), one implicitly enforces
constraints between A+ and A× and hence the four am-
plitudes A1i in (15), so that the statistic is no longer the
sum of four independent squares.

Detection with the HMM is performed using the block
score S defined in (35) in Section V C. Figure 11(c)
displays histograms of S after NT = 37 steps of the
HMM for pure noise (h0 = 0; purple histogram) and
an injection below the single-step detection threshold
(h0 = 1.3 × 10−26; green histogram). The peaks of the
noise-only and noise-plus-injection histograms are clearly
separated, demonstrating the discriminating power of the
HMM. The PDFs of S are narrower than for lnB and
have thinner right-hand tails, because the nonlinear max-
imization step in the Viterbi algorithm produces an ex-
treme value distribution similar to the Gumbel law. [19]
The maximum is taken over all Viterbi paths terminating
in a given frequency-phase bin, so paths terminating in
neighboring bins are correlated because they share com-
mon subpaths. There is no analytic expression for the
PDF of ln Pr[Q∗(O)|O] in the literature to the best of
our knowledge. [19] We therefore rely on the empirical
PDF in Figure 11(c) to set Sth(f) given Pa.

13 There is a weak dependence on the width of the running me-
dian window applied to the power spectral density, as for the
F-statistic. [16, 53]
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FIG. 11. Normalized PDF of the detection statistic for pure noise (purple histograms) and a detected injection with the source
parameters in Table II (green histograms). (a) Logarithm of the B-statistic, lnB(f∗,Φ∗), computed for a single HMM step in the
bin (f∗,Φ∗) containing the injection (where present), with h0 = 0 (purple histogram) and h0 = 5×10−26 (green histogram). (b)
Noise-only histogram from (a) rebinned over the domain [−3, 3] and overlaid with normalized, central, chi-squared distributions
with 2, 3, 4, and 6 degrees of freedom (solid curves; color scheme in legend), in order to test for congruence with the functional
form of the F-statistic PDF. (c) Block score Si defined by (35) for the block containing the injection (where present), with
h0 = 0 (purple histogram), h0 = 1.3× 10−26 (green histogram), and NT = 37. Realizations: 2.5× 103 per histogram.

2. Detection probability versus NT

Another important question is how the performance of
the HMM scales with NT . We formulate the question
with respect to two practical scenarios: (i) Tdrift is fixed,
and Tobs ∝ NT varies; and (ii) Tobs is fixed, and Tdrift ∝
N−1
T varies. Figure 12 presents data for scenario (i). As

expected, the sensitivity of the HMM increases, as NT
and hence Tobs increase. [51] We observe in Figure 12(b)
that the detection probability rises with NT at fixed Pa =
10−2. The same trend occurs in Figure 12(a) for 10−3 ≤
Pa ≤ 1. Figure 12(b) corresponds to a vertical cut at
constant Pa = 10−2 through the family of ROC curves
in Figure 12(a). One subtlety is that Sth depends on
NT through two countervailing factors. The number of
frequency bins per block is proportional to NT , so Sth

should increase with NT , ceteris paribus, to keep Pa per
block fixed; but the product Pr(Q|O) in (1) decreases
with NT , as more factors Lo(tn)q(tn)Aq(tn)q(tn−1) ≤ 1 are
appended, implying that Sth should decrease with NT
for fixed Pa. The latter effect outweighs the former, as

is evident in Figure 12(c); the threshold decreases from
Sth ≈ 4.0 for NT = 5 to Sth ≈ −5.5 for NT = 35.
In a genuine, astrophysical search one would typically
set Pa = 10−2 for the whole search band (B ∼ 1 kHz),
or for sub-bands with ∆fsub ∼ 1 Hz (to facilitate data
handling), and hence have Pa � 10−2 per block, with
NT∆fdrift � ∆fsub ≤ B. The scalings with NT are
the same in this regime, but the ROC curves are time-
consuming to generate by Monte Carlo simulations. 14

Figure 13 presents data for scenario (ii) in the previous
paragraph, i.e. fixed Tobs. The trend with NT depends
on whether Tdrift ∝ N−1

T is less or greater than the char-
acteristic time-scale over which the signal frequency wan-
ders. [51] If Tdrift is less than the wandering time-scale,
the detection probability decreases, as Tdrift decreases;

14 Occasionally situations may arise, where it is desirable to hold
the number of bins per block fixed while varying NT , e.g. when
comparing results from two data sets of different durations. We
defer the analysis of such situations to future work.



28

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1

1
 -

 P
d

Pa

NT = 5
NT = 15
NT = 30

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35

1 
- P

d

NT

h0 = 1.7 × 10-26

h0 = 1.3 × 10-26

(b)

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30  35

T
h
re

sh
o
ld

NT

(c)

FIG. 12. Detector performance as a function of NT for Tdrift = 10 d fixed, Tobs = NTTdrift ∝ NT variable, and the source
parameters in Table II. (a) ROC curves for h0 = 1.7 × 10−26 and NT = 5 (purple curve), 15 (green curve), 30 (blue curve).
(b) Detection probability 1− Pd versus NT for h0 = 1.3× 10−26 (green curve), 1.7× 10−26 (purple curve), and Pa = 10−2 per
block. (c) Block score threshold Sth [see (35)] versus NT for false alarm probability Pa = 10−2 per block; the number of bins
per block, Pr(Q|O), and hence Sth depend on NT . All curves are calculated for Version III of the HMM. Control parameters:

γ = 1.0× 10−16 s−1, σ = 3.7× 10−10 s−3/2. Realizations: 103 per curve.

it is disadvantageous to shorten the coherent integration
in a HMM segment, when the frequency wanders by less
than one bin during a segment. We observe this behavior
in Figure 13(b) to the left of the peak. If Tdrift is greater
than the wandering time-scale, the detection probabil-
ity increases, as Tdrift decreases; it is better to make the
segments shorter, as required by condition (B1), up to
the point where the frequency wanders by roughly one
bin during a segment. We observe this behavior to the
right of the peak in Figure 13(b). The behavior in Figure
13(b) for Pa = 10−2 per block is consistent with the ROC
curves in Figure 13(a) over the range 10−3 ≤ Pa ≤ 1. The
threshold decreases with NT in Figure 13(c), just like in
Figure 12(c), because it is approximately independent of
Tdrift.

3. Block definition

What happens when a candidate straddles the bound-
ary between two blocks? In this paper, we treat it as a
special case, to be followed up through a veto procedure

in a genuine astrophysical search. Straddlers represent a

modest fraction ∼ N
−1/2
T of all signals or false alarms.

15 Figure 14(a) verifies that the absolute position of the
block boundary does not affect the ROC curves appre-
ciably. It displays NT − 1 individual ROC curves for
NT − 1 different block boundaries, in which the leftmost
frequency bin is shifted right by 1, 2, . . . , NT −1 bins rel-
ative to an arbitrary, reference bin. The curves overlap
closely and are barely distinguishable by eye.

Likewise we find that the performance of the HMM
depends weakly on the bandwidth of each block. It is
unlikely for a path to drift by ≈ NT bins after NT �
1 HMM steps, even when the tails in Aqjqi with |j −
i| > 1 are preserved, as in Appendix C (cf. truncated
Aqjqi with |j − i| ≤ 1 in Ref. [18]). Figure 14(b) verifies

15 Alternatively one can record straddlers on a candidate list and
consolidate candidates that share common sub-paths, after all
the data are analysed. This complicates the statistical interpre-
tation of the results, because HMM paths with common sub-
paths are correlated. [19]
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FIG. 13. Detector performance as a function of NT for Tobs = 360 d fixed, Tdrift = N−1
T Tobs ∝ N−1

T variable, and the source
parameters in Table II. (a) ROC curves for h0 = 1.3 × 10−26 and NT = 6 (purple curve), 18 (green curve), 36 (blue curve),
chosen to give an integer number of days per HMM step. (b) Detection probability 1−Pd versus NT for h0 = 1.3×10−26 (purple
curve), 1.5× 10−26 (green curve), and Pa = 10−2 per block. (c) Block score threshold Sth [see (35)] versus NT for false alarm
probability Pa = 10−2 per block. The number of bins per block and hence Sth scale with NT , with Tdrift = N−1

T Tobs ∝ N−1
T

variable (purple curve) and Tdrift = 10 d = constant [green curve; copied from Figure 12(c) for comparison]. All curves are

calculated for Version III of the HMM. Control parameters: γ = 1.0× 10−16 s−1, σ = 3.7× 10−10 s−3/2. Realizations: 103 per
curve.

this property by plotting multiple ROC curves for block
widths 2kNT∆fdrift with 0.2 ≤ k ≤ 2. Again the curves
overlap closely. We use k = 1 henceforth in this paper.

4. Conservation of signal power

In Version II of the HMM, based on the J -statistic,
J1a(f0) and J1b(f0) marshal the Doppler-shifted signal
power into one frequency bin by coherently summing or-
bital sidebands weighted by Js(2πf0a0)e−isφa . It turns
out that the same holds true empirically for the B-
statistic, although there exists no formal mathematical
proof at the time of writing; it may not be possible to de-
rive the B-statistic for a binary source exactly as a Jacobi-
Anger expansion of the B-statistic for an isolated source,
by analogy with the J -statistic. This appendix verifies
numerically that minimal power is lost or dispersed into
neighboring frequency bins, when the B-statistic is eval-
uated using J1a(f0) and J1b(f0).

Figure 15(a) graphs B(f0,Φ∗) versus f0 (evaluated for
Φ∗ in the injected bin) for a strong binary signal using
F1a and F1b to evaluate B. As the orbital motion is not
accounted for, B displays a comb of orbital sidebands
at f∗ + s/P , which fill the band 111.09 ≤ f0/(1 Hz) ≤
111.11. The comb exhibits the classic two-horned enve-
lope familiar from the Sideband algorithm, [52, 60] be-
cause the source spends more time moving perpendicular
to the plane of the sky (when the orbital Doppler shift
is a maximum) than moving perpendicular to the line
of sight (when the Doppler shift is zero). Figure 15(b)
shows the same thing as Figure 15(a) but with F1a and
F1b replaced by J1a and J1b when computing B. The
sidebands now merge into one peak, which is ≈ 40 times
higher than the tallest peak in the comb in Figure 15(a)
(note the different scales). Identical behavior is seen in
Figure 1 in Ref. [19] for the J -statistic instead of the
B-statistic.
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Appendix F: Representative phase paths recovered
by the HMM for a source in a binary

In this appendix, we examine for completeness the op-
timal phase paths Φ∗(t) recovered by Version III of the
HMM for the representative examples of binary sources
studied in Section VI A.

Figure 16 displays the absolute error between the in-
jected and recovered phase for the three synthetic binary
sources tracked in Figure 7. The interpretation is the
same as in Section V B. The phase error jumps around,
even after unwinding the phase wrapping, because the
B-statistic spreads the signal power over multiple phase
bins. On balance, though, the imperfect phase tracking
delivers improved sensitivity, as evidenced by comparing
Figures 7(a) and 7(b) and the ROC curves in Section
VI B.
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FIG. 16. Phase tracking in a representative source in a binary. Layout as for Figure 4 but for the three sources in Figure 7.
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